
ar
X

iv
:c

on
d-

m
at

/9
71

20
46

v1
  3

 D
ec

 1
99

7

Mobility and Reactivity of Discrete Breathers

Serge Aubry a and Thierry Cretegny b
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Abstract

Breathers may be mobile close to an instability threshold where the frequency of a
pinning mode vanishes. The translation mode is a marginal mode that is a solution
of the linearized (Hill) equation of the breather which grows linearly in time. In
some cases, there are exact mobile breather solutions (found numerically), but these
solutions have an infinitely extended tail which shows that the breather motion is
nonradiative only when it moves (in equilibrium) with a particular phonon field.

More generally, at any instability threshold, there is a marginal mode. There are
situations where excitations by marginal modes produce new type of behaviors such
as the fission of a breather. We may also have fusion. This approach suggests that
breathers (which can be viewed as cluster of phonons) may react by themself or
one with each others as well as in chemistry for atoms and molecules, or in nuclear
physics for nuclei.

1 Breathers by the Principle of Anticontinuity: Brief Review of

Current Developments

The concept of nonlinear self-localization which is now emerging as ubiquitous
in many highly nonlinear models, has an old historical origin. Although exact
localized and time periodic solutions were already known for long in special
integrable models such as the sine-Gordon [1] or the Ablowitz-Ladik equa-
tion [2], these solutions were nongeneric because they could not survive under
most perturbations of the models. Landau was probably the first physicist who
pioneered the concept of nonlinear localization when he found in 1933 that
very generally a quantum electron strongly coupled to a polarizable medium
could localize in a potential well created self-consistently and then form a po-
laron[3]. Actually, the concept of breathers appeared implicitly in many fields
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in physics but without its generality and terminology. As a unique example,
it is straightforward to reinterpret in terms of breathers the old well-known
Josephson Junction (JJ) effect between two superconductors. In the undamped
limit, it is described by nothing but a Discrete Nonlinear Schrödinger equa-
tion with two sites only [4]. Then, the presence of a breather is just associated
with a rotation of the phase difference between the two superconductors that
is the JJ effect (The same ideas extend to JJ arrays [5,6]). Despite many pre-
cursive ideas, it was only in 1988 that Takeno and Sievers clearly suggested
that intrinsically localized modes (breathers) in discrete anharmonic systems
should be quite general and robust solutions existing in many nonlinear mod-
els [7] (for a review see [8]). We believe that the discovery of this concept is a
major achievement in the recent years and should become the cornerstone of
new important development in Nonlinear Physics with applications to a wide
number of fields in Physics, Chemistry and Biology.

The first rigorous proof for the existence of breathers in a wide class of models
was given later [9]. This proof was obtained by considering first a limit where
the model reduces to a discrete array of uncoupled anharmonic oscillators.
Then, breathers, corresponding to one oscillator moving freely, trivially exist
and can be continued up to nonzero values of the coupling. This uncoupled
limit which can be viewed as opposite to the integrable limit where the system
is harmonic and spatially continuous, was named anti-integrable or anticon-
tinuous [10,11]. This theory also holds with aperiodic lattices which may be
random, it holds for coupled rotors (rotobreathers), for electrons coupled to
anharmonic oscillators (polarobreathers) etc. . . [12].

The basic principle of these proofs can be extended for proving the existence
of breathers in nonsymplectic models with dissipation [13,14]. It can be also
extended to anharmonic models involving acoustic phonons for example to an
extension of the d-dimensional version of the model described in [15] which
couples linearly anharmonic optical variables with harmonic acoustic variables
[16]. A different approach is proposed in [17] which introduces a new type of
anticontinuous limit in diatomic FPU chains where the mass ratio between the
light and heavy atoms goes to zero. It can be extended to higher dimensions
[18]. These different extensions confirm how general is the concept of discrete
breather, and that they can persist as exact solutions despite the increasing
of the model complexity.

The same theory also predicts the existence of multibreather solutions ob-
tained by continuation from the solutions where several oscillators move at
the same frequency [12] and many of them are linearly stable. They can be
clusters of a few number of breathers and then are still considered as breathers
(e.g. 2-sites breathers). They can also be extended over arbitrary infinite clus-
ters. When the cluster covers all the lattice sites, the multibreather becomes
just an anharmonic plane waves. They have the property that they can trans-
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port energy by phase torsion over arbitrarily complex pattern called rivers [19].
Such solutions can persist even when the lattice is random. In that case, it is
interesting to point out that these multibreather solution can transport energy
while all the linear modes are completely localized and cannot transport any.

These existence proofs can be also turned into an efficient method for the
practical calculation at the computer accuracy of any breather and multi-
breather solutions [20,21,5,19,22,15] in any model where they exist (including
FPU chains).

At the anticontinuous limit, the breather quantization is trivial [12]. Within
the standard action-angle representation, the operator corresponding to the
action of the uncoupled anharmonic oscillator at site i, can be written as
Ii = a+i ai + 1/2 using standard creation and annihilation boson operators a+i
and ai (phonons). The anharmonicity of the oscillator is equivalent to the fact
that H(Ii) is not a linear function of Ii, that is the phonons are interacting.
Then, a quantum breather just appears as a bonded (or antibonded) cluster
of phonons at a given site and no phonon elsewhere.

When the oscillators are coupled with some coupling C which has to be small
compared to the binding energies, a naive perturbation calculation shows that
these bonded states of phonons should persist as narrow bands. Their band
width is proportional to Cp where p is the number of phonons involved in
the quantum breather. When p is large, this band width becomes negligible
or equivalently the breather mass infinite 1 . Such behavior is indeed observed
for the dimer problem [4] where the band width is replaced by a narrow split-
ting between two levels and also for the trimer [23]. If quantum breathers are
narrow bands of bonded bosons, quantum polaron could be also viewed as
narrow bands of a bonded state between an electron and many bosons. Quan-
tum Bipolarons are the same but with 2 electrons in a singlet state bonded to
a cluster of phonons.

2 Breather Mobility by Marginal Modes

It has been observed since several years that discrete breathers could be mobile
in some models [24,25] (for a review see [8]) 2 . Mobile breathers for which the
velocity can go to zero (or at least become small), can be studied by continuity

1 This is the expected behavior when the classical breather is not mobile and when
there is no accidental resonances between different breather structures with the
same energy.
2 Strictly speaking mobile breathers are no more time periodic solutions and they
require a specific definition which we shall give later.
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from the immobile breathers. This problem looks analogous to the study of
mobile kinks which can be often well described with a collective coordinate
as a massive particle moving in a periodic Peierls-Nabarro (PN) potential.
Many numerically observed features for mobile breathers at low velocity, are
indeed reminiscent of those of moving kinks and for that reason, it has been
proposed that breather mobility could be also related to the vanishing of some
Peierls-Nabarro barrier [26].

However, it turned out that this concept cannot be clearly defined [8] at least
as a straightforward extension of the standard concept. The reason is that
discrete breathers are not topologically conserved objects, and belong to a
family of solutions the internal energy (and frequency) of which can vary
continuously. If a PN energy barrier could be defined with a separatrix in the
phase space, it could be believed that the breather could nevertheless overcome
this barrier by tuning its frequency and releasing some of its internal energy.
This point has been discussed in details [27]. This point of view is not totally
convincing because it is not discussed whether this internal energy could be
released.

We proposed a consistent definition for a PN barrier but for the action of the
breather instead of its energy [28]. This approach could explain the formation
of intermediate breathers which correspond to the intermediate extrema (i.e.
not centered on a lattice site nor in the middle of a bond) of the Peierls-
Nabarro action. They are indeed numerically observed in many cases and shall
be discussed in another publication [29]. We shall see here that an effective

PN barrier in energy could be nevertheless defined empirically.

Beside the vanishing of its PN energy barrier, the mobility of a kink is also
related to the vanishing of the frequency of a pinning (or translation) mode.
Breathers also may have internal modes which are spatially localized. Unlike
the PN barrier, they have an unambiguous definition which hold as well for
kinks. These modes can be used for testing the breather mobility. When a
breather is (almost) freely mobile, there are small perturbations (namely kicks
on the translation mode) which induce its motion at slow velocity. Unlike most
linear perturbations which grows exponentially in time (for unstable modes)
or remain bounded (for stable modes), such a perturbation grows linearly in
time. We call such kind of perturbations marginal modes. In the limit of a
zero velocity, the ideal breather trajectory tends to become a continuum of
breather solutions (if it exists). As a result, there are also perturbations which
remain bounded in time and thus do not put the breather into motion. They
correspond to a breather pinning mode at zero frequency.

For investigating pinning and marginal modes, let us consider as an example,
the standard discrete Klein-Gordon chain with Hamiltonian:

4



2.1 The Klein-Gordon Chain: Notations

H =
∑

n

(

p2n
2

+ V (un) +
C

2
(un+1 − un)

2

)

(1)

which consists of anharmonic oscillators with potential V (x) and mass unity
coupled by a nearest neighbor harmonic coupling with constant C. Let us
consider a time reversible breather solution with period tb of the dynamical
equation

ün + V ′(un)− C(un+1 + un−1 − 2un) = 0. (2)

The linearized equation which determines the “harmonic” modes of the breather

ǫ̈n + V ′′(un(t))ǫn − C(ǫn+1 + ǫn−1 − 2ǫn) = 0 (3)

is similar to a linear discrete Schrödinger equation but with a time periodic po-
tential V ′′(un(t)) with period tb. This equation always has the trivial solution
ǫn(t) = u̇n(t) (phase mode).

Integration over a period of time tb of this equation determines the Floquet
matrix F which relates linearly {ǫn(tb), ǫ̇n(tb)} = F{ǫn(0), ǫ̇n(0)} to its initial
conditions {ǫn(0), ǫ̇n(0)}. This matrix is 2N × 2N for a system with N sites.
It is symplectic which implies that if λ is an eigenvalue then λ∗, 1/λ and 1/λ∗

are also eigenvalues. The linear stability of the breather requires that there are
N pairs of eigenvalues e±iθν are on the unit circle (we choose for convenience
0 ≤ θ ≤ π). The phase mode corresponds to a degenerate pair at θ = 0. This
Floquet matrix is also connected to the phonon scattering by the breather
[30].

The linearly stable mode associated with an eigenvalue eiθν is time quasiperi-
odic and exhibits the series of frequencies ων = ( θν

2π
+ n)ωb with n integer.

Thus, its frequency is defined modulo ωb. We choose the determination n = 0
and 0 ≤ ων ≤ ωb/2.

2.2 Linear Stability and Spectrum of the Second Variation of the action

It has been shown in [12] that it is also convenient to study the equation

ǫ̈n + V ′′(un)ǫn − C(ǫn+1 + ǫn−1 − 2ǫn) = Eǫn (4)
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Fig. 1. Bands Eν(θ) defined by eqs.(4) and (5) calculated for the single
breather at frequency ωb = 0.75 for the KG chain (1) with the Morse potential
V (x) = 1

2(1− e−x)2 and C = 0.07, 0.1, 0.15, 0.2.

which allows one to explicit the Krein theory of bifurcations in simple terms
and in addition, yields more informations. This is nothing but the eigenequa-
tion of the matrix of the second variation of the action expanded around the
breather solution which by definition is one of its extrema. This is also the
(full) Newton matrix involved in the breather continuation [12].

Let us make a brief review of its properties. The time periodicity of V ′′(ui(t))
implies that the eigenvalues Eν(θ) of eq.(4) forms bands indiced by ν. They
are 2π periodic and symmetric functions of the parameter θ defined modulo
2π and the corresponding eigenstates fulfills the Bloch condition

ǫν,n(t+ tb, θ) = eiθt/tb ǫν,n(t, θ), n = 1, . . . , N (5)

(see fig.1 for an example of numerical calculation of the bands Eν(θ) of eq.(4)).
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The eigenvalues e±iθν of the Floquet matrix F which are on the unit circle,
are determined by the set of intersections θν of the bands Eν(θ) with the axis
E = 0. The Krein signature of a pair of conjugated eigenvalues e±iθν is defined
as[31]

κ(θν) = sgn

(

i
∑

n

ǫν,nǫ̇
∗
ν,n − ǫ∗ν,nǫ̇ν,n

)

(6)

which is a conserved quantity due to the symplecticity of the dynamics. Ac-
cording to the Krein theory, two pairs of eigenvalues e±iθν and e±iθµ which
collide on the unit circle may lead to an instability only if their signature is
different. This criterion was reinterpreted in [12], where it has been shown that
the Krein signature of the eigenvalues e±iθν is the opposite sign of the slope
dEν(θ)/ dθ at θ = θν . Thus, it is clear that a bifurcation can occur only if the
two eigenvalues belong to the same band (c.f. fig.2). As a consequence, the
slopes of the band (or the Krein signatures) at θν and θµ have to be different.

For a stable breather in a lattice with N sites, there are N−1 bands intersect-
ing the axis E = 0 and one corresponding to the phase mode which is tangent
to this axis at θ = 0. When the system is infinite, there is a continuum of
bands (see fig.1) which can be easily calculated because it corresponds to the
spectrum of the system without breather (ui(t) ≡ 0 and V ′′(ui(t)) = ω2

0) .
There is at least one isolated band corresponding to the phase mode and pos-
sibly some other isolated bands which correspond to spatially exponentially
localized modes.

2.3 Marginal Modes: Existence Proof

When the breather becomes linearly unstable, one of these bands Eν(θ) moves
and looses its intersection (see fig.1 between C = 0.1 and C = 0.15, fig.2 and
[12] for details). This appears on the unit circle as a collision between two
eigenvalues θν and θµ. At the bifurcation, we have three possible situations
whether the curve is tangent to E = 0 either at θ = 0, or at θ = π or at
θ = θ0 6= 0 or π (Krein crunch). The scheme on fig.2 shows an example for a
Krein crunch.

Another important result which comes out readily from our band analysis
is that the two eigenmodes associated with the eigenvalues eiθν and eiθ

′

ν are
colinear at the bifurcation (see fig.2). Thus, the Floquet matrix F looses either
one (θ = 0 or θ = π) or two eigenvectors (θ = θ0 6= 0 or π). As a consequence,
the space generated by the eigenvectors of F is not the whole space. We show
that the missing modes are just marginal modes which grows linearly in time.
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(a)

Eν(θ)

θ

(b)

marginal mode

(c)

Fig. 2. Schemes showing as an example the evolution of four eigenvalues on the unit
circle (a), the corresponding band shape of the matrix of the second variation of the
action(b), the corresponding eigenvectors of the Floquet matrix for a Krein crunch
before, at and after the bifurcation (c).

Let us prove that at each bifurcation where there is a curve Eν(θ) tangent
from above (or from below) to the line E = 0 at θ = θ0, eq.(3) exhibits a
marginal mode.

The eigensolutions of eq.(4) associated with the eigenvalue Eν(θ) which fulfills
the Bloch condition (5) can be written with the form ǫνn(t, θ) = eiθt/tb χν

n(t, θ)
where χν

n(t, θ) is time periodic with period tb. We assume for example that
Eν(θ) is tangent to E = 0 from above. Then for E > 0 small enough, there
are two values θ1(E) and θ2(E), such that

• Eν(θ1) = E and Eν(θ2) = E
• limE→0 θ1(E) = θ0 and limE→0 θ2(E) = θ0.

Since the combination

ǫνn(t, θ1(E))− ǫνn(t, θ2(E))

θ1(E)− θ2(E)
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is also an eigensolution solution of eq.(4), it comes out that for θ = θ0,

∂ǫνn(t, θ)

∂θ
= eiθt/tb

(

i
t

tb
χν
n(t, θ) +

∂χν
n(t, θ)

∂θ

)

(7)

is a solution of eq.(3) which diverges in time proportionally to t and thus is a
marginal mode (∂χν

n(t, θ)/∂θ is time periodic with period tb).

Thus, at the bifurcation, the Floquet matrix F exhibits a stable eigenmode
({ǫνn(0, θ0)}, {ǫ̇νn(0, θ0)}) for the eigenvalue eiθ0 associated with a marginal
mode

(

{∂ǫ
ν
n(0, θ0)

∂θ
}, {∂ǫ̇

ν
n(0, θ0)

∂θ
}
)

which grows linearly in time. When θ0 6= 0 and π, the complex conjugate
eigenvectors have the same properties. This property is associated with the
fact that the 2×2 Floquet matrix restricted to the subspace determined by the
two eigenvectors which becomes colinear at θ = θ0, has degenerate eigenvalues
but only one eigenvector and thus is not diagonalizable. The marginal mode
is not uniquely defined. It could be combined arbitrarily with the associated
eigenmode but this is just equivalent to change the origin of time.

As we pointed above, there is always a band Eν(θ) tangent at E = 0 for
θ0 = 0. Equation (3) exhibits a phase mode (ǫn(t) = u̇n(t)) for any breather
solution and an associated marginal mode which diverges linearly in time. The
latter can be also obtained directly by derivation of un(t) = gn(ωbt, ωb) with
respect to ωb and thus does not represent physically a real instability. Since
an excitation of this mode produces a small change in the breather frequency,
it is called growth mode.

2.4 Kicking a Breather

Turning back to the search of pinning mode and its associated marginal mode,
we have to look for the breather bifurcations at θ0 = 0. A systematic analysis
of the Floquet matrix of the breathers can be accurately and easily done nu-
merically with the new methods developed in [20]. It yields many bifurcations
and some of them are at θ = 0. We just have to test numerically the effect of
a breather perturbation in the direction of their marginal mode 3 .

In the case of a spatially symmetric breather, the eigenmodes of eq.(4) are
either spatially symmetric or antisymmetric. As a result the symmetric and

3 Of course, perturbations in the direction of the growth mode, should not be
excited for producing mobile breathers since its effect is just to change its frequency.
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antisymmetric branches can intersect one with each other without interaction
(c.f. fig.1). The pinning mode which corresponds to a small translation of
the breather, has to break its spatial symmetry and should be searched as a
spatially antisymmetric mode.

An example has been studied in detail for the KG model (1) with a double
well potential V (x) = 1

4
(x2 − 1)2 [21]. More extensive numerical studies will

be reported in [29]. We shortly recall the main findings and refer the reader
to this reference for the illustrating figures.

For the double well potential and a single breather at frequency ωb = 2π/6 <
ω0 =

√
2, the numerical analysis reveals that at C = Cc ≈ 0.5888, there is a

bifurcation at θ = 0 concerning a spatially localized and antisymmetric eigen-
mode. There is a pair of isolated eigenvalues e±iθ1(C) of the Floquet matrix
F which go to unity for C → Cc. The time reversibility of the breather so-
lution implies that the pair of eigenvectors are complex conjugate and one
is the image of the other by time reversibility. Thus they have the form
V± = ({δn(C)},±i{γn(C)}) where the position component is real and the
velocity component is purely imaginary. When C → Cc, γn(Cc) = 0. The
pinning mode ({δn(Cc)}, {0}) only concerns breather perturbations on the
position of the particles. The marginal mode which is both time antisymmet-
ric and spatially antisymmetric, is obtained as the limit of the normalized
vector limC→Cc

V̂(C) where V̂(C) = V(C)
‖V(C)‖2

with V(C) = ({0}, {γn(C)}). It
contains only velocity components.

When a small initial perturbation with no component on the marginal mode is
added to the breather, it does not move uniformly but only oscillates. On the
opposite, it will move when the initial perturbation has a component on the
marginal mode λV̂(Cc). The breather motion appears to be the most perfect
(that is the most free of phonon radiation) when this perturbation is a pure
marginal mode. A small perturbation λV̂(Cc) added to the initial conditions
of the breather at C = Cc, grows linearly in time as expected. Actually,
the breather moves slowly and the motion is uniform and persists over very
long time and many lattice spacing with almost no energy dissipation. Let us
emphasize that this breather mobility is not related to a large spatial extension
of the breather as it is usually believed at least for mobile kinks.

This initial perturbation only concerns the initial velocity of the particles,
which at t = 0 are zero for the unperturbed breather. Since V̂(Cc) is normal-
ized, the kinetic energy added to the breather by this initial kick is just 1

2
λ2.

It is found that the resulting velocity of this breather v is proportional to the
amplitude λ. As a result, an effective mass m∗ can be defined by the equality
1
2
λ2 = 1

2
m∗v 2.

When C is close to but smaller than Cc, the breather does not move but
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Fig. 3. Evolution of the center of energy (modulo 20) of a breather perturbed along
its translation mode with various amplitudes: λ < λc (dashed line), λ ≈ λc (full line)
and λ > λc (dash-triple dotted line). The on-site potential is the Morse potential,
C = 0.129 and the frequency of the breather is ωb = 0.80. The unit of time is the
period of the perturbed breather.

oscillates if the amplitude λ of the initial perturbation λV̂(C) is too small. This
is not surprising because this perturbation does not correspond to a marginal
mode but to an ordinary mode although its frequency is low. However, there
exists a quite well-defined value λc(C) such that when λ > λc(C), the breather
starts to move. Just beyond the threshold the motion is non uniform, similarly
to a rotating pendulum near the separtrix. For larger kicks, the breather moves
almost non-dissipatively over very long distances. An example is presented on
fig.3 where a narrow linearly stable Morse breather is made mobile through a
kick along its pinning mode. In some cases, the breather may dissipate phonon
radiation and stop after some time. As a result, the determination of this
mobility threshold cannot be determined with a high accuracy but its order
of magnitude is nevertheless physically significant: 1/2λ2c can be interpreted
as the Peierls Nabarro energy barrier which must be provided to move the
breather. It is nonzero for C < Cc and vanishes at C = Cc. It is undefined
above (but could be defined from another intermediate breather [29]).

When C becomes larger than Cc, the breather is unstable and in principle a
small perturbation λV̂(C) initially diverges exponentially. However, while the
amplitude of this instability is weak enough, the mobility usually remains very
good.

There are models for which the single breathers do not exhibit any instability
threshold. Thus, no pinning mode can be found for example in the KG chain
(1) with the quartic potential V (x) = 1

2
x2+ 1

4
x4. All the numerical tests[21] we

did by kicking these breathers by reasonably small initial perturbations, were
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unsuccessful to move the breathers even by few lattice spacings. However, a
good mobility can be obtained when the breather frequency approaches the
phonon band edge where the size of the breather diverges. This is not sur-
prising because it is well-known that continuous models which do have exact
propagating localized solutions (e.g. the Nonlinear Schrödinger equation), pro-
vides good approximation of the model in that limit.

In summary, highly mobile breather (which are not spatially very extended),
may be found at the instability thresholds of the immobile breather. The
numerical investigation of the spectrum and the eigenvalues of the Floquet
matrix F allows one to discover systematically mobile breathers which are
not spatially extended. The method has been applied successfully in various
models including FPU chain and should work in principle for models in higher
dimension. It has also been applied for finding mobile and small bipolarons in
the Holstein-Hubbard model [32].

3 Exact Mobile Breathers: Loop Dynamics

Although the above method allows one to find breathers which moves with
almost no energy dissipation, it is not clear whether there exists exact solutions
corresponding to a moving breather.

Let us assume that we have an exact mobile breather solutions with frequency
ωb moving at the velocity v . After a time T = 1/v , the breather has moved
by one lattice spacing, but since this time is generally incommensurate with
the period tb = 2π/ωb of the breather, the breather phase has been rotated
by an angle α = Tωb modulo 2π, incommensurate with 2π. After a time nT
such that nTωb ≈ 0 modulo 2π, the breather returns to an almost identical
configuration shifted by n lattice spacing. Therefore a moving breather should
be viewed as a moving loop in the phase space. Its trajectory is the set of
trajectories generated by the initial conditions with all possible phases. Such
a dynamics can be described formally.

Considering a dynamical system with Hamiltonian H({pi, ui}) where ui and
pi are conjugate variables and Hamilton equations

ṗi = −∂H
∂ui

u̇i =
∂H

∂pi
. (8)

We associate with this system, a dynamical system of loops ({pi,x, ui,x}) where
the coordinates depends not only on i and but also on extra continuous variable
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x on a 1-torus. For a given period tb, we have

({pi,x+tb(y), ui,x+tb(y)}) = ({pi,x(y), ui,x(y)}) (9)

for any y which represents a (fictitious) time. Its trajectories extremalize the
extended action

A =
∫

dy





tb
∫

0

dx
∑

i

pi,x(y)(
∂ui,x
∂x

+
∂ui,x
∂y

)−H({pi,x(y), ui,x(y)})


 (10)

which yields the extended Hamilton equations

∂pi,x
∂x

+
∂pi,x
∂y

= − ∂H

∂ui,x
,

∂ui,x
∂x

+
∂ui,x
∂y

=
∂H

∂pi,x
. (11)

The corresponding Hamiltonian for this loop dynamics is

HL(y) =

tb
∫

0

dx

(

∑

i

pi,x
∂ui,x
∂x

−H({pi,x, ui,x})
)

(12)

that is the action of the loop where x = t is taken as the time in the initial
model. For a solution of (11), this effective Hamiltonian is independent of the
fictitious time y. Time periodic solutions with period tb for the single time
dynamics (and in particular the breathers) correspond to extrema of (12) and
are fixed points for this loop dynamics.

An initial loop evolves in the phase space and in general if the system is
mixing it will spread densely over the phase space (see fig.4). A mobile breather
corresponds to a special solution of eqs.(11) which returns to an equivalent
configuration apart a space translation. It fulfills the skew periodicity condition

({pi+1,x(y + T ), ui+1,x(y + T )}) = ({pi,x(y), ui,x(y)}) (13)

Let us note that if {pi,x(y), ui,x(y)} is a solution of eqs.(11), then for a and b
arbitrary, {pi,ax+(1−b)y(by+(1−a)x), ui,ax+(1−b)y(by+(1−a)x)} is also solution
of the same equations. This change of variable does not change at all the
corresponding set of real trajectories. However, our definition for the loop
dynamics requires that the new solution be periodic with respect to x, which
implies b = 1. The new period with respect to x which is tb/a, can be arbitrary.
In some sense, this is not surprising because strictly speaking the frequency of
a mobile breather cannot be defined. However, it is reasonable that the loop
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x y

x
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(a)

(b)

Fig. 4. Scheme of a Loop Dynamics : (a) represents the evolution in phase space of
a loop which corresponds to an exact mobile breather. (b) the same for an arbitrary
loop which mixes in the phase space

motion in the phase space be as slow as possible. a can be optimized for that
and a possible criteria is that

T
∫

0

dy
∑

i

(

(
∂pi
∂y

)2 + (
∂ui
∂y

)2
)

be minimum.

If there is a solution of eqs.(11) which fulfills eq.(13) for a velocity v = 1/T , the
energy of the initial loop H({pi,x(0), ui,x(0)}) has to be constant (i.e. indepen-
dent of x). It is convenient to write this solution with hull functions hi(ξ, η, v)
and gi(ξ, η, v) which are 2π−periodic with respect to ξ, and 1-skew periodic
with respect to η (that is hi+1(ξ, η + 1, v) = hi(ξ, η, v) and gi+1(ξ, η + 1, v) =
gi(ξ, η, v)). Then, we have ({pi,x(y), ui,x(y)}) = ({hi(ωbx, vy, v), gi(ωbx, vy, v)}).
Eqs.(8) have a solution with the form

pi(t) = hi(ωbt + α, v(t+ β), v) ui(t) = gi(ωbt+ α, v(t+ β), v) (14)

where α and β are arbitrary phases.

Taking condition (13) into account, we have hn(ξ, η, v) = h0(ξ, η − n, v) and
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gn(ξ, η, v) = g0(ξ, η − n, v) which shows that a unique pair of hull functions
h0, g0 is sufficient for describing the whole breather motion. This new form
turns out to be identical to those proposed by S. Flach for a mobile breather
[33].

We have no mathematical proof that such exact solution could exist, but
this problem could be approached numerically with the same methods as
those used for calculating non time reversible multibreathers [19]. It consists
in the application of a modified Newton method for finding fixed points of
the Poincaré map TL : {pi,x(0), ui,x(0)} → {pi+1,x(T ), ui+1,x(T )} defined by
eqs.(11) where the period tb and pseudoperiod T are given parameters. It is
clear that as in [19], the Newton matrix is noninvertible at the fixed point (if
any). We know however that these degeneracies are associated with the two
arbitrary phases of eq.(14). As for nontime reversible breathers, this problem
can be overcome by using a technique of singular value decomposition which in
some sense, is equivalent to discard in the Newton matrix, the subspace asso-
ciated with the two eigenvalues which are small. This method could converge
to an exact solution, if one chooses as initial solution a good approximation
of a mobile breather obtained by a marginal mode excitation. This general
method has not yet been implemented.

We tested preliminarily the simplest case where T is an integer multiple of tb.
For that purpose, we just used the numerical program initially designed for
non time reversible multibreather solutions [19] (a modified Newton method)
with few line adaptations consisting in changing the time periodicity into the
skew periodicity condition

{pi(t), ui(t)} = {pi+1(t+ T ), ui+1(t + T )}. (15)

When a good approximate solution for a mobile breather can be obtained
(by perturbation of an immobile breather with a translation mode), it can
be used as trying solution for starting the Newton process. In that case, our
program converges quite well to a numerically exact mobile breather solution
at an accuracy, which is apparently only limited by the computer precision.
This accuracy has been pushed till 10−21 (in quadruple precision) on the skew
periodicity condition (15).

Figs.5 and 6 show two example of such solutions. The most striking feature
is that the solution does not go exactly to zero far away from the center
of the mobile breather but extends over the whole system whatever is its
size. For the infinite system, this solution would likely spatially extend to
infinity with a small amplitude oscillating tail. These mobile breather solutions
look analogous to the nanopteron solutions [8] which are immobile breathers
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Fig. 5. Numerically Exact Mobile Breather obtained in the KG chain with the
Morse potential at C = 0.147. The time needed to move over one lattice spacing is
T = 52.6. Profiles of the initial positions (a) and velocities (b). (c) Distribution on
the unit circle of the extended Floquet matrix Fe. This solution is linearly stable.
(d) Space-time representation of the energy density of the breather over one periode
(there are 7 oscillations).

with an infinite phonon tail 4 . The extended Floquet matrix Fe defined as
the derivative of the map {pi(0), ui(0)} → {pi+1(T ), ui+1(T )} is numerically
calculated and diagonalized in order to look at the stability of its fixed point.

In the case presented in fig.5, the mobile breather solution is linearly stable
while in the second case where it is more discrete and moves slower, the mobile
breather is slightly unstable. Further studies are necessary to explore these
phenomena.

4 They were named phonobreather in [12,20]. In some limit, their existence can be
proved.
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Fig. 6. Same as fig.5 but for C = 0.1, T = 92 and 10 internal oscillations over one
period. Two eigenvalues are out of the unit circle and this exact solution is linearly
unstable.

4 Breather Reactivity

As we found, in subsection 2.3, there are marginal modes at any breather
bifurcation but only some marginal modes corresponding to bifurcations at θ =
0 can be used for making a breather mobile. What is the effect on the breather
of perturbations by marginal modes which are not associated with pinning
modes? Since they diverge linearly in time, they start a slow transformation of
the breather which is interesting to study at longer time. This transformation
may exhibit complex transitory regimes not yet analyzed in general. In some
cases, it exhibits a simpler behavior which can be easily interpreted.

For example, for a multibreather (2-breathers bonded state), we observed that
its excitation by a marginal mode may produce a fission. The most typical case
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Fig. 7. Fission of a 2-breather state . . . • • • 10 • • • . . . in the DNLS equation
by a perturbation by the marginal mode at the instability threshold ( C = 0.065,
ωb = (

√
5− 1)/2) (from ref.[22]).

we found (see fig. 7), was obtained in [22] for the DNLS equation

− C(ψn+1 + ψn−1 − 2ψn)− |ψn|2ψn + ψn = iψ̇n (16)

for the 2-breather state denoted . . . • • • 10 • • • . . . which is continued from
the solution at the anticontinuous limit (C = 0) given by ψ0 =

√
1 + ωb e

iωbt

(denoted 1), ψ1 = 1 (denoted 0) and ψi = 0 for i 6= 0 and 1 (denoted •).
There is an instability threshold at θ = 0 at which the marginal mode is time
reversible. When at a given time, a small perturbation colinear to this marginal
mode is added to the breather, this bonded state breaks after some time into
“Big Brother” which stay immobile and “Little Brother” which is ejected and
move quite far away before stopping. When C is smaller than its value at
the 2-breather instability threshold, a critical perturbation (that is an energy
threshold) is needed for having the fission (Peierls Nabarro energy barrier).
Since the marginal mode is time reversible, the same behavior occurs when
reversing time so that we get also an elastic collision scheme where running
Little Brother collides elastically with Big Brother.

Let us show another example of perturbation by a marginal mode. Fig.8 shows
the arguments of the Floquet matrix as a function of the coupling C for another
2-breather state which also consist of two identical breathers in anti-phase
separated by 3 sites. The lattice is a KG chain with the Lennard-Jones on-site
potential V (x) = 1

72
(1+(1+x)−12−2(1+x)−6). This configuration is linearly

stable for small coupling but a Krein bifurcation occurs at C ≈ 0.105 (the
circle on Fig.8).
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Fig. 8. Arguments θ of the eigenvalues of the Floquet matrix F versus the coupling
C for the 2-breather . . . 00 − 1000100 . . . at ωb = 0.8 of the KG chain with the
Lennard-Jones potential.

Fig. 9. Fusion associated with the marginal mode of the Krein bifurcation shown on
fig.8. The norm of the perturbation is λ ≈ 10−2. (a) is a contour plot of the energy
density versus time, (b) and (c) show the initial and final energy density.

A small excitation of this 2-breather by the associated marginal mode leads,
after a long time (about 3000 Periods of the unperturbed breathers, see fig.9a)
to a sudden fusion of the excitations. The resulting breather contains 75% of
the total energy and is mobile. Its erratic motion is due to the radiation emited
during the fusion.
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These numerical studies are currently developed.

5 Concluding Remarks

In summary, we have shown the existence of a marginal mode growing linearly
in time at any instability threshold. The existence of such a mode is a necessary
condition (although not sufficient) for having a highly mobile breather and
this condition is not necessarily related to large spatial breather extension
as often believed. This criteria provides a systematic numerical method for
testing breather mobility and then for finding easily in many models, spatially
narrow breathers which are well mobile.

In addition, an improved Newton method allows to find numerically “exact”
mobile breathers with an accuracy only limited by the computer precision.
Actually, these mobile solutions have an infinite tail as the nanopterons which
suggests that generally a strictly localized breather cannot propagate without
radiating energy (but in some case this radiation can be extremely weak).

The marginal modes, appearing at any instability threshold, do not necessar-
ily correspond to breather mobility. We found examples where excitation by
a marginal mode produces the fission of a two breather bonded state. There
are also examples where two colliding breathers merge into a bigger one (i.e.
a breather fusion). Let us also quote that the inelastic interaction of weak am-
plitude phonons with breathers discovered in [30], can be viewed as a breather
spallation.

Our studies presented here or in the related references, concerns classical mod-
els. However, this series of phenomena are reminiscent of chemical or nuclear
reactions. This should not be surprising when thinking about the quantized
version of these phenomena. Breathers are bonded (or antibonded) clusters
(“molecules” or “nuclei”) of n interacting particles which are bosons (phys-
ically, these bosons are “phonons”). Their classical stability depends on the
breather amplitude or frequency, that is in the quantum representation of
the number of bosons bonded together. Thus, depending on the model we
may have stable quantum breathers for some values of n and unstable ones
for other values. Actually, in translationally invariant models, these breathers
form bands but their effective mass may be very high when they are not
mobile. If this breather gets a high mobility, its effective mass should drop
drastically 5 . It is also not surprising that these molecule could react with a

5 We already numerically observed this phenomena for the quantized bipolarons
of the Holstein-Hubbard model [32].
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chemistry which of course highly depends on the choice of the boson interac-
tions that is on the anharmonic potentials of the model.

Finally, let us note that arrays of very resistive Josephson junction (which
can be modeled by the DNLS equation) are likely the simplest systems where
these ideas on breather propagation and reactivity could be developed and
tested experimentally almost directly.
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