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Abstract

We construct a Continuous Wavelet Transform (CWT) on the torus T2 following a
group-theoretical approach based on the conformal group SO(2, 2). The Euclidean
limit reproduces wavelets on the plane R2 with two dilations, which can be defined
through the natural tensor product representation of usual wavelets on R. Restrict-
ing ourselves to a single dilation imposes severe conditions for the mother wavelet
that can be overcome by adding extra modular group SL(2,Z) transformations,
thus leading to the concept of modular wavelets. We define modular-admissible
functions and prove frame conditions.

MSC: 81R30, 81R05, 42B05, 42C15
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1 Introduction

The original idea of Jean Baptiste Joseph Fourier on the possibility of decomposing a given
function into a sum of sinusoids, basic “waves” or “harmonics”, has exerted an enormous
influence upon science and engineering. Since its beginnings, Harmonic Analysis has been
developed with the goal of explaining a wide range of physical phenomena in diverse fields as:
Optics, x-ray Crystallography, Computerized Tomography, Nuclear Magnetic Resonance,
Radioastronomy and Modern Cosmology, and, at a more mathematical (fundamental) level,
Number Theory, Diophantine Equations, Riemann zeta function, Ergodic Theory, Proba-
bility Theory, Automorphic Functions, etc. Last, but not least, Harmonic Analysis is deeply
rooted in the foundations of Quantum Mechanics.

Large sections of some of these subjects may be looked upon as nearly identical with
certain branches of the theory of group representations. Actually, it was Hermann Weyl
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and Fritz Peter in 1927 who pointed out and emphasized the (still insufficiently appreci-
ated) fact that classical Fourier analysis can be illuminatingly regarded as a chapter in the
representation theory of compact commutative Lie groups.

Nowadays, perhaps one of the most successful and popular applications of Harmonic
Analysis is the Theory of Wavelets, which has become an important branch of numerical
and applied mathematics, sharing with Approximation Theory the search of expansions in
terms of functions belonging to more accessible functional spaces due to their structural
characteristics and their computational simplicity (viz, polynomial, splines, rational func-
tions, etc). However, we must say that the wavelet idea was already rooted in Quantum
Mechanics under the more general notion of coherent state. The term “coherent” itself
originates in the current language of quantum optics (for instance, coherent radiation). It
was introduced in the 1960s by Glauber and it was Aslaksen and Klauder who first studied
the one-dimensional affine group, for the purely quantum mechanical purpose of generaliz-
ing the standard uncertainty relations “position-momentum” (or time-frequency), for the
Heisenberg group, to “dilation-translation” . It was yet another mathematical physicist,
Alex Grossmann, who discovered the crucial link between the representations of the affine
group and the intriguing technique in signal analysis developed by Jean Morlet.

Since the pioneer work of Grossmann, Morlet and Paul [1], several extensions of the
standard Continuous Wavelet Transform (CWT) on R to general manifolds X have been
constructed (see e.g. [2, 3] for general reviews and [4, 5] for recent papers on WT and
Gabor systems on homogeneous manifolds). Particular interesting examples are the con-
struction of CWT on: spheres SN−1, by means of an appropriate unitary representation of
the Lorentz group in N+1 dimensions SO(N, 1) [6, 7, 8, 9, 10], on the upper sheet H2

+ of the
two-sheeted hyperboloid H2 [11], or its stereographical projection onto the open unit disk
D1 = SO(1, 2)/SO(2), and the construction of conformal wavelets in the (compactified)
complex Minkowski space [12]. The basic ingredient in all these constructions is a group of
transformations G which contains dilations and motions on X, together with a transitive
action of G on X.

In this article we first extend the group theoretical construction of wavelets on the circle
S1 based on the group SL(2,R), given in [16], to wavelets on the two-torus T2 = S1 × S1

based on the group SO(2, 2), and introduce additional modular transformations in SL(2,Z),
which lead to the concept of modular wavelets.

We must stress that the topological torus T
2 = (R/2πZ)2 can be obtained from the

plane R2 by imposing periodic boundary conditions and these are often used in physical and
mathematical models to simulate a large system by modeling a small part that is far from
its edge. For instance, in the Quantum Hall Effect [13], the topology of the problem is that
of a torus [14], and modular transformations are of crucial importance for the classification
of fractional quantum numbers [15]. Moreover, the Discrete Fourier Transform, either in
one or more dimensions, implicitly assumes that the signal or image is periodic, and this
is a valid approximation as long as edge effects are negligible. Besides, wavelets on R2 (or
higher dimensions) encounters applications in microlocal analysis [17], and thus wavelets
on the torus would be helpful in toroidal microlocal analysis [18].

The organization of the paper is as follows. In Section 2 we briefly remind the group
theoretical construction of the CWT on S2 based on the Lorentz group SO(3, 1), which
serves as an introduction and to set notation. In Section 3 we construct the CWT on
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the topological torus T2 based on the group SO(2, 2), introducing admissibility conditions
and proving the existence of admissible functions and continuous wavelets frames. This
construction naturally relies on two dilations. Usual wavelet constructions rely on a single
dilation but, in our construction, the frame property is lost when restricting to a single
(let us say, diagonal) dilation. The way out is to introduce additional ingredients in the
wavelet parameter space, likemodular transformations, which lead to the concept ofmodular
wavelets. This construction is made in Section 4.

2 CWT on the sphere S
2 based on SO(3, 1): a reminder

Let us denote by L2(S2, dΩ) the Hilbert space of square integrable functions on the two-
sphere S2, with the usual measure dΩ = sin θdθdϕ (we shall omit dΩ and just write L2(S2)).
An orthonormal basis of L2(S2) is given in terms of spherical harmonics:

Y m
l (θ, ϕ) = NlmP

m
l (cos θ)eimϕ, l = 0, 1, . . . , m = −l, . . . , l (1)

fulfilling

〈Y m
l |Y m′

l′ 〉 =
∫ π

θ=0

∫ π

ϕ=−π

Y m
l (θ, ϕ)Y m′

l′ (θ, ϕ)dΩ = δll′δmm′ , (2)

with a convenient choice of normalization factorsNlm, where P
m
l are the associated Legendre

polynomials.
The problem of defining a satisfactory dilation on the sphere was solved by Antoine

and Vandergheynst in [7], where they used a group-theoretical approach based on the
Lorentz group G = SO(3, 1). Dilation is embedded into G via the Iwasawa decomposition
G = KAN with K compact, A Abelian and N nilpotent subgroups. The parameter space
X of their CWT is the quotient G/N . The expression for the dilation, with parameter
a > 0, of the colatitude angle θ is

θa = 2 arctan(a tan(θ/2)), (3)

and it has a direct geometrical interpretation as a dilation around the North Pole of the
sphere, lifted from the tangent plane by inverse stereographic projection. For any function
f ∈ L2(S2), a unitary representation of this dilation is given by

[DS2

a f ](θ, ϕ) = λ(a, θ)1/2f(θ1/a, ϕ), (4)

where

λ(a, θ) =
d cos θ1/a
d cos θ

=
4a2

((a2 − 1) cos θ + a2 + 1)2
(5)

is a multiplier (Radon-Nikodym derivative). We can write points of X as pairs (β, a) with
β ∈ SO(3) (rotations) and a ∈ (0,∞) (dilations). Given a function f ∈ L2(S2), the
representation

fβ,a(θ, ϕ) := [US2

β ◦DS2

a f ](θ, ϕ) (6)

is unitary, where [US2

β f ](θ, ϕ) = f(β−1(θ, ϕ)) is the quasi-regular representation of SO(3).
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Definition 1 A non-zero function f ∈ L2(S2) is called admissible iff the condition

0 <

∫

X

dν(β, a)|〈fβ,a|ψ〉|2 <∞ (7)

is satisfied for any ψ ∈ L2(S2), where dν(β, a) = da
a3
dµ(β) is the measure on X and dµ(β)

is the Haar measure on SO(3).

This also means that the representation (6) is square integrable. A weaker (necessary but
not sufficient) admissibility condition is (see [7])

∫

S2

f(θ, ϕ)

1 + cos θ
dΩ = 0. (8)

Given an admissible function f ∈ L2(S2), the family {fβ,a, β ∈ SO(3), a > 0} is called a
frame iff there exist two real positive constants A ≤ B such that

A‖ψ‖2 ≤
∫

X

dν(β, a)|〈fβ,a|ψ〉|2 ≤ B‖ψ‖2, ∀ψ ∈ L2(S2). (9)

It is known that any admissible function φ ∈ L2(R2) provides an admissible function on
the sphere by inverse stereographic projection

[Π−1
S2
φ](θ, ϕ) =

2φ(2 tan(θ/2), ϕ)

1 + cos θ
. (10)

3 CWT on the torus T
2 based on the group SO(2, 2)

Let us consider now the Hilbert space L2(T2, dω) of square integrable functions on the
torus T2, with measure dω = dθ1dθ2, where θ1, θ2 are angles parametrizing the correspond-
ing “meridional” and “equatorial” circles, respectively. This measure is invariant under
translations θ1,2 → θ1,2 + ϑ1,2 on the torus, and arises naturally from the Haar measure on
the group SO(2, 2). We denote by 〈·|·〉 the inner product with respect to this measure, i.e.

〈f |g〉 :=
∫ π

−π

∫ π

−π

f(θ1, θ2)g(θ1, θ2)dω,

for all f, g ∈ L2(T2) (we shall omit dω in L2(T2, dω) from now on). An orthonormal basis
of L2(T2) is given in terms of “plane wave” functions

φn1n2
(θ1, θ2) =

1

2π
ein1θ1ein2θ2, n1, n2 ∈ Z; 〈φn1,n2

|φn′

1
,n′

2
〉 = δn1,n′

1
δn2,n′

2
. (11)

The coefficients f̂n1,n2 := 〈φn1,n2
|f〉 are the usual Fourier coefficients of f ∈ L2(T2).
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Figure 1: From left to right: Illustration of the dilation given in (13) by stereographic projection. Plot of θa (black) and aθ (dashed)
as a function of θ for a = 0.1 and a = 10. Note that from the graphics it is evident that θa and θ1/a are inverse functions to each
other.

3.1 The group-theoretical construction

Again, the problem of defining a satisfactory dilation on the torus can be addressed in a
group theoretical setting by resorting to the group SO(2, 2), which is locally isomorphic to
the direct product SO(2, 1)× SO(2, 1). In fact

SO(2, 2) = (SO(2, 1)× SO(2, 1))/Z2.

While in the case of the Lorentz group SO(3, 1), the Iwasawa decomposition KAN leads to
a one-dimensional dilation group, in the case of SO(2, 2), the Iwasawa decomposition gives
a two-dimensional dilation group1. More precisely, since SO(2, 1) is locally isomorphic to
SL(2,R), and any 2× 2 matrix of determinant one can be decomposed as

(
cos(ϑ/2) sin(ϑ/2)
− sin(ϑ/2) cos(ϑ/2)

)( √
a 0
0 1/

√
a

)(
1 b
0 1

)
, (12)

the KAN decomposition of SL(2,R) is given by K1 = T1 = S1, A1 = (0,∞) and N1 = R.
Since SO(2, 2) is locally the direct product of two copies of SO(2, 1), the parameter space of
the CWT is now X = KAN/N = T2 × (0,∞)2 whose points are labeled by (ϑ1, ϑ2, a1, a2),
with ϑi ∈ (−π, π), ai ∈ (0,∞) for i = 1, 2.

From the group law, one can see that the action of the dilation group A on the torus K
is given by the expression

θa = 2 arctan(a tan(θ/2)), θ = θk, a = ak, k = 1, 2. (13)

Note that this expression is similar to (3) for the colatitude angle, but in our case
θk ∈ (−π, π) instead of (0, π). As for the sphere, one can geometrically interpret this
transformation as independent dilations around the points θi = 0 , i = 1, 2, lifted from
the tangent lines to each (either meridian or equatorial) circle by inverse stereographic
projections (see Figure 1). For any function f ∈ L2(T2), a pure dilation will be defined as

1The dimension of A in the G = KAN decomposition equals the so called (real) rank of the group G,
which for SO(m,n) is min(m,n), see [19], pag. 127.
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[Da1,a2f ](θ1, θ2) = λ(a1, θ1)
1/2λ(a2, θ2)

1/2f((θ1)1/a1 , (θ2)1/a2), (14)

where

λ(a, θ) =
dθ1/a
dθ

=
2a

(a2 − 1) cos θ + a2 + 1
(15)

is the Radon-Nikodym derivative, which is introduced to make the transformation (14)
unitary2. In order to define wavelets, we also incorporate translations with parameters
ϑ1, ϑ2 ∈ (−π, π). Given f ∈ L2(T2), one can prove that the action

fϑ1,ϑ2

a1,a2
(θ1, θ2) := [Uϑ1,ϑ2

◦Da1,a2f ](θ1, θ2),

explicitly written as

fϑ1,ϑ2

a1,a2
(θ1, θ2) = λ(a1, θ1 − ϑ1)

1/2λ(a2, θ2 − ϑ2)
1/2f((θ1 − ϑ1)1/a1 , (θ2 − ϑ2)1/a2) , (16)

is unitary, where Da1,a2 is given in (14) and Uϑ1,ϑ2
is the representation of translations on

the torus.
As in the case of the sphere, we can characterize admissible functions on the torus as

follows:

Definition 2 A non-zero function γ ∈ L2(T2) is called admissible iff the condition

0 <

∫

X

dν(ϑ1, ϑ2, a1, a2)|〈γϑ1,ϑ2

a1,a2
|ψ〉|2 <∞ (17)

is satisfied for any non-zero ψ ∈ L2(T2), where the measure on X is

dν(ϑ1, ϑ2, a1, a2) =
da1
a21

da2
a22

dϑ1dϑ2
(2π)2

. (18)

The admissibility condition can be restated as follows:

Proposition 1 A non-zero function γ ∈ L2(T2) is admissible iff there exist C ∈ R such
that

0 < Λn1,n2
≡

∫
∞

0

∫
∞

0

da1
a21

da2
a22

|γ̂n1,n2

a1,a2
|2 < C <∞ (19)

for all (n1, n2) ∈ Z2, where γ̂n1,n2

a1,a2
= 〈φn1,n2

|γa1,a2〉 are the Fourier coefficients of γa1,a2 =
Da1,a2γ.

Proof: The integral in the general admissibility condition (17) can be written as

∫
∞

0

∫
∞

0

da1
a21

da2
a22

∫ π

−π

∫ π

−π

dϑ1dϑ2
(2π)2

|〈γϑ1,ϑ2

a1,a2
|ψ〉|2 =

∫
∞

0

∫
∞

0

da1
a21

da2
a22

∞∑

n1,n2=−∞

|γ̂n1,n2

a1,a2
|2|ψ̂n1,n2|2 =

∞∑

n1,n2=−∞

Λn1,n2
|ψ̂n1,n2 |2, (20)

2Note that we are keeping the same symbol as for the multiplier of the sphere (5), even though they are
different, since their respective measures are different.
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where we have used that 〈φn1,n2
|γϑ1,ϑ2

a1,a2
〉 = e−i(n1ϑ1+n2ϑ2)γ̂n1,n2

a1,a2
and the usual orthogonality

relations for trigonometric functions, together with the definition (19) of Λn1,n2
.

Taking into account that {|ψ̂n1,n2|2} ∈ ℓ1(Z2), since ψ ∈ L2(T2), the admissibility
condition (17) adopts the following form:

0 <
∞∑

n1,n2=−∞

|ψ̂n1,n2|2Λn1,n2
<∞, ∀{|ψ̂n1,n2|2} ∈ ℓ1(Z2), ψ 6= 0, (21)

which converges absolutely iff {Λn1,n2
} ∈ ℓ∞(Z2), that is, iff Λn1,n2

< C < ∞, with C
independent of n1, n2. For the left inequality, it is required that Λn1,n2

> 0, which proves
the proposition.�

This condition is not easy to verify. A simpler, but only necessary, condition is the
following:

Proposition 2 A non-zero function γ ∈ L2(T2) is admissible only if it fulfills the condition

∫ π

−π

∫ π

−π

Γ(θ1, θ2)dθ1dθ2 = 0 . (22)

where Γ(θ1, θ2) := γ(θ1, θ2)/
√

(1 + cos θ1)(1 + cos θ2).

Proof: Firstly, let us rewrite the expression of the Fourier coefficients

γ̂n1,n2

a1,a2
=

1

2π

∫ π

−π

∫ π

−π

dθ1dθ2γa1,a2(θ1, θ2)e
−i(n1θ1+n2θ2)

=
1

2π

∫ π

−π

∫ π

−π

dθ1dθ2λ(a1, θ1)
1/2λ(a2, θ2)

1/2γ(θ1,1/a1 , θ2,1/a2)e
−i(n1θ1+n2θ2) (23)

by making the change of variables θ′i = θi,1/ai , and taking into account the multiplier
property of the Radon-Nikodym derivative λ(a, θ1/a)

−1 = λ(1/a, θ), which results in

γ̂n1,n2

a1,a2
=

1

2π

∫ π

−π

∫ π

−π

dθ1dθ2λ(1/a1, θ1)
1/2λ(1/a2, θ2)

1/2γ(θ1, θ2)e
−i(n1θ1,a1+n2θ2,a2 ). (24)

Actually, this change of variables has to do with the fact that γ̂n1,n2

a1,a2 = 〈φn1,n2
|Da1,a2γ〉 =

〈D1/a1,1/a2φn1,n2
|γ〉, that is, Da1,a2 is unitary.

Let us evaluate the integral (19) by splitting it into three regions: small, intermediate
and large scales. For ai ≪ 1 we can approximate λ(1/ai, θi)

1/2 ≈
√
2ai/

√
1 + cos θi. Let us

assume that the support Sγ of γ does not contain (±π,±π), so that limai→0 θi,ai = 0, ∀θi ∈
Sγ and we have e−i(n1θ1,a1+n2θ2,a2) → 1 ∀n1, n2 ∈ Z in this limit. Thus, the integral (19) over
small scales 0 < ai < ǫi ≪ 1 can be written as

∫ ǫ1

0

∫ ǫ2

0

da1
a1

da2
a2

∣∣∣∣
∫ π

−π

∫ π

−π

dθ1dθ2
γ(θ1, θ2)√

1 + cos θ1
√
1 + cos θ2

∣∣∣∣
2

<∞, (25)

which implies (22).
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For intermediate scales, since Da1,a2 is a strongly continuous operator and by the con-
tinuity of the scalar product, we have that the integrand in (19) is a bounded continuous
function in this region.

For large scales, from (24) we can bound

|γ̂n1,n2

a1,a2 | ≤
sup(|γ|)

2π

∫ π

−π

∫ π

−π

dθ1dθ2λ(1/a1, θ1)
1/2λ(1/a2, θ2)

1/2, (26)

where sup(|γ|) denotes the supremum of |γ|. The integral

∫ π

−π

dθ λ(1/a, θ)1/2 =
4K(1− 1

a2
)√

a
(27)

is written in terms of the complete elliptic integral of the first kind K, whose large scale
behavior is given by

K

(
1− 1

a2

)
∼ ln(a), a≫ 1, (28)

so that the integral (19) over large scales converges as well.
Finally, if we drop the restriction on the support of γ, the condition (22) is only necessary,

which proves the proposition.�
In general, an admissibility condition does not guarantee a proper reconstruction of a

function from its wavelet coefficients, and a frame condition is required. However, as in
the standard case, the admissibility condition (19) is enough. We shall consider localized
admissible functions γ in order to provide an easier proof. By “localized” we mean that
θi,ai ≈ aiθi, ∀(θ1, θ2) ∈ Sγ and ai ≤ 1 (i.e., a valid approximation in the Euclidean limit).
For practical purposes, this is not really a restriction since the approximation θa ≈ aθ is
quite good for a large range of θ when a ≤ 1, see Figure 1.

Let us denote by Qq, q = 1, 2, 3, 4, the four quadrants of the Fourier plane in counter-
clockwise order. Since dilations do not mix quadrants, and translations do not change the
support of γ̂, it is clear that γ̂ must have support on all (four) quadrants in order to be
admissible. Under these assumptions, one has the following result:

Theorem 3 For any localized admissible function γ, the family {γϑ1,ϑ2

a1,a2 , (ϑ1, ϑ2, a1, a2) ∈
X} is a continuous frame; that is, there exist real constants 0 < c ≤ C such that

c||ψ||2 ≤
∫

X

dν(ϑ1, ϑ2, a1, a2)|〈γϑ1,ϑ2

a1,a2
|ψ〉|2 ≤ C||ψ||2, ∀ψ ∈ L2(T2). (29)

Proof: It remains only to prove the lower bound, which is equivalent to prove that the
quantity defined in (19) is uniformly bounded from below: Λn1,n2

> c, ∀n1, n2 ∈ Z.
Since γa1,a2 are integrable on T2, their Fourier coefficients γ̂n1,n2

a1,a2
tend to zero for |n1|, |n2| →

∞, which implies that the problematic region is now that for which |n1|, |n2| ≫ 1. Let
us focus on the a ≪ 1 region. Using that γ is localized, we can write λ(1/ai, θi)

1/2 =√
2ai/

√
1 + cos θi + O(a

5/2
i ), where the error term is bounded, and θa ≈ aθ for small a.

Within this approximation, the expression (24) reads

γ̂n1,n2

a1,a2 ≈ 2
√
a1a2 Γ̂

a1n1,a2n2 , (30)
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where Γ is introduced in Proposition 2, this estimation being valid as long as Γ̂a1n1,a2n2 6=
0 (which is the interesting case for us). Note that when writing Γ̂a1n1,a2n2 ≡ Γ̂α1,α2 we
are extending the integer Fourier indices to the reals α1, α2 ∈ R in a continuous (and
differentiable) way as a consequence of Lebesgue’s dominated convergence theorem. For

q = 1, . . . , 4, let (α0
1, α

0
2) ∈ Qq such that |Γ̂α0

1
,α0

2| > 0, in particular, we can chose the values

of α0
1, α

0
2 where the maximum of |Γ̂α1,α2 | in the current quadrantQq is attained. Since |Γ̂α1,α2 |

is continuous there exist ρi, with 0 < ρi < |α0
i |, i = 1, 2, such that |Γ̂α1,α2 | > |Γ̂α0

1
,α0

2 |/2 in
the region R = (α0

1 − ρ1, α
0
1 + ρ1)× (α0

2 − ρ2, α
0
2 + ρ2) ⊂ Qq. Considering |n1|, |n2| ≫ 1, we

have that

Λn1,n2
=

∫
∞

0

∫
∞

0

da1
a21

da2
a22

|γ̂n1,n2

a1,a2 |2 ≥
∫ α0

1
+ρ1

α0

1
−ρ1

∫ α0

2
+ρ2

α0

2
−ρ2

dα1

α1

dα2

α2
4|Γ̂α1,α2|2

> |Γ̂α0

1
,α0

2 |2 log α
0
1 + ρ1
α0
1 − ρ1

log
α0
2 + ρ2
α0
2 − ρ2

, (31)

Note that α0
1, α

0
2 being fixed, and |n1|, |n2| ≫ 1, gives a1 = α1/|n1|, a2 = α2/|n2| small

for α1, α2 ∈ R, which justifies the approximation (30). Thus (31) gives a strictly positive
quantity independent of n1, n2 in each quadrant, which proves that Λn1,n2

is bounded from
below. �

The CWT of a function ψ ∈ L2(T2) reads as:

Ψϑ1,ϑ2

a1,a2
= 〈γϑ1,ϑ2

a1,a2
|ψ〉 =

∫∫

T2

γϑ1,ϑ2

a1,a2 (θ1, θ2)ψ(θ1, θ2)dω, ψ ∈ L2(T2). (32)

The original function ψ can be reconstructed (in the weak sense) from its wavelet coef-
ficients Ψϑ1,ϑ2

a1,a2
by means of the reconstruction formula:

ψ(θ1, θ2) =

∫

X

dν(a1, a2, ϑ1, ϑ2)Ψ
ϑ1,ϑ2

a1,a2
γ̃ϑ1,ϑ2

a1,a2
(θ1, θ2) (33)

where {γ̃ϑ1,ϑ2

a1,a2
} is the dual frame (see e.g. chapter 5 of [20] for the general definition) whose

Fourier coefficients are given by

〈φn1n2
|γ̃ϑ1,ϑ2

a1,a2 〉 = Λ−1
n1n2

〈φn1n2
|γϑ1,ϑ2

a1,a2 〉. (34)

Note that the dual frame is well-defined (0 6= γ̃ϑ1,ϑ2

a1,a2 ∈ L2(T2)) since Theorem 3 ensures
that 0 < c < Λn1n2

< C <∞, ∀(n1, n2) ∈ Z2.

3.2 Existence of admissible functions

Now we discuss the existence of admissible functions on the torus fulfilling (19). For this
purpose, we shall resort to Euclidean wavelets. Wavelets on the plane R2 with two dilations
can be defined through the natural tensor product representation (see e.g. chapter 5 of [21]),
where a unitary representation of the affine group in L2(R2) ∋ ψ is given by

ψb1,b2
a1,a2

= [U(a1, a2, b1, b2)ψ](x1, x2) = a
−1/2
1 a

−1/2
2 ψ

(
x1 − b1
a1

,
x2 − b2
a2

)
. (35)
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The “tensor-product” admissibility condition for ψ ∈ L2(R2) adopts the following form

∫
∞

−∞

∫
∞

−∞

ψ̂(k1, k2)

|k1| |k2|
dk1dk2 <∞, (36)

where by ψ̂ we mean the Fourier transform of ψ. It can be easily checked that if ψ1(x1), ψ2(x2) ∈
L2(R) are admissible functions generating standard wavelet frames, with frame bounds
ci, Ci, i = 1, 2, then the tensor product ψ(x1, x2) = ψ1(x1)ψ2(x2) fulfills (36) and gener-
ates a tensor wavelet frame (under the group action (35)) in L2(R2), with frame bounds
c1c2 and C1C2. Note that ψ(x1, x2) does not necessarily need to be a product of the form
ψ1(x1)ψ2(x2), although functions of this kind span L2(R2).

Proposition 3 A “tensor-product” admissible function ψ ∈ L2(R2) provides an admissible
function on L2(T2), fulfilling (19), by inverse stereographic projection

[Π−1
T2 ψ](θ1, θ2) =

1√
1 + cos θ1

√
1 + cos θ2

ψ

(
2 tan

θ1
2
, 2 tan

θ2
2

)
. (37)

The proof is direct.
Let us provide some explicit examples of admissible functions on L2(T2) imported from

L2(R2) by inverse sthereographic projection. For this purpose we shall consider Difference
of Gaussians (DoG), commonly used as a pass-band filter in image science, which in one
dimension are written as

ψα(x) = e−x2 − e−x2/α2

α
. (38)

For a two-dimensional separable DoG function ψα1,α2
(x1, x2) = ψα1

(x1)ψα2
(x2), the inverse

sthereographic projection (37) leads to the function

[Π−1
T2 ψα1,α2

](θ1, θ2) =
1√

1 + cos θ1
√
1 + cos θ2

ψα1

(
2 tan

θ1
2

)
ψα2

(
2 tan

θ2
2

)
. (39)

Usually the axisymmetric (non-separable) DoG

ψα(x1, x2) = e−(x2

1
+x2

2
) − e−(x2

1
+x2

2
)/α2

α2
. (40)

is considered in two dimensions. For this case, the corresponding function on T2 is explicitly

[Π−1
T2 ψα](θ1, θ2) =

1√
1 + cos θ1

√
1 + cos θ2

ψα

(
2 tan

θ1
2
, 2 tan

θ2
2

)
. (41)

In Figure 2 we represent the axisymmetric DoG on T2 (41) and its dilation (14) for two
cases: a1 = 2, a2 = 1 and a1 = 1, a2 = 2, respectively.

One would expect the wavelet transform on the torus to behave locally (at short scales
or large values of the equatorial and longitudinal radius R1, R2 → ∞) like the standard
wavelet transform on the plane. In fact, in the Euclidean limit R1, R2 → ∞, which is given
by two copies of the Euclidean limit on the circle [16], one recovers the tensor product
wavelet construction on the plane (36, 35).
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Figure 2: Dilation of the axisymmetric DOG on T2 with α = 2 for (from left to right): a1 = a2 = 1; a1 = 2, a2 = 1 and
a1 = 1, a2 = 2.

Note that, since rotations are absent in the torus, when proving Theorem 3 it has been
essential to have two dilations a1, a2 at our disposal. Indeed, we need two different dilations
to bring any pair (n1, n2) to the small rectangle R where the extension of Γ̂ to the reals is
non-zero, thus ensuring that Λn1,n2

> c in (31).
However, wavelet constructions on the plane with a single dilation are customary (see for

example curvelets [22] shearlets [23], etc). Actually, one could restrict himself to a “single”
dilation (a1, a2 = σ(a1)), with σ a strictly positive increasing function, usually σ(a) = a,
although other choices like, for example, “parabolic” dilations σ(a) =

√
a are used for

shearlets. This implies a restriction of the parameter space X to X ′ = {(a, b1, b2), a >

0, b1,2 ∈ R}. From the measure dν(b1, b2, a1, a2) = db1db2
da2

1

a2
1

da2
2

a2
2

on X we derive the measure

on X ′

dν ′(b1, b2, a) = σ(a)
da

a4
db1db2. (42)

The problem now is whether the subset {ψb1,b2
a ≡ ψb1,b2

a,σ(a)} in (35) is a frame or not. The
proof of frame condition for the plane is similar to the proof of frame condition for the
torus given in Theorem 3, with obvious modifications (θ1,2 → b1,2, n1,2 → k1,2 and Γ̂ → ψ̂,
etc.). As already said, we need two different dilations to bring any pair (k1, k2) to the small

rectangle R where ψ̂ is non-zero, thus ensuring that Λk1,k2 > c like in (31). A way out could

be to impose additional conditions to the support of ψ̂, like extending it to a ring around
the origin (0, 0) [17], or to introduce extra group parameters like rotations, shears, etc.
Also, in the discrete case, frames in Rn, with n ≥ 2, with a single dilation are constructed
from more than one (in fact at least 2n − 1) admissible function [24, 25].

4 Modular wavelets

In this section we shall pursue the use of the modular group as an extra set of wavelet
parameters on the torus. This option has the advantage that we do not need to enlarge
the support of Γ̂ but, on the contrary, it can be restricted to a one-dimensional subset.
Actually, when modular transformations are introduced, a frame condition can be proved
when setting σ(a) = a and considering the case Γ̂n1,n2 = 0, ∀n1 6= n2 ∈ Z, which means
that Γ(θ1, θ2) = η(θ1 + θ2) for some function η : S1 → C, although other choices are also
possible like Γ(θ1, θ2) = η(θ1) or Γ(θ1, θ2) = η(θ2).
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Before entering into the discussion of “modular wavelets”, we shall make a small intro-
duction to modular transformations and modular frames.

4.1 Modular group on the Torus T
2

In this subsection we introduce the modular group on the torus and give its main properties.

Definition 4 The modular group on the torus T2 is the subgroup

SL(2,Z) =

{
M =

(
m n
p q

)
;m,n, p, q ∈ Z, det(M) = mq − np = 1

}
, (43)

of the group SL(2,R) of linear transformations of the plane preserving the area with integer
entries.

The modular group transforms pair of integers (n1, n2) into pairs of integers (n′
1, n

′
2)

t =
M(n1, n2)

t = (mn1 + nn2, pn1 + qn2)
t. Therefore it preserves the torus T2 = R2/Z2, and

its action can be lifted to functions on the torus in the ordinary way:

fM(θ1, θ2) ≡ f(M−1(θ1, θ2)
t). (44)

Since M preserves the area, this defines a unitary representation of SL(2,Z) on L2(T2):

U : L2(T2) → L2(T2)

f(θ1, θ2) 7→ [U(M)f ](θ1, θ2) ≡ fM(θ1, θ2) . (45)

However, this unitary representation is not irreducible, admitting infinite invariant sub-
spaces Vg ⊂ L2(T2), g ∈ N ∪ {0}. To prove this, we first state the following Lemma, whose
proof is immediate using that modular transformations are area preserving:

Lemma 1 The action of the modular group in Fourier space is given by:

f̂
(n1,n2)
M = f̂ (n1,n2)M ∀(n1, n2) ∈ Z

2 , M ∈ SL(2,Z) , f ∈ L2(T2) . (46)

This means that the action of a modular transformation M in Fourier space is through its
transpose ~n′ =M t~n, which is again a modular transformation. Since we shall work mainly
in Fourier space, and to simplify notation, we shall consider the action on row vectors,
(n′

1, n
′
2) = (n1, n2)M . To obtain the corresponding action for column vectors, a transpose

operation should be performed.
The action of the modular group on Z2 is not transitive, leaving certain subsets invariant,

as stated in the following Lemma, also easy to prove. In what follows, g.c.d. stands for
greatest common divisor.

Lemma 2 The subsets Gg = {(n1, n2) ∈ Z2 : g.c.d.(n1, n2) = g}, with G0 ≡ {(0, 0)}, are
invariant under the modular group.

With the aid of Lemma 1 and Lemma 2, the following proposition is easy to prove:
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Proposition 4 The subspaces Vg , g = 0, 1, 2, . . . of L2(T2) given by

Vg = {ψ ∈ L2(T2) : supp(ψ̂) ⊂ Gg} (47)

are invariant under the action of the modular group SL(2,Z).

We can think of Z2 as partitioned into orbits under the action of SL(2,Z). Each orbit
Gg is generated by the action of the group on, let us say, the point (g, g) ∈ Z2. The action of
the modular group in each orbit Gg is transitive but not free, since the point (g, g) 6= (0, 0)
has a stabilizer (or isotropy) group that is given by:

N =

{(
2 1
−1 0

)k

, k ∈ Z

}
∼ Z (48)

while the point (0, 0), which is an orbit by itself, has as stabilizer the whole group SL(2,Z).
Note that the stabilizer is the same for all orbits Gg , g 6= 0. Also, for g 6= 0, if we choose
a different point in the orbit (like (g, 0) or (0, g)), the stabilizer group is different but
isomorphic (in fact conjugate). For example, for (g, 0), the stabilizer is

N1 =

{(
1 0
1 1

)k

, k ∈ Z

}
∼ Z, (49)

while for (0, g) it is

N2 =

{(
1 1
0 1

)k

, k ∈ Z

}
∼ Z. (50)

By the orbit-stabilizer theorem (see e.g. chapter 10 of [26]), there is a bijection between
each orbit Gg , g 6= 0, and the quotient X ≡ SL(2,Z)/N . This means that there is also a
bijection between each pair of orbits Gg, Gg′ with g, g

′ 6= 0. This bijection can be realized
as follows:

Proposition 5 Given (n1, n2) ∈ Gg, there is only one representative Mg
n1,n2

∈ X (i.e.
modulo N) such that (n1, n2)M

g
n1,n2

= (g, g).

Proof: We can pick the representative

Mg
n1,n2

=

(
m m− n2/g
n n+ n1/g

)
, (51)

where m,n fulfill Bézout’s identity mn1 + nn2 = g and can be easily computed with the
extended Euclidean algorithm. All other elements M ∈ SL(2,Z) transforming (n1, n2) into
(g, g) can be obtained by multiplying Mg

n1,n2
by elements in N .�

It should be stressed that Mg
n1,n2

can be written as Mg
n1,n2

= M1
n′

1
,n′

2

, where n′
1 =

n1/g , n
′
2 = n2/g are coprime, i.e. g.c.d.(n′

1, n
′
2) = 1. This allows us to take the represen-

tative Mn′

1
,n′

2
≡ M1

n′

1
,n′

2

= Mg
n1,n2

for all cases g 6= 0, for instance, when writing expressions

like
∑

M∈X
.

Note that similar results hold for (g, 0) and (0, g).
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The previous proposition allows us to label pairs (n1, n2) ∈ Z2 equivalently as (g,M−1
n1

g
,
n2

g

),

where g.c.d(n1, n2) = g, for (n1, n2) 6= (0, 0); for (n1, n2) = (0, 0) we can label it as
(g = 0, I2), where I2 represents the 2× 2 identity matrix..

All this construction translates, mutatis mutandis, to the subspaces Vg, that are orbits
through, let us say, φg,g (defined in (11)), by the action of the modular group. The action of
the modular group in each orbit is transitive but not free, the stabilizer group being again N
for orbits Vg , g 6= 0, and the whole SL(2,Z) for V0. There is a bijection between each orbit
Vg , g 6= 0 and the quotient X ≡ SL(2,Z)/N , and between each pair of orbits Vg, Vg′ with
g, g′ 6= 0. Thus, expressions like

∑
∞

n1,n2=−∞
qn1,n2

can be written as
∑

∞

g=0

∑
M∈Xg

qg,M−1,

where we mean by X0 = {I2} and Xg = X for g 6= 0. We hope that this slight abuse of
notation does not create confusion.

The previous considerations can be restated as follows:

Proposition 6 Let g ∈ N. If γ = φn1,n2
, with g.c.d(n1, n2) = g, then Bg,γ = {γM /M ∈ X}

is an orthonormal basis of Vg.

Proof: This is a consequence of the unitarity and irreducibility of the representation U of
SL(2,Z) in (45) restricted to Vg, and that we restrict the action to the quotient X , otherwise
divergences would occur due to the “infinite measure” of the non-compact subgroup N . In
the terminology of [2], the representation is square integrable modulo (σ,N), where σ is a
Borel section from X to SL(2,Z).�

The question is whether we can extend this “basis” to the whole L2(T2). The answer is
given in the following Proposition:

Proposition 7 Let η ∈ L2(T1) such that supp(η̂) = Z, and define γ(θ1, θ2) = η(θ1 + θ2).
Then the set Fγ = {γϑ1,ϑ2

M /M ∈ X , ϑ1, ϑ2 ∈ T
2} is a complete Bessel sequence (see e.g.

chapter 3 of [20]) in L2(T2), in the sense that there exist C > 0 such that

0 <

∫
dϑ1dϑ2
(2π)2

∑

M∈X

|〈γϑ1,ϑ2

M |ψ〉|2 ≤ C||ψ||2 , ∀ψ ∈ L2(T2), ψ 6= 0 . (52)

Proof: Using the same steps as in Proposition 1, making use of the reparametrization
of the sum

∑
∞

n1,n2=−∞
in terms of g = g.c.d.(n1, n2) and M ′ ∈ X given before, denoting

ψ̂g,M ′−1 ≡ ψ̂n1,n2, and taking into account that γ̂n1,n2 = γ̂g,gδn1,gδn2,g, we can write

∫
dϑ1dϑ2
(2π)2

∑

M∈X

|〈γϑ1,ϑ2

M |ψ〉|2 =
∞∑

g=0

∑

M ′∈Xg

|ψ̂g,M ′−1|2
∑

M∈X

|γ̂g,M ′−1

M |2 =

∞∑

g=0

∑

M ′∈Xg

|ψ̂g,M ′−1|2|γ̂g,g|2 =
∞∑

g=0

|γ̂g,g|2‖Pgψ‖2 ≤ maxg{|γ̂g,g|2}‖ψ‖2 , (53)

where we have used that the only term contributing to the sum

∑

M∈X

|γ̂g,M ′−1

M |2 =
∑

M∈X

|γ̂g,M ′−1M |2 = |γ̂g,g|2 (54)
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is Mn1,n2
. We have also used the Parseval identity

∑
M ′∈X

|ψ̂g,M ′−1|2 = ‖Pgψ‖2 in terms of
orthogonal projectors Pg onto the subspaces Vg, and the resolution of the identity

∑
∞

g=0 Pg =
IL2(T2). Since all |γ̂g,g| are greater than zero and uniformly bounded from above, we arrive
to (52) with upper bound C = maxg{|γ̂g,g|2}.�

Proposition 7 provides an admissibility condition for modular “coherent states”. Note
that, in contrast to Proposition 2 and Theorem 3, now γ̂ does not need to have support on
the four Fourier quadrants Qq, q = 1, 2, 3, 4, but only on the main diagonal n1 = n2.

The set Fγ is not a frame in L2(T2), since |γ̂g,g| → 0 when g → ∞, preventing |γ̂g,g| to
be uniformly bounded from below by a positive constant. However if we restrict ourselves
to suitable subspaces of L2(T2), like that of band-limited functions

WL1,L2
= {ψ ∈ L2(T2) : ψ̂n1,n2 = 0, ∀|n1| > L1, |n2| > L2} ⊂ L2(T2) , (55)

the set Fγ becomes a frame, even for a suitable bandlimited function η ∈ L2(T1). More
precisely, we have the following result:

Corollary 1 Under the conditions of Proposition 7, the set Fγ is a frame for any subspace
WL1,L2

of band limited functions in L2(T2).

Proof: Let us consider the space of band-limited functions of band-limits L1, L2 ∈ N such
that {0, 1, . . . , gmax} ⊂ supp(η̂), where gmax = max(L1, L2). For functions ψ ∈ WL1,L2

Pgψ = 0 for g > gmax, therefore the sum on g in eq. (53) truncates and eq. (52) can be
written as:

c‖ψ‖2 <
∫
dϑ1dϑ2
(2π)2

∑

M∈X

|〈γϑ1,ϑ2

M |ψ〉|2 ≤ C||ψ||2 , ∀ψ ∈ WL1,L2
, (56)

where c = mingmax

g=0 {|γ̂g,g|2} and C = maxgmax

g=0 {|γ̂g,g|2}.
Note that if γ is chosen such that η̂ = χ[0,gmax], then Fγ is a tight frame, and a Parseval

frame if appropriately rescaled.
We believe that the frame property of Fγ also holds for more general spaces of functions

with rapidly decaying Fourier coefficients.
Next we combine the modular transformations and translations with diagonal dilations

on the torus.

4.2 Modular admissibility, modular wavelets and frame condi-

tions

We shall make use of the modular group to complete the parameter space X ′ for the case
of dependent dilations a2 = σ(a1) (for simplicity, we shall restrict ourselves to the case
σ(a) = a). The action of the modular group on T2 induces a transformation of functions
f ∈ L2(T2) that completes the previous (dilation and translation) transformations as

fϑ1,ϑ2

a,M (θ1, θ2) := fϑ1,ϑ2

a (M−1(θ1, θ2)
t) = fϑ1,ϑ2

a (qθ1 − nθ2,−pθ1 +mθ2), (57)

where we have used the notation fϑ1,ϑ2

a := fϑ1,ϑ2

a,a when restricting to a single dilation in
equation (16), for convenience.
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As we have seen in the previous section, adding the whole modular group SL(2,Z) to the
parameter space X ′ introduces redundancy that is not suitable for admissibility conditions.
Therefore, we shall restrict ourselves to the quotient space X = SL(2,Z)/N , where N
refers to the isotropy subgroup (48). The choice N (isotropy subgroup of (g, g)) is in fact
connected with the case Γ(θ1, θ2) = η(θ1 + θ2), for which the only possible non-zero Fourier

coefficients are the diagonal Γ̂l,l (we shall make use of this property when proving the frame
condition).

The admissibility condition (19) for “modular wavelets” on the torus3, can be restated
as follows:

Definition 5 A non-zero function γ ∈ L2(T2) is called “modular-admissible” if there exist
C ∈ R such that the condition

0 <

∫

X′

dν ′(ϑ1, ϑ2, a)
∑

M∈X

|〈γϑ1,ϑ2

a,M |ψ〉|2 < C <∞ (58)

is satisfied for every non-zero ψ ∈ L2(T2).

This admissibility condition can be equivalently expressed as follows:

Proposition 8 A non-zero function γ ∈ L2(T2) is “modular-admissible” iff there exist
C ∈ R such that

0 < Λ̃n1,n2
≡

∫
∞

0

da

a3

∑

M∈X

|γ̂n1,n2

a,M |2 < C <∞ , ∀(n1, n2) ∈ Z
2 (59)

where γ̂n1,n2

a,M = 〈φn1,n2
|γa,M〉 are the Fourier coefficients of γa,M ≡ γ0,0a,M .

Proof: The proof follows similar steps as in Proposition 1. More precisely:

∫

X′

dν ′(ϑ1, ϑ2, a)
∑

M∈X

|〈γϑ1,ϑ2

a1,a2
|ψ〉|2 =

∞∑

n1,n2=−∞

∫
∞

0

da

a3

∑

M∈X

|γ̂n1,n2

a,M |2|ψ̂n1,n2|2, (60)

and this quantity is finite and non-zero if (59) holds. �

Proposition 9 The necessary admissibility condition (22) still holds for modular admissi-
ble functions.

Proof: Using the same reparametrization (n1, n2) ∼ (g,M−1) of the Fourier labels as in
the proof of Proposition 7, we can write

Λ̃g,M ′−1 ≡ Λ̃n1,n2
=

∫
∞

0

da

a3

∑

M∈X

|γ̂g,M ′−1

a,M |2 =
∫

∞

0

da

a3

∑

M∈X

|γ̂g,M ′−1M
a |2 (61)

where we have denoted γa,I2 = γa for simplicity. The approximation (30) over small scales

a ≪ 1 can now be written as γ̂g,Ma ≈ 2aΓ̂ag,M , and therefore it is again necessary that

Γ̂0,I2 = 0, which is equivalent to (22).�

3The term “modular wavelet” was previously introduceced in [27], but in the rather different context of
integral fractional linear transformations on the circle.
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Note that when writing (ag,M), we are meaning (an1, an2) = (α1, α2), which are
not necessarily integers, but we preserve the “modular information” (g,M) derived from

(n1, n2). Remember that Γ̂n1,n2 can be extended to the reals Γ̂α1,α2 in a continuous way, as
commented in the proof of Theorem 3.

Without loss of generality, from now on we shall restrict ourselves to “diagonal” func-
tions Γ(θ1, θ2) = η(θ1 + θ2), for which Γ̂n1,n2 = 0 if n1 6= n2, that is, Γ̂ has only support
on the main diagonal. Note that, introducing modular transformations relaxes the require-
ment that Γ̂ must have support on the four quadrants. Actually, it is just enough that Γ̂
has support on the positive main diagonal, as it will be shown in the next Theorem.

Theorem 6 For any localized modular-admissible function γ, whose associated function Γ
is diagonal, the family

{
γϑ1,ϑ2

a,M , (ϑ1, ϑ2) ∈ (−π, π)2, a ∈ (0,∞),M ∈ X
}

(62)

is a frame, that is, there exist real constants 0 < c ≤ C such that

c||ψ||2 ≤
∑

M∈X

∫

X′

dν ′(ϑ1, ϑ2, a)|〈γϑ1,ϑ2

a,M |ψ〉|2 ≤ C||ψ||2, ∀ψ ∈ L2(T2). (63)

Proof: It remains to prove the lower bound, which is equivalent to prove that Λ̃n1,n2
>

c, ∀n1, n2 ∈ Z. Following a similar strategy as in the proof of Theorem 3, we take (α1, α2) =

(α0, α0) such that |Γ̂α0,α0 | > 0. By continuity, there exist ρ, with 0 < ρ < |α0|, such that

|Γ̂α,α| > |Γ̂α0,α0 |/2 in the interval (α0 − ρ, α0 + ρ). In (61) there will be values of a and M
satisfying

a(n1, n2)M ≃ (α0, α0). (64)

Actually, M = M ′ = Mn1,n2
in (51) if α0 > 0, and M = M ′ = −Mn1,n2

if α0 < 0, and this
means a ≃ |α0|/g. Therefore if we keep just this term of the sum in (61) then we obtain:

Λ̃g,M ′−1 ≡ Λ̃n1,n2
≥

∫
∞

0

da

a3
|γ̂g,I2a |2 . (65)

We shall consider the contribution to the integral (65) that comes from the range a ∈
(α0 − ρ, α0 + ρ)/g. Since γa is integrable, its Fourier coefficients γ̂n1,n2

a tend to zero for
|n1|, |n2| → ∞, in particular γ̂g,qa → 0 for g → ∞. Therefore we need only to consider
the less favorable case g ≫ 1 implying a ≪ 1. Using the approximation (30) for small

a1 = a2 = a, we can write γ̂g,ga,I2
≈ 2aΓ̂ag,ag and

Λ̃n1,n2
≥

∫ (α0−ρ)/g

(α0−ρ)/g

da

a
4|Γ̂ag,ag|2 > |Γ̂α0,α0 |2 log α0 + ρ

α0 − ρ
, (66)

gives a strictly positive quantity independent of n1, n2, which proves that Λ̃n1,n2
is bounded

from below. �
Let us provide a particular example of modular admissible function based on DoG

functions (38). Consider the diagonal function

Γ(θ1, θ2) =
ψα

(
2 tan θ1+θ2

2

)

1 + cos(θ1 + θ2)
, (67)

17



(a) (b)

(c) (d)

Figure 3: Modular transformation of the “diagonal DoG” (68) with α = 10 for: (a) M = I2, (b) M1,0, (c) M0,1, (d) M4,5.

so that the corresponding admissible function on the torus is the “diagonal DoG”

γ(θ1, θ2) =
√

(1 + cos θ1)(1 + cos θ2)Γ(θ1, θ2). (68)

In Figure 3 we have plotted this function together with its modular transformation γMn1,n2

for different values of n1, n2.
Analogous expressions for wavelet coefficients (32) and reconstruction formula (33) can

be written for modular wavelets.

5 Conclusions

In this article we have addressed the problem of constructing a CWT on the torus. Firstly
we have derived the CWT on T2 entirely from the conformal group SO(2, 2). Proposition
2 and Theorem 3 yield the basic ingredients for writing a genuine CWT on T2 by proving
admissibility conditions and providing continuous frames and reconstruction formulas. The
proposed CWT on T2 has the expected Euclidean limit; that is, it behaves locally like the
usual (flat) CWT on R2 but with two dilations (the natural tensor product representation
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of usual wavelets on R). If one restricts oneself to a single (namely, diagonal) dilation, then
the frame property is lost unless additional requirements on the support of γ̂ are imposed.
However, one can circumvent this problem by adding extra modular group SL(2,Z) trans-
formations to the parameter space X of the CWT, thus leading to the concept of modular
wavelets. Before defining modular-admissible functions and prove frame conditions in The-
orem 6, we have studied the modular group, its orbits in Z2, its unitary action on L2(T2),
invariant subspaces Vg ⊂ L2(T2) and its orthonormal basis, Bessel sequences and modular
frames for band limited functions.

In this article we have provided a CWT on the torus based on the theory of coherent
states of quantum physics (formulated in terms of group representation theory). Another
alternative construction based on area preserving projections for surfaces of revolution [28]
is the subject of another paper in progress [29].

Once we have studied the continuous approach, it remains to address the discretization,
which roots in the Littlewood-Paley analysis, and yields fast algorithms for computing the
wavelet transform numerically. An intermediate approach which paves the way between
the continuous and the discrete cases is based on the representations of some finite groups
like in Ref. [30] for wavelets on discrete fields (namely, the discrete circle ZN = Z/NZ).
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