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We discuss the phase diagram and phase transitions in U(1) X Z2 three-band superconductors with
broken time reversal symmetry. We find that beyond mean field approximation and for sufficiently
strong frustration of interband interactions there appears an unusual metallic state precursory to a
superconducting phase transition. In that state, the system is not superconducting. Nonetheless,
it features a spontaneously broken Zs time reversal symmetry. By contrast, for weak frustration
of interband coupling the energy of a domain wall between different Z, states is low and thus
fluctuations restore broken time reversal symmetry in the superconducting state at low temperatures.

In recent years, the discovery of multiband supercon-
ductors such as the Iron Pnictides [1], has generated
much interest for multiband superconducting systems.
From a theoretical viewpoint, one of the main reasons for
the strong interest is that in contrast to previously known
two-band materials, iron-based superconductors may ex-
hibit dramatically different physics due to the possibility
of frustrated inter-band Josephson coupling originating
with more than two bands crossing the Fermi-surface.[2—

]. In two-band superconductors the Josephson coupling
locks the phase differences between the bands to 0 or 7.
By contrast, if one has three bands and the frustration
of interband coupling is sufficiently strong, the ground
state interband phase difference can be different from 0
or 7t. This leads to a superconducting state which breaks
time reversal symmetry (BTRS) [2, 3]. From a symmetry
viewpoint such a ground state breaks U(1) x Zz [1]. Re-
cently, such a scenario has received solid theoretical sup-
port [5] in connection with hole-doped Ba, _ ,K_ Fe,As,.
The possibility of this new physics arising also in other
classes of materials is currently under investigation [6].
For other scenarios of time reversal symmetry breakdown
in iron-based superconductors discussed in the literature,
see [7, 8].

Three band superconductors with frustrated interband
Josephson couplings have a number of properties radi-
cally different from their two-band counterparts. These
include (I) the appearance of a massless so-called Leggett

contrast to the “phase-only” Leggett collective mode in
two-band materials [11]; and (III) the existence of (meta-
)stable excitations characterized by CP? topological in-
variants [12, 13].

So far the phase diagram of frustrated three-band su-
perconductors has been investigated only at the mean-
field level [3, 5]. However, the iron-based materials fea-
ture relatively high T, as well as being far from the type-I
regime. Hence, one may expect fluctuations to be of im-
portance.

In this paper, we study the phase diagram of a three-
band superconductor in two-dimensions in the London
limit, beyond mean-field approximation. The results
should apply to relatively thin films of iron-based super-
conductors where, owing to low dimensionality, fluctua-
tion effects are particularly important. The main find-
ings of this work are as follows. (I) When the frustration
is sufficiently strong, the phase diagram acquires an un-
usual fluctuation-induced metallic state which is a pre-
cursor to the BTRS superconducting phase. This metal-
lic state exhibits a broken Zs time-reversal symmetry. A
salient feature is that, although the state is metallic and
non-superconducting, it nevertheless features a persistent
interband Josephson current in momentum space which
breaks time reversal symmetry. (II) When the frustration
is weak (i.e. when phase differences are only slightly dif-
ferent from 0 or ) we find that the system can undergo
a fluctuation driven restoration of the Zs symmetry at

mode at the Zy phase transition [9]; (IT) the existence of ~ very low temperatures.
new mixed phase-density collective modes in the state The London model for a three-band superconductor is
with broken time-reversal symmetry (BTRS) [4, 5, 10] in  given by
J
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Here, || ei?> denotes the superconducting condensate

(

components in different bands labeled by a = 1,2,3,



while the second term represents interband Josephson
couplings. The field A is the magnetic vector potential
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where ¢ = Y _ |1o|?. This shows that the vector poten-
tial is coupled only to the U(1) sector of the model, and
not to phase differences.

When the Josephson couplings 7, are positive, each
Josephson term by itself prefers to lock phase difference
to 7, i.e. 0, — 0, = 7. Since this is not possible for three
phases, the system is frustrated. The system breaks time
reversal symmetry when Josephson couplings are mini-
mized by two inequivalent phase lockings, shown in Fig.
1. The phase lockings are related by complex conjuga-
tion of the fields ¢,. Thus, by choosing one of these
phase locking patterns the system breaks time reversal
symmetry [2—4].

In this work, we address the phase transitions in a
two dimensional three-band superconductor with bro-
ken time-reversal symmetry. A Berezinskii-Kosterlitz-
Thouless (BKT) phase transition in U(1) systems is
driven by proliferation of vortex-antivortex pairs, while
an Ising phase transition is driven by proliferation of Zs
domain walls. The nontriviality of the problem of phase
transitions in the three-band model is due to the spec-
trum of topological excitations of the model. Firstly, the
model features singly-quantized composite vortices where
all phases wind by 2, i.e. Afy = § Vb = 2w, Afy =
27, Afs = 2m. We will denote them (1,1,1). As is clear
from Eq. (2), such a vortex has topological charge only
in the U(1) sector of the model. It has no phase winding
in the phase differences and thus does not carry topolog-
ical charge in Zs sector. In addition, the model features
other topological defects discussed in detail in Refs.
and These are Zy domain walls (several solutions
with different energies), fractional-flux vortices with lin-
early divergent energy, as well as C'P? skyrmions which
are combined vortex-domain wall defects carrying topo-
logical charges in both the U(1) and Zs sectors of the
model. This spectrum of topological excitations distin-
guishes this model from other U(1) x Z, systems, like e.g.
XY -Ising model [14]. The model is also principally differ-
ent from [U(1)]® superconductors, since in such systems
fractional vortices have logarithmically divergent energy
and thus drive BKT phase transitions [15, 16].

In two dimensions the effective magnetic field penetra-
tion length is inversely proportional to the film thickness
[17]. We thus begin by discussing the limit of very large
penetration length, in which we may neglect the coupling

a, o’ >a

that couples minimally to the charged condensate matter
fields. By collecting gradient terms for phase differences,
it can also be rewritten as
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to the vector potential. We discuss the phase diagram of
the model in the case of a finite penetration length in our
summary.

The partition function of the lattice version of the
model (1) reads
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where the Hamiltonian is given by

H=- Z cos (Oa,i — ba,j)
(4,7),

+ Y Gaar 08 (0ai — bari) . (4)

i,a' >a

1,7 € {1,2,...,N =L x L} denote sites on a lattice of
size L x L and (7,7) indicates nearest neighbor lattice
sites (assuming periodic boundary conditions). £ is the
(properly rescaled) coupling (“inverse temperature”) and
Jaos are interband Josephson couplings. Here, we con-
sider the case of similar prefactors for the three gradient
terms.

(a) +1 (b) —1

FIG. 1. (Color online) Examples of phase configurations for
the two Zs symmetry classes of the ground states on sites
of 2 x 2 lattice. Here gi2 > g23 > gis > 0. The arrows
(—, —, ) corresponds to (61,02, 03).

Algebraically decaying correlations and frustration
effects typically render two dimensional U(1) X Zo-
symmetric models difficult to investigate numerically
through equilibrium Monte Carlo (EMC) simulations
[18]. In this work we used a non-equilibrium approach,
namely that of short time critical dynamics (STCD). See



e.g. the review articles 19 and 20, and references therein.
See online supplementary material for details.

First, we consider the case gio = g23 = g31 = ¢,
which is shown in Fig. 3. The phase transitions for the
Zo and U(1) symmetries are close, but clearly separated
for all values of g. This means that beyond the mean-
field approximation there appears a new phase. As the
temperature increases from the low-temperature maxi-
mally ordered phase, an unbinding of vortex-antivortex
pairs of composite vortices first takes place. In the
resulting state the free composite vortices (1,1,1) and
(=1,—1,-1) do not further decompose into fractional
vortices (1,0,0), (0,1,0), (0,0,1) because Josephson cou-
pling provides linear confinement of the constituent frac-
tional vortices [13]). Due to this confinement, the pro-
liferation of (1,1,1) and (—1,—1,—1) vortex-antivortex
pairs disorders only the U(1) sector of the model de-
scribed by the first term in Eq. (2). However, these
defects do not restore Zs symmetry. The resulting state
is non-superconducting with broken time-reversal sym-
metry. This sector is described by the last terms in Eq.

(2),
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Secondly, at higher temperatures the Zs domain walls
proliferate and restore the symmetry completely. The
physical interpretation of this precursor normal state
with broken time reversal symmetry is as follows. In
the BTRS superconducting state there is a ground state
phase difference other than 0 or 7w between components.
This implies the existence of persistent interband Joseph-
son currents. Two different Zy phase locking patterns
mean that there are two inequivalent interband Joseph-
son current “loops in k-space”. Namely, one loop is of the
type band 1 — band 2 — band 3 — band 1, the other
is of the type band 1 — band 3 — band 2 — band 1.
The non-superconducting Zs-ordered phase corresponds
to the situation where superconducting phases exhibit
exponentially decaying correlations due to proliferation
of vortex-antivortex pairs. What sets this state apart
from the situation found in conventional superconduc-
tors is that the three-band system retains a persistent
interband Josephson current in k-space which breaks the
time reversal symmetry. The phase configurations in this
state are illustrated in Fig. 2.

Next, we consider the case of a more general model
where the Josephson couplings are different. By tuning
some of the Josephson couplings one can make the dif-
ference between two out of three phases arbitrarily small
in the BTRS ground state. This also implies that the
energy of Zo, domain walls can be made arbitrarily small.
Thus, one can interchange critical temperatures of U(1)
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(b) A Zg and U(1)
symmetric configuration.

(a) A Zs broken, U(1)
symmetric configuration
with 41 chirality.

FIG. 2. (Colors online) A schematic illustration of phase
configurations in the normal state which break time rever-
sal symmetry vs the normal state which does not. Here,
gi2 > g23 > g1z > 0. The arrows (—, —, ) correspond
to (6'17 02, 03).
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FIG. 3. (Color online) Phase diagram for the three-band

model with g12 = g23 = g31 = g. g € [1, .. ,25] The rBU(l)
line lies above the Bz, line for the investigated values of g.
Error bars are smaller than symbol sizes. Lines are guides to
the eye.

and Z, phase transitions. Moreover, inclusion of fluctu-
ations can in a certain limit dramatically suppress the
critical temperature of the Z, phase transition. Results
from Monte-Carlo simulations shown in Fig. 4 display
such behavior.

Finally, consider the effect of a finite penetration
length. As can be seen from Eq. (2), the gauge field
couples only to the U(1) sector of the model, making
the U(1) symmetry local. It also makes the energy of
(1,1,1) and (—1,—1,—1) finite [13]. As a result, at any
finite temperature, there is a finite probability of excit-
ing such topological defects, which from a formal view-
point suppresses superconductivity at finite temperature
in the thermodynamic limit. In a real experiment on a fi-
nite system, with large but finite penetration length, this



physics manifests itself as a conversion of a BKT transi-
tion to a broad crossover which takes place at lower char-
acteristic temperatures than the U(1) phase transition in
the global U(1) x Zy model. Since, on the other hand Z
phase transition is not directly affected by this coupling,
the Zs ordered non-superconducting state persists. Thus,
in the thermodynamic limit a system with finite penetra-
tion length features U(1) x Zo superconductivity at zero
temperature, while at any nonzero temperature it resides
in a Zs metallic state, up to the temperature where the
Zo-symmetry is restored.
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FIG. 4. (a) The phase diagram for the three-band model with
unequal Josephson couplings. We set gi2 = g13 = 15 and
varied g23. Error bars are smaller than symbol sizes. Lines
are guides to the eye. (b) The phase difference 695 between
band 2 and 3 in the ground state, as defined in the phase
vector inset. 633 = 0 for goz < 7.5. 035 = 095 = (2m — 6395)/2
for all go3.

In conclusion, we have studied the phase diagram
of three band superconductors with spontaneously bro-
ken time reversal symmetry due to frustrated interband
Josephson-couplings, beyond mean field approximation.
We have found that there is a new fluctuation-induced
U(1)-symmetric state, which is a precursor to the su-
perconducting state. However, it exhibits a broken Zo
(Ising) symmetry. This state is therefore distinct from
an ordinary metallic state, due to spontaneously broken
time reversal symmetry associated with persistent inter-
band Josephson currents in k-space. Experimentally, it
can be distinguished from superconducting and ordinary
normal states by a combination of local (e.g. tunnel-

ing) and transport measurements (with later showing no
superconductivity). Another way of possibly detecting
this state would be by observing an Onsager anomaly
in the specific heat in the normal state. Besides that
the existence of broken Zs symmetry in the normal state
implies the existence of mixed “phase difference-density”
collective modes previously discussed in the supercon-
ducting state [1, 5, 10]. For interband coupling values
where these modes exist, they may thus be observed in
a similar way as the Leggett mode [21]. On the other
hand, in the regime where a ground state phase differ-
ences are very close to 0 or m, we find that fluctuations
can restore the Z, symmetry at substantially lower tem-
peratures than those which are predicted by mean-field
theory. These predictions could be used also to verify if
Ba, _ K Fe,As, breaks time reversal symmetry at cer-
tain doping (which as recently discussed in [5] is a strong
candidate for a BTRS superconductor).
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Online supplementary material: Details about the
simulations in the paper “Frustration, time-reversal
symmetry breaking, and unusual metallic states in a

three-band superconductor”.

We used short time critical dynamics (STCD) to in-
vestigate the three band model. We briefly describe the
procedure here, and refer to the review articles 19 and
and references therein for more details on this method.

The STCD method is based on the observation that
when a system, initially prepared in either the ground
state or in a random state, is released under a Monte
Carlo (MC) dynamics of local updates, the MC time ¢
evolution of the mean of a local observable will be very
sensitive to the coupling constant of the dynamics. Typ-
ically (and this is what we have done here) one looks
at some kind of magnetization m(t) when heating the
ground state, as this tend to give more accurate results
than cooling down a random (“infinite temperature”) ini-
tial state. When the coupling differs from the critical
coupling 8. (which turns out to be the same as the equi-
librium critical coupling), the magnetization goes expo-
nentially to either zero or a constant value as t — oo,
depending on whether the coupling is sub- or supercrit-
ical. If the coupling is critical, m(t) ~ t%, where a is a



constant which can be related to equilibrium critical con-
stants. Thus, by examining the behavior of m(t) around
Be, it is relatively straightforward to determine the criti-
cal point to great precision.

In practise, the time, tmicro, after which the t — oo
behavior starts to emerge, is rather short: For simple
non-frustrated systems it is typically in the order of tens
of MC sweeps; in frustrated systems somewhat longer, a
couple of orders of magnitudes more. The advantage of
STCD simulations lies in the short time scale (compared
to EMC). Thermalization sweeps are not necessary, and,
given sufficiently large system sizes, the finite size correla-
tion effects are exponentially damped within the simula-
tion time, effectively making the system behave as in the
thermodynamic limit. The last phenomenon can be un-
derstood from the fact that in the short time regime, cor-
relations have not had sufficient time to expand through
the entire system. Furthermore, the dynamics being far
from equilibrium means that the equilibrium problem of
critical slowing down is avoided, rendering the big system
sizes needed for the longer simulation times of frustrated
models unproblematic.

In the simulations of the three band model we have
used two “magnetizations”, one for each symmetry, as
local order parameters. For the Z, symmetry, we choose
the mean Ising magnetization, mz, = N~')", 0, as or-
der parameter. Here o; = 1 if the local phases are dis-
tributed as 1 — 2 — 3 — 1 (going counterclockwise), and
o; = —1 if they are distributed as 1 -+ 3 — 2 — 1. The
U(1) symmetry order parameter is chosen to be the aver-
age of the absolute value of the mean global XY vector
sum of each component, myy = (3N)™' Y [>: Sa.l,
where 84,; = [c08(0y,i),8In(04,:)]. It should be noted that
the magnetization curves used to obtain the results are
average values of several, independent runs.

The procedure of finding the critical coupling of Z,
symmetry, called fz,, is rather straightforward: For a
given set of Josephson couplings, we start looking for the
approximate critical coupling by performing some test
simulations for a wide range of S-values, manually search-
ing for the best power-law behavior by log-log plotting
the magnetization curves. From this it is easy to ob-
tain a relatively small interval containing fz,. Then we
perform heavier simulations (bigger system size, larger
maximal MC time, ¢;,,x, more runs) at S values spread
out in this interval. Finally we use quadratic splines to
interpolate between the obtained magnetization curves
and search for the 8-value which corresponds to the best
power-law fit using nonlinear regression. We have used
the standard deviation of the residuals as a goodness-of-
fit parameter for this optimization problem.

The time correlation ca:(t) = (m(t)m(t + At)) is at
the critical point expected to follow a power law as well,
car ~ tP. To counteract this, we let the time intervals be-
tween the simulation samplings follow a power too, keep-
ing all the points of the regression approximately equally
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FIG. 5. log-log plot of some mz, (t)-curves for g =1 at, from
below, § = 0.748,0.749,...,0.754. The critical coupling is
determined to be fz, ~ 0.75039. The error is smaller than
the line width. tmicro ~ O(10%).

correlated.

An example of my, (t)-curves of a STCD simulation is
shown in Fig. 5.

Finding By(1), the BKT transition point of the U(1)
symmetry, is in many aspects similar to the Zs procedure.
The main difference is that we now have to deal with
the entire low temperature phase displaying power law
behavior in my1) (), making the search for the transition
coupling more challenging. In this work we have used a
technique from Ref. 22. We noted that in this case the
method was less numerical stable than the Zsy critical
point search explained above, requiring more relying on
manual initial parameter guesses. Therefore the error
bars for the U(1) line in the phase diagrams of this work
are probably a bit too small, but not so much that any
qualitative conclusion could be changed.

An example of my1)(t)-curves of a STCD simulation
is shown in Fig. 6.

A system size of L = 2048 (grid parallelized and dis-
tributed over several CPUs) was used for all results; tests
against L = 1024 and L = 4096 simulations confirmed
that this system size was sufficiently large for any finite
size effects to be negligible at the Monte Carlo time scale
used in the simulations.

In the determination of 3z, and By(;) only data for ¢ >
5000 sweeps was used in order to avoid the non-universal
microscopic time regime. t.x = 30000 sweeps was used
for the determination of all fz, values, By(1) values for
the g12 = go3 = g13 simulations and for go3 > 12.5 in the
g12 = g23 # g13 simulations. tp.x = 50000 was used for
go3 < 12.5 in the g12 = g3 7é g13 simulations.

Pseudorandom numbers were generated by the
Mersenne-Twister algorithm [23]. Errors were deter-
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FIG. 6. log-log plot of some my)(t)-curves for g = 1 at,
from below, 8 = 0.748,0.749, ...,0.756. By, ~ 0.75220.
The error is smaller than the line width. tmicro ~ O(10?).

mined using the jackknife method.
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