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PREFACE

HISTORICAL PRELUDE

Ettore Majorana’s fame solidly rests on testimonies like the following,
from the evocative pen of Giuseppe Cocconi. At the request of Edoardo
Amaldi, he wrote from CERN (July 18, 1965):

“In January 1938, after having just graduated, I was invited, essen-
tially by you, to come to the Institute of Physics at the University in
Rome for six months as a teaching assistant, and once I was there I would
have the good fortune of joining Fermi, Bernardini (who had been given
a chair at Camerino a few months earlier) and Ageno (he, too, a new
graduate), in the research of the products of disintegration of µ “mesons”
(at that time called mesotrons or yukons), which are produced by cosmic
rays [...]

“It was actually while I was staying with Fermi in the small laboratory
on the second floor, absorbed in our work, with Fermi working with a
piece of Wilson’s chamber (which would help to reveal mesons at the
end of their range) on a lathe and me constructing a jalopy for the
illumination of the chamber, using the flash produced by the explosion
of an aluminum ribbon shortcircuited on a battery, that Ettore Majorana
came in search of Fermi. I was introduced to him and we exchanged few
words. A dark face. And that was it. An easily forgettable experience
if, after a few weeks while I was still with Fermi in that same workshop,
news of Ettore Majorana’s disappearance in Naples had not arrived. I
remember that Fermi busied himself with telephoning around until, after
some days, he had the impression that Ettore would never be found.

“It was then that Fermi, trying to make me understand the signif-
icance of this loss, expressed himself in quite a peculiar way; he who
was so objectively harsh when judging people. And so, at this point, I
would like to repeat his words, just as I can still hear them ringing in my
memory: ‘Because, you see, in the world there are various categories of
scientists: people of a secondary or tertiary standing, who do their best
but do not go very far. There are also those of high standing, who come
to discoveries of great importance, fundamental for the development of
science’ (and here I had the impression that he placed himself in that
category). ‘But then there are geniuses like Galileo and Newton. Well,
Ettore was one of them. Majorana had what no one else in the world
had [...]’”

xiii
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And, with first-hand knowledge, Bruno Pontecorvo, adds: “Some time
after his entry into Fermi’s group, Majorana already possessed such an
erudition and had reached such a high level of comprehension of physics
that he was able to speak on the same level with Fermi about scientific
problems. Fermi himself held him to be the greatest theoretical physicist
of our time. He often was astounded [...]. I remember exactly these words
that Fermi spoke: ‘If a problem has already been proposed, no one in
the world can resolve it better than Majorana.’ ” (See also (Pontecorvo,
1972).)

Ettore Majorana disappeared rather mysteriously on March 26, 1938,
and was never seen again (Recami, 1991). The myth of his “disappear-
ance” has contributed to nothing more than the notoriety he was entitled
to, for being a true genius and a genius well ahead of his time.

In this volume we are finally publishing his notebooks or Volumetti,
which comprise his study notes written in Rome between 1927, when
he abandoned his studies in engineering to take up physics, and 1931.
Those manuscripts are a paragon not only of order, based on argument
and even supplied with an index, but also of conciseness, essentiality
and originality; so much so that the notebooks can be regarded as an
excellent modern text of theoretical physics, even after more than sev-
enty years, and a “gold-mine” of seminal new theoretical, physical, and
mathematical ideas and hints, quite stimulating and useful for modern
research.

Let us recall that Majorana, after having switched to physics at the
beginning of 1928, graduated with Fermi on July 6, 1929, and went on to
collaborate with the famous group created by Enrico Fermi and Franco
Rasetti (at the start with O. M. Corbino’s important help); a theoretical
subdivision of which was formed mainly (in the order of their entrance
into the Institute) by Ettore Majorana, Gian Carlo Wick, Giulio Racah,
Giovanni Gentile Jr., Ugo Fano, Bruno Ferretti, and Piero Caldirola.
The members of the experimental subgroup were: Emilio Segré, Edoardo
Amaldi, Bruno Pontecorvo, Eugenio Fubini, Mario Ageno, Giuseppe
Cocconi, along with the chemist Oscar D’Agostino. Afterwards, Ma-
jorana qualified for university teaching of theoretical physics (“Libera
Docenza”) on November 12, 1932; spent about six months in Leipzig
with W. Heisenberg during 1933; and then, for some unknown reasons,
stopped participating in the activities of Fermi’s group. He even ceased
publishing the results of his research, except for his paper “Teoria sim-
metrica dell’elettrone e del positrone,” which (ready since 1933) Ma-
jorana was persuaded by his colleagues to remove from a drawer and
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publish just prior to the 1937 Italian national competition for three full-
professorships.

With respect to the last point, let us recall that in 1937 there were
numerous Italian competitors for these posts, and many of them were
of exceptional caliber; above all: Ettore Majorana, Giulio Racah, Gian
Carlo Wick, and Giovanni Gentile Jr. (the son of the famous philosopher
bearing the same name, and the inventor of “parastatistics” in quantum
mechanics). The judging committee was chaired by E. Fermi and had as
members E. Persico, G. Polvani, A. Carrelli, and O. Lazzarino. On the
recommendation of the judging committee, the Italian Minister of Na-
tional Education installed Majorana as professor of theoretical physics
at Naples University because of his “great and well-deserved fame,” inde-
pendently of the competition itself; actually, “the Commission hesitated
to apply the normal university competition procedures to him.” The at-
tached report on the scientific activities of Ettore Majorana, sent to the
minister by the committee, stated:

“Without listing his works, all of which are highly notable both for
their originality of the methods utilized as well as for the importance of
the achieved results, we limit ourselves to the following:

“In modern nuclear theories, the contribution made by this researcher
to the introduction of the forces called “Majorana forces” is universally
recognized as the one, among the most fundamental, that permits us to
theoretically comprehend the reasons for nuclear stability. The work of
Majorana today serves as a basis for the most important research in this
field.

“In atomic physics, the merit of having resolved some of the most
intricate questions on the structure of spectra through simple and elegant
considerations of symmetry is due to Majorana.

“Lastly, he devised a brilliant method that permits us to treat the pos-
itive and negative electron in a symmetrical way, finally eliminating the
necessity to rely on the extremely artificial and unsatisfactory hypoth-
esis of an infinitely large electrical charge diffused in space, a question
that had been tackled in vain by many other scholars.”

One of the most important works of Ettore Majorana, the one that in-
troduces his “infinite-components equation” was not mentioned, since it
had not yet been understood. It is interesting to note, however, that the
proper light was shed on his theory of electron and anti-electron symme-
try (today climaxing in its application to neutrinos and anti-neutrinos)
and on his resulting ability to eliminate the hypothesis known as the
“Dirac sea,” a hypothesis that was defined as “extremely artificial and
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unsatisfactory,” despite the fact that in general it had been uncritically
accepted.

The details of Majorana and Fermi’s first meeting were narrated by
E. Segré (Segré, 1971): “The first important work written by Fermi in
Rome [‘Su alcune proprietà statistiche dell’atomo’ (On certain statistical
properties of the atom)] is today known as the Thomas-Fermi method. . . .
When Fermi found that he needed the solution to a non-linear differen-
tial equation characterized by unusual boundary conditions in order to
proceed, in a week of assiduous work with his usual energy, he calculated
the solution with a little hand calculator. Majorana, who had entered
the Institute just a short time earlier and who was always very skeptical,
decided that Fermi’s numeric solution probably was wrong and that it
would have been better to verify it. He went home, transformed Fermi’s
original equation into a Riccati equation, and resolved it without the aid
of any calculator, utilizing his extraordinary aptitude for numeric cal-
culation. When he returned to the Institute and skeptically compared
the little piece of paper on which he had written his results to Fermi’s
notebook, and found that their results coincided exactly, he could not
hide his amazement.” We have indulged in the foregoing anecdote since
the pages on which Majorana solved Fermi’s differential equation have
in the end been found, and it has been shown recently (Esposito, 2002)
that he actually followed two independent (and quite original) paths to
the same mathematical result, one of them leading to an Abel, rather
than a Riccati, equation.

ETTORE MAJORANA’S PUBLISHED PAPERS

Majorana published few scientific articles: nine, actually, besides his so-
ciology paper entitled “Il valore delle leggi statistiche nella fisica e nelle
scienze sociali” (The value of statistical laws in physics and the social
sciences), which was however published not by Majorana but (posthu-
mously) by G. Gentile Jr., in Scientia [36 (1942) 55-56]. We already
know that Majorana switched from engineering to physics in 1928 (the
year in which he published his first article, written in collaboration with
his friend Gentile) and then went on to publish his works in theoretical
physics only for a very few years, practically only until 1933. Never-
theless, even his published works are a mine of ideas and techniques of
theoretical physics that still remains partially unexplored. Let us list his
nine published articles:
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(1) “Sullo sdoppiamento dei termini Roentgen ottici a causa dell’elettrone
rotante e sulla intensità delle righe del Cesio,” in collaboration with
Giovanni Gentile Jr., Rendiconti Accademia Lincei 8 (1928) 229-
233.

(2) “Sulla formazione dello ione molecolare di He,” Nuovo Cimento 8
(1931) 22-28.

(3) “I presunti termini anomali dell’Elio,” Nuovo Cimento 8 (1931)
78-83.

(4) “Reazione pseudopolare fra atomi di Idrogeno,” Rendiconti Ac-
cademia Lincei 13 (1931) 58-61.

(5) “Teoria dei tripletti P’ incompleti,” Nuovo Cimento 8 (1931) 107-
113.

(6) “Atomi orientati in campo magnetico variabile,” Nuovo Cimento
9 (1932) 43-50.

(7) “Teoria relativistica di particelle con momento intrinseco arbi-
trario,” Nuovo Cimento 9 (1932) 335-344.

(8) “Über die Kerntheorie,” Zeitschrift für Physik 82 (1933) 137-145;
“Sulla teoria dei nuclei,” La Ricerca Scientifica 4(1) (1933) 559-
565.

(9) “Teoria simmetrica dell’elettrone e del positrone,” Nuovo Cimento
14 (1937) 171-184.

The first papers, written between 1928 and 1931, concern atomic and
molecular physics: mainly questions of atomic spectroscopy or chemical
bonds (within quantum mechanics, of course). As E. Amaldi has written
(Amaldi, 1966 and 1986), an in-depth examination of these works leaves
one struck by their superb quality: They reveal both a deep knowledge of
the experimental data, even in the minutest detail, and an uncommon
ease, without equal at that time, in the use of the symmetry proper-
ties of the quantum states in order to qualitatively simplify problems
and choose the most suitable method for their quantitative resolution.
Among the first papers, “Atomi orientati in campo magnetico variabile”
(Atoms oriented in a variable magnetic field) deserves special mention.
It is in this article, famous among atomic physicists, that the effect now
known as the Majorana-Brossel effect is introduced. In it, Majorana pre-
dicts and calculates the modification of the spectral line shape due to an
oscillating magnetic field. This work has also remained a classic in the
treatment of non-adiabatic spin-flip. Its results —once generalized, as
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suggested by Majorana himself, by Rabi in 1937 and by Bloch and Rabi
in 1945— established the theoretical basis for the experimental method
used to reverse the spin also of neutrons by a radio-frequency field, a
method that is still practiced today, for example, in all polarized-neutron
spectrometers. The Majorana paper introduces moreover the so-called
Majorana sphere (to represent spinors by a set of points on the surface
of a sphere), as noted not long ago by R. Penrose and others (Penrose,
1987, 1993 and 1996).

Majorana’s last three articles are all of such importance that none of
them can be set aside without comment.

The article “Teoria relativistica di particelle con momento intrinseco
arbitrario” (Relativistic theory of particles with arbitrary spin) is a typ-
ical example of a work that is so far ahead of its time that it became
understood and evaluated in depth only many years later. Around 1932
it was commonly thought that one could write relativistic quantum equa-
tions only in the case of particles with zero or half spin. Convinced of
the contrary, Majorana —as we know from his manuscripts— began con-
structing suitable quantum-relativistic equations (Mignani et al., 1974)
for higher spin values (one, three-halves, etc.); and he even devised a
method for writing the equation for a generic spin-value. But still he
published nothing, until he discovered that one could write a single equa-
tion to cover an infinite series of cases, that is, an entire infinite family of
particles of arbitrary spin (even if at that time the known particles could
be counted on one hand). In order to implement his programme with
these “infinite components” equations, Majorana invented a technique
for the representation of a group several years before Eugene Wigner
did. And, what is more, Majorana obtained the infinite-dimensional
unitary representations of the Lorentz group that will be re-discovered
by Wigner in his 1939 and 1948 works. The entire theory was re-invented
by Soviet mathematicians (in particular Gelfand and collaborators) in
a series of articles from 1948 to 1958 and finally applied by physicists
years later. Sadly, Majorana’s initial article remained in the shadows
for a good 34 years until D. Fradkin, informed by E. Amaldi, released
[Am. J. Phys. 34 (1966) 314] what Majorana many years earlier had
accomplished.

As soon as the news of the Joliot-Curie experiments reached Rome
at the beginning of 1932, Majorana understood that they had discov-
ered the “neutral proton” without having realized it. Thus, even before
the official announcement of the discovery of the neutron, made soon
afterwards by Chadwick, Majorana was able to explain the structure
and stability of atomic nuclei with the help of protons and neutrons,
antedating in this way also the pioneering work of D. Ivanenko, as both
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Segré and Amaldi have recounted. Majorana’s colleagues remember that
even before Easter he had concluded that protons and neutrons (indis-
tinguishable with respect to the nuclear interaction) were bound by the
“exchange forces” originating from the exchange of their spatial posi-
tions alone (and not also of their spins, as Heisenberg would propose),
so as to produce the alpha particle (and not the deuteron) saturated
with respect to the binding energy. Only after Heisenberg had pub-
lished his own article on the same problem was Fermi able to persuade
Majorana to meet his famous colleague in Leipzig; and finally Heisen-
berg was able to convince Majorana to publish his results in the paper
“Über die Kerntheorie.” Majorana’s paper on the stability of nuclei was
immediately recognized by the scientific community –a rare event, as
we know, from his writings– thanks to that timely “propaganda” made
by Heisenberg himself. We seize the present opportunity to quote two
brief passages from Majorana’s letters from Leipzig. On February 14,
1933, he writes his mother (the italics are ours): “The environment of
the physics institute is very nice. I have good relations with Heisenberg,
with Hund, and with everyone else. I am writing some articles in Ger-
man. The first one is already ready....” The work that is already ready
is, naturally, the cited one on nuclear forces, which, however, remained
the only paper in German. Again, in a letter dated February 18, he tells
his father (we italicize): “I will publish in German, after having extended
it, also my latest article which appeared in Nuovo Cimento.” Actually,
Majorana published nothing more, either in Germany or after his return
to Italy, except for the article (in 1937) of which we are about to speak.
It is therefore of importance to know that Majorana was engaged in
writing other papers: in particular, he was expanding his article about
the infinite-components equations.

As we said, from the existing manuscripts it appears that Majorana
was also formulating the essential lines of his symmetric theory of elec-
trons and anti-electrons during the years 1932-1933, even though he
published this theory only years later, when participating in the afore-
mentioned competition for a professorship, under the title “Teoria sim-
metrica dell’elettrone e del positrone” (Symmetrical theory of the elec-
tron and positron), a publication that was initially noted almost exclu-
sively for having introduced the Majorana representation of the Dirac
matrices in real form. A consequence of this theory is that a neutral
fermion has to be identical with its anti-particle, and Majorana sug-
gested that neutrinos could be particles of this type. As with Majo-
rana’s other writings, this article also started to gain prominence only
decades later, beginning in 1957; and nowadays expressions like Majo-
rana spinors, Majorana mass, and Majorana neutrinos are fashionable.
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As already mentioned, Majorana’s publications (still little known, de-
spite it all) is a potential gold-mine for physics. Recently, for example,
C. Becchi pointed out how, in the first pages of the present paper, a clear
formulation of the quantum action principle appears, the same princi-
ple that in later years, through Schwinger’s and Symanzik’s works, for
example, has brought about quite important advances in quantum field
theory.

ETTORE MAJORANA’S UNPUBLISHED PAPERS

Majorana also left us several unpublished scientific manuscripts, all of
which have been catalogued (Baldo et al., 1987), (Recami, 1999) and
kept at Domus Galilaeana. Our analysis of these manuscripts has al-
lowed us to ascertain that all the existing material seems to have been
written by 1933; even the rough copy of his last article, which Majo-
rana proceeded to publish in 1937 —as already mentioned— seems to
have been ready by 1933, the year in which the discovery of the positron
was confirmed. Indeed, we are unaware of what he did in the follow-
ing years from 1934 to 1938, except for a series of 34 letters written by
Majorana between March 17, 1931, and November 16, 1937, in reply to
his uncle Quirino —a renowned experimental physicist and at a time
president of the Italian Physical Society— who had been pressing Ma-
jorana for theoretical explanations of his own experiments. By contrast,
his sister Maria recalled that, even in those years, Majorana —who had
reduced his visits to Fermi’s Institute, starting from the beginning of
1934 (that is, after his return from Leipzig)— continued to study and
work at home many hours during the day and at night. Did he continue
to dedicate himself to physics? From a letter of his to Quirino, dated
January 16, 1936, we find a first answer, because we get to learn that
Majorana had been occupied “since some time, with quantum electro-
dynamics”; knowing Majorana’s modesty and love for understatements,
this no doubt means that by 1935 Majorana had profoundly dedicated
himself to original research in the field of quantum electrodynamics.

Do any other unpublished scientific manuscripts of Majorana exist?
The question, raised by his letters from Leipzig to his family, becomes
of greater importance when one reads also his letters addressed to the
National Research Council of Italy (CNR) during that period. In the first
one (dated January 21, 1933), Majorana asserts: “At the moment, I am
occupied with the elaboration of a theory for the description of arbitrary-
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spin particles that I began in Italy and of which I gave a summary notice
in Nuovo Cimento....” In the second one (dated March 3, 1933) he even
declares, referring to the same work: “I have sent an article on nuclear
theory to Zeitschrift für Physik. I have the manuscript of a new theory
on elementary particles ready, and will send it to the same journal in a
few days.” Considering that the article described here as a “summary
notice” of a new theory was already of a very high level, one can imagine
how interesting it would be to discover a copy of its final version, which
went unpublished. [Is it still, perhaps, in the Zeitschrift für Physik
archives? Our own search ended in failure.] One must moreover not
forget that the above-cited letter to Quirino Majorana, dated January
16, 1936, revealed that his nephew continued to work on theoretical
physics even subsequently, occupying himself in depth, at least, with
quantum electrodynamics.

Some of Majorana’s other ideas, when they did not remain concealed
in his own mind, have survived in the memories of his colleagues. One
such reminiscence we owe to Gian Carlo Wick. Writing from Pisa on
October 16, 1978, he recalls: “...The scientific contact [between Ettore
and me], mentioned by Segré, happened in Rome on the occasion of
the ‘A. Volta Congress’ (long before Majorana’s sojourn in Leipzig).
The conversation took place in Heitler’s company at a restaurant, and
therefore without a blackboard...; but even in the absence of details,
what Majorana described in words was a ‘relativistic theory of charged
particles of zero spin based on the idea of field quantization’ (second
quantization). When much later I saw Pauli and Weisskopf’s article
[Helv. Phys. Acta 7 (1934) 709], I remained absolutely convinced that
what Majorana had discussed was the same thing....”

THIS VOLUME

In the present book, we reproduce and translate, for the first time, five
neatly organized notebooks, known, in Italian, as “Volumetti” (book-
lets). Written in Rome by Ettore Majorana between 1927 and 1932, the
original manuscripts are kept at the Domus Galilaeana in Pisa. Each
of them is composed of about 100−150 sequentially numbered pages of
approximate size 11 cm × 18 cm. Every notebook is prefaced by a table
of contents, which evidently was gradually made out by the author when
a particular line of thought was finished; and a date, penned on its first
blank (i.e., on the initial blank page of each notebook) records when
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it was completed —except for the last, and smallest, booklet, which is
undated, probably because it remained unfinished.

Numbered blank pages appear in the original manuscript in some
cases between the end of a Section and the beginning of the next one;
we have deleted these blanks in this volume.

Most likely, Majorana used to approach the issues treated in his note-
books following well-defined schemes arising from his studies. Each note-
book was written during a period of about one year, starting from the
years during which Ettore Majorana was completing his studies at the
University of Rome. Thus the contents of these notebooks range from
typical topics covered in academic courses to topics at the frontiers of
research. Despite this unevenness in the level of sophistication (which
becomes apparent on inspection of different notebooks or even a single
notebook), the style in which any particular topic is treated is never
obvious. As an example, we refer here to Majorana’s study of the shift
in the melting point of a substance when it is placed in a magnetic
field or, more interestingly, his examination of heat propagation using
the “cricket simile.” Also remarkable is his treatment of contemporary
physics topics in an original and lucid manner, such as Fermi’s expla-
nation of the electromagnetic mass of the electron, the Dirac equation
with its applications, and the Lorentz group, revealing in some cases
the literature preferred by him. As far as frontier research arguments
are concerned, we here quote only two illuminating examples: the study
of quasi-stationary states, anticipating Fano’s theory by about 20 years,
and Fermi’s theory of atoms, reporting analytic solutions of the Thomas-
Fermi equation with appropriate boundary conditions in terms of simple
quadratures, which to our knowledge is still lacking.

In the translation of the notebooks we have attempted to adhere to
the original Italian version as much as possible, adopting personal in-
terpretations and notations only in a very few cases where the meaning
of some paragraphs or the followed procedures were not clear enough.
Nevertheless, for compactness’ sake, we have replaced Planck’s constant
h, used throughout the original text, by the more current 2πh̄, except
where results of the old quantum theory are involved. All changes from
the original, introduced in the English version, are pointed out in foot-
notes. Additional footnotes have been introduced, as well, where the
interpretation of some procedures or the meaning of particular parts re-
quire further elaboration. Footnotes which are not present in the original
manuscript are denoted by the symbol @.

The major effort we have made to carefully check and type all equa-
tions and tables was motivated by our desire to facilitate the reading
of Majorana’s notebooks as much as possible, with a hope of render-
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ing their intellectual treasure accessible for the first time to the widest
audience.

Figures appearing in the notebooks have been reproduced without the
use of photographic or scanning devices but are otherwise true in form
to the original drawings. The same holds for tables, which in almost all
cases have been reproduced independently of the source; i.e., we have
performed our own calculations, following the methods used in the text.
Several tables exhibit gaps, revealing that in these cases the author for
some reason did not perform the corresponding calculations: In such
instances, we have completed the tables whenever possible, filling the
gaps with the appropriate expressions. Other minor changes, mainly
related to typos in the original manuscript, are pointed out in footnotes.

For a better understanding of the style adopted by Ettore Majorana
in composing his notebooks, and also for giving an idea of the method
of translation and editing followed in this volume, we have reproduced,
by scanning, a whole section (Sec. 3.3) from the original manuscript;
which can illustrate some of peculiarities of Ettore Majorana’s Volumetti.
These selected pages are reported at the end of the book.

A short bibliography follows this Preface. Far from being exhaustive,
it provides only some references about the topics touched upon in this
introduction.
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VOLUMETTO I: 8 MARCH 1927

1. ELECTRIC POTENTIAL

E = −∇V, ∇2 V = − 4πρ.

The electric potential at a point O of space S surrounded by the surface
σ is given by

VO =
∫

σ
k V dσ +

∫

S
ρ (1/r − U) dS, (1.1)

where r is the distance between O and P , k is the effective surface
charge1 density generated by a unit charge at P responsible for the
electric effects outside the surface, and U is the potential from such a
distribution. Thus

VO =
∫

σ
k V dσ +

1
4π

∫

S
U ∇2 V dS − 1

4π

∫

S

∇2 V

r
dS. (1.2)

In the region S, we have

U ∇2 V = ∇ · (U ∇V − V ∇U) , (1.3)

so that2

VO =
∫

σ
k V dσ +

1
4π

∫

σ
U

∂V

∂n
dσ

− 1
4π

∫

σ
V

(
∂U

∂n

)

i
dσ − 1

4π

∫

S

∇2 V

r
dS. (1.4)

0@ The label @ distinguishes editorial comments from the author’s footnotes.
1@ In the original manuscript, the author often used the word “mass” in the place of “charge”;
here, for clarity, we always use the second term.
2@ Here, the author is using the indices “i” and “e” to denote the regions internal and
external to any given surface, respectively. The index n labels the component of any given
vector along the external normal n to this surface.

1



2 ETTORE MAJORANA: NOTES ON THEORETICAL PHYSICS

O
r

φ
σ

P

S

n

Fig. 1.1. Definition of some quantities used in the text.

On the surface we have instead

U = 1/r , (1.5)(
∂U

∂n

)

i
= −Eni = −Ene + 4πk = − 1

r2
cosφ + 4πk , (1.6)

and by substitution we get

VO =
1
4π

∫

σ

(
V cosφ + r

∂V

∂n

)
dσ

r2
− 1

4π

∫

S

∇2 V

r
dS. (1.7)

This formula holds for any arbitrary functions V , since we can always
find a charge distribution generating the potential V in the region S.
If there is no charge in S, then

VO =
1
4π

∫

σ

(
V cosφ + r

∂V

∂n

)
dσ

r2
. (1.8)

Let us now prove Eq. (1.7) directly. We set

V ′
O =

1
4π

∫

σ

(
V cosφ + r

∂V

∂n

)
dσ

r2
− 1

4π

∫

S

∇2 V

r
dS. (1.9)

Let us consider an infinitesimal homothety with center at O that trans-
forms the surface σ into σ′ and the space S into S ′. The integration
regions transform accordingly. It is simple to evaluate the variations of
the integrals by using the homothety relations. Actually, if 1+dα is the
homothety ratio, the following relations, connecting each given quantity



VOLUMETTO I 3

to the corresponding one, hold:

δV = dα OP·∇V, (1.10)
δ cosφ = 0, (1.11)

δr = dα r, (1.12)

δ
dσ

r2
= 0, (1.13)

δ∇2 V = dα OP·∇ ∇2 V, (1.14)

δ
∂V

∂n
=

∂

∂n
OP·∇V dα − ∂V

∂n
dα, (1.15)

δ
dS

r
= 2 dα

dS

r
. (1.16)

From these equations, we get

δV ′
0 =

dα

4π

∫

σ

(
OP·∇V cosφ + r

∂

∂n
OP·∇V

)
dσ

r2

− dα

4π

∫

S

(
OP·∇∇2 V

r
+ 2

∇2 V

r

)
dS. (1.17)

The surface integral can be viewed as the outward flux, through the
surface σ, of the vector:

M = OP·∇V
OP
r3

+
1
r

∇ (OP·∇V ) . (1.18)

This vector is infinite at O; however it is only a first order infinity, so
the surface integral can be transformed into the volume integral

∫

S
∇ ·M dS.

Moreover, it is easy to show that

∇ ·M =
OP·∇∇2 V

r
+ 2

∇2 V

r
, (1.19)

so that we have δV ′
0 = 0 . Now, if the surface σ becomes infinitesimal

around O, then the volume integral in Eq. (1.9) vanishes, and the surface
integral tends to 4πVO. We thus get

V ′
O = VO, q.e.d. (1.20)
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2. RETARDED POTENTIAL

Let H be a function of space and time that obeys the differential equation

∇2 H =
1
c2

∂2H

∂t2
. (1.21)

Let O denote a point in space, r the distance of another point P from
O, and m a function of P and of t; we then set

m (P, t) = m (P, t− r/c) . (1.22)

If we consider the function

H1(P, t) = H (P, t− r/c) , (1.23)

it is easy to find the differential equation satisfied by it:

∇2 H1 = − 2
c

∂2H1

∂r∂t
− 2

rc

∂H1

∂t
. (1.24)

If O belongs to the region S confined by the surface σ, then, by using
Eq. (1.7) and noting that H1O = HO at O, we find

HO =
1
4π

∫

σ

(
H1 cosφ + r

∂H1

∂n

)
dσ

r2

+
1
4π

∫

S

(
2
rc

∂2H1

∂r∂t
+

2
r2c

∂H1

∂t

)
dS. (1.25)

Let us decompose the region S into cones having their vertices at O. The
volume element of a cone with aperture angle dω between two spheres
centered at O and having radius r and r + dr, respectively, is dω r2dr.
The integral over the volume of the cone is then

dω

∫ r

0

2
c

(
∂H1

∂t
+ r

∂2H1

∂r∂t

)
dr = dω

2r

c

∂H1

∂t
, (1.26)

where on the r.h.s. the term ∂H1/∂r has to be evaluated at the base
of the cone on the surface σ. If the area of this base is dσ and φ is the
angle between the cone axis and the outward normal direction, then we
have

dω
2r

c

∂H1

∂t
=

2
rc

∂H1

∂t
cosφ dσ, (1.27)

and the integral over the entire region S turns into the surface integral
∫

σ

2
rc

∂H1

∂t
cosφdσ. (1.28)
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Inserting it into 1.25, one obtains

HO =
1
4π

∫

σ

(
H1 cosφ + r

∂H1

∂n
+

2r

c

∂H1

∂t
cosφ

)
dσ

r2
; (1.29)

and, noting that

H1 = H, (1.30)
∂H1

∂n
=

∂H

∂n
− r/c cosφ

∂H

∂t
, (1.31)

∂H1

∂t
=

∂H

∂t
, (1.32)

we obtain

HO =
1
4π

∫

σ

(
H cosφ + r

∂H

∂n
+

r cosφ

c

∂H

∂t

)
dσ

r2
. (1.33)

If we define
m (P, t) = m (P, t + r/c) , (1.34)

and
H2(P, t) = H

(
P, t +

r

c

)
, (1.35)

the differential equation satisfied by H2 becomes

∇2 H2 =
2
c

∂2H2

∂r∂t
+

2
rc

∂H2

∂t
. (1.36)

Similarly, we now find

HO =
1
4π

∫

σ

(
H cosφ + r

∂H

∂n
− r cosφ

c

∂H

∂t

)
dσ

r2
. (1.37)

3. INTERACTION ENERGY OF TWO
ELECTRIC OR MAGNETIC CHARGE
DISTRIBUTIONS

Let us consider two electric or magnetic charge distributions located in
different regions of space. Let σ be a surface (which may be simply-
connected or not) bounding the space region S which contains all the
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charges of the first distribution and no charges of the second distribution.
Let V be the potential of the field E produced by the first distribution
of charges m1, m2, . . . , mn located at points P1, P2, . . . , Pn. Let V ′ be
the potential of the field E′ produced by the second distribution. With
obvious notations, we have

U =
n∑

i=1

mi V
′
i , (1.38)

and, by applying Eq. (1.8),

U =
1
4π

∫

σ

(
V ′

n∑

i=1

mi

r2
i

cosφi + E′
n

n∑

i=1

mi

ri

)
dσ, (1.39)

where E′
n is the component of E′ along the inward direction perpendic-

ular to σ. Now we have
n∑

i=1

mi

r2
i

cosφi = En, (1.40)

n∑

i=1

mi

ri
= V, (1.41)

where En is the component of E along the outward normal to σ. By
substitution, we find the relevant formula

U =
1
4π

∫

σ

(
En V ′ + E′

n V
)

dσ. (1.42)

4. SKIN EFFECT IN HOMOGENEOUS
CYLINDRICAL ELECTRIC
CONDUCTORS

Let us consider a cylindrical conductor whose cross section (assumed to
be circular) is small with respect to the length of the conductor. The
potential can then be considered uniform on any given cross section,
and the current density as depending only on the distance a from the
axis. Let us denote by I = I1 + iI2 the complex quantity3 representing

3@ The author is considering a conductor in which there flows an alternating current of
frequency ω.
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the current intensity flowing through a circle that is coaxial with the
cross section of the conductor and has radius a. Let us indicate by
D = D1 + iD2 the current density at a distance a from the axis, with
µ the magnetic permeability of the conductor, A the radius of the cross
section and ρ the electric resistivity. Then the “counter-electromotive
forces”4 per unit length along a current line at a distance a from the
axis, due to the Joule effect5 and to the variation of the induction in the
conductor, are

D ρ (1.43)

and

2µω i

∫ A

a

I

x
dx, (1.44)

respectively. Since all other electromotive forces are equal for the differ-
ent current lines, we can conclude that

D ρ + 2µω i

∫ A

a
(I/x) dx = constant. (1.45)

By differentiating, we then find

ρ dD = 2µω i
I

a
da. (1.46)

We can consider I and D as functions of s, the area of the circle having
radius a, since

D =
dI

ds
, (1.47)

2
da

a
=

ds

s
, (1.48)

which yields

ρd
dI

ds
= µω i

I

s
ds, (1.49)

or equivalently
d2I

ds2
=

µ ω i

ρ

I

s
. (1.50)

By setting
p =

µ ω

ρ
s, (1.51)

4@ That is, the forces blocking the flow of the current.
5@ In the original manuscript, the Joule effect is called an “Ohmic effect.” However, we prefer
to use the widely-known terminology of Joule effect.
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we get

d2I

dp2
= i

I

p
. (1.52)

This equation clearly shows that p is independent of the fundamental
measure units of the electromagnetic system. Therefore, to make the
computation easier, given that p is proportional to s, we choose the
length measure unit in such a way that p = s, without altering p. Since
I = 0 when p = 0, we can easily integrate Eq. (1.52) using a series
expansion. Remembering that I = I1 + iI2, we find

I1 = m

(
p− 1

2!2·3p3 +
1

4!2·5p5 − 1
6!2·7p7 + . . .

)
, (1.53)

I2 = m

(
1
2
p2 − 1

3!2·4p4 +
1

5!2·6p6 − 1
7!2·8p8 + . . .

)
, (1.54)

wherein m is a constant factor that may be chosen to be real after an
appropriate shift of the origin of time. Given our convention p = s, by
differentiation with respect to p, we get

D1 = m

(
1− 1

2!2
p2 +

1
4!2

p4 − 1
6!2

p6 + . . .

)
, (1.55)

D2 = m

(
p− 1

3!2
p3 +

1
5!2

p5 − 1
7!2

p7 + . . .

)
. (1.56)

The mean heat per unit time dissipated along a length ` of the conductor
due to Joule effect is

Q1 =
1
2

m2ρ `

∫ p

0

[(
1− 1

2!2
p2 +

1
4!2

p4 − 1
6!2

p6 + . . .

)2

+
(

p− 1
3!2

p3 +
1

5!2
p5 − 1

7!2
p7 + . . .

)2
]

dp. (1.57)

Instead, the heat that would be produced if the current was uniformly
distributed is given by

Q =
1
2

m2ρ
1
p

[(
p− 1

2!2·3p3 +
1

4!2·5p5 − 1
6!2·7p7 + . . .

)2

+
(

1
2
p2 − 1

3!2·4p4 +
1

5!2·6p6 − 1
7!2·8p8 + . . .

)2
]

. (1.58)
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Table 1.1. Some values for the skin effect (see the text).

p R1/R

1 1.0782
2 1.2646
3 1.4789
4 1.6779
6 2.0067
10 2.5069
24 3.7274
60 5.7357
100 7.3277

Denoting by R1 the apparent resistance of the conductor in the AC
regime and by R the resistance in the DC regime, we find

R1

R
=

Q1

Q
=

∫ p

0

[(
1− 1

2!2
p2 + . . .

)2

+
(

p− 1
3!2

p3 + . . .

)2
]

dp

1
p

[(
p− 1

2!2·3p3 + . . .

)2

+
(

1
2
p2 − 1

3!2·4p4 + . . .

)2
] .

(1.59)
Both the numerator and the denominator in its r.h.s. may be expanded
in power series of p. By performing this expansion and dividing by p,
we find

R1

R
=

1 +
1
3!

p2 +
1

2!2·5!
p4 +

1
3!2·7!

p6 +
1

4!2·9!
p8 + . . .

1 +
1

2!·3!
p2 +

1
2!·3!·5!

p4 +
1

3!·4!·7!
p6 +

1
4!·5!·9!

p8 + . . .
. (1.60)

By relaxing the constraints on the measure units, in this expression we
have p = µωs/ρ = µ`ω/R or, using the Ohm as the resistance measure
unit and m as the measure unit of length,

p =
µω `

107 R
=

2πf µ `

107 R
.

In Table 1.1 we report some values of R1/R for different values6 of p .
For small values of p (p << 1), we can use the expression

R1

R
= 1 +

1
12

p2 − 1
180

p4, (1.61)

6@ Notice that the author used Eq. (1.60) to obtain the values in this Table up to p = 6 and
then invoked the expansion (1.62) to complete the Table.
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while, for large values of p,

R1

R
=

√
1
2
p +

1
4

+
3
64

(√
1
2
p

)−1

(1.62)

or, in the simplest case,

R1

R
=

√
1
2
p +

1
4
, (1.63)

where the last but one equation yields practically exact results for p > 10
(relative error less than 0.0001).

5. THERMODYNAMICS OF
THERMOELECTRIC CELLS

Let us suppose that a unitary quantity of electricity7 can be related to
some amount of entropy S which depends on the nature and on the
temperature T of the conductor. If a quantity of electricity q flows in
the conductor, its entropy varies from qS to q(S +dS), where dS can be
either infinitesimal or finite, depending on the equal or different nature of
the conductor’s ends. If we neglect the Joule effect, which can be taken
into account separately, the motion of the charges inside the conductor
should be considered reversible, and therefore the entropy increase qdS
can be related to the absorption of a quantity qTdS of heat that takes
place where the nature of the conductor changes or, in a homogeneous
conductor, where the temperature changes (Thomson effect). Thus, if q
electric charges flow through a closed circuit, the total absorbed heat is

q

∫
T dS,

where the integral over the whole circuit is, in general, different from zero
only if the temperature is not equal in all the elements of the circuit and
if there are at least two different elements. Thus, if E is the mechanical
equivalent of heat, energy conservation requires an electromotive force e
to appear in the circuit:

e = E

∫
T dS. (1.64)

7@ That is, for instance, a quantity of electric charge (flowing in a conductor) corresponding
to the chosen measure unit.
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From this, the fundamental laws of the electric cell follow.

6. ENERGY OF AN ISOLATED
CONDUCTOR

Let σ be a conducting charged surface with unitary electric charge, k the
surface charge density, ε the energy of the system, and V the potential of
the conductor. Now suppose that the surface σ deforms into the surface
σ1, with surface charge density k1, energy ε1, and potential V1. Let εm
be the mutual energy of the two distributions and ε(k − k1) the total
energy of the first distribution and of the second one with reversed sign.
Clearly, we have

ε(k − k1) = ε + ε1 − εm. (1.65)

Let us assume that σ1 is completely external to σ. The potential of the
field produced by the distribution k1 will be equal to V1 in all points
of σ, so that we’ll have εm = V1, and, since ε1 = V1/2, εm = 2ε1. By
substitution, we obtain

ε − ε1 = ε(k − k1). (1.66)

Assuming that σ1 is very close to σ, the field produced by the difference
of the two distributions is zero inside σ, finite between σ, and σ1, and
infinitesimal outside σ1. Thus, the energy per unit volume of such a field
is zero inside σ, finite between σ and σ1, and a second-order infinitesimal
outside σ1. Since the distance between σ and σ1 is a first-order infinites-
imal, if we neglect infinitesimals of order higher than the first, we should
only consider the volume energy contained between σ and σ1. But in
this region the field produced by the second distribution is zero. Con-
sequently we can say that, for an infinitesimal variation of σ, as long as
the resulting surface is completely external to σ, the electrostatic energy
decreases by an amount that is equal to the energy that was originally
contained between σ and the new surface. This can also be stated in a
different way. Let dσ be an element of σ; the volume element between
σ, σ1, and the normals to the boundary of dσ is dσ·dα, quantity dα
being the distance between the two surfaces σ and σ1. Neglecting in-
finitesimal quantities, the magnitude of the field inside such an element
is 4πk = F , so that the energy contained in the element is F (k/2)dσdα.
On the other hand, kdσ is the charge dm distributed on dσ, and thus
F (k/2)dσdα = (dm/2)Fdα. By integrating over all the space between
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σ and σ1, we find

ε − ε1 = − δε =
1
2

∫
F·δαdm, (1.67)

and

V − V1 = − δV =
∫

F·δα dm. (1.68)

It is very easy to see that this equation holds even when σ1 is not entirely
external to σ, as long as F is the force external to σ and the sign of dα
is positive or negative, according to whether σ1 is locally external or
internal to σ.

7. ATTRACTION BETWEEN MASSES
WHICH ARE FAR APART

Let us consider a system of gravitating masses m1,m2, . . . , mn located
at points P1, P2, . . . , Pn, respectively. Let O be the center of mass of the
system and m its total mass. Let us fix a Cartesian reference frame with
origin in 0. The potential at point P , defined by the coordinates x, y, z
is

V =
n∑

i=1

mi

[
(x− xi)2 + (y − yi)2 + (z − zi)2

]−1/2

=
n∑

i=1

mi

[
x2 + y2 + z2 − 2(xxi + yyi + zzi) + x2

i + y2
i + z2

i

]−1/2
.

Denoting by r the distance between P and O, and with α, β, γ the di-
rection cosines of the straight line OP , we will have

V =
n∑

i=1

mi

[
r2 − 2r(αxi + βyi + γzi) + x2

i + y2
i + z2

i

]−1/2

=
1
r

n∑

i=1

mi

[
1− (2/r)(αxi + βyi + γzi) + (x2

i + y2
i + z2

i )/r2
]−1/2

.

If r is infinitely large, then the quantity inside the square brackets differs
from unity by an infinitesimal of the same order as 1/r. On performing
an expansion of this quantity in powers of such infinitesimal up to the
fourth order and neglecting in the sum third-order terms (because of the
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1/r factor), we get

V =
1
r

n∑

i=1

mi +
1
r2

n∑

i=1

mi(αxi + βyi + γzi)

+
1
r3

n∑

i=1

mi

[
3
2

(αxi + βyi + γzi)
2 − 1

2

(
x2

i + y2
i + z2

i

)]
.

On noting that
∑

i mi = m and
∑

i mixi =
∑

i miyi =
∑

i mizi = 0 and
transforming the last term in the previous equation, we find

V =
m

r
+

1
r3

n∑

i=1

mi

[(
x2

i + y2
i + z2

i

)
− 3

2

(
α2(y2

i + z2
i )

+ β2(x2
i + z2

i ) + γ2(x2
i + y2

i )− 2αβxiyi − 2αγxizi − 2βγyizi

)]
.

Thus, introducing the polar moment of inertia Ip with respect to the
center of mass of the given system and the moment of inertia I of the
same system with respect to the direction OP , we find

V =
m

r
+

1
r3

(
Ip − 3

2
I

)
+ O

(
1
r4

)
. (1.69)

We can then say that the potential at large distances generated by a
system of Newtonian masses is determined, up to fourth-order infinites-
imals, by the mass and by the moments of inertial (the “inertia central
core”) of the system. Since, as Eq. (1.69) shows, up to third-order terms
we have V/m = 1/r, then in the second term of (1.69) we may replace
1/r with the approximate value V/m. On solving the equation with
respect to 1/r, we get, up to fourth-order terms,

1
r

=
V

m
− V 3

m4

(
Ip − 3

2
I

)
, (1.70)

or, taking the reciprocal of both sides, to second order we find

r =
m

V
+

V

m2

(
Ip − 3

2
I

)
. (1.71)

Since it is always possible to find an equivalent body (“omeoid”) having
the same mass and the same “central core of inertia” as the given system,
we can conclude that the equipotential surfaces of the field produced at
large distances by any mass distribution are, up to second-order terms,
ellipses that have a common focal point and whose axes coincide with
the principal axes of inertia of the mass distribution; at first order, the
equipotential surfaces are spheres centered at the center of mass.
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8. FORMULAE

In what follows, we denote by S a region of space enclosed by a surface
σ:

(1) ∇ · (mF) = m∇ ·F + ∇m ·F,

(2) ∇ ·E×F = ∇×E×F − E×∇×F,

(3) ∇ (mn) = m∇n + n ∇m,

(4) ∇2 (mn) = m ∇2 n + 2∇m ·∇n + n∇2 m,

(5) ∇×∇×E = −∇2 E + ∇ ∇ ·E,

(6) 8
∫

σ
En dσ =

∫

S
∇ ·EdS,

(7)
∫

σ
m En dσ =

∫

S
(m∇ ·E + ∇m ·E) dS,

(8)
∫

σ
n×Fdσ =

∫

S
∇×FdS,

(9)
∫

σ
pndσ =

∫

S
∇ p dS,

(10)∫

σ
q n dσ =

∫

S

(
∂q i
∂x

+
∂q j
∂y

+
∂q k
∂z

)
dS, if q is a homography,9

(11) ∇×mF = m ∇×F + ∇m×F,

(12)

8@ En denotes the component of the vector E along the outward normal n to the surface σ.
9@ i, j,k are the unit vectors along the coordinate axes x, y, z, respectively.
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∫

σ
OP× q n dσ =

∫

S

[
OP×

(
∂q i
∂x

+
∂q j
∂y

+
∂q k
∂z

)

+ i× q i + j× q j + k× q k
]

dS,

(13)
∫

σ
EEn dσ =

∫

S

(
E∇ ·E − E×∇×E +

1
2

∇E2
)

dS,

(14)
∫

σ

(
EEn − 1

2
E2 n

)
dσ =

∫

S
(E∇ ·E − E×∇×E) dS.

(15) Let it be U1 = U1(x1, x2, x3) and10

x1 = x1(x, y, z), x2 = x2(x, y, z), x3 = x3(x, y, z). (1.72)

By setting U(x, y, z) = U1(x1, x2, x3), we deduce

∇2 U =
∂2U1

∂x2
1

|∇x1|2 + . . . +
∂2U1

∂x1∂x2
· 2∇x1 ·∇x2 + . . .

+
∂U1

∂x1
∇2 x1 +

∂U1

∂x2
∇2 x2 +

∂U1

∂x3
∇2 x3. (1.73)

Similar formulae hold for transformations involving spaces with an arbi-
trary number of dimensions and also for transformations among spaces
with different dimensionalities.

9. ELECTRIC LINES

Let r,L,C, and g be the resistance, self-inductance, capacitance and
dispersion per unit length of an electric line. Let us assume that they are
constant. If an (alternating) current of frequency ω/2π is flowing along
the line, the general expressions for the (complex) current intensity11 i
and for the potential V at a distance x from a point O of the line (chosen
as the origin), are

V = A cosh px + B sinh px, (1.74)
i = −Aq sinh px − B q cosh px. (1.75)

10@ In the original manuscript, the author used both notations x1, x2, x3 and x1, y1, z1.
11@ Here,

√−1 will be denoted by j.
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A and B are arbitrary constants, whereas

p =
√

r + Lωj
√

g + Cωj, q =
√

g + Cωj/
√

r + Lωj.

Let ` be the length of the line and V0 = V (x = 0), V1 = V (x = `),
i0 = i(x = 0), and i1 = i(x = `). Let us also suppose that V0 is known
and that the line is closed on a (complex) resistance R.

On putting x = 0 in Eq. (1.74), we find

V0 = A, (1.76)

while for x = `, with the value just found for A, we get

V1 = V0 cosh p` + B sinh p`, (1.77)
i = −V0 q sinh p` − B q cosh p`. (1.78)

Since under our conditions it is V1 = Ri1, we have

V0 cosh p` + B sinh p` + V0 R q sinh p` + B R q cosh p` = 0, (1.79)

that is,

B = −V0
cosh p` + Rq sinh p`

sinh p` + Rq cosh p`
. (1.80)

On substituting the last expression into Eqs. (1.74) and (1.75) and
letting x take appropriate values, we easily find the following expressions:

i0 = V0 q
cosh p` + Rq sinh p`

sinh p` + Rq cosh p`
, (1.81)

V1 =
V0 R q

sinh p` + Rq cosh p`
, (1.82)

i1 =
V0 q

sinh p` + Rq cosh p`
. (1.83)

Some particular cases follow:

For R = ∞:

i0 = V0 q
sinh p`

cosh p`
, (1.84)

V1 =
V0

cosh p`
, (1.85)

i1 = 0. (1.86)

For R = 0:

i0 = V0 q
cosh p`

sinh p`
, (1.87)

V1 = 0, (1.88)

i1 =
V0 q

sinh p`
. (1.89)
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For12 r = g = 0:

i0 = V0

√
C/L

cos
√

LCω` + jR
√

C/L sin
√

LCω`

R
√

C/L cos
√

LCω` + j sin
√

LCω`
, (1.90)

V1 =
V0 R

√
C/L

R
√

C/L cos
√

LCω` + j sin
√

LCω`
, (1.91)

i1 =
V0

√
C/L

R
√

C/L cos
√

LCω` + j sin
√

LCω`
. (1.92)

For r = g = 0 and R = ∞:

i0 = V0

√
C/L j

sin
√

LCω`

cos
√

LCω`
=

√
C/L j tan

√
LCω`, (1.93)

V1 =
V0

cos
√

LCω`
, (1.94)

i1 = 0. (1.95)

For r = g = R = 0:

i0 = −V0

√
C

L
j

1
tan

√
LCω`

, (1.96)

V1 = 0, (1.97)

i1 = −V0

√
C

L
j

1
sin
√

LCω`
. (1.98)

[ ] 13

12@ In the original manuscript, the expression for i1 is lacking.
13@ At this point, a crossed out page occurs, whose content is the following:
“If Z is the impedance of the line considered and Y the transfer admittance, denoting by V0,
and i0 the input potential and current, respectively, and by V1, and i1 the output potential
and current, we have

V1 = V0 cosh
√

Y Z + i0
Z

Y
sinh

√
Y Z, (1.99)

ii = i0 cosh
√

Y Z + V0
Y

Z
sinh

√
Y Z. (1.100)

After performing a series expansion, the first terms read

V1 = V0

(
1 +

Y Z

2

)
+ i0 Z

(
1 +

Y Z

6

)
, (1.101)
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10. DENSITY OF A SPHERICAL MASS
DISTRIBUTION

Let us consider a mass distribution (obeying Newton’s law) on a spherical
surface whose density K is not constant. Denoting by V0 and K0 the
potential and the mass density, respectively, at point P0, with V the
potential in an arbitrary point P at a distance d from P0 and with r the
radius of the sphere, the following relation holds:

K0 =
1
4π

(
V0

r
+

∫

σ

V0 − V

πd2
dσ

)
, (1.107)

where the integral is evaluated over the entire spherical surface.

11. LIMIT SKIN EFFECT

Let us consider a conductor having uniform cross section (but arbitrary
shape) in which an AC current is flowing. As the frequency of the cur-
rent increases, the current flows inside an increasingly thin surface layer
of the conductor. In the limiting case, we may think of the current as a
purely surface phenomenon and consider a linear current density, defined
as the current intensity flowing through a length of the conductor cross
section edge. In the extreme situation, for a given total current inten-
sity, the surface current density inside the conductor is zero and, clearly,
the magnetic field vanishes as well. Now, the magnetic field inside the
conductor is due to the current flowing on the surface and to the mag-

ii = i0

(
1 +

Y Z

2

)
+ V0 Y

(
1 +

Y Z

6

)
. (1.102)

The T−network method should give

V1 = V0

(
1 +

Y Z

2

)
+ i0 Z

(
1 +

Y Z

4

)
. (1.103)

ii = i0

(
1 +

Y Z

2

)
+ V0 Y, (1.104)

while with the Π−network method we obtain

V1 = V0

(
1 +

Y Z

2

)
+ i0 Z, (1.105)

ii = i0

(
1 +

Y Z

2

)
+ V0 Y

(
1 +

Y Z

4

)
. (1.106)
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netization of the conductor (if this is a magnetic one) in the thin surface
layer where the current is flowing. The second contribution to the mag-
netic field tends to zero, because the volume of the considered surface
layer tends to zero, while the magnetization magnitude doesn’t increase
indefinitely. It then follows that inside the conductor the field produced
by the current is also zero in the limiting case. Let us decompose the
current that flows through every element of the boundary of the con-
ductor into two components, one with zero phase and the other having
phase equal to π/2. Inside the conductor both the field due to the first
component and the field due the second component must vanish. We
can replace the elementary currents of equal phase with elementary DC
currents having the same effective intensity; the field due to the former
is the same as the effective field due to the latter. It is well known that
the magnetic field produced by a set of parallel and rectilinear DC cur-
rents is orthogonal and numerically equal to the electric field generated
by a set of charges distributed along straight lines coinciding with the
current axis and having linear charge densities numerically equal to the
current intensities. In our case, if we replace the elementary currents
flowing through the edge of the cross section of the conductor with such
charge densities, we have a surface charge density distribution on the
whole conductor that is numerically equal to the linear current density.
On the other hand, such a distribution must produce no field inside
the conductor, so it must be the same as the distribution of an isolated
charged conductor. This distribution is perfectly determined up to a
constant factor, and since its surface densities are proportional to the
linear (phase 0 or phase π/2) current densities, we can conclude that:

(1) The elementary currents that flow on the surface of the conductor
all have the same phase.

(2) The linear densities of these currents are proportional to the sur-
face density (which has to be computed on the surface elements
where the currents are flowing) of a certain charge distribution as
in an isolated charged conductor.

Let us now study the dependence of the surface current density upon
the depth of the thin conductor layer. Since the thickness of this layer is
infinitesimal, we can assume the surface of the conductor to be a plane
in a region having a large extension with respect to its thickness, so
that both the current density and the field are functions of the depth
of the layer only. Let us fix a right-handed Cartesian reference frame
with origin on the surface, its x axis along the direction of the current
and its z axis along the inward direction normal to the surface. Clearly,
neglecting small quantities, the magnetic field is aligned with the y axis,
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even though its orientation does not necessarily coincide with it. If u
is the (complex) current density, H the (complex) magnetic field, and
ρ the electric resistivity, neglecting the displacement current which has
no relevant role, Maxwell’s equations take the form

∂H

∂z
= − 4π u, (1.108)

∂u

∂z
= − µω j

ρ
H. (1.109)

If the permeability is constant, we obtain the equation

∂2u

∂z2
=

4π µω j

ρ
u, (1.110)

whose general solution is

u = a e
√

2πµω/ρ (1+j) z + b e−
√

2πµω/ρ (1+j) z. (1.111)

The first term of the expression above must have a zero coefficient, since
it diverges for large z; thus we’ll have

u = u0 e−
√

2πµω/ρ (1+j) z. (1.112)

This equation represents a damped wave travelling from outside to in-
side. The damping factor is equal to the dephasing constant, as for heat
propagation, and it is

√
2πµω/ρ = 2π

√
µf/ρ. The wavelength and the

propagation speed are, respectively,

λ =

√
2πρ

µω
=

√
ρ

µ f
, (1.113)

v = f λ =

√
ρ f

µ
, (1.114)

while the linear current density is

d =
∫ ∞

0
udr =

√
ρ

4π µ ω

u0√
δ

(1.115)

=
1
2π

√
ρ

2µ f

u0√
δ

=
λ

2π
√

2
u0√

δ
. (1.116)

It follows that there is a 45o phase difference between the whole current
in the conductor and the current flowing in the outer surface layer. In
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mechanical measure units, the heat per unit time and unit conductor
surface produced by the Joule effect is

q =
∫ ∞

0
ρ |u|2 dz = |u0|2

∫ ∞

0
ρ e−4π

√
µf/ρz dz

= ρ |u0|2 1
4π

√
ρ

µ f
= |u0|2 ρ λ

4π
. (1.117)

We shall call equivalent a layer of thickness s such that the same quantity
of heat is produced when a current flows in it with uniform density at
any depth. Then, we would have

ρ
|d|2
s

= ρ |u0|2 λ

4π
; (1.118)

and, using Eq. (1.116), we deduce that

s =
λ

2π
=

1
2π

√
ρ

µ f
. (1.119)

As far as the Ohmic resistance is concerned, the current flows inside the
equivalent layer with a density that is independent of its depth but which
varies along the boundary of the conductor. Thus, it is not correct to
compute the resistance per unit length by dividing the resistivity by the
area of the cross section of the whole equivalent layer. This is correct
only if the cross section is circular, while in all other cases this method
underestimates the real values.

Let us now consider a conductor with a circular cross section of radius
r. The equivalent cross section has the shape of a ring, with outer
radius r and thickness s; its area is then 2πrs − πs2. Note that s is
infinitesimal and that it was determined in first approximation, i.e., up
to second-order terms. Consequently, in order to prove the consistency
of Eq. (1.119) under inclusion of the term πs2 in the expression for
the area above, we should reason as follows. Let us denote by A the
area of the equivalent cross section. Then, by using Eq. (1.63), we find
approximately

πr2

A
=

√
1
2

p +
1
4

=
√

µω

2ρ
πr2 +

1
4

= πr

√
µ f

ρ
+

1
4
. (1.120)

On multiplying by A (which is a first order infinitesimal) and dividing
by the r.h.s. term (which is a first-order infinite), we find, up to third-
order terms,

A =
πr2

πr

√
µf

ρ
+

1
4

= r

√
ρ

µ f

1

1 +
1

4πr

√
ρ

µf
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= r

√
ρ

µ f
− 1

4π

ρ

µf
, (1.121)

and, from Eq. (1.119), we finally get

A = 2π r s − πs2 = 2π
(

r − s

2

)
s, (1.122)

as we anticipated.
Let us now turn to cross sections of arbitrary shape. Our method

will be that of considering, as far as the resistance is concerned, circular
equivalent cross sections for infinitely large skin effect. We must note,
though, that, as the frequency goes to infinity, such equivalence holds,
in general, only to first order. Thus, by computing the radius of the
equivalent circle and the cross section of the equivalent layer using Eq.
(1.122), we will be making a second-order error and not one of order
three, as we may think from Eq. (1.122). Despite the fact that the error
that we make in estimating A by Eq. (1.122) is of the same order as
−πs2, nevertheless it is better to take into account such a term, as this
yields a better approximation.

Apart from a constant factor, the heat produced per unit time and
unit length of the conductor by the linear current density d and by each
element d` of its boundary is d2d`, so that the total heat per unit length
and time is

Q = c

∫
d2d`, (1.123)

while the total current intensity is

i =
∫

d d`. (1.124)

On replacing the given cross section with the equivalent circle of length
p, we find

Q = c
1
p

(∫
dd`

)2

, (1.125)

from which one gets

p =
(∫

d d`

)2

/

∫
d2d`. (1.126)

In all cases, we have
p ≤ `. (1.127)
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Table 1.2. Some values for the radius r of the equivalent circle for the limit skin
effect in a conductor with elliptic cross section (with semi-axes a and b). In the last
two columns, the radii rA and rp of the circles having the same area and the same
length, respectively, of the elliptic cross section are also reported.

a b r rA rp

1 0.9 0.949 0.949 0.951
1 0.8 0.897 0.894 0.903
1 0.7 0.843 0.837 0.857
1 0.6 0.787 0.775 0.813
1 0.5 0.728 0.707 0.771
1 0.4 0.666 0.632 0.733
1 0.3 0.598 0.548 0.698
1 0.2 0.520 0.447 0.669
1 0.1 0.425 0.318 0.647
1 0 0 0 0.637

12. LIMIT SKIN EFFECT FOR
SIMPLY-SHAPED CONDUCTORS.
HINTS FOR ARBITRARY SHAPES

12.1 Elliptic Cross Sections

As is well known, the quantity d introduced in the previous Section is
proportional to the projection of the position vector on the direction
normal to the conductor surface. Let us consider a conductor with el-
liptic cross section, whose semi-axes are a and b; then, at an arbitrary
point (a cos t, b sin t), we have,

d =
c√

a2 sin2 t + b2 cos2 t
, (1.128)

d` =
√

a2 sin2 t + b2 cos2 t dt, (1.129)

where c is a constant. If we denote by r the radius of the equivalent
circle, we get, from Eq. (1.126),

p = 2πr = 4π2

(∫ 2π

0

dt√
a2 sin2 t + b2 cos2 t

)−1

, (1.130)
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Fig. 1.2. A regular section of a conductor on which a wave-like edge has been
superimposed.

or, restricting the integration to 1/4 of the ellipse:

r =
π

2

(∫ 2π

0

dt√
a2 sin2 t + b2 cos2 t

)−1

. (1.131)

In Table 1.2 we report some numerical values for r. From this Table
we see that the equivalent circle is always better approximated by the
circle having the same area as the cross section, rather than by the
one with the same length; although the ratio between the radii of the
equivalent circle and the circle having the same area tends to infinity for
infinite eccentricity. Nevertheless, for b/a = 0.1, this ratio doesn’t reach
the value 1.35. The suggestion of some authors of replacing an irregular
cross section with the circle having the same length, rather than with the
circle of the same area, seems then erroneous, even as an approximation.
This conclusion is confirmed by the following discussion.

12.2 Effect of the Irregularities of the Boundary

Let us assume that a cross section with a regular boundary (i.e., one
with a radius of curvature that is never too small with respect to the
dimensions of the cross section) is replaced with another cross section,
nearly overlapping the first but with a wave-like edge. It is clear that the
area enclosed by these two differently shaped boundaries will be nearly
the same, whereas their length might be significantly different. The
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A

B

C
C’

Fig. 1.3. A small part of the section of Figure 1.2 (see text).

question to be addressed is how these differences are reflected in the
apparent resistance in the regime of an infinite skin effect. To facilitate
the calculations, we shall assume that the wave pattern superimposed on
the regular edge is infinitely small. Consider a small part of the boundary
of the regular cross section, containing however many oscillations of the
edge wave pattern. Let the conductor be charged with a charge q per
unit length; if d now is the charge density, the length of the equivalent
circumference will be (cfr. Eq. (1.126))

p = q2
(∫

d2 d`

)−1

. (1.132)

Apart from a factor 2π, the term d2d` has the same numerical value as
the electrostatic stress on the surface element14 d`·û. It is thus clear
that the charge distribution does not vary much if we take the irregular
edge instead of the regular one, as long as we consider parts of it that
are long enough to contain many oscillations.

It follows (see Fig. 1.3) that the same electrostatic stress acts on the
plane15 ŝ ⊗ û relative to the regular cross section as well as on ŝ′ ⊗ û

14@ The unit vector û represents a generic direction at the considered point of the edge.
15@ Using an analogy with the electrostatic stress, the author needs a it surface on which
this acts. It is defined as that surface that contains the edge of the cross section (which is a
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relative to the wavy one. However, in the first case the resulting stress de-
rives from the composition of nearly parallel elementary stresses, whereas
in the second case the elementary stresses are pointing in different direc-
tions. It then follows that in the latter case the arithmetic sum of the
elementary stresses is larger. Consequently, from Eq. (1.132) we deduce
that p, relative to the irregular cross section, is larger than the corre-
sponding one for the regular section, whilst the radius of the equivalent
circle is smaller. By combining this result with those we derived above
for elliptic cross sections, we can intuitively conclude that, for a rather
long cross section with small irregularities (such as that of a railroad),
the radius of the equivalent circle is only slightly larger than that of
the circle having the same area as the cross section, while it is sensibly
smaller than the radius of the circle having the same length.

13. HYSTERESIS IN MAGNETIC
CONDUCTORS IN THE LIMIT SKIN
EFFECT REGIME

The results in Sec. 1.11 for the limit skin effect were obtained by as-
suming a constant magnetic permeability and neglecting hysteresis. To
some extent the effects of hysteresis can be roughly taken into account
by introducing a phase delay α in the induction field with respect to the
magnetic field. Using the notation of the symbolic method, the quantity
µ, which is the ratio between different AC quantities having different
phase values, is imaginary and has argument −α, which we shall regard
as constant in order to facilitate the calculations. Let us write µ as

µ = µ0 e−iα. (1.133)

All the formulae in Sec. 1.11 in symbolic notation will still hold as long
as µ is treated as a complex number. If we then insert Eq. (1.133) into
Eqs. (1.112) and (1.115), we get

u = u0 exp{−2π
√

µ0f/ρ [cos(45o−α/2)+ j sin(45o−α/2)] z} (1.134)

one-dimensional line, which thus does not suffice to define the surface) and an auxiliary unit
vector. In the same manner, a surface is also defined in the case of a wavy-edge cross section.
The unit vectors ŝ and ŝ′ are the curvilinear abscissas on the “regular” and the “irregular”
edge, respectively.
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and

d =
u0

2π

√
ρ

2µ0 f

[
cos

(
45o − α

2

)
− j sin

(
45o − α

2

)]
. (1.135)

It follows that the delay between the current and the electric field on
the surface of the conductor is 45o − α/2. Equations (1.113), (1.114),
and (1.119) then become

λ =
√

ρ

2µ0 f

1
sin(45o − α/2)

, (1.136)

v =

√
ρ f

2µ0

1
sin(45o − α/2)

, (1.137)

q1 = |u0|2 1
4π

√
ρ

2µ0 f

ρ

cos(45o − α/2)
, (1.138)

s1 =
cos(45o − α/2)

π

√
ρ

2µ0 f
. (1.139)

From Eqs. (1.136) and (1.139), it follows that the hysteresis increases
the wavelength and decreases the losses due to Joule effect. However,
the quantity q1 in Eq. (1.138) is the heat due only to the Joule effect,
and in Eq. (1.139) s1 is not the true thickness of the equivalent layer,
but only the one related to the Joule effect. We shall then denote by
q the total energy loss and by s the thickness of the actual equivalent
layer, also accounting for hysteresis. The energy flowing in a unit time
through the surface of the conductor that is transformed into heat is, by
the Poynting theorem,

q =
E H

4π
cosφ, (1.140)

where E is the effective electric field at the surface of the conductor,
H the effective magnetic field, and φ the phase difference between the
electric and magnetic fields. In our case we’ll have

E = |u0| ρ, (1.141)

H = 4π |d| = 2 u0

√
ρ

2µ0 f
, (1.142)

φ = 45o − α

2
, (1.143)

and thus

q =
ρ |u0|2

2π

√
ρ

2µ0 f
cos

(
45o − α

2

)
, (1.144)

s =
1

2π cos(45o − α/2)

√
ρ

2µ0 f
. (1.145)



28 ETTORE MAJORANA: NOTES ON THEORETICAL PHYSICS

Denoting by q2 the heat related to hysteresis only, we get

q2 = q − q1 =
ρ |u0|2

4π

√
ρ

2µ0 f

sinα

cos(45o − α/2)
, (1.146)

q2

q1
= sinα. (1.147)

Introducing then the heat q0 that would be produced for the same
current if there were no hysteresis or for the same value of |u0| [which is
the same, because of Eq. (1.135)], we find

q0 = ρ |u0|2 1
4π

√
ρ

µ0 f
, (1.148)

q

q0
= cos

α

2
+ sin

α

2
, (1.149)

q0 − q1

q2
=

sinα/2 + cosα/2 − 1
sinα

. (1.150)

From the last equation, we note that for a small hysteresis one half of the
loss due to hysteresis is compensated by the decreased loss due to the
Joule effect; in the strong hysteresis regime this balancing is relatively
smaller. From Eq. (1.147) we can also see that the ratio between the
loss due to hysteresis and that due to Joule effect is independent of the
frequency.

Finally, we observe that if on a straight line we consider the points
O, Q0, Q1, and Q, with OQ0 = q0, OQ1 = q1, OQ = q, we obtain a
harmonic group.16

14. FIELD PRODUCED BY A CIRCULAR
AND HOMOGENEOUS DISTRIBUTION
OF CHARGES IN ITS OWN PLANE 17

Let r be the radius of a circular charge distribution whose linear density
is K. If x is the distance from the center, the field inside the circle is

16@ Such geometric properties seem to derive from Eqs. (1.147), (1.149), and (1.150).
17@ In the original manuscript, the heading refers to Newtonian masses rather than to
charges, while the material presented both in this and in the following Section leads one
to consider charges and the electric or magnetic field produced by them. However, the re-
sults are quite general, due to the similarity between the Newton and Coulomb laws.
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given by18

E =
2πK

r

(
1
2
·x
r

+
1
2
·9
8
·x

3

r3
+

1
2
·9
8
·25
24
·x

5

r5
+ . . .

)
r̂ , (1.151)

whereas outside the circle the field is

E =
2πK

r

(
r2

x2
+

3
4
· r

4

x4
+

3
4
·15
16
· r

6

x6
+

3
4
·15
16
·35
36
· r

8

x8
+ . . .

)
r̂ . (1.152)

In both the series, which always converge, the coefficients of the terms
(x/r)±n approach the asymptotic value 2/π as n →∞.

15. FIELD PRODUCED BY A CIRCULAR
CHARGE CURRENT IN A PLANE

Let i be the current intensity and r the radius of the circle. If x is the
distance from the center of the circle, the field inside it is19:

H =
2πi

r

(
1 +

3
4
·x

2

r2
+

3
4
·15
16
·x

4

r4
+

3
4
·15
16
·35
36
·x

6

r6
+ . . .

)
n̂ , (1.153)

while outside it reads:

H = − 2πi

r

(
1
2
· r

3

x3
+

1
2
·9
8
· r

5

x5
+

1
2
·9
8
·25
24
· r

7

x7
+

1
2
·9
8
·25
24
·49
48
· r

9

x9
+ . . .

)
n̂ .

(1.154)
The above equations can easily be derived from those of the previous
paragraph.

18@ In the following two equations, r̂ denotes the radial unit vector. In the original
manuscript the author did not use a vector notation for the field E, and thus its direc-
tion (given by r̂) is not explicitly specified. Also in other places of this book the author
regarded as understood the vector directions.
19@ In the following two equations, n̂ denotes the unit vector normal to the plane considered
here. In the original manuscript the author did not write H as a vector, and thus its direction
(given by n̂) is left implicit.
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16. WEAK SKIN EFFECT IN
CONDUCTORS, WITH AN ELLIPTIC
CROSS SECTION, HAVING THE SAME
MAGNETIC PERMEABILITY AS THE
SURROUNDING MEDIUM

For the weak skin effect, the apparent resistance in an AC conductor
may be cast in the form

Ra = Rc

(
1 + c p2

)
, (1.155)

where Rc is the DC resistance and p = µω/ρ, with µ the magnetic
permeability of the conductor and ρ its resistance per unit length. The
coefficient c depends on the shape of the cross section and on the perme-
ability of the conductor, as well as on that of the medium; for conductors
with circular cross section, c is always 1/12. When both the medium
and the conductor have the same permeability, c becomes a shape coef-
ficient. In general, c can be computed assuming that the difference in
the electromotive force between two current lines due to flux variations
inside the conductor is, to a first approximation, the same as that one
would observe with a uniform distribution of current. If we have an
elliptical cross section defined by the equation x2/a2 + y2/b2 = 1, and
if the conductor and the medium have the same permeability, then the
difference in the electromotive force between the central current line and
the line that intersects the cross section in the point (x, y) is

E = 2π µ ω u

(
b

a + b
x2 +

a

a + b
y2

)
, (1.156)

where u is the current density. The electromotive force is at 90o with
respect to the current. It is then straightforward to compute c; we find

c =
3a2 − 2ab + 3b2

12(a + b)2
, (1.157)

or, on setting k = b/a,

c =
3− 2k + 3k2

12(1 + k)2
. (1.158)

In Table 1.3 we show the value of the coefficient c for some vales of k.
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Table 1.3. Some values of the shape coefficient c for conductors with elliptic cross
sections, with axis ratio k. In the last column we also report the difference between
the coefficient c for a given k and for the previous k value.

k c (c(ki)− c(ki−1))× 104

1.00 0.0833
0.90 0.0838 5
0.80 0.0854 16
0.70 0.0885 31
0.60 0.09375 52
0.50 0.1019 82
0.40 0.1139 120
0.30 0.1317 178
0.20 0.1574 257
0.10 0.1949 375
0.00 0.2500 551

17. OSCILLATING DISCHARGES IN
CAPACITORS

If a capacitor with capacitance C charged with a charge Q is closed
in a circuit with a resistance R and self-induction coefficient L, then
an oscillating discharge is produced, provided that the resistance is not
too high. Let T be the period of the oscillation, t the time it takes
the current to reach the maximum intensity imax, and k the ratio of the
current intensity at time t and at time t−T . On setting R1 = R/

√
4L/C,

the following relations are seen to hold:

(a) For R1 < 1:

T =
2π
√

LC√
1−R2

1

, (1.159)

t =
√

LC√
1−R2

1

arccos R1, (1.160)

t

T
=

arccosR1

2π
, (1.161)

imax =
Q√
LC

exp
{
−Rt

2L

}
=

Q√
LC

exp



−R1

arccosR1√
1−R2

1



 (1.162)

=
Q√
LC

exp
{
−RT

2L

arccosR1

2π

}
=

Q√
LC

exp
{
− tR1√

LC

}
,
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k = exp
{
− TR1√

LC

}
= exp



−

R12π√
1−R2

1



 . (1.163)

(b) For R1 > 1:

t =
√

LC
log

(
R1 +

√
R2

1 − 1
)

√
R2

1 − 1
, (1.164)

imax =
Q√
LC

(
R1 +

√
R2

1 − 1
)−

R1√
R2

1 − 1

=
Q√
LC

exp
{

t−R1√
LC

}
. (1.165)

(c) For very large R1:

t =
√

LC
log 2R1

R1
=

2L

r
log 2R1, (1.166)

imax =
Q√
LC

(
1

2R1
− log 2R1 − 1/2

4R3
1

)
. (1.167)

In Table 1.4 we list the values assumed by these quantities as R1 varies.

18. SELF-INDUCTION OF A VERY LONG
CIRCULAR COIL WITH MANY TURNS

If a current i circulates in the coil, on equating the electromagnetic
energy of the system to (1/2)Li2, we obtain

L = 4π2 n2 `

(
1
2

r2
1 +

1
3

r1 r2 +
1
6

r2
2

)
, (1.168)

with n denoting the total number of turns per cm, ` the length of the
coil, r1 its inner radius, and r2 its outer radius. The previous equation
may also be written as

L = 4π n2 ` S, (1.169)

with

S =
3S1 + 2

√
S1S2 + S2

8
, (1.170)
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Table 1.4. Oscillating discharges in capacitors: numeric values for some quantities
defined in the text.

R/

√
4L

C

T

2π
√

LC

t

2π
√

LC

t

T
imax/

Q√
LC

k

0 1.000 0.2500 0.2500 1.000 1.000
0.1 1.005 0.2352 0.2341 0.863 0.532
0.2 1.021 0.2224 0.2180 0.756 0.277
0.3 1.048 0.2112 0.2015 0.672 0.139
0.4 1.091 0.2013 0.1845 0.603 0.064
0.5 1.155 0.1925 0.1667 0.546 0.027
0.6 1.250 0.1845 0.1476 0.499 0.0090
0.7 1.400 0.1773 0.1266 0.459 0.0021
0.8 1.667 0.1707 0.1024 0.424 0.00023
0.9 2.294 0.1647 0.0718 0.394 0.000002
1 ∞ 0.1592 0.0000 0.368 0.000
2 0.1210 0.218
10 0.0479 0.049
100 0.0084 0.005

where S1 and S2 are the inner and outer cross sections of the coil, re-
spectively. If the relative difference between S2 and S1 is not very large,
we can approximately express S as

S =
1
3

(2S1 + S2). (1.171)

Clearly, Eq. (1.169) also holds for non-circular cross sections, as long as
the various layers of turns are uniformly stacked and have “homothetic”
cross sections.20

19. ENERGY OF A UNIFORM CIRCULAR
DISTRIBUTION OF ELECTRIC OR
MAGNETIC CHARGES

Let R be now the radius of a circular plate α on which the charges are
uniformly distributed, ρ the charge density and Q the total charge. The

20@ Namely, whose surfaces are connected by an homothety.
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potential at the center of the circle is

V0 = 2π R ρ =
2
R

Q. (1.172)

Having fixed a coordinate system Oxyz with its origin in the center of
the circle and with its z-axis perpendicular to it, the following relation
holds for the components Ex, Ey, Ez of the field at any point outside the
charge distribution:

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
= 0. (1.173)

This equation is no longer valid at the position of the charges, on the
circle, since ∂Ez/∂z is infinite there. In spite of this, Eq. (1.173) can
still be used for these points, if we replace the value of ∂Ez/∂z at any
one of them with its limiting value, got by considering an infinitesimal
region near, but external, to the plane xy. Now, in general, we have

Ez = ρω, (1.174)

where ω is the solid angle subtended by an infinitesimal area surrounding
an arbitrary point of the circle α. Thus,

∂Ez

∂z
= ρ

∂ω

∂z
. (1.175)

Note, from this expression, that ∂Er/∂r takes the same numerical value
(apart from the sign) as the component Hz of the magnetic field pro-
duced by a current of intensity ρ flowing along the circumference of α.
The expression for such a quantity is known in terms of a series expan-
sion (see Sec. 1.15). On substituting it into Eq. (1.175), we can derive,
for the points inside α, that

∂Ez

∂z
= − 2πρ

R

(
1 +

3
4
· r

2

R2
+

3
4
·15
16
· r

4

R4
+

3
4
·15
16
·35
36
· r

6

R6
+ . . .

)
,

(1.176)
quantity r denoting the distance from the center.

The component Er of the field in the xy plane is radial and in this
plane depends only on r. We have

Ex =
x

r
Er, (1.177)

Ey =
y

r
Er. (1.178)
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Taking their derivatives and substituting them into the Laplace equa-
tion,21 we find

Er

r
+

∂Er

∂r
=

2πρ

R

(
1 +

3
4
· r

2

R2
+

3
4
·15
16
· r

4

R4
+

3
4
·15
16
·35
36
· r

6

R6
+ . . .

)
.

(1.179)
This equation allows us to express Er as a series expansion in r; one gets

Er =
πρ

R

(
r +

1
2
·3
4
· r

3

R2
+

1
3
·3
4
·15
16
· r

5

R4
+

1
4
·3
4
·15
16
·35
36
· r

7

R6
+ . . .

)
.

(1.180)
The potential at a distance r from the center will be

V = V0 −
∫ r

0
Er dr

=
Q

R

(
2− 1

2
· r

2

R2
− 1

2
· 1
22
·3
4
· r

4

R4
− 1

2
· 1
32
·3
4
·15
16
· r

6

R6

−1
2
· 1
42
·3
4
·15
16
·35
36
· r

8

R8
+ . . .

)

=
Q

R

[
2− 1

2
·
(

r2

R2
+

1
4
·3
4
· r

4

R4
+

1
9
·3
4
·15
16
· r

6

R6

+
1
16
·3
4
·15
16
·35
36
· r

8

R8
+ . . .

)]
(1.181)

=
Q

R

2
π

∫ π

0

1 + (r/R) cosα√
1 + 2(r/R) cosα + (r2/R2)

dα. (1.182)

The potential VR on the boundary is

VR =
Q

R

[
2 − 1

2

(
4 − 8

π

)]
=

Q

R

4
π

= 1.2732
Q

R
. (1.183)

The mean potential Vm will be

Vm =
∫ R

0
V r dr/

∫ R

0
r dr

=
Q

R

[
2− 1

2
·
(

1
1·2 +

1
4·3 ·

3
4

+
1

9·4 ·
3
4
·15
16

+ . . .

+
1

n2(n− 1)
·3
4
·15
16
·35
36
·63
64
· · ·4(n− 1)2 − 1

4(n− 1)2
· · ·+ . . .

)]

21@ Or, more precisely, into the first one of Maxwell’s equations.
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=
Q

R

[
2 − 1

2

(
4 − 32

3π

)]
=

Q

R

16
3π

=
16
3

R ρ

=
4
3

VR = 1.69765
Q

R
. (1.184)

The energy of the distribution then becomes

E =
1
2

QVm =
Q2

R

8
3π

= 0.84883
Q2

R
. (1.185)

Just to make a comparison, it is interesting to note that the potential
due to a charge Q distributed on a conducting circular plate of radius
R is (π/2)Q/R in the absence of other conductors. It follows that the
ratio of the energy associated with the uniform charge distribution to
the energy corresponding to the minimum energy configuration is

Vm

πQ/2R
=

16/3π

π/2
=

32
3π2

= 1.08076. (1.186)

20. SELF-INDUCTION IN A RECTILINEAR
COIL WITH FINITE LENGTH

Were the coil of infinite length, then, regardless of the winding width
and of the shape of its cross section, the field at any point P would be
directed along the coil and would have the magnitude 4πni, where i is
the current intensity and n is the number of turns per unit length. If,
by contrast, the coil has a finite length, the resulting field gets one more
contribution. In this case we should in fact also add the field generated
by two surface distributions of magnetic charges σ1 and σ2, located at
the beginning and at the end of the coil, with surface density ni and −ni,
respectively. Let us assume that a unitary current intensity is flowing in
the coil; then the densities of the distributions σ1 and σ2 can be simply
written n and −n. If we now fix a reference frame with its x axis along
the direction of the coil, the components of the resulting field at an
arbitrary point will be

Hx = 4π n + H ′
x,

Hy = H ′
y, (1.187)

Hz = H ′
z,
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H ′
x,H ′

y,H
′
z being the contributions to the total field from the σ1 and σ2

distributions. The total energy of the system is

ε =
1
8π

∫
(H2

x + H2
y + H2

z ) dV, (1.188)

where the integral extends over all of space. Since i = 1, it is also true
that

ε =
1
2

L, (1.189)

which yields

L =
1
4π

∫
(H2

x + H2
y + H2

z ) dV

=
∫

4π n2 dV + 18π

∫
(H ′2

x + H ′2
y + H ′2

z ) dV +
∫

2n H ′
x dV. (1.190)

The first of the three terms is the self-induction L1 of the coil when
its transverse dimensions are negligible compared to its length or, more
precisely, if the flux in each turn of the coil is the same as for a coil
of infinite length. The second term is twice the proper energy ε′ of the
joint σ1 and σ2 distributions.

As for the third term, we note that the coefficient n must be taken as
zero not only around the coil but also next to its ends. Then, the only
place where the integrand does not vanish is on the cylindrical region
that has such end surfaces as bases. On carrying out first the integration
with respect to x, and letting ` denote the length of the coil and S its
normal section, one finds

∫
2nH ′

x dV =
∫

S
dy dz

∫ a+`

a
2n H ′

x dx, (1.191)

a being the abscissa of the lower side of the coil. Now, the integral∫ a+`
a H ′

xdx is the difference in the magnetic potential due to the σ1 and
σ2 distributions between two corresponding points in the outermost cross
sections of the coil. If E is the magnetic potential due to σ1 and σ2 at
a point on the “upper” side, then, by symmetry, the potential at the
corresponding point on the “lower” side must be −E. It is then possible
to rewrite the foregoing equation as

∫
2nH ′

x dV = −
∫

S
4n E dy dz. (1.192)

Since
∫
S nEdxdz = ε′, by substitution into Eq. (1.190), we have L =

L1 + 2ε′ − 4ε′ = L1 − 2ε′, and, on setting

L = K L1, (1.193)
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we finally obtain

K = 1 − 2ε′

L1
. (1.194)

21. MEAN DISTANCES OF VOLUME,
SURFACE, OR LINE ELEMENTS 22

(1) Harmonic mean of the distances among the volume elements of a
sphere of radius R:

dm =
5
6

R = 0.8333R. (1.195)

(2) Harmonic mean of the distances among the surface elements of a
circle of radius R:

dm =
3π

16
R = 0.58905R. (1.196)

(3) Geometric mean of the distances among the surface elements of a
circle of radius R:

dm = R e−1/4 = 0.7788R. (1.197)

(4) Geometric mean of the distances among the elements of a rectilin-
ear segment of length a:

dm = R e−3/2 = 0.2231 a. (1.198)

(5) Arithmetic mean of the distances among the surface elements of
a circle of radius R:

dm =
128
45π

R = 0.9054R. (1.199)

(6) Root mean square of the distances among surface elements of a
circle of radius R:

dm = R. (1.200)

22See Sec. 2.38.6.
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(7) The n-th root of the mean value of the n-th power of the distances
among the surface elements of a circle of radius R for even and
odd n, respectively, are

dm = 2R n

√
16

(n + 2)(n + 4)
1·3·5·· · ··(n + 1)
2·4·6·· · ··(n + 2)

, (1.201)

dm = 2R n

√
32

π(n + 2)(n + 4)
2·4·6·· · ··(n + 1)
3·5·7·· · ··(n + 2)

. (1.202)

22. EVALUATION OF SOME SERIES 23

(1)
(

1− 2
π

)
+

1
2

(
3
4
− 2

π

)
+

1
3

(
3
4

15
16
− 2

π

)
+ . . .

=
4 log 2− 2

π/2
. (1.203)

(2) 1 +
1
4
·3
4

+
1
9
·3·15
4·16

+
1
16
·3·15·35
4·16·36

+
1
25
·3·15·35·63
4·16·36·64

+ . . .

= 4− 8
π

. (1.204)

(3)
1
2
· 1
12

+
1
3
· 1
22
·3
4

+
1
4
· 1
32
·3·15
4·16

+
1
5
· 1
42
·3·15·35
4·16·36

+ . . .

= 4− 32
3π

. (1.205)

(4) 1 +
1
4

+
1
9

+ . . . =
π2

6
.

(1.206)

(5) 24 1 +
1
8

+
1
27

+
1
64

. . . = 1.2021. (1.207)

23See Secs. 2.28 and 3.1.
24@ In the original manuscript, the sum of this series, which is the Riemann ζ(s) function
for s = 3, is not reported.
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(6) 1 +
1
16

+
1
81

+
1

256
+ . . . =

π4

90
.

(1.208)

(7) 1 + x + x2 + . . . =
1

1− x
.

(1.209)

(8) x + 2x2 + 3x3 + . . . =
x

(1− x)2
.

(1.210)

(9) x + 4x2 + 9x3 + 16x4 + . . . =
x(1 + x)
(1− x)3

.
(1.211)

(10) x + 8x2 + 27x3 + 64x4 + . . . =
x(1 + 4x + x2)

(1− x)4
.

(1.212)

(11) sinx +
1
3

sin 3x +
1
5

sin 5x + . . . =
π

4
, 0 < x < π. (1.213)

(12) sinx +
1
2

sin 2x +
1
3

sin 3x + . . . =
π + x

2
, 0 < x < 2π. (1.214)

(13) cosx + cos 2x + cos 3x + . . . + cosnx

=
sin (n + 1/2)x

2 sin x/2
− 1

2
. (1.215)

(14)
sin2 x

1
+

sin2 2x

4
+

sin2 3x

9
+ . . . = x

π − x

2
, 0 < x < π. (1.216)

(15) sin2 x +
sin2 3x

9
+

sin2 5x

25
+

sin2 7x

49
+ . . . =

π

4
x,

0 < x < π/2. (1.217)

(16)
cosx

1
+

cos 2x

4
+

cos 3x

9
+ . . . =

1
4

x2 − π

2
x +

1
6

π2,

0 < x < 2π. (1.218)



VOLUMETTO I 41

23. SELF-INDUCTION OF A FINITE
LENGTH RECTILINEAR COIL WITH
CIRCULAR CROSS SECTION AND A
FINITE (SMALL) NUMBER OF TURNS 25

Let us consider a coil with N turns, length `, and diameter d; its self-
induction coefficient can be cast in the form

L = K π2 d2 N2

`
, (1.219)

where K is a numerical coefficient lower than 1 and approaching 1 as the
ratio d/` decreases. This coefficient can be computed from an expression
given in Sec. 1.20. If d/` ≤ 1, we can use the series expansion

K = 1 − 4
3π

d

`
+

1
8

(
d

`

)2

− 1
64

(
d

`

)4

+
5

1024

(
d

`

)6

− 35
16384

(
d

`

)8

+
147

131072

(
d

`

)10

+ . . .

± 1
(n + 1)(2n− 1)

(
1·3·5· · ·(2n− 1)

2·4·6· · ·2n

)2 (
d

`

)2n

∓ . . . . (1.220)

If, instead, we set p = d2/(`2 + d2), the following series expansion holds
in all cases:

K = 1 − 4
3π

d

`
+

1
8

p +
7
64

p2 +
101
1024

p3 +
1485
16384

p4

+
11059
131072

p5 +
83139

1048576
p6 + . . . . (1.221)

Denoting by bnpn the generic pn term in the above series and by an(d/`)2n

the term corresponding to (d/`)2n in the series (1.220), we get the rela-
tion

bn = a1 − na2 +
n(n− 1)

2
a3 − n(n− 1)(n− 2)

3!
a4 + . . . ±nan−1 ∓ an.

(1.222)
In the limit n →∞, we have

lim
n→∞

bn − 4/3π
√

πn

bn
= 0. (1.223)

25This is the continuation of Sec. 1.20
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Table 1.5. Some values of the correction factor K vs the ratio d/`

d/` K

0.1 0.9588
0.2 0.9201
0.3 0.8838
0.4 0.8499
0.5 0.8181
0.6 0.7885
0.7 0.7609
0.8 0.7351
0.9 0.7110
1 0.6884

The first terms of the expansion (correct to seven decimal digits) are

K = 1 − 0.4244132 d/` + 0.125 p + 0.109375 p2 + 0.0986328 p3

+0.0906372 p4 + 0.0843735 p5 + 0.0792875 p6 + . . . . (1.224)

If d/` is very large, the following approximate formula may be used:

K =
2

π d/`

[
log

(
4

d

`

)
− 1

2

]
=

2
π d/`

[
log

(
π

d

`

)
− 0.258

]
.

(1.225)
This result is easily derived from the well-known expression for the self-
induction coefficient of a circular coil. In Table 1.5 we report some
values26 of K corresponding27 to d/` ≤ 10.

If d/` is somewhat larger than one, the series expansion in Eq. (1.224)
converges very slowly and the computation of the coefficients becomes
very cumbersome. In this case it is then convenient to use the following

26The following approximate formulae for K may be useful as d/` increases:

K = 1 − 4

3π

d

`
+

p

8− 7p
,

K = 1 − 4

3π

d

`
+

48p− 29p2

384− 568p + 194p2
.

27@ In the original manuscript, this Table consists of 40 entries, ranging from d/` = 0.1 to
d/` = 10, but only the first 10 corresponding values of K are reported. By deviating from
the method we have usually adopted, we here prefer not to include the remaining values in
the Table, since it is not clear which formula the author would have used to compute K for
d/` larger than one. We also note that the reported values have probably been obtained from
Eq. (1.220) with n = 10.
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expansion28:

K =

√
1 +

d2

4`2
− d

`

(
4
3π

+
1

2·4c1 − 1·3
2·4·6c2 + . . .

± 1·3·(2n− 1)
2·4· · ·(2n + 2)

cn ∓ . . .

)
, (1.226)

in which

cn =
1

(2n)!
d2n

√
1 + x2

dx2n

∣∣∣∣∣
x= 2`

d

. (1.227)

Computation of the first terms yields

K =
√

1 + (d/2`)2 − d

`


 4

3π
+

1
16

1
[
1 + (2`/d)2

]3/2

+
1

128
1− 4 (2`/d)2

[
1 + (d/2`)2

]7/2
+

5
2048

1− 12 (2`/d)2 + 8 (2`/d)4
[
1 + (d/2`)2

]11/2

+
7

32768
5− 120 (2`/d)2 + 240 (2`/d)4 − 64 (2`/d)6

[
1 + (d/2`)2

]15/2
+ . . .


 .

24. VARIATION OF THE SELF-INDUCTION
COEFFICIENT DUE TO THE SKIN
EFFECT

The self-induction of an electric conductor with a circular cross section
can be divided into two parts: one, due to the flux circulating outside
the conductor, is generally more important and is independent of the fre-
quency; the other is due to the induction lines (that get closed inside the
conductor), depends on the skin effect, and thus, for any conductor, is
frequency-dependent. Denoting by ` this latter part of the self-induction
coefficient per unit length, we have, if the skin effect is negligible,

` = µ/2. (1.228)

28@ Notice that the author is again using a Taylor series expansion, but of a particular kind,
as it can be deduced from the expression for cn.
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In general, if E is the complex electric field at the surface of the con-
ductor (i.e., the field due both to the potential drop and to the external
flux variations), R1 the AC resistance per unit length of the conductor,
ω the angular frequency, and i = a + bj the overall current,29 we get

E = (a + b j) (R1 + ` ω j) . (1.229)

On setting p = µωS/ρ (S is the cross section of the conductor and ρ its
resistivity) or, in practical units,

p =
µω

1010 R
, (1.230)

R being the DC resistance measured in ohm per km of conductor, we
have (see Sec. 1.4)

a = m

(
p− 1

2!2·3p3 +
1

4!2·5p5 − 1
6!2·7p7 + . . .

)
, (1.231)

b = m

(
1
2
p2 − 1

3!2·4p4 +
1

5!2·6p6 − 1
7!2·8p8 + . . .

)
. (1.232)

The field E can be computed by multiplying ρ by the surface current
density; with the units used in Sec. 1.4, it is ρ = µω, and thus one
obtains

E = mµω

(
1− p2

2!2
+

p4

4!2
− p6

6!2
+ . . .

)

+mµω j

(
p− p3

3!2
+

p5

5!2
− p7

7!2
+ . . .

)
. (1.233)

From Sec. 1.4, we derive the expression for R1, which can then be
introduced into Eq. (1.229). Thus, having set E = u + vj, we get

` ω =
a v − b u

a2 + b2
, (1.234)

from which we deduce

` =
µ

2

1 +
p2

2!2·3!
+

p4

3!2·5!
+

p6

4!2·7!
+

p8

5!2·9!
+ . . .

1 +
p2

2!3!
+

p4

2!3!5!
+

p6

3!4!7!
+

p8

4!5!9!
+ . . .

. (1.235)

The values of R1/R and `/µ as functions of p shown30 in Table 1.6 have
been derived by using this equation and Eq. (1.60).

29@ Notice that the author is using the (electro-technical) notation j for the imaginary unit.
30@ In the original manuscript, the results of this Table corresponding to values from p = 4.5
to 100 were lacking. Moreover, a few values of R1/R differ slightly from the ones reported
here, which have just been obtained following the text.
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Table 1.6. Influence of the skin effect on the effective resistance and self-induction
coefficient of an electric conductor.

p R1/R `/µ

0.1 1.0008 0.4998
0.2 1.0033 0.4992
0.3 1.0075 0.4981
0.4 1.0132 0.4967
0.5 1.0205 0.4949
0.6 1.0293 0.4927
0.7 1.0396 0.4901
0.8 1.0512 0.4873
0.9 1.0641 0.4841
1.0 1.0782 0.4806
1.1 1.0934 0.4768
1.2 1.1096 0.4728
1.3 1.1267 0.4686
1.4 1.1447 0.4642
1.5 1.1634 0.4597
1.6 1.1827 0.4550
1.7 1.2026 0.4501
1.8 1.2229 0.4452
1.9 1.2436 0.4403
2.0 1.2646 0.4352

p R1/R `/µ

2.5 1.372 0.4100
3 1.479 0.3857

3.5 1.581 0.3633
4 1.678 0.3432

4.5 1.768 0.3253
5 1.853 0.3096
6 2.007 0.2836
7 2.146 0.2630
8 2.274 0.2464
9 2.394 0.2326
10 2.507 0.2210
15 3.005 0.1814
20 3.427 0.1582
25 3.799 0.1430
30 4.135 0.1327
40 4.732 0.1203
50 5.256 0.1135
60 5.730 0.1096
80 6.537 0.1055
100 7.167 0.1036

25. MEAN ERROR IN ESTIMATING THE
PROBABILITY OF AN EVENT
THROUGH A FINITE NUMBER OF
TRIALS

Let p be the probability of a given event, and suppose that in a series of
n trials the event happens m times. On estimating p by the ratio m/n,
we make an error e defined by the relation

p = m/n + e. (1.236)

We now look for an estimate of the mean square value of e. Let X
be a quantity such that, at each trial, it takes the value 1 − p or −p,
depending on whether the event has occurred or not. The mean value of
X is zero, while its mean square value is p(1−p)2 +p2(1−p) = p(1−p).
Considering n trials, the mean square value of the variable

∑
i Xi is
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√
np(1− p); but if the event has occurred m times we’ll have:

∑

i

Xi = m (1− p) − (n−m) p = m − n p = −n e. (1.237)

We thus deduce that the mean value of e is
√

p(1− p)/n or, using the
usual notations,

p =
m

n
±

√
p(1− p)

n
. (1.238)

For the case in which p is unknown and only its approximate value m/n
is given, if we can assume that the difference between these quantities
is so small that the substitution of the latter for the former into the
expression for the mean error doesn’t change it significantly, we can
approximately write

p =
m

n
± 1

n

√
m(n−m)

n
. (1.239)

If n is much larger than m, a further simplification is possible:

p =
m

n
±
√

m

n
. (1.240)

On multiplying the previous relations by n, they become

n p = m±
√

m(n−m)
n

, (1.241)

n p = m±√m

(
for small

m

n
values

)
. (1.242)

26. UNBALANCE OF A PURE
THREE-PHASE SYSTEM

Let V1, V2 and V3 be the values of three AC “intensive quantities” forming
a pure, direct and unbalanced three-phase system. This system may be
seen as the sum of two balanced systems: The first one is direct and has
the magnitude A, the second one is inverted and has the magnitude B.
If the unbalance is not too big, A and B may be computed using the
approximate relations

A = (1/3) (V1 + V2 + V3), (1.243)

B =
√

(2/3) [(V1 −A)2 + (V2 −A)2 + (V3 −A)2]. (1.244)
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Table 1.7. The function x! for 0 ≤ x ≤ 1.

x x!

0 1.0000
0.05 0.9735
0.1 0.9514
0.15 0.9330
0.2 0.9182
0.25 0.9064
0.3 0.8975
0.35 0.8911
0.4 0.8873
0.45 0.8857
0.5 0.8862
0.55 0.8889
0.6 0.8935
0.65 0.9001
0.7 0.9086
0.75 0.9191
0.8 0.9314
0.85 0.9456
0.9 0.9618
0.95 0.9799
1 1.0000

27. TABLE FOR THE COMPUTATION 31 OF
x!

The difference log n! − n(log n − 1) − (1/2) log n tends to a finite value
as n →∞. This means that, for very large n, we can set32

n! =
√

C n (n/e)n . (1.246)

Let us now determine C. Let x be the probability that in 2n trials an
event with probability 1/2 occurs t times. If 2n is very large, we can

31@ It is not clear how the author obtained the values in Table 1.7, since in this Section
he considered only the limit for large x of the function x!. Probably, half of this Table was
derived from the formula

x! (1− x)! =
π x (1− x)

sin π x
, (1.245)

which appears near this Table in the original manuscript.
32@ Here e is the Napier constant.
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represent x = x(t) by an error function. The latter can be obtained
from the following constraints: The area beneath the error curve must
be equal to 1, the mean value of t must be n, and the mean-square value
of the deviation of t from n must be n/2 (see Sec. 1.25). We then find

x =
1√
π n

exp

{
− (t− n)2

n

}
. (1.247)

The maximum value of x is x0 = 1/
√

πn, which can also be derived
directly from the combinatorial theory:

x0 =
1

22n

(
2n
n

)
=

(2n)!
22n (n!)2

. (1.248)

On substituting Eq. (1.246) into this expression, and comparing the
result with Eq. (1.247), we find C = 2π; so that, in the considered limit,
it holds

n! =
√

2π n

(
n

e

)n

. (1.249)

Notice that, for large n, we also have

22n (n!)2

(2n)!
=
√

π n. (1.250)

28. INFLUENCE OF A MAGNETIC FIELD
ON THE MELTING POINT

Let us consider the system shown in Fig. 1.4 and suppose it is in equi-
librium. If, using any procedures, we move a unit volume of solid from
vessel 2 to vessel 1 and place it in a thin layer at the boundary between
solid and liquid, we have to do the work

L1 = h (γ1 − γ2) (1.251)

against gravity, where γ1 and γ2 are the specific weights of the solid and
the liquid, respectively. If we assume, for the moment, that the solid is
a magnetic material while the liquid is not, it is easy to compute how
much work the magnetic field has to perform on the solid unit volume
during the process described above:

L2 =
H2

8π

µ1 − 1
µ1

, (1.252)



VOLUMETTO I 49

h

S

p

p+dp

1 2

S
L

S

L

N

Fig. 1.4. Solid-liquid phase transition in presence of a magnetic field.

µ1 being the magnetic permeability of the solid. In order to exclude the
possibility of perpetual motion, it must hold

L1 = L2, (1.253)

wherefrom we obtain

h =
H2

8π

µ1 − 1
µ1

1
γ1 − γ2

. (1.254)

Since we have assumed the liquid to be non-magnetic, the pressure
distribution inside it is hydrostatic, and thus we find (cfr. Fig. 1.4)

∆p = h γ2 =
H2

8π

µ1 − 1
µ1

γ2

γ1 − γ2
, (1.255)

or, introducing the specific volumes,

∆p =
H2

8π

µ1 − 1
µ1

V1

V2 − V1
. (1.256)

Denoting by T the melting temperature in the absence of a magnetic
field, at pressure p, and by T + ∆T the temperature in the presence of
a magnetic field at the same pressure, we have that T + δT is the fusion
temperature, under ordinary conditions, corresponding to a pressure p+
∆p. From the Clapeyron equation, one gets

∆T =
(

T

ρ

)
(V2 − V1)∆p, (1.257)
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and, substitution into Eq. (1.256), we find

∆T =
TH2

8π

µ1 − 1
µ1

V1

ρ
. (1.258)

The generalization of Eqs. (1.255) and (1.258) to the case where the
liquid has an arbitrary magnetic permeability µ2 is obviously the follow-
ing:

∆p =
H2

8π

(
µ1 − 1

µ1

γ2

γ1 − γ2
+

µ2 − 1
µ2

γ1

γ2 − γ1

)
, (1.259)

∆T = T
H2

8π

(
µ1 − 1

µ1

V1

ρ
− µ2 − 1

µ2

V2

ρ

)
. (1.260)

If µ1 = µ2 = µ, we obtain

∆p = − H2

8π

µ− 1
µ

, (1.261)

∆T =
TH2

8π

µ− 1
µ

V1 − V2

ρ
. (1.262)

In this case the boundary surface between solid and liquid would be at
the same level in both vessels of Fig. 1.4 but, due to the magnetization
of the liquid, the pressure distribution would not be hydrostatic, thus
resulting in ∆p 6= 0.

Similar relations hold if the magnetic field is replaced with an electric
field or if the different phases are liquid-vapor or solid-vapor instead of
solid-liquid.

29. SPECIFIC HEAT OF AN OSCILLATOR

The mean energy of an oscillator with frequency ν at temperature T is

ε =
hν

ehν/kT − 1
, (1.263)

where h is the action quantum33 and k = R/N the Boltzmann constant.
On taking the derivative with respect to the temperature and setting

33@ In this Section we follow the author in using Planck’s constant h instead of replacing it
with the reduced Planck constant h̄.
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Table 1.8. Specific heat and mean energy of an oscillator (see the text for nota-
tions).

1

p
=

T

T0
p =

T0

T

c

k

ε

kT

ε

kT0

kT − ε

kT0

0 ∞ 0 0.0000 0.0000 0.0000
0.2 5 0.1707 0.0338 0.0068 0.1932
0.4 2.5 0.6089 0.2236 0.0894 0.3106
0.6 1.67 0.7967 0.3873 0.2319 0.3669
0.8 1.75 0.8794 0.5019 0.4016 0.3984
1 1 0.9207 0.5820 0.5820 0.4180

1.2 0.83 0.9445 0.6417 0.7732 0.4316
1.4 0.71 0.9590 0.6867 0.9671 0.4413
1.6 0.625 0.9681 0.7198 1.1517 0.4483
1.8 0.556 0.9746 0.7476 1.3447 0.4539
2 0.500 0.9794 0.7707 1.5415 0.4585

2.5 0.400 0.9868 0.8133 2.0332 0.4668
3 0.333 0.9908 0.8427 2.5307 0.4723
4 0.250 0.9948 0.8802 3.5208 0.4792
5 0.200 0.9967 0.9033 4.5167 0.4833
10 0.100 0.9992 0.9508 9.5083 0.4917
∞ 0 1 1 ∞ 0.5000

p = hν/kT = T0/T for brevity, we obtain the following expression for
the specific heat:

c =
dε

dT
=

kp2 ep

(ep − 1)2
= k

(
p

ep/2 − e−p/2

)2

. (1.264)

The ratio c/k is always less than 1 and is given in Table 1.8 as a func-
tion34 of p. For very large T , Eq. (1.263) becomes

ε = kT − 1
2

hν = k

(
T − 1

2
T0

)
,

T0 = hν/k denoting the temperature at which the mean energy of the
oscillator, computed in the framework of classical mechanics, is the same
as that of the lowest quantum energy level.

34@ In the original manuscript, this Table was almost entirely empty. Apart from the values
in the first two columns (which are input values), the author wrote down only the first and
the last value in the third column and the first value in the fourth column.
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30. DO CHILDREN OF THE SAME
PARENTS TEND TO BE OF THE SAME
SEX?

The a priori probability that in a certain region a newborn child is male
can be cast in the form

W = 1/2 + α, (1.265)

where α is, in general, positive. On the other hand, the probability for
a couple of parents to have a male child may not be the same as W , and
we shall write it as

W1 = W + β = 1/2 + α + β. (1.266)

The mean value of β is zero, whereas its mean-square value measures
the tendency to generate children of the same sex. Indicating with β
this mean-square value, Eq. (1.266) can then be recast as follows, on
adopting the usual notations:

W1 = W ±β = 1/2 + α±β. (1.267)

In order to statistically estimate β by samples, the easiest way is the
following. Let us consider a couple of parents who have had n children,
` of which are male and m female. The most probable value35 of (`−m)2

is (see Sec. 1.25)

prob. value of (`−m)2 = n + 4(α + β)2(n2 − n). (1.268)

If we write the previous expression for a large number of families and
then sum term by term, the sum on the l.h.s. can be replaced with the
sum of the actual values of (`−m)2, and by doing this we make a relative
error that tends to zero. We then obtain

∑
(`−m)2 =

∑
n + 4

∑
(α + β)2 (n2 − n) (1.269)

=
∑

n + 4α2
∑

(n2 − n) + 4
∑

β2 (n2 − n)

+ 8 α
∑

β (n2 − n). (1.270)

Since we have implicitly assumed that the mean value of β is zero in-
dependently of n, the mean value of the last term on the r.h.s. of Eq.
(1.270) is also zero. We can thus neglect it and write
∑

(`−m)2 =
∑

n + 4α2
∑

(n2 − n) + 4
∑

β2 (n2 − n), (1.271)

35@ That is, n times the probability for the event to occur.
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or, since we assume that β does not depend on n,
∑

(`−m)2 =
∑

n + 4 (α2 + β2)
∑

(n2 − n). (1.272)

The quantity α can be estimated through a larger statistical sample, so
that β is determined by Eq. (1.272):

β =

√∑
(`−m)2 −∑

n

4
∑

(n2 − n)
− α2. (1.273)

If α is unknown, it may be approximated by the relation

α =
∑

`∑
n
− 1

2
; (1.274)

and, by substitution in Eq. (1.273), we get

β
2 =

∑
(`−m)2 −∑

n

4
∑

(n2 − n)
−

( ∑
`∑
n
− 1

2

)2

. (1.275)

Taking into account that α in Eq. (1.274) is affected by an error which
is of the order of 1/2

√∑
n (see Sec. 1.25), this expression should be

replaced with

β
2 =

∑
(`−m)2 −∑

n

4
∑

(n2 − n)
−

( ∑
`∑
n
− 1

2

)2

+
1

4
∑

n
. (1.276)

31. HEAT PROPAGATION FROM A
CERTAIN CROSS SECTION ALONG AN
INFINITE LENGTH BAR ENDOWED
WITH ANOTHER CROSS SECTION
ACTING AS A HEAT WELL. A
SIMILARITY WITH THE CRICKETS

Suppose that N individuals are initially all located at point O of a
straight line x and that each one of them jumps at time intervals dt a
length dx to the left or to the right of his current position with equal
probability, and also suppose that the ratio dx2/dt = µ2 is finite. Fur-
thermore, let us assume that at a distance ` from O there is located
a deadly trap. The problem is to determine the number linear density
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l

x
O

P

Fig. 1.5. Heat propagation in one dimension (see text).

U(x, t) of survivors at time t and at a point x. Note that, if there were
no traps, the linear density would be

U0(x, t) =
N

µ
√

2πt
e−x2/2µ2t. (1.277)

Moreover, notice that we can still view the individuals falling into the
trap as alive and kicking after their death, as long as, starting from the
moment they fall, another, negative signed individual is associated with
each of them. Then, in order to derive the actual density U , all we have
to do is to subtract from U0 the density U1 of the negative individuals.
The last quantity can be easily obtained by observing that, for x > `,

U1(x, t) = U0(x, t), (1.278)

while, for symmetry reasons, for x < ` one has

U1(x, t) = U1(2`− x, t) = U0(2`− x, t). (1.279)

Thus

U(x, t) = U0(x, t) − U0(2`− x, t)

=
N

µ
√

2πt

[
e−x2/2µ2t − e−(2`− x)2/2µ2t

]
; (1.280)

and for large t this may be written as

U(x, t) =
2N `(`− x)
µ3 t

√
2πt

e−(`− x)2/2µ2t e−`2/2µ2t. (1.281)

For a given t, we then deduce

Umax = U(`− µ
√

t, t) =
2N ` e−1/2

µ2 t
√

2π
e−`2/2µ2t, (1.282)

while the number of survivors (for large t) becomes

Na =
2N `

µ
√

2πt
e−`2/2µ2t. (1.283)
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If we now compute the moment of the position with respect to P ,
∫

(` − x) dNa = N `, (1.284)

we find that the “center of gravity” of the distribution of the living
individuals and of the dead ones (these are supposed to be concentrated
in the trap at P ), does not move from O, as was clear a priori. The
survival probability curve has, at first, an inflection point between O
and P , but this moves towards the trap and then disappears at t =
`2/3µ2. At this time, which is when we have the highest mortality,
N/12 individuals have died.

The function U0 obeys the differential equation

∂U0

∂t
=

µ2

2
∂2U0

∂x2
, (1.285)

and thus is suited to represent the way a quantity of heat Q = N propa-
gates from a localized cross section of an infinitely long bar, if it is given
that

µ2 = 2c/γδ, (1.286)

with c denoting the heat transmission coefficient, γ the specific heat,
and δ the density. Note that µ2 given by Eq. (1.286) represents the
mean square value of the heat displacement per unit time in any one
direction. The square of the total displacement in space per unit time
will be 3µ2 = 6c/γδ.

32. COMBINATIONS 36

The sum of the probabilities that an event having probability 1/2 will
take place n times in n trials or in n + 1 trials or in n + 2... or in 2n
trials is equal to 1; expressed as a formula, it writes

n∑

r=0

1
2n+r

(
n + r

n

)
= 1. (1.287)

Indeed, it holds

n+1∑

r=0

1
2n+1+r

(
n + 1 + r

n + 1

)

36See Sec. 2.38.5.
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=
1
2

n+1∑

r=0

1
2n+r

(
n + r

n

)
+

1
2

n+1∑

r=1

1
2n+r

(
n + r
n + 1

)

=
1
2

n∑

r=0

1
2n+r

(
n + r

n

)
+

1
22n+2

(
2n + 1

n

)

+
1
2

n+2∑

r=1

1
2n+r

(
n + r
n + 1

)
− 1

22n+3

(
2n + 2
n + 1

)
;

and, since

1
22n+2

(
2n + 1

n

)
=

1
22n+3

(
2n + 2
n + 1

)
,

n+2∑

r=1

1
2n+r

(
n + r
n + 1

)
=

n+1∑

r=0

1
2n+1+r

(
n + 1 + r

n + 1

)
,

one obtains
n+1∑

r=0

1
2n+1+r

(
n + 1 + r

n + 1

)
=

n∑

r=0

1
2n+r

(
n + r

n

)
. (1.288)

Thus, if Eq. (1.287) holds for n = k, it also holds for n = k + 1; and,
since it holds for n = 1, it will hold for any n.

In the same way, one can prove the relation
∞∑

r=0

1
2n+r

(
n + r

n

)
= 2. (1.289)

33. ENERGY AND SPECIFIC HEAT OF A
ROTATOR

Let I be the moment of inertia of a rotator. Sommerfeld’s constraints
yield37

I ω =
nh

2π
, (n = 0, 1, . . .), (1.290)

and thus38

ε =
1
2
I ω2 =

n2h2

8π2I =
nhν

2
, (1.291)

37@ In this Section we adhere to the author’s use of h, rather than rewriting it in terms of
2πh̄.
38@ Here ε and ν are the energy and frequency of the rotator, while ω is its angular frequency.
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ν =
ω

2π
=

nh

4π2I . (1.292)

According to Boltzmann’s law, the mean energy at a temperature T is

ε =

∞∑

n=0

n2h2

8π2I exp

{
− n2h2

8π2IkT

}

∞∑

n=0

exp

{
− n2h2

8π2IkT

} =

∞∑

n=0

hν0

2
n2 exp

{
− hν0

2kT
n2

}

∞∑

n=0

exp
{
− hν0

2kT
n2

} ,

(1.293)
ν0 = h/4π2I denoting the fundamental frequency. On setting

p =
1
2

hν0

kT
=

h2

8π2IkT
,

we get

ε = kT
∞∑

n=0

pn2 e−pn2

/ ∞∑

n=0

e−pn2
. (1.294)

For p → 0, which means T →∞, we obviously find

lim
p→0

ε =
1
2

kT. (1.295)

The specific heat c is obtained by taking the derivative of Eq. (1.294)
with respect to T and noting that dp/dT = −p/T :

c =
dε

dT
= k p2




∞∑

n=0

n4 e−pn2

∞∑

n=0

e−pn2

−




∞∑

n=0

n2 e−pn2

∞∑

n=0

e−pn2




2



. (1.296)

If T0 is the temperature corresponding to the classical mean energy given
by the energy of the lowest non-vanishing quantum state, one gets

T0 =
1
2

hν0

k
, (1.297)

p = T0/T. (1.298)

In Table 1.9 the specific heat and the mean energy are shown for different
temperatures.39

39@ In the original manuscript, the values in the third and fourth column were missing.
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Table 1.9. Specific heat and mean energy of a rotator vs. its temperature.

1

p
=

T

T0
p =

T0

T
ε
/

1

2
kT c

/
1

2
k

0.2 5.00 1.3375 1.1118
0.4 2.50 1.5548 1.1235
0.6 1.67 1.7763 1.0867
0.8 1.25 2.0182 0.9955
1.0 1.00 2.2896 0.8525
1.2 0.83 2.5927 0.6829
1.4 0.71 2.9244 0.5169
1.6 0.62 3.2784 0.3740
1.8 0.56 3.6486 0.2613
2.0 0.50 4.0297 0.1776
3.0 0.33 6.0022 0.0200
4.0 0.25 8.0001 0.0018

34. GRAVITATIONAL ATTRACTION OF AN
ELLIPSOID

Let us consider a mass distribution on the ellipsoidal surface

x2

a2
+

y2

b2
+

z2

c2
= 1, (1.299)

such that the surface density σ in every point is proportional to the
projection of the position vector (starting from the ellipsoid center) on
the normal to the surface:

σ = ρ

/√
x2/a4 + y2/b4 + z2/c4 . (1.300)

The total mass m can be computed easily. Indeed, our distribution can
be viewed as the limit for α → 0 of a spatially uniform distribution
having volume density ρ/α and filling the space between the ellipsoid of
semi-axes a, b, c and the ellipsoid of semi-axes a(1+α), b(1+α), c(1+α).
We then have

m = lim
α→0

ρ

α

4
3

π a b c
[
(1 + α)3 − 1

]
= 4π a b c ρ. (1.301)

As is well known, the ellipsoid in Eq. (1.299) is an equipotential surface,
so the field inside it is zero whereas the field outside it, but near it, is
normal to the surface and has the magnitude

F = 4π σ K = 4π K ρ
[
x2/a4 + y2/b4 + z2/c4

]−1/2
, (1.302)
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where K is the coefficient in Newton’s law.40 On introducing the total
mass, we have

F =
mK

abc

[
x2/a2 + y2/b2 + z2/c2

]−1/2
. (1.303)

In particular, at the ends of the symmetry axes the force will be

Fa =
mK

b c
, Fb =

mK

ca
, Fc =

mK

ab
, (1.304)

respectively.
Let us now construct the equipotential surface that is infinitesimally

close to our ellipsoid. In order to do this, consider a point P on the
outward normal direction originating from another point P0(x0, y0, z0),
such that the distance between P0 and P is

ds = − dU

F
= −dU

a b c

mK

√
x2

a2
+

y2

b2
+

z2

c2
.

The coordinates of point P will be

x = x0 + (−dU)
a b c

mK

x0

a2
,

y = y0 + (−dU)
a b c

mK

y0

b2
, (1.305)

z = z0 + (−dU)
a b c

mK

z0

c2
,

so that, by neglecting higher-order infinitesimals and setting

dt = − 2
a b c

mK
dU, (1.306)

and

x = x0 +
1
2

x0

a2
dt,

y = y0 +
1
2

y0

b2
dt, (1.307)

z = z0 +
1
2

z0

c2
dt;

40@ Note that F is the gravitational force field related to the gravitational potential U
(see below). Equation (1.302) then is a relation analogous to Coulomb’s theorem for the
electrostatic field in the proximity of a conductor.
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one can write
x√

a2 + dt
=

x0

a
,

y√
b2 + dt

=
y0

b
, (1.308)

z√
c2 + dt

=
z0

c
.

On squaring and summing the above expressions, we obtain the equa-
tion that describes the equipotential surface under consideration:

x2

a2 + dt
+

y2

b2 + dt
+

z2

c2 + dt
= 1. (1.309)

Neglecting infinitesimals of order higher than the first, this surface is
itself an ellipsoid, and the same considerations developed above apply
to it as well. Thus, by introducing another error of order greater than
the first, the surface

x2

a2 + 2dt
+

y2

b2 + 2dt
+

z2

c2 + 2dt
= 1 (1.310)

is again an equipotential surface. In general, up to n infinitesimal errors
of order higher than the first, the surface

x2

a2 + ndt
+

y2

b2 + ndt
+

z2

c2 + ndt
= 1 (1.311)

is equipotential. This means that the ratio of the error to ndt remains
infinitesimal for any ndt. If n →∞ in such a way that ndt = t remains
finite, the surface

x2

a2 + t
+

y2

b2 + t
+

z2

c2 + t
= 1 (1.312)

will be exactly equipotential. This one, then, is the general expression for
the equipotential surfaces external to the ellipsoidal mass distribution;
t can take any positive value.41

From Eq. (1.308) we can derive the general expression for the lines of
force:

x = α
√

a2 + t,

y = β
√

b2 + t, (1.313)

z = γ
√

c2 + t,

41One can formally prove this by showing that it is possible to construct a function U = U(t)
that obeys Laplace’s equation r2 U = 0 and is zero for t →∞.
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with α2 + β2 + γ2 = 1. The constants α, β, γ are evidently the direction
cosines of the asymptotes of the lines of force, which are straight lines
passing through the ellipsoid center.

In order to obtain the potential U = U(t) on the ellipsoid in Eq.
(1.312), notice that the potential difference between two infinitesimally
close equipotential surfaces can be deduced from Eq. (1.306). On inte-
grating it between t = ∞ and t = t0, one finds

U(t0) =
mK

2

∫ ∞

t0

dt√
(a2 + t)(b2 + t)(c2 + t)

. (1.314)

In particular, on the ellipsoid in Eq. (1.299) the potential will be

U(0) =
mK

2

∫ ∞

0

dt√
(a2 + t)(b2 + t)(c2 + t)

. (1.315)

As far as the effects outside the ellipsoid are concerned, we may replace
the original distribution of total mass m with a similar distribution of
the same mass placed on a confocal ellipsoid. Thus, we may generalize
Eq. (1.303) to points outside an arbitrary ellipsoid:

F =
mK√

(a2 + t)(b2 + t)(c2 + t)

× 1√
x2/(a2 + t)2 + y2/(b2 + t)2 + z2/(c2 + t)2

. (1.316)

From Eq. (1.315), we can immediately derive the “gravitational capaci-
tance” of the ellipsoid:

C = 2

(∫ ∞

0

dt√
(a2 + t)(b2 + t)(c2 + t)

)−1

. (1.317)

Now let us consider an ellipsoidal space region

x2

a2
+

y2

b2
+

z2

c2
< 1

filled with matter of uniform volume density ρ. The force in the internal
region is a linear function of the coordinates, and its components along
the x, y, and z axes are, respectively,

−Lx, −M y, −N z; L + M + N = 4π K ρ. (1.318)

In particular, at the edge of the semi-axis of length a, the force is di-
rected along the inward normal direction, and the absolute value of its
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magnitude is La. In order to compute L, let us decompose our (filled)
ellipsoid into elementary ellipsoidal mass distributions over an infinite
set of ellipsoidal homothetic surfaces obeying the equation

x2

p2a2
+

y2

p2b2
+

z2

p2c2
= 1, (1.319)

with 0 < p < 1. The mass between two ellipsoids having semi-axes of
lengths pa, pb, pc and (p + dp)a, (p + dp)b, (p + dp)c, respectively, is

dm = 4π a b c p2 ρdp. (1.320)

This mass acts on the unit mass placed at (a, 0, 0) with a force that is
directed along the x axis and whose magnitude, apart from a sign, is

dF =
K dm√

[a2 + p2(b2 − a2)] [a2 + p2(c2 − a2)]

=
4π a b c ρ K p2 dp√

[a2 + p2(b2 − a2)] [a2 + p2(c2 − a2)]
. (1.321)

On setting
p =

a√
a2 + t

, (1.322)

we find

t = (a/p)2 (1− p2), (1.323)

dF =
4π a2 b c K ρdt

2 (a2 + t)
√

(a2 + t)(b2 + t)(c2 + t)
, (1.324)

and

dF = − 4π a2 b c K ρdt
∂

∂a2

1√
(a2 + t)(b2 + t)(c2 + t)

. (1.325)

The expression for the resulting force due to the completely filled ellip-
soid is obtained by varying p between 0 and 1, or t between 0 and ∞,
and by summing the contributions

La = − 4π a2 b c K ρ
∂

∂a2

∫ ∞

0

dt√
(a2 + t)(b2 + t)(c2 + t)

, (1.326)

that is,

L = − 4π a b cK ρ
∂

∂a2

∫ ∞

0

dt√
(a2 + t)(b2 + t)(c2 + t)

; (1.327)
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while similar relations hold for M and N . Thus, the force inside and on
the surface of the ellipsoid results to be completely determined:

F = −Lx i − M y j − N z k . (1.328)

In order to determine the force at points outside the surface, we ob-
serve that, m being the total mass of the ellipsoid, Eq. (1.327) can be
cast in the form

L = − 3K m
∂

∂a2

∫ ∞

0

dt√
(a2 + t)(b2 + t)(c2 + t)

, (1.329)

and similarly for M and N . Moreover, we can immediately verify, by
decomposing the (filled) ellipsoid into shells, that a homogeneously filled
ellipsoid is equivalent, as far as the effects outside it are concerned, to any
other filled confocal ellipsoid endowed with the same total mass. Thus,
given an external point P (x, y, z) and having determined t in such a way
that

x2

a2 + t
+

y2

b2 + t
+

z2

c2 + t
= 1, (1.330)

the force acting on the unit mass at P will be

F = −L(t) ix − M(t) j y − N(t)k z, (1.331)

with

L(t) = − 4π a b c K ρ
∂

∂a2

∫ ∞

t

dt√
(a2 + t)(b2 + t)(c2 + t)

. (1.332)

In particular, for t = 0, i.e., on the surface of the ellipsoid, we find again
Eq. (1.327) for L, and similar equations for M and N .

35. SPECIAL CASES: PROLATE ELLIPSOID
AND SPHEROID

I. Let us suppose that a and b are much smaller than c, namely, a, b ¿ c.
By introducing

t1 =
1
2

(
t +

√
(a2 + t)(b2 + t) − a b

)
(1.333)

into the expression
∫ ∞

0

dt√
(a2 + t)(b2 + t)(c2 + t)

, (1.334)
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the latter becomes

∫ ∞

0

dt1[
(1/4)(a + b)2 + t1

] √
(c2 + t1)

√
c2 + t1
c2 + t

. (1.335)

The difference between t and t1 is of the order a2 or b2 and, since c is
much greater than both a and b, the factor

√
(c2 + t1)/(c2 + t) in the

above integrand is always very close to 1. Since all the other factors do
not change sign in the limit of very large c, we can write
∫ ∞

0

dt√
(a2 + t)(b2 + t)(c2 + t)

=
∫ ∞

0

dt1[
(1/4)(a + b)2 + t1

] √
(c2 + t1)

=
2√

c2 − (1/4)(a + b)2
log

c +
√

c2 − (1/4)(a + b)2

(1/2)(a + b)
, (1.336)

and, since the previous relation holds anyway only as a first approxima-
tion,

∫ ∞

0

dt√
(a2 + t)(b2 + t)(c2 + t)

=
2
c

log
4c

a + b
. (1.337)

The potential of the filled ellipsoid of mass m will be

U0 =
m K

c
log

4c

a + b
, (1.338)

while the “capacitance” of the ellipsoid is

C =
c

log [4c/(a + b)]
. (1.339)

At distances small with respect to the semi-axis length c, the constants
L,M, N describing the attraction inside the ellipsoid, and the functions
L(t),M(t),N(t) describing the force outside the ellipsoid, will be given
in first approximation by

L = 4π K ρ
b

a + b
,

M = 4π K ρ
a

a + b
, (1.340)

N = 4π K ρ
a b

c2

(
log

4c

a + b
− 1

)
,
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and by

L(t) = 4π K ρ
a√

a2 + t

b√
a2 + t +

√
b2 + t

,

M(t) = 4π K ρ
b√

b2 + t

a√
a2 + t +

√
b2 + t

, (1.341)

N(t) = 4π K ρ
a b

c2

(
log

4c√
a2 + t +

√
b2 + t

− 1
)

,

respectively.

II. Let us now suppose a = b, while c is arbitrary. We shall then have

∫ ∞

0

dt√
(a2 + t)(b2 + t)(c2 + t)

=
∫ ∞

0

dt

(a2 + t)
√

(c2 + t)

=





2√
c2 − a2

log
c +

√
c2 − a2

a
, c > a,

2√
a2 − c2

arccos
c

a
, c < a.

(1.342)

On introducing the eccentricity e of the meridian ellipse, one gets

∫ ∞

0

dt√
(a2 + t)(b2 + t)(c2 + t)

=





1
c e

log
1 + e

1− e
, c > a,

2
a e

arcsin e, c < a.

(1.343)
The capacitance and the potential of the filled ellipsoid of mass m are

U0 =





mK

2 c e
log

1 + e

1− e
, c > a,

mK

a e
arcsin e, c < a,

(1.344)

and

C =





2ce

log (1 + e)/(1− e)
, c > a,

a
e

arcsin e
, c < a,

(1.345)
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respectively. For spheroids, then, the constants L,M, N become

L = M =
2π K ρ

e2

(
1 − 1− e2

2e
log

1 + e

1− e

)
,

N = 4π K ρ
1− e2

e2

(
1
2e

log
1 + e

1− e
− 1

)
,

(1.346)

for c > a, and

L = M = 2π K ρ

√
1− e2

e2

(
arcsin e

e
−

√
1− e2

)
,

N =
4π K ρ

e2

(
1 − arcsin e

e

√
1− e2

)
,

(1.347)

for c < a. The functions L(t),M(t), N(t) for a point P outside the
ellipsoid can be computed by replacing ρ and e, of the previous expres-
sions, with the corresponding values for the homothetic ellipsoid passing
through P and having the same mass as the given ellipsoid.

36. EQUILIBRIUM OF A ROTATING FLUID

The equilibrium configuration of a rotating fluid may be an ellipsoid of
revolution. In order for the fluid ellipsoid, with surface

x2 + y2

a2
+

z2

c2
= 1 (1.348)

and rotating with angular velocity ω around the z axis, to be in equi-
librium, it is necessary that the sum of the attraction potential and the
centripetal potential be constant throughout the entire surface. This
means that in all the points of the surface the following must hold:

1
2

ω2
(
x2 + y2

)
− 1

2
L

(
x2 + y2

)
− 1

2
N z2 = constant, (1.349)

or also (
L − ω2

) (
x2 + y2

)
+ N z2 = constant. (1.350)

As a consequence, the following equation must be true:

L − ω2

N
=

c2

a2
= 1 − e2, (1.351)
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e denoting the eccentricity of the meridian section. On using L and N
from Eqs. (1.347), we find

ε =
(3− 2e2)

√
1− e2 arcsin e − 3e + 3e3

e3
, (1.352)

where we have set

ε =
ω2

2π K ρ
=

2ω2

4π K ρ
. (1.353)

In what follows, we shall put

η =
3
2

ε =
ω2

(4/3)π K ρ
, (1.354)

s = 1 −
√

1− e2. (1.355)

Notice that s is the flattening of the ellipsoid, while ε measures the ratio
between the repulsive drag force field and the attractive gravitational
field inside the fluid ellipsoid. In particular, η = (3/2)ε is the ratio
between the “centrifugal” force acting on a mass m at a distance r from
the rotation axis and the attraction force that would be exerted on the
same mass located on the surface of a sphere with radius r and density
ρ. In general, the known quantity is ε (or η). Then Eq. (1.352) shows
that to a given value of e it corresponds only one value of ε while, by
contrast, for each value of ε (smaller than a given limit value) there
exist two values of e. This means that two equilibrium configurations
are possible: One is obtained for weak flattening and is stable, whereas
the other corresponds to strong flattening and is probably unstable. For
increasing ε, the two solutions get closer, and it exists a value of ε such
that they coincide. Beyond this limit, i.e., above some angular velocity
value for a given density, equilibrium is no longer possible. For weak
flattening, we have

s =
1
2

e2 =
15
8

ε =
5
4

η. (1.356)

In Table 1.10, we report42 the values of ε, η, and 1000/ρT 2 as func-
tions of the flattening, ρ being the density relative to water and T the
revolution period in hours. In our computation, K has been set equal
to 1/(1.5 × 107) (c.g.s. units), so that 1000/ρT 2 = (432/π)ε = 137.51ε.

42@ In the original manuscript, only the values of s (first column) were reported. We cal-
culated the corresponding values for the remaining columns from Eqs. (1.352), (1.354), and
(1.353), respectively.
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Table 1.10. Equilibrium configurations for a rotating fluid (see text).

s ε η
1000

ρT 2

0.01 0.005322 0.07983 0.7318
0.02 0.01062 0.01593 1.450
0.03 0.01589 0.02384 2.185
0.04 0.02114 0.03171 2.907
0.05 0.02636 0.03954 3.625
0.06 0.03155 0.04733 4.339
0.07 0.03672 0.05508 5.049
0.08 0.04185 0.06278 5.755
0.09 0.04696 0.07043 6.457
0.10 0.05203 0.07804 7.154
0.11 0.05706 0.08569 7.847
0.12 0.06207 0.09310 8.535
0.13 0.06703 0.1005 9.218
0.14 0.07196 0.1079 9.896
0.15 0.07685 0.1153 10.57
0.16 0.08170 0.1223 11.24
0.17 0.08651 0.1298 11.90
0.18 0.09128 0.1369 12.55
0.19 0.09600 0.1440 13.20
0.20 0.1007 0.1510 13.84
0.21 0.1053 0.1580 14.48
0.22 0.1099 0.1648 15.11
0.23 0.1144 0.1716 15.73
0.24 0.1189 0.1783 16.35
0.25 0.1233 0.1850 16.96
0.26 0.1277 0.1915 17.56
0.27 0.1320 0.1980 18.15
0.28 0.1362 0.2043 18.73
0.29 0.1404 0.2106 19.31
0.30 0.1445 0.2168 13.87
0.31 0.1486 0.2228 20.43
0.32 0.1525 0.2288 20.98
0.33 0.1564 0.2347 21.51
0.34 0.1603 0.2404 22.04
0.35 0.1640 0.2461 22.56
0.36 0.1677 0.2516 23.06

s ε η
1000

ρT 2

0.37 0.1713 0.2570 23.56
0.38 0.1748 0.2622 24.04
0.39 0.1782 0.2674 24.51
0.40 0.1816 0.2724 24.97
0.41 0.1848 0.2772 25.41
0.42 0.1880 0.2819 25.85
0.43 0.1910 0.2865 26.26
0.44 0.1939 0.2909 26.67
0.45 0.1968 0.2952 27.06
0.46 0.1995 0.2992 27.43
0.47 0.2021 0.3031 27.79
0.48 0.2046 0.3069 28.13
0.49 0.2067 0.3104 28.46
0.50 0.2092 0.3138 28.77
0.51 0.2113 0.3170 29.06
0.52 0.2133 0.3199 29.33
0.53 0.2151 0.3227 29.58
0.54 0.2168 0.3252 29.81
0.55 0.2184 0.3275 30.03
0.56 0.2197 0.3296 30.22
0.57 0.2210 0.3315 30.39
0.58 0.2220 0.3330 30.53
0.59 0.2229 0.3344 30.65
0.60 0.2236 0.3354 30.75
0.61 0.2242 0.3362 30.83
0.62 0.2245 0.3367 30.87
0.63 0.2247 0.3370 30.89
0.64 0.2246 0.3369 30.89
0.65 0.2243 0.3365 30.85
0.70 0.2196 0.3294 30.20
0.75 0.2084 0.3126 28.66
0.80 0.1895 0.2842 26.06
0.85 0.1613 0.2419 22.18
0.90 0.1220 0.1830 16.77
0.95 0.06919 0.1038 9.514
1.00 0.0000 0.0000 0.0000
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Notice that the limiting value of ε is obtained43 for s = 0.6 and is
εmax = 0.224. For the computation of ε, the following expansion holds:

ε = (1− s)
[

8
15

s +
44
105

s2 +
4
15

s3 +
32·17

5·7·9·11
s4 +

800
7·9·11·13

s5

+
736

3·5·7·11·13
s6 + . . . + knsn + . . .

]
, (1.357)

with
kn =

n(3n + 5)n!
1·3·5·7· · ·(2n + 3)

. (1.358)

37. DEFINITE INTEGRALS

We have44:

(1) 45 ∫ ∞

0

1
r

sinnr e−k2r2
dr =

√
π

∫ n/2k

0
e−x2

dx

=
π

2
θ

(
n

2k

)
. (1.359)

(2) 46
∫ +∞

−∞
cosnr e−k2r2

dr =
√

π

k
e−n2/4k2

. (1.360)

(3)
∫ π

0
x sinxdx = π. (1.361)

(4)
∫ π

0
x2 sinxdx = π2 − 2·2. (1.362)

(5)
∫ π

0
x3 sinxdx = π3 − 6π. (1.363)

(6)
∫ π

0
x4 sinxdx = π4 − 12π2 + 2·24. (1.364)

43@ More precisely, the maximum is reached at s = 0.632, corresponding to εmax = 0.22467.
44See Sec. 2.26.
45@ Notice that θ(x) is the error function.
46Notice that the quantity k on the r.h.s. is positive.
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(7) For integer n ≥ 0 [and, of course, (−1)0 = 1], one has

∫ π

0
x2n+1 sinxdx = (−1)n(2n + 1)!

(
π − π3

3!
+ . . .± π2n+1

(2n + 1)!

)
.

(1.365)
(8) For integer n ≥ 0 [and (−1)0 = 1], one gets

∫ π

0
x2n sinxdx = (−1)n(2n)!

(
1·1− π2

2!
+

π4

4!
− . . .± π2n

(2n)!

)
.

(1.366)
(9) By using the series expansions for sinπ and cosπ, Eqs. (1.365) and
(1.366) can be combined into the single expression:

∫ π

0
xn sinxdx = n!πn

(
π2

(n + 2)!
− π4

(n + 4)!
+

π6

(n + 6)!
− . . .

)
,

(1.367)
which probably holds for n > −1, even for non-integer values. For very
large n, we obtain, as a first approximation:

∫ π

0
xn sinxdx =

πn+2

(n + 1)(n + 2)
. (1.368)

(10)
∫ +∞

−∞
e−x2

cosnx dx = e−n2/4√π, (1.369)
∫ +∞

0
e−kx2

cosnx dx = e−n2/4k

√
π

k
. (1.370)

(11)
∫ +∞

−∞
x3 dx

ex − 1
=

∞∑

k=1

∫ +∞

−∞
x3 e−kx dx

= 6
(

1 +
1
24

+
1
34

+ . . .

)
=

π4

15
; (1.371)

see Eq. (1.208).

(12)
∫ +∞

−∞
sin2 kx

x2
dx = k π. (1.372)
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38. HEAT PROPAGATION IN AN
ISOTROPIC AND HOMOGENEOUS
MEDIUM

Let us consider an isotropic and homogeneous medium with a transmis-
sion coefficient c, a specific heat γ, and a density δ. The mean square
value of the heat displacement in a given direction in a unit time interval
is (see Eq. (1.286))

µ2 =
2c

γ δ
, (1.373)

and the differential equation for the temperature T can be written as

∂T

∂τ
=

1
2

µ2 ∇2 T. (1.374)

To determining the temperature distribution, which depends on the spe-
cific problem at hand, we can either use the method of sources or derive
particular solutions giving the temperature as the product of a time-
dependent function and a space-dependent function. In the following,
we are going to study quantitatively the heat propagation along one,
two and possibly three dimensions.47

38.1 One-dimensional Propagation

1.38.1.1. Method of sources. The heat quantity dQ initially con-
centrated on a cross section at position x0 of an infinite-length bar with
unitary cross section, propagates and distributes itself in such a way
that, from Eq. (1.373), the heat volume density at a point x and at time
τ is

ρ(x, τ) =
dQ

µ
√

2πτ
exp

{
−(x− x0)2

2µ2τ

}
. (1.375)

If T0 is the initial temperature at point x0, the quantity of heat existing
between the cross sections at x0 and at x0 + dx0 can be written as
T0dx0γδ. On substituting this expression for dQ into Eq. (1.375) and
then integrating, we can derive the heat density. By dividing by γδ, we
can compute the temperature at any point and at any time:

T (x, τ) =
∫ +∞

−∞
T0

µ
√

2πτ
exp

{
−(x− x0)2

2µ2τ

}
dx0. (1.376)

47@ Actually, in the original manuscript, only the one-dimensional case was written down.
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Notice that, weren’t the bar of infinite length, we would have to con-
sider suitable boundary conditions. However, there are cases where the
problem can easily be reduced to that of a bar having infinite length.
Let us work out an example:

Consider a finite bar bound by the cross sections S1 and S2 at x1 and
x2, respectively, with x1 < x2. Let T0(x0) be the initial temperature
at point x0, with x1 < x0 < x2, and assume that the temperatures T1

and T2 of the two ends are constant. The problem is to determine the
temperature T (x, τ) at an arbitrary time τ and at an arbitrary point x
between x1 and x2. To this end, we shall use the linearity of the heat
propagation equations and decompose the temperature distribution, at
an arbitrary time, into the sum of two terms, one of which is the distri-
bution that describes only the effects of the boundary conditions and is
constant in time. In other words, it holds

T (x, τ) = T1 +
x− x1

x2 − x1
(T2 − T1) + T ′(x, τ), (1.377)

T0(x0) = T1 +
x− x1

x2 − x1
(T2 − T1) + T ′0(x0). (1.378)

Given the initial conditions, the problem is thus reduced to that of find-
ing the temperature distribution along the points of a bar whose ends are
at zero temperature. To determining T ′(x, τ), consider an infinite length
bar and a point x0 on it that is initially at the temperature T ′0(x0). The
quantity T ′0, whatever its analytic expression may be, is for the moment
defined only for x0 between x1 and x2. If x1 < x0 < x2 and n is an even
integer, let us set

T ′0 (x0 + n(x2 − x1)) = T ′0(x0), (1.379)

while, for odd n,

T ′0 (x0 + n(x2 − x1)) = −T ′0 (x1 + x2 − x0) . (1.380)

The initial temperature is thus defined on every cross section of the bar,
except for a discrete number of cross sections — which is irrelevant to
the solution of the problem. Notice that the initial temperature takes
on opposite values at points that are symmetric with respect to the
cross sections S1 or S2, so that these cross sections are always at zero
temperature. It then follows that the temperature distribution in the
infinite-length bar is, at points between x1 and x2, exactly the quantity
T ′(x, τ) we are looking for. Now, from Eq. (1.376), we deduce

T ′(x, τ) =
∫ +∞

−∞
T ′0

µ
√

2πτ
exp

{
−(x− x0)2

2µ2τ

}
dx0, (1.381)
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and the problem is thus solved.

1.38.1.2. Particular solutions. By setting T (x, τ) = X(x)Y (τ), we
obtain

1
Y

dY

dτ
=

µ2

2
1
X

d2Y

dx2
= λ. (1.382)

We can infer some particular solutions; for instance:

T = A e−c1τ sin

(√
2c1

µ
x − c2

)
, (1.383)

which, for λ < 0, can be cast also in the form

T = A e−ω2µ2τ/2 sin (ω x − c) . (1.384)

Another solution is

T = A e−
√

ωx/µ sin

(
ω τ −

√
ω

µ
x + c

)
. (1.385)

The solutions in Eqs. (1.384) and (1.385) are special cases of the follow-
ing, more general solution, from which they can be obtained by setting
α = 0 and α = β, respectively:

T = A e(α2−β2)τ/2 e−αx/µ sin
(

α β τ − β

µ
x + c

)
. (1.386)

Equation (1.386) represents a surface in the space x, τ, T . Its intersec-
tions with planes parallel to the T -axis are, in general, damped sinusoidal
curves. By contrast, for planes parallel to the straight-line

α β τ − β

µ
x = 0,

or to
τ

2
(α2 − β2) τ − α

µ
x = 0,

the intersections are exponential or (non-damped) sinusoidal curves, re-
spectively. The geometric peculiarity of the solutions in Eq. (1.384) and
(1.385) lies in the fact that the surfaces represented by those equations
have sinusoidal intersections with planes parallel to the τ = 0 plane or
with planes parallel to the x = 0 plane, respectively.

The problem of the cooling of a finite length bar whose ends are at
zero temperature, which has been solved above using the method of
sources, can also be solved by using solutions of the kind (1.384). In
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fact, we only need to decompose T ′0 into eigenfunctions of the type in
Eq. (1.384), relative to the interval [x1, x2], where one sets τ = 0; that
is, into sinusoidal curves that vanish for x = x1 and x = x2 and have
periods 2(x2 − x1)/1, 2(x2 − x1)/2, 2(x2 − x1)/3, 2(x2 − x1)/4, etc. If
we write the expansion of T ′0 as

T ′0 = A1 sinπ
x− x1

x2 − x1
+ A2 sin 2π

x− x1

x2 − x1
+ . . . , (1.387)

then we obviously have

T ′(x, τ) = A1 exp

{
− π2 µ2 τ

2(x2 − x1)2

}
sinπ

x− x1

x2 − x1

+ A2 exp

{
− 4π2 µ2 τ

2(x2 − x1)2

}
sin 2π

x− x1

x2 − x1
+ . . . . (1.388)

39. CONFORMAL TRANSFORMATIONS

Let
x′1 = x′1(x1, . . . , xr, . . . , xn),
. . .

x′r = x′r(x1, . . . , xr, . . . , xn), (1.389)
. . .

x′n = x′n(x1, . . . , xr, . . . , xn)

represent a transformation such that

∑

i

dx′2i

/∑

i

dx2
i = f(x1, . . . , xn). (1.390)

Such a condition can be analytically verified by requiring that, at the
same point, the gradients of the quantities x′ take on the same absolute
value, and that the scalar products between any pair of such gradients
are

∇x′i ·∇x′j = m =
{

f(x1, . . . , xn), for i = j,
0, for i 6= j.

(1.391)

Let us put
∂2x′i

∂xr∂xs
= k(i, r, s).



VOLUMETTO I 75

From the theorem of the mixed partial derivatives48, from the condition
that all the derivatives of the absolute value of the gradients of x′ with
respect to the same variable take on the same value, and from the con-
dition that all the derivatives of the scalar products of such quantities
vanish, we get the following equations (where we are assuming the x
axes to be parallel to the gradients of x′):

k(i, r, s) = k(i, s, r),
k(i1, i1, s) = k(i2, i2, s), (1.392)

k(i, r, s) = − k(r, i, s), for i 6= r.

Now, let us put

pr =
∂2x′r
∂x2

r

.

It is then easy to show that all the derivatives of x′ can be expressed in
terms of pr. Indeed, from Eq. (1.392) one deduces that:

(a) for i 6= r 6= s,

k(i, r, s) = k(i, s, r) = − k(s, i, r) = − k(s, r, i)
= k(r, s, i) = k(r, i, s) = − k(i, r, s) = 0;

(1.393)

(b) for r = i,

k(i, i, s) = k(s, s, s) =
∂2x′s
∂x2

s

= ps; (1.394)

(c) for s = i,
k(i, r, i) = k(i, i, r) = pr; (1.395)

(d) for r = s 6= i,

k(i, r, r) = − k(r, i, r) = − pi. (1.396)

We can also check that, whatever the n quantities p1,p2,. . .,pn are, the
quantities k(i, r, s) given by Eqs. (1.393), (1.394), (1.395), (1.396) satisfy
Eq. (1.392).

48@ That is, the Schwartz theorem.
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If we consider matrices whose r, s element is given by the derivative
k(i, r, s), we can build a set of n matrices conjugate to the n quantities
x′. They have the following form49:

[
∂2x′1

∂xr∂xs

]
=




p1 p2 . . . pn−1 pn

p2 −p1 . . . 0 0
. . .

pn−1 0 . . . −p1 0
pn 0 . . . 0 −p1




, . . . ,

[
∂2x′i

∂xr∂xs

]
=




−pi 0 0 . . . p1 . . . 0 0
0 −pi 0 . . . p2 . . . 0 0
0 0 −pi p3 0 0
. . .
p1 p2 p3 . . . pi . . . pk 0
. . .
0 0 0 . . . pk . . . 0 0
. . .
0 0 0 . . . pn . . . 0 −pi




, . . . .

We deduce that
∇2 x′i = − (n− 2) pi. (1.397)

It follows that the quantities x′ are not harmonic functions, unless n =
2 or unless all the p vanish, so that Eq. (1.389) simply represents a
similitude. If n = 2, then the quantities x′ are always harmonic
functions. In this case, if U ′(x′, y′) is a harmonic function, by setting
U(x, y) = U ′(x′, y′), we deduce from Eqs. (1.391) and (1.397) and (15) of
Sec. 1.8 that U(x, y) is a harmonic function as well. The transformation
of the xy plane into the x′y′ plane is a conformal transformation of
one into another plane. Such a transformation preserves the form of the
infinitesimal geometric figures but can either invert the rotation direction
or not. To obtain a conformal transformation we need only to set

x′ + i y′ = f(x + iy) (1.398)
or

x′ − i y′ = f(x + iy), (1.399)

where f(x + iy) is an arbitrary analytic function. In the first case, the
rotation direction is preserved, while in the second case it is inverted.
The analytical considerations developed above may have an interesting,

49@ The generic i matrix has to be understood as the one whose ith row or column is given
by (p1, p2, p3, . . . , pn), while all the other diagonal elements are equal to −pi.
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brief confirmation as follows. Let us consider a conformal transforma-
tion (1.389) changing a point of the n-dimensional space S into a point
of another space S ′. From the constraints (1.390) we have that corre-
sponding infinitesimal geometric figures are connected by a similitude,
and the “similitude ratio” k =

√
f(x1, . . . , xn) depends in general on the

considered point. Let U be a x-dependent function and let us require
that

U ′(x′1, ,̇x
′
n) = U(x1, . . . , xn). (1.400)

The flux of the gradient of U through a surface element dS can be written
as

dφ = |∇U | dS cosα, (1.401)
while the flux of ∇U ′ through the corresponding element is

dφ′ =
∣∣∇U ′∣∣ dS′ cosα′. (1.402)

Since we have a conformal transformation,
∣∣∇U ′∣∣ =

1
k
|∇U | , (1.403)

ds′ = kn−1 dS, (1.404)

and thus
dφ′ = kn−2 dφ. (1.405)

It follows that, if n = 2 and the flux of U through a closed surface
vanishes, then the flux of U ′ through any closed surface vanishes as well.
In other words, the conformal transformation of a plane into another
plane preserves the harmonic behavior of the harmonic functions. If n
is different from 2, such a property is not in general preserved; unless k
is a constant, in which case the conformal transformation reduces to a
simple similitude.

40. WAVE MECHANICS OF A MASS POINT
IN A CONSERVATIVE FIELD.
VARIATIONAL APPROACH

Let E be an eigenvalue of the equation50

∇2 ψ +
2m

h̄2 (E − U) ψ = 0. (1.406)

50@ In the original manuscript, the old notation h/2π is used, while we here denote the same
quantity by h̄.
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Let us then consider a variation δU of the potential U ; for Eq. (1.406)
to have a finite and single-valued solution, E has to undergo a variation
δE. Let us write the solution of the novel equation as ψi = ψ (1 + α).
On substituting into Eq. (1.406), we obtain the equation satisfied by α:

ψ ∇2 α + 2∇ψ ·∇α +
2m

h̄2 (δE − δU) ψ = 0, (1.407)

or, multiplying51 by ψ:

∇ ·
(
ψ2 ∇α

)
+

2m

h̄2 (δE − δU) ψ2 = 0. (1.408)

Since the quantity ψ2∇α is, in general, an infinitesimal term of order
higher than two, on integrating over the whole space S one gets

∫
(δE − δU) ψ2 dS = 0, (1.409)

that is,

δE =
∫

ψ2 δU dS

/∫
ψ2 dS . (1.410)

41. ELECTROMAGNETIC MASS OF THE
ELECTRON 52

Let us assume that the charge e is distributed over a sphere of radius
a. By taking into account the Lorentz contraction along the direction of
motion, we obtain the following equations for the electrostatic and for
the magnetic energy, respectively:

Es =
e2

6a


 2√

1− v2/c2
+

√
1− v2/c2


 , (1.411)

Em =
e2

3ac2

v2

√
1− v2/c2

, (1.412)

51@ Notice that, if ψ is complex, one has to multiply by ψ∗, and in what follows ψ2 must be
replaced with |ψ|2.
52@ It is interesting to read about this subject, for instance, E. Fermi, “Correzione di una
contraddizione tra la teoria elettrodinamica e quella relativistica delle masse elettromag-
netiche” (Correcting a contradiction between the electrodynamic and the relativistic theory
about the electromagnetic masses), Nota Interna della Scuola Normale Superiore di Pisa
(1924). Among the subsequent, related papers by Fermi group’s members, cfr., for example,
P.Caldirola, Nuovo Cimento A 4, 497 (1979) and refs. therein.
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and

Eem = Es + Em =
e2

6a


2

1 + v2/c2

√
1− v2/c2

+
√

1− v2/c2


 . (1.413)

For an electron at rest one finds

Es = e2/2a, (1.414)
Em = 0, (1.415)

Eem = e2/2a. (1.416)

The electromagnetic moment will be

Q =
2
v

Em =
2e2

3ac2

v√
1− v2/c2

, (1.417)

and, assuming no inertial component of the electron mass,53 it will be

m =
2
3

e2

ac2

1√
1− v2/c2

=
m0√

1− v2/c2
, (1.418)

where m0 is the rest mass, which is then given by

m0 =
2
3

e2

ac2
=

4
3

Eem

c2
. (1.419)

Under the assumption made above of no inertial mass contribution, the
mass-energy equivalence (apart from a factor c2) leads us to conclude
that the proper energy of an electron is54

E′
0 =

1
3

Eem =
e2

6a
, (1.420)

or, for a moving electron,

E′ = mc2 − Eem =
2
3

e2

a

1√
1− v2/c2

− e2

6a


2

1 + v2/c2

√
1− v2/c2

+
√

1− v2/c2




=
e2

6a

√
1− v2/c2 = E′

0

√
1− v2/c2, (1.421)

53@ That is, that the electron mass is entirely electromagnetic in nature.
54@ The author considered the total energy E of an electron to have two components: an
electromagnetic one, Eem, and a self-energy term, E′, so that E = Eem + E′. The energy E′
is obtained by requiring that E = mc2.
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i.e., the proper energy is proportional to a volume term.55 There is no
discrepancy between this result and the assumption that there is no in-
ertial component. Indeed, the electron does experience an (attractive)
strain force, which has to balance the repulsive electromagnetic force,
originated by the electron charge, that would lead to a spreading-out
of the charge itself. This implies that the proper energy of the electron
“core”56 slows down the forward (with respect to the motion direction)
part of the charge, while the backward part of the charge gets acceler-
ated. It follows that there is an energy flux through the core in the di-
rection opposite to the motion one. The momentum associated with this
flux must be equal and opposite to the momentum associated with the
energy E′ (which moves with the electron velocity). This can be directly
checked by considering a specific (but arbitrary) “bounding model”: for
example, by assuming that charges are maintained on a spherical sur-
face, at a fixed distance from the center, by strings. In such a case,
the energy flux through any cross section is obtained by computing the
string tension, and multiplying it by the component of the electron
velocity along the string direction. The ratio between such an energy
flux and c2 yields the momentum per unit length; so that, by taking the
vectorial sum of the momenta relative to each string (and noting that
the elementary momentum in each string lies along the string direction),
we get the energy flux one gets the energy flux through the whole core.

Furthermore, Eq. (1.421) shows another peculiar feature: The proper
energy of the core decreases with the electron speed and vanishes for
speeds close to that of light. Then the problem arises of the energy
balance for the core. We easily recognize that the energy decreases
with the speed is due to the electron’s contraction along the direction
of motion. In fact, let us divide the electron into two parts, by means
of a yz plane normal to the motion direction and passing through the
center of the electron (at which center we put the origin of our reference
frame). The charge de distributed over each one of the two spherical
surface elements, which get projected into the same element dy dz on

55@ Cf. the next footnote.
56@ In the author’s model, the electron has two essential components: the external surface
(on which its charge is distributed); and an internal part (which in this translation is called
the electron “core”), whose proper energy is proportional to the volume of the core. Actually,
in the original manuscript, the electron proper energy is regarded also as the energy of the
core. Let us recall, incidentally, that “mechanical” models for the electron were in fashion at
that time, for instance along the Abraham–Lorentz’s line (the famous Dirac’s papers, e.g.,
appeared in 1938, ten years later).
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the chosen plane, will be

de = dy dz
a√

a2 − y2 − z2

e

4πa2
=

e dy dz

4πa
√

a2 − y2 − z2
. (1.422)

Now, we can imagine that the core is made of longitudinal and trans-
verse strings, each linking two elementary charges symmetric with re-
spect the yz plane. The longitudinal strings compensate the mechanical
actions of the electric field components along the direction of motion.
The transverse strings compensate the mechanical actions of the trans-
verse component of the electric field as well as of the magnetic field
(whose components are by themselves normal to the motion direction)
of the moving charges. The tension in the string tying up the two above-
considered elements is

dt =
1
2

e

a2

√
a2 − y2 − z2

a
de =

e2

8πa4
dy dz, (1.423)

which does not depend on the velocity. The string length is

` = 2
√

a2 − y2 − z2
√

1− v2/c2. (1.424)

If the electron velocity increases in magnitude by dv without changing
its direction, the transverse strings do not change their length and thus
the associated energy does not change either. Instead, the longitudi-
nal strings get shorter and the energy variation dα of each of them is
obtained by multiplying the string tension by the length variation:

d (dα) = dt d` = − 2e2

8πa4
dy dz

√
a2 − y2 − z2 z

(v/c2) dv√
1− v2/c2

= − e2 v
√

a2 − y2 − z2

4πa4 c2
√

1− v2/c2
dy dz dv. (1.425)

On integrating with respect to y and z, and considering that
∫

yz plane
dα = E′, (1.426)

we obtain

dE′ = − e2 v

6a c2
√

1− v2/c2
dv. (1.427)

The same result is found by differentiating Eq. (1.421), which proves
that the proper energy decrease with the speed is actually due to the
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Lorentz contraction. The fraction of the total energy contained in the
core is

E′

mc2
=

1
4

(
1− v2

c2

)
,

which is equal to 1/4 for small velocities. For larger velocities, this
ratio decreases, due to both the decrease of the proper energy and the
increase of the electromagnetic energy; while at the speed of light the
entire electron energy tends to be electromagnetic in nature.

42. LEGENDRE POLYNOMIALS

The Legendre polynomials are defined by the equation

Pn =
1

2nn!
dn(x2 − 1)n

dxn
(1.428)

and satisfy the relation

∫ 1

−1
Pm Pn dx =





0 , for m 6= n,

2
2n + 1

, for m = n.
. (1.429)

Moreover,

Pn(1) = 1 , Pn(−1) = (−1)n. (1.430)

The first polynomials read as follows:

P0 = 1,

∫ 1

−1
P 2

n dx = 2

P1 = x,
2
3

P2 =
3
2
x2 − 1

2
,

2
5

P3 =
5
2
x3 − 3

2
x,

2
7
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P4 =
35
8

x4 − 15
4

x2 +
3
8
,

2
9

P5 =
63
8

x5 − 35
4

x3 +
15
8

x,
2
11

P6 =
231
16

x6 − 315
16

x4 +
105
16

x2 − 5
16

,
2
13

P7 =
429
16

x7 − 693
16

x5 +
315
16

x3 − 35
16

x.
2
15

43. ∇2 IN SPHERICAL COORDINATES

Let V be a function of the variables x, y, z which, in terms of r, θ, φ,
write

r =
√

x2 + y2 + z2,

θ = arccos z/r, (1.431)
φ = arctan y/r.

In view of the relations

|∇ r| = 1, |∇ θ| =
1
r
, |∇φ| =

1
r sin θ

, (1.432)

∇ r×∇ θ = ∇ θ×∇φ = ∇φ×∇ r = 0, (1.433)

∇2 r =
2
r
, ∇2 θ =

cot θ

r2
, ∇2 φ = 0, (1.434)

we deduce, from (15) of Sec. 1.8, that

∇2 V =
∂2V

∂r2
+

2
r

∂V

∂r
+

1
r2

(
1

sin2 θ

∂2V

∂φ2
+

∂2V

∂θ2
+

∂V

∂θ
cot θ

)
.

(1.435)
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1. ∇2 IN CYLINDRICAL COORDINATES

Let x and y be the following functions of r and φ:

r =
√

x2 + y2, (2.1)

φ = arctan
y

x
. (2.2)

Since:
|∇r| = 1, |∇φ| =

1
r
, (2.3)

∇r×∇φ = 0, (2.4)

∇2 r =
1
r
, ∇2 φ = 0, (2.5)

then, from (15) in Sec. 1.8,

∇2 V =
∂2V

∂z2
+

1
r

∂V

∂r
+

1
r2

∂2V

∂φ2
. (2.6)

2. EXPANSION OF A HARMONIC
FUNCTION IN A PLANE

Let us consider the expansion of a harmonic function V near the point
O(0, 0). We have

V = P0 + P1 + P2 + P3 + . . . + Pn + . . . , (2.7)

where Pn is a homogeneous integer polynomial of order n in the variables
x and y. Since ∇2 V = 0, we obtain

∇2 Pn = 0, (2.8)

85
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which means that Pn is a harmonic function. Let us note that Pn has
n+1 coefficients while ∇2 Pn, being a polynomial of order n−2, has n−1
coefficients, which are related to the Pn coefficients by bilinear relations.
Moreover, all these coefficients must be equal to zero. It follows that only
two of the Pn coefficients may be chosen arbitrarily with the exception
of P0, which is an arbitrary constant. The most general expression for
Pn is then

Pn = an P ′
n + bn P ′′

n , (2.9)
with P ′

n and P ′′
n two known homogenous and integer polynomials of order

n. We can now write

Pn = rn µn(φ), P ′
n = rn µ′n(φ), P ′′

n = rn µ′′n(φ) (2.10)

and thus
µn(φ) = an µ′n(φ) + bn µ′′n(φ). (2.11)

We can now choose P ′
n and P ′′

n in such a way that µ′n and µ′′n are orthog-
onal in the interval (0, 2π). It will suffice to prove that, for m 6= n, we
always have ∫ 2π

0
µm µn dφ = 0, m 6= n. (2.12)

In order to do this, let us consider the outgoing flux from a circle of
radius r of the vector

rm µm ∇rn µn − rn µn ∇rm µm. (2.13)

From Eq. (2.10), it follows that

∂

∂r
rm µm = mrm−1µm,

∂

∂r
rn µn = n rn−1µn.

(2.14)

Thus the outgoing flux is given by the expression

F = (n−m) rn+m−1
∫ 2π

0
µm µn dφ. (2.15)

On the other hand, the divergence of the vector in Eq. (2.13) is

∇ · (rm µm ∇rn µn − rn µn ∇rm µm)

= rm µm ∇2 rn µn − rn µn ∇2 rm µm = 0, (2.16)

from which Eq. (2.12) follows.
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3. QUANTIZATION OF A LINEAR
HARMONIC OSCILLATOR

Let us consider an oscillator of mass m acted on by the force −Kq acts;
its Hamiltonian can be written as

H(q, p) =
1
2

K q2 +
p2

2m
= E, (2.17)

and the oscillator frequency will be

ν =
1
2π

√
K

m
. (2.18)

The matrices representing p and q, and the ones derived from them,
obey the sum and product rules of matrices and satisfy the following
conditions:

(a) differentiation with respect to time: Ṁrs = (i/h̄) (Er − Es) Mrs;

(b) p q − q p = h̄/i;

(c) H should be diagonal: H = diag(E1, E2, . . .);

(d) the matrices must be Hermitian .

From these conditions, it follows that the Hamilton equations hold:

q̇ =
∂H

∂p
, (2.19)

ṗ = − ∂H

∂q
. (2.20)

If we combine condition (a) with the others, it becomes

Ṁ =
i

h̄
(H M − M H) . (2.21)

In our case, Eqs. (2.19) and (2.20) read

m q̇ = p, (2.22)
ṗ = −K q. (2.23)

From Eq. (2.22), it follows that the elements of p and q are connected
with each other by the relation

prs = qrs
im

h̄
(Er − Es) . (2.24)
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Moreover, since
m q̈ + K q = 0, (2.25)

we obtain [
K − m

h̄2 (Er − Es)
2
]

qrs = 0. (2.26)

Thus, qrs is different from zero only if

K =
m

h̄2 (Er − Es)
2 , (2.27)

which is equivalent to
Er − Es = ±hν. (2.28)

Let us now evaluate the (r, r) element of the matrix pq − qp. Due to
the constraint (b), we have

h̄

i
=

∑
α

(prα qαr − qrα pαr) , (2.29)

or, from Eq. (2.24):

h̄

i
=

∑
α

(Er − Eα)
im

h̄
(qrα qαr + qαr qrα) . (2.30)

This is equivalent to

∑
α

(Er − Eα) |qrs|2 =
h̄2

2m
. (2.31)

All the terms in this sum add up to zero, apart from the two for which,
respectively,

Eα = Er + hν, (2.32)
Eα = Er − hν. (2.33)

It follows that, if an eigenvalue Er exists, it must also exist one of the
two eigenvalues Er − hν and Er + hν. Due to the form of H, there
exists at least an eigenvalue E0 such that the eigenvalue E0 − hν does
not exist. However, the eigenvalue E1 = E0 + hν does exist. Thus, on
setting r = 0 in Eq. (2.31), we obtain

h ν |q01|2 =
h̄2

2m
, (2.34)

that is,

|q01|2 =
h̄

4πmν
. (2.35)
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On setting r = 1 in Eq. (2.31), we find that also the eigenvalue E2 =
E1 + hν = E0 + 2hν must exist, and we can deduce that

|q12|2 =
2h̄

4πmν
. (2.36)

By iteration of Eq. (2.31), we can show (by induction) that the eigen-
value E0 + nhν exists, n being an arbitrary integer, and we also find
that

|qn−1,n|2 =
nh̄

4πmν
. (2.37)

It follows that the matrix q and, from Eq. (2.24), the matrix p have
both vanishing elements except for the ones adjacent to the diagonal.
Note that both q and p matrices are known, apart from a not essential
(phase) factor, since their arguments are obviously equal and opposite
to those of the complex conjugates of qrs and qsr, prs and psr.

It is now possible to determine the matrix H, to verify that condition
(c) is met and to determine E0 at the same time. From Eq. (2.17) we
have

Hrs =
1
2

K
∑
α

qrα qαs +
1

2m

∑
α

prα pαs, (2.38)

which, by Eq. (2.24), becomes

Hrs =
∑
α

[
1
2

K +
m

2h̄2 (Er − Eα) (Es − Eα)
]

qrα qαs. (2.39)

All the terms in the sum are zero, apart from those for which α differs
from r and from s by one. In order for α to take one of these values,
one of the following cases must apply:

(I) r = s + 2,

(II) r = s = n,

(III) r = s − 2.

(2.40)

In case I, the sum reduces to a single term, which can be obtained by
setting α = s + 1. We then find:

Hs+2,s =
[
1
2

K +
m

2h̄2 (Es+2 − Es+1)(Es − Es+1)
]
qs+2,s+1 qs+1,s

=
(

1
2

K − 2π2 ν2 m

)
qs+2,s+1 qs+1s = 0. (2.41)

We can reason in a similar manner in case III, and thus the corresponding
matrix is diagonal. In case II, two terms are non-vanishing in the sum,
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and they may be obtained by setting α = r − 1 = s − 1 = n − 1 or
α = r + 1 = s + 1 = n + 1. We then get

Hn = En =
[
1
2

K +
m

2h̄2 (En − En−1)
2
]
qn,n−1 qn−1,n

+
[
1
2

K +
m

2h̄2 (En − En+1)
2
]
qn,n+1 qn+1,n. (2.42)

From Eqs. (2.36) and (2.37) we find

(En − En−1)
2 = (En − En+1)

2 = h2 ν2, (2.43)

qn−1,n qn,n−1 = |qn−1,n|2 =
nh̄

4πmν
, (2.44)

qn,n+1 qn+1,n = |qn,n+1|2 =
(n + 1)h̄
4πmν

, (2.45)

from which

En =
(

1
2

K + 2π2 mν2
)

nh̄

4πmν

+
(

1
2

K + 2π2 mν2
)

(n + 1)h̄
4πmν

; (2.46)

and thus, since
1
2

K + 2π2 mν = K,

one gets:

En =
K

8π2mν
(2n + 1) h =

ν

2
(2n + 1) h = h ν

(
n +

1
2

)
.

(2.47)
In particular:

E0 =
1
2

h ν. (2.48)

4. DIAGONALIZATION OF A MATRIX

Let H be any Hermitian matrix and S a matrix such that

S S−1 = 1, (2.49)

quantity S−1 being defined by the relation

S−1
rs = S∗sr. (2.50)
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Condition (2.49) can also be written as
∑

i

Sri S
−1
is = δrs or

∑

i

Sri S
∗
si = δrs, (2.51)

where1

δrs =
{

1, r = s,
0, r 6= s.

The matrix SHS−1 corresponds to the matrix H to which the transfor-
mation S is applied. We then have

(
S H S−1

)
rs

=
∑

i

Sri

(
H S−1

)
is

=
∑

i

Sri

∑

k

Hik S−1
ks

=
∑

i

∑

k

Hik Sri S∗sk; (2.52)

and, since we require the matrix W = SHS−1 to be diagonal, we obtain
∑

i

∑

k

Hik Sri S∗sk = Er δrs. (2.53)

On replacing the indices r and s with m and l and multiplying the
resulting expression by Sln, we find

∑

i

∑

k

Hik Smi S
∗
lk Sln = Em Sln δml; (2.54)

and, by summing over the index l,
∑

i

∑

k

∑

l

Hik Smi S
∗
lk Sln = Em Smn. (2.55)

The l.h.s. term may also be written as
∑

i

∑

k

∑

l

Hik Smi S
∗
lk Sln =

∑

i

∑

k

Hik Smi

∑

l

S∗lk Sln

=
∑

i

∑

k

Hik Smi

∑

l

Skl S
∗
nl =

∑

i

∑

k

Hik Smi δkn

=
∑

i

Smi Hin,

so that Eq. (2.55) becomes
∑

i

Smi Hin = Em δmn, (2.56)

1@ In the original manuscript, the definition of the Kronecker symbol was given after Eq.
(2.53).
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that is ∑

i

Smi (Hin − δin Em) = 0. (2.57)

We can also derive Eq. (2.56), and then (2.57), by exploiting the
associative property of the matrix product. In order to demonstrate
this property it suffices to show that, given any three matrices a, b, and
c,

(a b) c = a b c. (2.58)

Indeed,

((a b) c)rs =
∑

i

(a b)ri cis =
∑

i

∑

k

ark bki cis 0

=
∑

k

ark

∑

i

bki cis =
∑

k

ark (b c)ks

= (a (b c))rs = (a b c)rs ; q.e.d.

From the relation
S H S−1 = W, (2.59)

we then obtain

W S =
(
S H S−1

)
S = S H S−1 S = S H, (2.60)

from which Eq. (2.56) immediately follows.
If the matrix is finite and has N rows or columns, by varying the index

n in Eq. (2.57) from 1 to N , we obtain N homogeneous linear equations
among the N elements of the n-th row of S. Now, since the elements Smn

cannot be all zero, due to Eq. (2.51), the determinant of the coefficients
of such homogenous equations must vanish. The following must then
hold:

det




H11 − Em H12 H13 . . . H1N

H21 H22 −Em H23 . . . H2N

H31 H32 H33 −Em . . . H3N

. . .
HN1 HN2 HN3 . . . HNN −Em




= 0.

(2.61)
It follows that the diagonal elements of the matrix W can be nothing but
the roots of Eq. (2.61). If these are all distinct, it is possible to construct
W in such a way that the diagonal elements are all equal to E. Matrix
S may then be constructed from Eq. (2.57). Indeed, the elements of the
nth row of S may be determined, up to a constant factor, by solving the
system of linear equations mentioned above. The constant factor may
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then be derived from the normalization condition given by Eq. (2.51).
It is thus possible to find all the rows of S, each of which is associated
with one of the roots of Eq. (2.61). We can then demonstrate that the
orthogonality condition satisfied by the rows of S, which is demanded
by Eq. (2.51), is automatically obtained if H is Hermitian. If there are
q coinciding roots, there exists an infinite number of ways that we can
use to construct q rows of S that are associated with those q coinciding
roots.2

5. WAVE QUANTIZATION OF A POINT
PARTICLE THAT IS ATTRACTED BY A
CONSTANT FORCE TOWARDS A
PERFECTLY ELASTIC WALL

Let us consider the one-dimensional motion along the direction perpen-
dicular to an elastic surface. If x is the distance from the wall and g the
acceleration of the particle, its potential energy is given by

U =
{

mg x, x > 0,
∞, x < 0,

(2.62)

and the Schrödinger equation reads




d2ψ

dx2
+

2m

h̄2 (E − m g x) ψ = 0, x > 0,

ψ = 0, x ≤ 0.

. (2.63)

Suppose that ψ is a solution of the above equation with eigenvalue E.
On setting

x1 = (mg x − E) 3
√

2/(mh̄2g2), (2.64)

Eq. (2.63) becomes, viewing ψ as a function of x1:




d2ψ

dx2
1

= x1 ψ,

ψ(x1 = α) = 0,

(2.65)

2@ In the original manuscript, after this section, the author planned writing a section on
Laguerre polynomials. However, such a new section was never written.
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where3

α = −E
3
√

2/(mh̄2g2).

The function ψ must also be regular and finite for α < x1; as we shall
see, this condition completely determines ψ as a function of x1 up to a
constant factor. If F (x) is such a function, the second one of conditions
(2.65) can be expressed by saying that α is a zero of function ψ. One
can then obtain all the possible energy levels from the relation

E = −α
3
√

mh̄2g2/2. (2.66)

We can now also evaluate the periodicity modulus for the action,
which we shall denote by S. This will be useful in order to compare the
results from wave mechanics with those that we can deduce from the
Sommerfeld conditions. We have

S = 2
∫ E/mg

0
m

√
2
m

(E −mgx) dx =
4
3g

√
2
m

E3/2 (2.67)

or, on writing E as in Eq. (2.66),

S

h
=

2
3π

(−α)3/2 , (2.68)

whereas the Sommerfeld conditions would yield

S/h = n, (2.69)

with n a non-negative integer.
Let us now try to construct the function F (x) = y. Two particular

solutions of Eq. (2.65) are the following (see Sec. 2.31):

M = 1 +
1

2·3 x3 +
1

2·3·5·6 x6 +
1

2·3·5·6·8·9 x9 + . . . ,

N = x +
1

3·4 x4 +
1

3·4·6·7 x7 +
1

3·4·6·7·9·10
x10 + . . . .

(2.70)

The general solution is a combination of M and N , and, since M and
N go to infinity as x →∞, up to a constant factor it must be true that

y = M − λN, (2.71)

3@ The second equation (2.65) corresponds to ψ(x = 0) = 0; obviously, the wavefunction
vanishes also for x < 0 and x1 < α.
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with
λ = lim

x→∞
M

N
. (2.72)

We shall prove soon that λ is finite. We now show that log y does indeed
go to zero sufficiently fast as x → ∞. Let us cast an arbitrary solution
of Eq. (2.65) in the form

y = eu. (2.73)

We then have
u′′ + u′2 = x (2.74)

and, for very large x,
u′ = ±√x. (2.75)

The upper sign corresponds to solutions tending to infinity for large x,
while the lower sign corresponds to solutions tending to zero for large x.
Now it is simple to show that the expansion of u in decreasing powers of√

x is identical for all the ys that tend to infinity, apart from an additive
constant. It then follows that the ratio among two solutions that tend
to infinity is a non-zero constant. But if y has the form (2.71), we also
have that

lim
x→∞

y

M
=

M − λN

M
= 0, (2.76)

and thus y tends to zero sufficiently fast. In order to determine λ, let us
start by setting

φ(0) = 1; φ(3) =
1

2·3; φ(3n) =
1

2·3·5·6· · ·(3n− 1)·(3n)
. (2.77)

We thus have

M = φ(0) + φ(3)x3 + φ(6)x6 + φ(9)x9 . . . . (2.78)

We can define φ(x) for any x > −2, by making use of the functional
equation

φ(x + 3) =
φ(x)

(x + 2)(x + 3)
(2.79)

and by assuming that φ(x) is evaluated in the limit of very large x
by linear logarithmic interpolation between φ(3n) and φ(3n + 3), with
3n < x < 3n + 3. In this limit we evidently have

x2/3φ(x + 1)
φ(x)

= 1 (2.80)

or, more generally

lim
x2α/3φ(x + α)

φ(x)
= 1, (2.81)
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from which it is easy to deduce that

lim
x→∞

φ(0) + φ(3)x3 + φ(6)x6 + φ(9)x9 + . . .

φ(α)xα + φ(α + 3)xα+3 + φ(α + 6)xα+6 + . . .
= 1 (2.82)

(for α > −2). In particular,

lim
x→∞

φ(0) + φ(3)x3 + φ(6)x6 + φ(9)x9 + . . .

φ(1)x + φ(4)x4 + φ(7)x7 + φ(10)x10 + . . .

= lim
x→∞

M

φ(1)N
= 1, (2.83)

from which λ = φ(1). Under the form of an infinite product, we have
[see item (3) in Sec. 3.7] that

λ3 = [φ(1)]3 =
1
2
·4

2·7
53

·7
2·10
83

·102·13
113

·132·16
143

· · ·, (2.84)

from which we derive

λ = φ(1) = 3
√

3
Γ(2/3)
Γ(1/3)

=
3
√

3
2

(2/3)!
(1/3)!

= 0.729. (2.85)

We finally have

F (x) = φ(0) − φ(1)x + φ(3) x3 − φ(4)x4 + φ(6) x6 − φ(7)x7 + . . . .
(2.86)

Note that, for x > 0, we always have F (x) > 0, F ′(x) < 0, F ′′(x) > 0,
while, for x < 0, function F has an infinite number of zeros. From the
differential equation for F , it is easy to show that, if αn and αn+1 are
two consecutive zeros with αn > αn+1, then the following relation holds

αn − αn+1 =
π√
ξ
, with αn+1 < − ξ < αn. (2.87)

It follows that

Sn+1 − Sn

h
=

√
ξ1

ξ
, with αn+1 < − ξ1 < αn. (2.88)

For large quantum numbers, we have

(Sn+1 − Sn) /h = 1, (2.89)

which is consistent with Sommerfeld’s constraints. The first zero of F
is at4

−α1 ' 2.33, (2.90)

4@ A more precise calculation yields −α1 ' 2.33811.
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which corresponds to5

S1 ' 7.49h. (2.91)

6. RELATIVISTIC HAMILTONIAN FOR THE
MOTION OF AN ELECTRON

Let φ be the scalar potential and Vx, Vy, Vz the components of the vector
potential. Let us set

C0 = φ, C1 = − i Vx, C2 = − i Vy, C3 = − i Vz,

x0 = i c t, x1 = x, x2 = y, x3 = z,

ds2 =
∑

i dx2
i ,

and consider the spacetime action6

cP

i
=

∫
mc2 ds + e

∫
Ci dxi. (2.92)

We have

δ

(
cP

i

)
=

∫
mc2 ẋi dδxi + e

∫
Ci dδxi + e

∫
∂Ci

∂xj
δxj dxi, (2.93)

that is,

δ

(
cP

i

)
=

[(
mc2 ẋi + eCi

)
δxi

]b

a
−

∫
mc2 ẍi δxi ds

− e

∫
∂Ci

∂xj
δxi ẋj ds + e

∫
∂Ci

∂xj
δxj ẋi ds. (2.94)

The constraint that P be stationary reads

mc2 ẍi = e

(
∂Cj

∂xi
− ∂Ci

∂xj

)
ẋj , (2.95)

5@ In the original manuscript, the approximate value S1 ' 0.76 h was given.
6@ Throughout this section, the author adopted the summing convention over repeated
indices.
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and this is equivalent to the following four equations:

d
dt

mc2

√
1− v2/c2

= − e

c

(
∂Cx

∂t

∂x

∂t
+

∂Cy

∂t

∂y

∂t
+

∂Cz

∂t

∂z

∂t

)

− e

(
∂φ

∂x

∂x

∂t
+

∂φ

∂y

∂y

∂t
+

∂φ

∂z

∂z

∂t

)
,

d
dt

m dx/dt√
1− v2/c2

= − e
∂φ

∂x
− e

c

∂Cx

∂t
+

e

c

dy

dt

(
∂Cy

∂x
− ∂Cx

∂y

)

− e

c

dz

dt

(
∂Cx

∂z
− ∂Cz

∂x

)
,

d
dt

m dy/dt√
1− v2/c2

= − e
∂φ

∂y
− e

c

∂Cy

∂t
+

e

c

dz

dt

(
∂Cz

∂y
− ∂Cy

∂z

)

− e

c

dx

dt

(
∂Cy

∂x
− ∂Cx

∂y

)
,

d
dt

m dz/dt√
1− v2/c2

= − e
∂φ

∂z
− e

c

∂Cz

∂t
+

e

c

dx

dt

(
∂Cx

∂z
− ∂Cz

∂x

)

− e

c

dy

dt

(
∂Cz

∂y
− ∂Cy

∂z

)
,

which then are the equations of motion for the electron. Now, given
an arbitrary surface (that may even degenerate into a single point), the
action P along a line that ends at some fixed point and starts from
a point lying on the surface, such that δP is stationary at the lower
extreme, is a function of position. Since the variation of P is stationary
for fixed end points, on keeping the lower end fixed and changing the
upper end by an infinitesimal vector (dx0, dx1, dx2, dx3), the variation
of P reduces to (see Eq. (2.94)):

d (cP/i) =
(
mc2 ẋi + eCi

)
dxi, (2.96)

or

dP = − mc2

√
1− v2/c2

dt − e φ dt +


 m√

1− v2/c2

dx

dt
− e

c
Cx


 dx
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+


 m√

1− v2/c2

dy

dt
− e

c
Cy


 dy

+


 m√

1− v2/c2

dz

dt
− e

c
Cz


 dz. (2.97)

Let us define the momenta conjugateto t, x, y, z as

pt = − mc2

√
1− v2/c2

− e φ = −W,

px =
m√

1− v2/c2

dx

dt
+

e

c
Cx,

py =
m√

1− v2/c2

dy

dt
+

e

c
Cy,

pz =
m√

1− v2/c2

dz

dt
+

e

c
Cz.

(2.98)

From Eq. (2.97) it then follows that

∂P

∂t
= −W = pt,

∂P

∂x
= px,

∂P

∂y
= py,

∂P

∂z
= pz. (2.99)

The four momenta (2.98) are connected by the relation

−
(

W

c
− e

c
φ

)2

+
(

px − e

c
Cx

)2

+
(

py − e

c
Cy

)2

+
(

pz − e

c
Cz

)2

+ m2c2 = 0. (2.100)

From Eq. (2.100) we can deduce the Hamiltonian of the system, apart
from a factor 1/2m. Indeed, if τ is the proper time, denoting by M the
l.h.s. of Eq. (2.100) divided by 1/2m, we get

∂M

∂pt
= − ∂M

∂W
=

1√
1− v2/c2

=
dt

dτ
= ṫ,

∂M

∂px
=

1√
1− v2/c2

dx

dt
=

dx

dτ
= ẋ,
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∂M

∂py
= ẏ,

∂M

∂pz
= ż,

∂M

∂t
=

e√
1− v2/c2

∂φ

∂t
− e

c

1√
1− v2/c2

dCx

dt

dx

dt

− e

c

1√
1− v2/c2

dCy

dt

dy

dt
− e

c

1√
1− v2/c2

dCz

dt

dz

dt

=
e

c

1√
1− v2/c2

[
dφ

dt
− 1

c

(
dCx

dt

dx

dt
+

dCy

dt

dy

dt
+

dCz

dt

dz

dt

)

− ∂φ

∂x

dx

dt
− ∂φ

∂y

dy

dt
− ∂φ

∂z

dz

dt

]

= e
dφ

dτ
+

d
dτ

mc2

√
1− v2/c2

=
dW

dτ
= Ẇ = − ṗt,

∂M

∂x
=

e√
1− v2/c2

∂φ

∂x

− e

c

1√
1− v2/c2

(
∂Cx

∂x

dx

dt
+

∂Cy

∂x

dy

dt
+

∂Cz

∂x

dz

dt

)

=
e√

1− v2/c2

∂φ

∂x
+

e

c

1√
1− v2/c2

∂Cx

∂t

− e

c

1√
1− v2/c2

dy

dt

(
∂Cy

∂x
− ∂Cx

∂y

)

+
e

c

1√
1− v2/c2

dz

dt

(
∂Cx

∂z
− ∂Cz

∂x

)
− e

c

1√
1− v2/c2

dCx

dt

= − e√
1− v2/c2

d
dt


 m√

1− v2/c2

dx

dt
+

e

c
Cx




= − dpx

dτ
= − ṗx,

∂M

∂y
= − ṗy,

∂M

∂z
= − ṗz.

In the expressions above, the quantity e is the electric charge of the
particle (including its sign); considering electrons with negative charge
and denoting now by e the absolute value of the charge, Eqs. (2.98) and
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(2.100) become

pt = − mc2

√
1− v2/c2

+ e φ = −W,

px =
m√

1− v2/c2

dx

dt
− e

c
Cx,

py =
m√

1− v2/c2

dy

dt
− e

c
Cy,

pz =
m√

1− v2/c2

dz

dt
− e

c
Cz;

(2.101)

−
(

W

c
+

e

c
φ

)2

+
(

px +
e

c
Cx

)2

+
(

py +
e

c
Cy

)2

+
(

pz +
e

c
Cz

)2

+ m2c2 = 0. (2.102)

7. THE FERMI FUNCTION 7

The Fermi function [i.e., the Thomas-Fermi function] is the solution of
the following differential equation under the given boundary conditions:

φ′′ =
φ3/2

√
x

, φ(0) = 1, φ(∞) = 0. (2.103)

The function is tabulated8 in Table 2.1.

7@ The subject of this section is more commonly known as the Thomas-Fermi function. The
author refers here to E.Fermi, Z. Phys. 48 (1928) 73.
8@ How the author obtained the numerical values of the now so-called Thomas-Fermi function
is not clear; but they are very accurate.
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Table 2.1. The Thomas-Fermi function φ(x), and its derivative, for several points.

x φ(x) −φ′(x)

0 1 1.58
0.05 0.936 1.15
0.1 0.882 0.995
0.2 0.793 0.79
0.3 0.721 0.66
0.4 0.660 0.56
0.5 0.607 0.49
0.6 0.561 0.43
0.7 0.521 0.38
0.8 0.486 0.34
0.9 0.453 0.31
1 0.424 0.29

x φ(x)

1.1 0.398
1.2 0.374
1.3 0.353
1.4 0.333
1.5 0.315
2 0.243

2.5 0.193
3 0.157

3.5 0.129
4 0.108
5 0.079
6 0.059
7 0.046
8 0.036

x φ(x)

9 0.029
10 0.024
12 0.017
14 0.012
16 0.009
18 0.007
20 0.0056
25 0.0034
30 0.0022
40 0.0011
50 0.0006
60 0.0004
80 0.0002
100 0.0001

Setting:9

t = 1 − 1
12

√
x3 φ, (2.104)

φ = exp
{∫

u(t) dt

}
, (2.105)

we find

du

dt
=

16
3(1− t)

+
(

8 +
1

3(1− t)

)
u

+
(

7
3
− 4t

)
u2 − 2

3
t(1− t) u3, (2.106)

u(0) = ∞, (2.107)

φ = exp
{∫ t

1
u(t) dt

}
. (2.108)

9@ The author looked for a parametric solution of the Thomas-Fermi equation in the form

x = x(t), φ = φ(t),

where t is a parameter. At this point, he performed the change of variables represented by
Eqs. (2.104) and (2.105). Schematically, the method was then the following: Consider x and
φ as functions of t, given (implicitly) by Eqs. (2.104) and (2.105), respectively. Afterwards,
evaluate from them their first and second derivatives with respect to t, and substitute the
results into the Thomas-Fermi equation (2.103); note that this equation contains derivatives
of φ with respect to x. The outcome is a first-order (Abel) differential equation for the
unknown function u(t), namely Eq. (2.106). Finally, the boundary conditions (2.103) are
taken into account in Eqs. (2.107) and (2.108).
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Setting instead10

t = 144−1/6 x1/2 φ1/6, (2.109)

u = − 3

√
16/3φ−4/3 φ′, (2.110)

the following relation is seen to hold

du

dt
= 8

tu2 − 1
1− t2u

. (2.111)

For x = 0, we have t = 0 and

u(0) = − 3

√
16/3φ′0.

For x = ∞, from the asymptotic expansion of φ we find u = 1, t = 1.
The branch of u corresponding to φ is defined at the points between
t = 0 and t = 1. This branch can be obtained by a series expansion
(which is always convergent) starting from t = 1. More precisely, setting
t1 = 1− t, we have11

u = a0 + a1 t1 + a2 t21 + a3 t31 + . . . , (2.112)

10@ In the remaining part of this section, only the substitutions in Eqs. (2.109) and (2.110)
are considered. Notice that the method used here by the author is quite different from the
previous one, although it looks similar. The author considered the parametric description of
x and φ:

x = x(t), φ = φ(x(t))

(note that now φ is a function of t only through its dependence on x). He then translated the
problem in terms of t and u(t), by use of Eqs. (2.109) and (2.110). The procedure he then
adopted is the following: The derivative with respect to t of Eq. (2.110) is taken [considering
φ = φ(x(t))] and the Thomas-Fermi equation in (2.103) is substituted in it. Then x (and
its t-derivative) from Eq. (2.109) is got and substituted into the relation just obtained. The
result is a first-order differential equation for u(t) (with the boundary conditions reported
in the text), which is solved by a series expansion (see below). Once u(t) was obtained, the
author did not deduce the expression for the Thomas-Fermi function φ from Eqs. (2.109)
and (2.110), but he looked again for a parametric solution, of the type

x = x(t), φ = φ(t),

setting

φ(t) = exp

{∫
w(t)dt

}
,

where w(t) is a function that can be expressed in terms of u(t) on substituting the above
expression for φ(t) into Eqs. (2.109) and (2.110). The final result is expressed by Eqs. (2.116)
and (2.117), where the boundary conditions are taken into account as well.
11@ In the original manuscript, the exponents of the variable t1 were forgotten.
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where a0 = 1, a1 = 9 − √
73, while the remaining coefficients can be

evaluated from the following linear “iterating” relation12

m∑

n=0

1
2

[(m− n + 1) am−n+1 (δn − (an − 2 an−1 + an−2))

+ (n + 1) an+1 (δm−n − (am−n − 2 am−n−1 + am−n−2))
+16 am−n an − 8 (am−n an−1 + an am−n − 1)] = 0. (2.114)

The first coefficients are as follows13

a0 ' 1.000000, a1 ' 0.455996,
a2 ' 0.304455, a3 ' 0.222180,
a4 ' 0.168213, a5 ' 0.129804,
a6 ' 0.101300, a7 ' 0.0796351,
a8 ' 0.0629230, a9 ' 0.0499053,

a10 ' 0.0396962.

Setting t1 = 1 in the expansion (2.112), from Eq. (2.110) we obtain

−φ′0 =
(

3
16

)1/3

(1 + a1 + a2 + . . .) . (2.115)

The series in the r.h.s. has all positive terms and has a geometric con-
vergence; the ratio between one term and the previous one tends to
approximately 4/5. Once u is known, we can obtain the parametric
equation for the function φ with simple quadratures. We find

φ = exp
{
−

∫ t

0

6ut

1− t2u
dt

}
, (2.116)

x = t2
(

144
φ

)1/3

. (2.117)

12@ The author solved Eq. (2.111) by series; he substituted (2.112) into (2.111), thus ob-
taining an “iterating” relation for the coefficients a1, a2, a3, . . . (the first coefficient a0 is
given by the boundary condition for x = 0). Using this procedure, one gets the iterative
relation reported in Eq. (2.114). Strangely enough, this is different from the one reported in
the original manuscript, which reads

a1(an − 2an−1 + an−2) + 2a2(an−1 − 2an−2 + an−3)

+3a3(an−2 − 2an−3 + an−4) + . . . + nan(a1 − 2a0)

+8(a0an + a1an−1 + . . . + ana0)

−8(a0an−1 + a1an−2 + . . . + an−1a0) = 0. (2.113)
However, the remaining discussion and the results presented in the manuscript are all correct,
thus indicating the presence only of an oversight [probably due to the particular hurry]. Notice
also that, as stated by the author, the equations determining the coefficients a2, a3, . . . are
linear; while the equation for a1 is quadratic, and we have to choose the smaller solution,
that is, a1 = 9−√73.
13@ In the original manuscript, only the first five coefficients were given.
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The other coefficients of the expansion are the following:14

a11 ' 0.0396962, a12 ' 0.0252838,
a13 ' 0.0202322, a14 ' 0.0162136,
a15 ' 0.0130101, a16 ' 0.0104518,
a17 ' 0.00840558, a18 ' 0.00676660,
a19 ' 0.00545216, a20 ' 0.00439678.

8. THE INTERATOMIC POTENTIAL
WITHOUT STATISTICS

To first order, the problem of the electron distribution in heavy atoms
may be solved as follows: Neglect the inversions of the periodic system
and suppose all the electron orbits are circular. From Pauli’s principle
we have two electrons in a circular orbit of quantum number 1, eight
electrons in an orbit of quantum number 2, and in general 2n2 electrons
in an orbit of quantum number n. If Z denotes the atomic number, then

Z =
n∑

1

2n2 (2.118)

and, for very large Z,

Z =
2
3

n3. (2.119)

The pth electron will be in an orbit having a quantum number

Q = 3

√
3p/2; (2.120)

and, since it feels an effective charge Z−p, its distance from the nucleus
will be

r =
h̄2 (3p/2)2/3

me2 (Z − p)
. (2.121)

In other words, if we set

x1 =
r

µ1
=

1
2

r

µ

(
π

2

)2/3

' x

1.480
, (2.122)

14@ In the original manuscript, the numerical values of all these coefficients were missing.
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with15

µ1 =
h̄2 (3/2)2/3

me2 Z1/3
' 6.93× 10−9 Z−1/3 (2.123)

and thus

µ =
(3π)2/3 h̄2

27/3 me2 Z1/3
' 4.7× 10−9 Z−1/3, (2.124)

and, furthermore, write the interatomic potential as

V1 =
Ze

r
φ1, (2.125)

we then obtain

x1 =
(1− φ1 + xφ′1)2/3

φ1 − xφ′1
. (2.126)

Indeed,
Z − p

Z
= φ1 − xφ′1. (2.127)

If we set16

t = φ1 − xφ′1 (2.128)

and thus

x1 =
(1− t)2/3

t
, (2.129)

then, knowing that φ1(∞) = 0, we’ll have17

φ1 = −x1

∫ x1

∞
t

x2
dx (2.130)

and, after integration,

φ1 =
9
4t

[
1 − (1 − t)2/3

]
− 3

2
+

t

4
, (2.131)

which, with

x = 2
(

2
π

)2/3 (1− t)2/3

t
, (2.132)

15@ The numerical value reported in the original manuscript is slightly different: 6.96×10−9.
As already stated, we usually rewrite all the equations in terms of the reduced Planck constant
h̄ instead of using h.
16@ Here the author applied the same method used in the previous section (a change of
variable) to find the Thomas-Fermi–like function φ1.
17@ Indeed, notice that

− t

x2
= − φ1

x2
+

φ′1
x

=
d

dx

φ1

x
.
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Table 2.2. Comparison between the functions φ and φ1 for several points.

x φ φ1

0 1 1
0.1 0.883 0.883
0.2 0.793 0.793
0.3 0.722 0.721
0.4 0.660 0.660
0.5 0.607 0.608
0.6 0.562 0.564
0.7 0.521 0.525
0.8 0.486 0.491
0.9 0.453 0.462
1 0.424 0.435
2 0.243 0.276

yields the parametric equation for φ1 in the measurement units intro-
duced by Fermi.

It is interesting to make a comparison with Fermi’s φ (see18 Table 2.2).
From this, we conclude that our approximate method yields a value for
the electron density near the nucleus that is roughly a sixth of the ac-
tual value, and, for the potential generated by the negative charges in
the vicinity of the nucleus, a value that is smaller than the actual one by
roughly 4%. The approximate potential derived above can thus be used
for the K and L series and, with a small error, also for the M series. It
fails though to give correct results for the outermost regions of the atom.
The reason for this is twofold: We have neglected the inversions of the
periodic system and we have approximated the elliptical with circular
orbits. The elliptical orbits are particularly relevant for strongly non-
Coulombian fields, such as the ones that are present in the outermost
regions, since, for any given total quantum number, they are closer to
the nucleus than the circular orbits. The expansions of φ and φ1 are

φ = 1 − 1.58 x +
4
3

x3/2 + . . . , (2.133)

φ1 = 1 − 1.52 x + 1.11x3/2 + . . . . (2.134)

18@ In the original manuscript, the numerical values corresponding to x =
0.2, 0.4, 0.5, 0.7, 0.8, 0.9 were missing. Note the presence of some slightly different numeri-
cal values for φ as compared to the ones in Table 2.1.
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9. APPLICATION OF THE FERMI
POTENTIAL

Let us take the unit charge to be the nuclear charge and the unit length
to be 1/µ, with, as usual,

µ =
(3π)2/3 h̄2

27/3 me2 Z1/3
= 4.7× 10−9 Z−1/3. (2.135)

In a heavy atom, the potential and the field at a distance x are

V =
φ

x
, (2.136)

E =
φ− xφ′

x2
. (2.137)

This means that at a distance exceeding x there exists a negative charge
φ− xφ′.

Let us now see how we can evaluate the potential and kinetic energy
of the atom by means of statistical arguments. Let us first understand
the relation between the initial slope of φ and the total energy. This
will be useful for verifying the results of the direct computation of the
potential and of the kinetic energy. From the expression for µ, we can
derive that the energy of the atom is proportional to the atomic number
to the power 7/3:

ε = K Z7/3. (2.138)

If, instead of the atomic number Z, we consider the number α = log Z,
we find that the differential of the energy is

dε =
7
3

εdα. (2.139)

We can think of this as the result of an addition of a positive charge
Ze dα to the nucleus, increasing the number of electrons of the quantity
Z dα. Since Ze = 1 in our practical measure units, it will suffice to add
to the nucleus a charge dα, and to add to the atom as many electrons as
is necessary in order to have an equal negative charge. Assuming –as is
likely– that the quantum numbers of the initial electrons are not altered
by this procedure19 (the adiabatic principle does not ensure this) and
that the variation in energy due to the introduction of new electrons in

19Even if this hypothesis was not correct, the conclusions we have drawn from it would still
hold, because, in any case, the energy variations would be of the second order.
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the outmost regions is of the second order, conservation of energy will
take the form

dε = V ′
0 dα, (2.140)

in which V ′
0 is the potential on the nucleus due to the electronic charges

only. The linear density of the negative charges at a distance x is xφ′′,
so that

V ′
0 =

∫ ∞

0

1
x

xφ′′ dx = φ′0. (2.141)

From Eqs. (2.139), (2.140), and (2.141) we infer

ε =
3
7

φ′0. (2.142)

Computing the potential energy is easy. While moving the electrons
to infinity with a flux that is constant at every point and proportional
to the initial density, the potential at a distance x varies linearly from
the value φ/x to 1/x. The potential energy thus is

U = −
∫ ∞

0

1 + φ

2x
xφ′′ dx = φ′0 +

1
2

∫ ∞

0
φ′2 dx. (2.143)

If instead we want to consider the sum of the potential energies from
each electron, we’ll have

U1 = −
∫ ∞

0

φ

x
xφ′′ dx = φ′0 +

∫ ∞

0
φ′2 dx. (2.144)

Computation of the kinetic energy is not as easy. This is due to the
fact that, although the pressure in a perfect gas has no meaning, nev-
ertheless it is possible to define a fictitious stress homography which is
formally equivalent to that of ordinary fluids. Since such a homography
should have a symmetry axis along the radial direction, we shall con-
sider only a radial pressure p′ and a transverse pressure p′′. The static
equations then reduce to

4π

[
x2 dp′

dx
+ 2x

(
p′ − p′′

)]
= − φφ′′

x
+ φ′φ′′. (2.145)

Denoting by T ′ the kinetic energy (per unit volume) due to the radial
component of the velocity and T ′′ that due to the transverse component,
the following relations hold:

p′ = 2T ′, (2.146)
p′′ = T ′′. (2.147)
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On multiplying the two sides of Eq. (2.145) by x/2, we find

4π

(
x3 dT ′

dx
+ 2x2 T ′ − x2 T ′′

)
=

1
2

(−φφ′′ + xφ′φ′′); (2.148)

and by multiplying this by dx and integrating between 0 and ∞, we find
the expression for the kinetic energy:

T =
∫ ∞

0
4π

(
T ′ + T ′′

)
dx = − 1

2
φ′0 −

1
4

∫ ∞

0
φ′2 dx. (2.149)

From Eqs. (2.143) and (2.149) we derive:

ε = T + U =
1
2

φ′0 +
1
4

∫ ∞

0
φ′2 dx, (2.150)

T

U
= − 1

2
. (2.151)

On comparing Eq. (2.142) with (2.150), we get20

∫ ∞

0
φ′2 dx = − 2

7
φ′0. (2.152)

We can then cast Eqs. (2.143), (2.144), and (2.149) in the very simple
form

U =
6
7

φ′0, (2.153)

U1 =
5
7

φ′0, (2.154)

T = − 3
7

φ′0, (2.155)

T

U
= − 1

2
, (2.156)

T

U1
= − 3

5
. (2.157)

The sum of the energies of every electron, which we shall indicate by
ε1 = T + U1, is 2/3 of the total energy of the atom:

ε =
3
7

φ′0, ε =
2
7

φ′0; (2.158)

20@ The original manuscript contains, at this point, the following paragraph: “I have not
been able to prove directly this relation by following a mathematical procedure. However, I
have directly verified that it is correct to within 1%. The following formulae are then exact
if (2.152) is exact; otherwise they are only approximate relations.” This paragraph has been
subsequently canceled, while the note “proven” appears.
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and, on going back to more conventional measure units, adopting the
Rydberg (2.18× 10−11 erg) as the measure unity for energy:

ε =
48φ′0

7 (6π)2/3
Z7/3 ' − 1.53Z7/3, (2.159)

ε1 =
32φ′0

7 (6π)2/3
Z7/3 ' − 1.02Z7/3. (2.160)

On comparing the last expression with experiments, we note that the
results obtained are slightly higher than the experimental values. This
is due to the fact that the above arguments predict an infinite charge
density in the vicinity of the nucleus, whereas for finite Z we should
have a finite density. For not too heavy elements, for which experimental
data are available, the error we make corresponds to the fundamental
state energy for one of the innermost electrons. On the other hand, the
relative error is much smaller for the heaviest elements, also because
of the relativistic correction which affects the system in the opposite
direction.

10. STATISTICAL BEHAVIOR OF THE
FUNDAMENTAL TERMS IN NEUTRAL
ATOMS

Having chosen, as usual, the unit length to be µ and the unit charge to
be that of the nucleus, the number of electrons at a distance x to x+dx
from the nucleus is

Z x φ′′dx, (2.161)

while the potential energy of any one of these electrons is

U = − 1
Z

φ

x
. (2.162)

Out of the electrons (2.161), only

Z xφ′′ k3/2 dx (2.163)

have a kinetic energy T < −kU (k < 1). It thus follows that there are

n =
∫ ∞

0
Z x φ′′

(
1 − x

φ
y

)3/2

dx, y =
T

Z
, (2.164)
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electrons having an energy smaller than T ; and, if we set α = n/Z,

α =
∫ ∞

0
x φ′′

(
1 − x

φ
y

)3/2

dx

=
∫ ∞

0

√
x (φ − x y)3/2 dx = F−1(y), (2.165)

y = F (α). (2.166)

Since T = Zy clearly corresponds to the (Zα)-th electron, the general
expression for the term corresponding to the nth electron can be derived,
having ordered the electrons by descending order, as follows:

T = Z F (α), with α = n/Z; (2.167)

and, using ordinary measure units, i.e., expressing the terms in Rydberg
units, we find

T =
16

(6π)2/3
Z4/3 F (α) = 2.2590Z4/3 F (α). (2.168)

11. NUMBERS TO THE FIFTH POWER 21

x x5

3.1 286.29
3.2 335.54
3.3 391.35
3.4 454.35
3.5 525.22
3.6 604.66
3.7 693.44
3.8 792.35
3.9 902.24
4.0 1024.

x x5

4.1 1158.56
4.2 1306.91
4.3 1470.08
4.4 1649.16
4.5 1845.28
4.6 2059.63
4.7 2293.45
4.8 2548.04
4.9 2824.75
5.0 3125.

x x5

5.1 3450.25
5.2 3802.04
5.3 4181.95
5.4 4591.65
5.5 5032.84
5.6 5507.32
5.7 6016.92
5.8 6563.58
5.9 7149.24
6.0 7776.

21@ In the original manuscript, the fifth powers of numbers with odd second digit were
missing, as well as those of the numbers from 8.5 to 10.0.
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x x5

6.1 8445.96
6.2 9161.33
6.3 9924.36
6.4 10737.42
6.5 11602.91
6.6 12523.33
6.7 13501.25
6.8 14539.34
6.9 15640.31
7.0 16807.

x x5

7.1 18042.29
7.2 19349.18
7.3 20730.72
7.4 22190.07
7.5 23730.47
7.6 25355.25
7.7 27067.84
7.8 28871.74
7.9 30770.56
8.0 32768.

x x5

8.1 34867.84
8.2 37073.98
8.3 39390.41
8.4 41821.19
8.5 44370.53
8.6 47042.70
8.7 49842.09
8.8 52773.19
8.9 55840.59
9.0 59049.

x x5

9.1 62403.21
9.2 65908.15
9.3 69568.84
9.4 73390.40
9.5 77378.09
9.6 81537.27
9.7 85873.40
9.8 90392.08
9.9 95099.00
10. 100000

12. DIATOMIC MOLECULE WITH
IDENTICAL NUCLEI

Let xy be a meridian cross section of the molecule, x its axis, and y the
equator line. Also, let V1 and V2 be the potentials generated by each of
the two atoms. Considering the effective potential in the form

V = V1 + V2 − α
2V1V2

V1 + V2
, (2.169)

α must obey the differential equation

∇2 V = V 3/2, (2.170)

where we have neglected the proportionality constant by a suitable choice
of measure units.

If we suppose, by approximation, that the value of α depends only
on the distance from the center of the molecule, and constraining Eq.
(2.170) to hold in the equatorial plane, we find the differential equation

V 3/2 = ∇2 V, (2.171)
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where

V = (2 − α) V1, (2.172)

∇2 V = 2∇2 V1 −
(

∇2 2V1V2

V1 + V2

)
α

− 2
(

V1

y
+

∂V1

∂y

)
dα

dy
− V1

d2α

dy2
. (2.173)

The constants are determined by requiring α(0) to be finite and the limit
of α for y = ∞ to be equal to 1.

The hypothesis that α only depends on the distance from the center
of the molecule is, however, too far from reality.

13. NUMBERS TO THE SIXTH POWER 22

x x6

1.1 1.8
1.2 3.
1.3 4.8
1.4 7.5
1.5 11.4
1.6 16.8
1.7 24.1
1.8 34.
1.9 47.
2. 64.

x x6

2.1 85.8
2.2 113.4
2.3 148.
2.4 191.1
2.5 244.1
2.6 308.9
2.7 387.4
2.8 481.9
2.9 594.8
3. 729.

x x6

3.1 887.5
3.2 1073.7
3.3 1291.5
3.4 1544.8
3.5 1838.3
3.6 2176.8
3.7 2565.7
3.8 3010.9
3.9 3518.7
4. 4096.

x x6

4.1 4750.1
4.2 5489.
4.3 6321.4
4.4 7256.3
4.5 8303.8
4.6 9474.3
4.7 10779.2
4.8 12230.6
4.9 13841.3
5. 15625.

x x6

5.1 17596.3
5.2 19770.6
5.3 22164.4
5.4 24794.9
5.5 27680.6
5.6 30841.
5.7 34296.4
5.8 38068.7
5.9 42180.5
6. 46656.

x x6

6.1 51520.4
6.2 56800.2
6.3 62523.5
6.4 68719.5
6.5 75418.9
6.6 82654.
6.7 90458.4
6.8 98867.5
6.9 107918.2
7. 117649.

22@ In the original manuscript, the sixth powers of numbers with odd second digit were
missing, as well as those for the numbers from 1.1 to 2.9 and from 8.5 to 10.0.
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x x6

7.1 128100.3
7.2 139314.1
7.3 151334.2
7.4 164206.5
7.5 177978.5
7.6 192699.9
7.7 208422.4
7.8 225199.6
7.9 243087.5
8. 262144.

x x6

8.1 282429.5
8.2 304006.7
8.3 326940.4
8.4 351298.
8.5 377149.5
8.6 404567.2
8.7 433626.2
8.8 464404.1
8.9 496981.3
9. 531441.

x x6

9.1 567869.3
9.2 606355.
9.3 646990.2
9.4 689869.8
9.5 735091.9
9.6 782757.8
9.7 832972.
9.8 885842.4
9.9 941480.1
10. 1000000

14. NUMBERS TO THE SEVENTH POWER 23

x x7

1.1 1.9
1.2 3.6
1.3 6.3
1.4 10.5
1.5 17.1
1.6 26.8
1.7 41.
1.8 61.2
1.9 89.4
2. 128.

x x7

2.1 180.1
2.2 249.4
2.3 340.5
2.4 458.6
2.5 610.4
2.6 803.2
2.7 1046.
2.8 1349.3
2.9 1725.
3. 2187.

x x7

3.1 2751.3
3.2 3436.
3.3 4261.8
3.4 5252.3
3.5 6433.9
3.6 7836.4
3.7 9493.2
3.8 11441.6
3.9 13723.1
4. 16384.

x x7

4.1 19475.4
4.2 23053.9
4.3 27181.9
4.4 31927.8
4.5 37366.9
4.6 43581.8
4.7 50662.3
4.8 58706.8
4.9 67822.3
5. 78125.

x x7

5.1 89741.1
5.2 102807.2
5.3 117471.1
5.4 133892.5
5.5 152243.5
5.6 172709.5
5.7 195489.7
5.8 220798.4
5.9 248865.1
6. 279936.

x x7

6.1 314274.3
6.2 352161.5
6.3 393898.1
6.4 439804.7
6.5 490222.8
6.6 545516.1
6.7 606071.2
6.8 672298.9
6.9 744635.3
7. 823543.

23@ In the original manuscript, the seventh powers of numbers with odd second digit were
missing, as well as those for the numbers from 1.1 to 2.9 and from 8.5 to 10.0.
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x x7

7.1 909512.
7.2 1003061.3
7.3 1104739.9
7.4 1215128.
7.5 1334838.9
7.6 1464519.5
7.7 1604852.3
7.8 1756556.9
7.9 1920390.9
8. 2097152.

x x7

8.1 2287679.2
8.2 2492854.7
8.3 2713605.1
8.4 2950903.5
8.5 3205770.9
8.6 3479278.2
8.7 3772547.9
8.8 4086756.
8.9 4423133.5
9. 4782969.

x x7

9.1 5167610.2
9.2 5578466.
9.3 6017008.7
9.4 6484775.9
9.5 6983373.
9.6 7514474.8
9.7 8079828.4
9.8 8681255.3
9.9 9320653.5
10. 10000000

15. SECOND APPROXIMATION FOR THE
POTENTIAL INSIDE THE ATOM

From the statistical relation between the effective potential and the den-
sity,24

ρ = K (V − C)3/2 , (2.174)

combined with the Poisson equation for the local potential:

∇2 V0 = − 4π ρ, (2.175)

and with the relation (only approximately verified)

∇2 V =
Z − n− 1

Z − n
∇2 V0 (2.176)

for the atom with atomic number Z that has been ionized n times, we
deduce

∇2 V = − 4π ρ
Z − n− 1

Z − n
. (2.177)

The potential inside the ion is

V =
Ze

r
φ

(
r

µ

)
+ C, (2.178)

where

µ = 0.47 Z−1/3
(

Z − n

Z − n− 1

)2/3 o
A, (2.179)

24@ Here C is an integration constant; see below.
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φ′′ =
φ3/2

√
x

, φ(0) = 1, (2.180)

−x0 φ′(x0) =
n + 1

2
, φ(x0) = 0, (2.181)

C =
(n + 1)e

µx0
. (2.182)

16. ATOMIC POLARIZABILITY

The potential inside an atom satisfies, to first and second order (as shown
in the previous section), an equation of the kind

∇2 V = K (V − C)3/2 . (2.183)

Let us now consider the atom in a weak field E. Because of the mu-
tual dependence between the variations of the atomic quantities and the
applied field,25 if the latter is weak, we deduce

δV = − f(r) E r cos(r·E), (2.184)
δC = 0. (2.185)

Let us suppose that the field −E lies along the x axis. We then have

V1 = V + E xf(r), (2.186)

∇2 V1 = ∇2 V + E

(
xf ′′(r) + 3

x

r
f ′(r)

)
; (2.187)

(V1 − C) = (V − C) + E x f(r), (2.188)

(V1 − C)3/2 = (V − C)3/2 +
3
2

(V − C)1/2 E x f(r) + . . . ; (2.189)

f ′′(r) + 3
1
r

f ′(r) =
3
2

K (V − C)1/2 f(r), (2.190)

r3/2 f ′′(r) + 3 r1/2 f ′(r) =
3
2

K (V − C)1/2 r3/2 f(r); (2.191)

25@ The original manuscript is corrupted, and our interpretation is only plausible.
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and, having set

y = r3/2 f(r), f(r) =
y

r3/2
, (2.192)

y′′ =
3
2

(
K
√

V − C +
1

2r2

)
y, (2.193)

Eq. (2.186) becomes
V1 = V +

x

r3/2
y E. (2.194)

The condition that f(0) be finite allows us to obtain f or y up to a
constant factor. This may then be determined by the requirement that
the average value of −∂V/∂x on the surface of the ion be equal to −E,
that is, to the external field. This requirement reads

f(r0) +
1
3

r0 f ′(r0) = 1. (2.195)

The electric moment of the ion is then

M = E r3
0 (1 − f(r0)) . (2.196)

17. FOURIER EXPANSIONS AND
INTEGRALS

(1) For x > 0, we have

e−kx =
∫ ∞

0

4k

k2 + 4πν2
cos(2πνx) dν

=
∫ ∞

0

8πν

k2 + 4πν2
sin(2πνx) dν

=
∫ ∞

−∞
2k

k2 + 4πν2
e2πνix dν

=
∫ ∞

−∞
1
2i

8πν

k2 + 4πν2
e2πνix dν;

for x < 0, on the other hand, the four integrals yield respectively
the values e+kx, −e+kx, e+kx, −e+kx. For x > −α, we have

e−kx = ekα
∫ ∞

−∞
2k

k2 + 4πν2
e2πνi(x+α) dν

= ekα
∫ ∞

−∞
1
2i

8πν

k2 + 4πν2
e2πνi(x+α) dν, etc.;
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and, by letting α → ∞, the discontinuity at the point x = −α is
shifted further and further to the left.

(2) We have:

e−kx2
= 2

√
π

k

∫ ∞

0
e−π2ν2/k cos(2πνx) dν,

e−x2
= 2

√
π

∫ ∞

0
e−π2ν2

cos(2πνx) dν

=
1√
π

∫ ∞

0
e−w2/4 cos(wx) dw.

(3) We have:

1
π

∫ ∞

−∞
sin[2π(ν − ν0)a]

ν − ν0
e2πνix dν =

{
e2πν0ix, x2 < a2,
0, x2 > a2.

1
π

∫ ∞

−∞

(
sin[2π(ν − ν0)a]

ν − ν0
+

sin[2π(ν + ν0)a]
ν + ν0

)
cos(2πνx) dν

=
{

cos(2πν0x), x2 < a2,
0, x2 > a2.

1
π

∫ ∞

−∞

(
sin[2π(ν − ν0)a]

ν − ν0
− sin[2π(ν + ν0)a]

ν + ν0

)
sin(2πνx) dν

=
{

sin(2πν0x), x2 < a2,
0, x2 > a2.

If a = k/2ν0, with integer k, the integrals become, respectively,

(−1)k 1
π

∫ ∞

−∞
sin(kπν/ν0)

ν − ν0
e2πνix dν,

(−1)k 1
π

∫ ∞

−∞
2ν0 sin(kπν/ν0)

ν2 − ν2
0

cos(2πνx) dν,

(−1)k 1
π

∫ ∞

−∞
2ν0 sin(kπν/ν0)

ν2 − ν2
0

sin(2πνx) dν.
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18. BLACKBODY

Let E be the energy emitted per cm2 and per unit time, while Eν or Eλ

denotes the same energy per unit frequency or wavelength. We have26

E(T ) =
∫ ∞

0
Eν(ν, T ) dν =

∫ ∞

0
Eλ(λ, T ) dλ, (2.197)

Eν =
2πhν3

c2

1
ehν/kT − 1

, (2.198)

Eλ =
2πc2h

λ5

1
ehc/λkT − 1

, (2.199)

where

Eλ =
c

λ2
Eν , (2.200)

Eν =
c

ν2
Eλ. (2.201)

Then27 (see Eq. (1.371)):

E(T ) =
∫ ∞

0

2πhν3

c2

dν

ehν/kT − 1

=
2πk4T 4

c2h3

∫ ∞

0

1
ehν/kT − 1

(
hν

kT

)3

d
(

hν

kT

)

=
2πk4T 4

c2h3

π4

15
=

2
15

π5

c2h3
k4T 4

' 5.67 × 10−5 T 4 erg
cm2s

= 5.67 × 10−12 T 4 W
cm2

. (2.202)

The energy per unit volume is

E′ =
4
c

E =
8
15

π5

c3h3
k4T 4. (2.203)

If there is thermal equilibrium with the environment, the radiation pres-
sure is28

p =
1
3

E′ =
4
3

E

c
=

8
45

π5

c3h3
k4T 4 ' 2.52 × 10−15 T 4 erg

cm3
. (2.204)

26@ In this section we use the Planck constant h, instead of the reduced constant h̄, as in
the original manuscript.
27@ The numerical value reported in the original manuscript was slightly different (5.55
instead of 5.67).
28@ The numerical value reported in the original manuscript is slightly different: 2.47 instead
of 2.52.
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If there are other blackbodies at zero temperature in the vicinity of our
blackbody or if, more generally, our blackbody is in a space free of other
radiation, we have to divide the above expression by 2.

19. RADIATION THEORY (PART 1)

The radiation within a region of volume Ω bounded by reflecting walls
can be decomposed according to its characteristic frequencies. Since
the radiation of a given frequency can be decomposed into two linearly
polarized components, the number of such frequencies in the interval
(ν, ν + dν) is

dN = Ω
8πν2

c3
dν. (2.205)

This means that the density of waves in the volume–frequency space is
2/c3. Assuming that a stationary wave represents a stationary state of
a light quantum of energy E with E = hν, we have29

dN = Ω
8πE2

c3h3
dE. (2.206)

On the other hand, if α1, α2, α3 are the direction cosines of the trajectory
of the quantum, we also have

px =
E

c
cosα1, py =

E

c
cosα2, pz =

E

c
cosα3, (2.207)

and thus
dN =

8πΩ
h3

(p2
x + p2

y + p2
z) d

√
p2

x + p2
y + p2

z, (2.208)

that is, the density of the stationary states in the phase space of a gas of
light quanta is 2/h3, exactly as for an electron gas. The analogy cannot
be carried further, since the former obeys Einstein’s statistics, while the
latter obeys Fermi’s statistics. Let

C = C0 sin (2πνt− α) A (2.209)

be the vector potential corresponding to a given frequency, quantity A
being a unit vector, C0 a function of the position, and α a constant. We
set

C = uA, with u = C0 sin (2πνt− α) , (2.210)

29@ In this section we use the Planck constant h instead of the reduced one h̄, as in the
original manuscript.
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and denote by u and C0 the mean quadratic values of these quantities
in the volume Ω:

u = C0 sin (2πνt− α) . (2.211)

The total energy of the electric field at time t is

We =
Ω
8π

4π2ν2

c2
C

2
0 cos2 (2πνt− α) =

Ω
8π

u′2

c2
, (2.212)

while the energy of the magnetic field is

Wm =
Ω
8π

4π2ν2

c2
C

2
0 sin2 (2πνt− α) = =

Ω
8π

4π2ν2

c2
u2. (2.213)

The total energy then becomes

W =
Ω

8πc2

(
4π2ν2 u2 + u′2

)
. (2.214)

Let us set

q = u

√
Ω

4πc2
=

u

2c

√
Ω
π

, (2.215)

so that we infer
W = π2ν2 q2 +

1
2

q̇2; (2.216)

and, by putting

p =
∂W

∂q
= q̇, (2.217)

we find
W =

1
2

(
p2 + 4π2ν2 q2

)
. (2.218)

This expression can be considered as the Hamiltonian of the system. On
setting

Hs =
1
2

(
p2

s + 4π2ν2 q2
s

)
,

where the index s = 1, 2, 3, . . . labels all the possible stationary waves,
and denoting by H0 = W0 the Hamiltonian of an atom inside the region
Ω, the overall Hamiltonian —when mutual interaction is neglected—
becomes

H =
∞∑

s=0

Hs = W. (2.219)

Let us now consider also the interaction and set H ′
0 = H0 + interaction.

In first approximation, and when only one electron interacts with the
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radiation, quantity H ′
0 can be deduced from the relativistic Hamiltonian

for the electron30 (see Sec. 2.6):

W0 = −e φ +
1

2m
p2

i +
e

mc
pi Ci = H0 +

e

mc
pi Ci. (2.220)

It does not make any difference to use pi Ci or Ci pi because pi Ci−Ci pi =
(h/2πi)∇ ·C = 0, as the potential φ inside the atom is constant and thus

∇ ·C = − 1
c

∂φ

∂t
= 0.

The total Hamiltonian, including the interaction, then becomes

W =
∞∑

s=0

Hs +
∞∑

i=1

e

mc
pi Ci. (2.221)

Let us suppose that for t = 0 the region Ω is free of radiation. Then,
classically, the electron will execute a damped motion. In a first approx-
imation we can assume that such a motion is periodic; formally, this can
be achieved by introducing, in the Hamiltonian, small terms depending
only on time and on the p and q coordinates of the electron. Let us
decompose its motion in harmonics and consider one of them, directed
along the x axis with frequency ν0. In the expansion of px , the term

p0x = p0 sin (2π ν0 t + β) (2.222)

will appear. Leaving out the other harmonics and focusing on the elec-
tromagnetic oscillator labeled by s, the Hamiltonian may be written as

W =
1
2

(
p2

s + 4π2ν2
s q2

s

)
+

e

mc
Cs

x p0x

+terms independent of qs and ps. (2.223)

Cs
x is the component of the vector potential along x and is proportional

to qs at a certain point. Let us set

Cx
s = bx

s qs. (2.224)

In general, bs depends on the position. Assuming that the oscillations
of the electron have a small amplitude with respect to the wavelength
of the emitted waves, we may suppose that bs is constant and equal to

30@ Obviously, the author has here assumed H′
0 = W0



124 ETTORE MAJORANA: NOTES ON THEORETICAL PHYSICS

its value at the center of the atom. Its mean squared value, obtained by
averaging over many neighboring frequencies, is31

bx2
s =

1
3

u2
s

q2
s

=
4
3

πc2

Ω
. (2.225)

On substituting Eqs. (2.224) and (2.222) into Eq. (2.223), we obtain

W =
1
2

(
p2

s + 4π2ν2
s q2

s

)
+

e

mc
bs
x p0 sin (2πν0t + β) qs

+terms independent of qs and ps. (2.226)

We then deduce

q̇s = ps, (2.227)

ṗs = − 4π2 ν2
s qs − e

mc
bs
x p0 sin (2πν0t + β) , (2.228)

q̈s + 4π2 ν2
s qs = − e

mc
bs
x p0 sin (2πν0t + β) , (2.229)

the last of which has the general integral

qs = As sin 2πνst + Bs cos 2πνst

− e

mc

bs
x p0 sin (2πν0t + β)

4π2(ν2
s − ν2

0)
. (2.230)

Let us suppose for simplicity that β = 0 and impose the restriction that
at t = 0 there is no radiation:

qs(0) = q̇s(0) = 0. (2.231)

This is equivalent to choosing the origin of time at the instant −β/2πν0

and assuming that the region Ω is empty at that time. On setting
t1 = t + (β/2πν0) and rewriting t in place of t1, Eq. (2.230) becomes

qs = As sin 2πνst + Bs cos 2πνst

− e

mc

bs
x p0 sin 2πν0t

4π2(ν2
s − ν2

0)
, (2.232)

and the constraints (2.231) are to be satisfied with respect to the new
independent variable. We thus find

Bs = 0, As =
ν0

νs

e

mc

bs
x p0

4π2(ν2
s − ν2

0)
, (2.233)

31@ The following formula is derived from averaging the square of Eq. (2.224) and using Eqs.
(2.211) and (2.215). Note that in the original manuscript the exponent 2 of us was missing.
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qs =
e

mc

bs
x p0 sin 2πν0t

4π2(ν2
s − ν2

0)

(
ν0

νs
sin 2πνst − sin 2πν0t

)

=
e

mc

bs
x p0 sin 2πν0t

4π2(ν2
s − ν2

0)

(
sin 2πνst − sin 2πν0t

− νs − ν0

νs
sin 2πνst

)

=
e

mc

bs
x p0 sin 2πν0t

4π2(ν2
s − ν2

0)

(
2 cos 2π

νs + ν0

2
t sin 2π

νs − ν0

2
t

− νs − ν0

νs
sin 2πνst

)
. (2.234)

If Ws indicates the energy accumulated at time t in the sth oscillator,
then the total energy will be

∑
s

Ws =
∫ νs=M

νs=0
Ws dN =

8π

c3

∫ M

0
Ws n2

s Ωdνs. (2.235)

The integral must be evaluated over a large but finite range of frequen-
cies. This is due to the fact that the previous equations were derived
under the assumption that the excited wavelength were much larger than
the amplitude of the oscillations of the electron. Thus the frequencies
could not be arbitrarily large. However,

∑
s Ws tends to grow linearly

with time and can thus exceed such a limit; on the other hand, each Ws

has a maximum (as one can see from Eq. (2.234)), but this does not
contradict what was said above since, if we replace Ws with its maxi-
mum values, the integral in Eq. (2.235) diverges. However, by removing
from the integration domain a small region containing ν0, the integral
becomes convergent. This means that, after a long enough time, almost
all the emitted radiation will be contained in an arbitrarily small region
around ν0. The frequencies νs of interest are thus very close to ν0, so
that in Eq. (2.234) we can replace (νs + ν0)/2 with ν0. 32 Hence:

qs =
e

mc

b2
sp0t

8π2ν0(νs − ν0)

×
[
2 sinπ(νs − ν0)t cos 2πν0t − νs − ν0

ν0
sin 2πν0t

]
. (2.237)

32@ The original manuscript then continued as follows: “We can also replace sin 2π(νs−ν0)/2
with 2π(νs − ν0)/2. Hence

qs =
e

mc

bsp0

4π2(ν2
s − ν2

0 )

(
2π(νs − ν0)t cos 2πν0t − νs − ν0

ν0
sin 2πν0

)
. (2.236)

[It continues in the next page.]
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As we shall see, for large t the frequency range in which the radiation
has a relevant effect is of the order 1/t. Thus the first term in brackets
is, in general, of order unity, whereas the second one is arbitrarily small
as t tends to infinity. In this limit, it therefore follows that

qs =
e

mc

bx
s p0

4π2ν0

sinπ(νs − ν0)t
νs − ν0

cos 2πν0t, (2.238)

ps = − 2πν0
e

mc

bx
s p0

4π2ν0

sinπ(νs − ν0)t
νs − ν0

cos 2πν0t, (2.239)

Ws =
1
2

(
p2

s + 4π2ν2
s q2

s

)

= 2π2ν2
0

e2

m2c2

bx2
s p2

0

16π4ν2
0

sin2 π(νs − ν0)t
(νs − ν0)2

, (2.240)

∑
Ws =

∫
2π2ν2

0

e2

m2c2

bx2
s p2

0

16π4ν2
0

sin2 π(νs − ν0)t
(νs − ν0)2

8πν2
0

c3
Ωdνs

=
Ω

πc3

e2ν2
0

m2c2
p2
0 bx2

s

∫ sin2 π(νs − ν0)t
(νs − ν0)2

dνs

=
Ω

πc3

e2ν2
0

m2c2
p2
0

4
3

πc2

Ω
π2t

=
4
3

e2ν2
0

m2c3
π2 p2

0 t. (2.241)

For the electron motion we have

px = ẋm, (2.246)

32We can assume that the quantity ν0t is large, that is, we can consider a large enough
time with respect to the oscillation period. In this case, the second term in the brackets is
negligible and we obtain

qs =
e

mc

bsp0t

2π(νs − ν0)
cos 2πν0t, (2.242)

ps =
e

mc

bsp0t

2π(νs − ν0)

(
− 2πν0 sin 2πν0t +

cos 2πν0t

t

)
. (2.243)

Neglecting the last term in the expression for ps for large t,

ps = − 2πν0
e

mc

bsp0t

2π(νs − ν0)
sin 2πν0t; (2.244)

we thus obtain

Ws =
1

2

(
p2

s + 4π2ν2
s q2

s

)
= 2π2ν2

s

e2

m2c2
b2sp2

0t2

4π2(ν2
s − ν2

0 )
. (2.245)

However, the previous expressions do not hold when the quantity (νs − ν0)t is large, since
we have replaced sin π(νs − ν0)t with π(νs − ν0)t.”

However, this part was crossed out by the author.
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p2
x =

m2

4π2ν2
0

ẍ2, (2.247)

p2
0 = 2 p2

x =
m2

2π2ν2
0

ẍ2, (2.248)

so that
∑

Ws =
2
3

e2ẍ2

c3
t, (2.249)

while the energy radiated per unit time is given by

E =
∑

Ẇs =
2
3

e2ẍ2

c3
, (2.250)

in agreement with Balmer’s formula.

20. MOMENT OF INERTIA OF THE EARTH

Let m be the mass of the Earth (using measure units such that the
Newton gravitational constant is equal to 1), Ip the polar moment of
inertia, and Ie the equatorial moment of inertia. The potential of the
gravitational force in an external point at a distance R from the center
O of the Earth, and such that the vector R makes an angle θ with the
equator, is (see Sec. 1.7):

V =
m

R
+

1
R3

(
I0 − 3

2
Iθ

)
, (2.251)

where I0 is the central moment of inertia and Iθ the moment of inertia
with respect to an axis forming an angle θ with the equator. Since

I0 = Ie +
1
2
Ip =

3
2
Ie +

1
2

(Ip − Ie) , (2.252)

Iθ = Ie cos2 θ + Ip sin2 θ = Ie + (Ip − Ie) sin2 θ, (2.253)

it follows that

V =
m

R
+

1
R3

(Ip − Ie)
(

1
2
− 3

2
sin2 θ

)
. (2.254)

To evaluate Ip and Ie, we can use the fact that the potential on the
Earth surface takes the same value at the pole and at the equator, once
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the centrifugal force is taken into account. Denoting by re and rp the
equatorial and polar radii, respectively, to first order the potentials at
the equator and at the pole read

Ve =
m

re
+

1
2
Ip − Ie

r3
+

β

2
m

r
, (2.255)

Vp =
m

rp
− Ip − Ie

r3
, (2.256)

where quantity r is the mean radius of the Earth, which replaces re, rp

and similar quantities in the correction terms to first order. Using (again
in first approximation)

1
rp
− 1

re
=

s

r
, (2.257)

where s is the flattening factor of the Earth, we get

m

r

(
s − β

2

)
=

3
2
Ip − Ie

r3
, (2.258)

Ip − Ie =
2
3

(
s − β

2

)
mr2, (2.259)

or, setting s = 1/297 and β = 1/289,

Ip − Ie =
1

916
mr2. (2.260)

Substituting this results in Eq. (2.254), we obtain

V =
m

R
+

1
R3

[
1

916
mr2

(
1
2
− 3

2
sin2 θ

)]
. (2.261)

The potential acting on a celestial body of mass M therefore is

M V =
Mm

R
+

M

R3

[
1

916
mr2

(
1
2
− 3

2
sin2 θ

)]
. (2.262)

Thus, a component of the force along the radius vector is present; its
magnitude is

F = − 3
916

Mmr2

R4
sin θ cos θ, (2.263)

and on Earth the following torque acts:

C =
3

916
Mmr2

R3
sin θ cos θ. (2.264)

This torque would move the terrestrial axis towards the celestial merid-
ian of the perturbing star. So, if the latter were the Sun, at the solstices
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the axis of the Earth would be drawn towards the pole of the ecliptic.
At other times of the year, the meridian in which the torque lies would
be at some angle with respect to the meridian normal to the ecliptic.
Denoting by ε the latter angle, and with α and β the inclination of the
terrestrial axis and the angle that the Sun determines on the ecliptic
after the spring equinox, respectively, we have

ε = 90 + φ, (2.265)

where φ is the longitude measured, as is customary, from the meridian
normal to that containing the pole of the ecliptic (that is. from the
meridian where the Sun is at the equinox), and

tanφ = tanβ cosα. (2.266)

If we describe the Earth’s motion as that of a gyroscope, its axis will
move all the time perpendicularly to the meridian containing the star,
with the angular velocity:

η =
C

Ipω
, (2.267)

ω being the angular speed of the Earth. The components normal to the
meridian containing the pole of the ecliptic are

η1 =
C

Ipω
cos ε = − C

Ipω
sinφ =

C

Ipω

tanβ cosα√
1 + tan2 β cos2 α

, (2.268)

η2 =
C

Ipω
sin ε =

C

Ipω
cosφ =

C

Ipω

1√
1 + tan2 β cos2 α

. (2.269)

On replacing C with Eq. (2.264) and recalling that sin θ = sinα sinβ,
we find

η1 =
3

916
Mmr2

R3Ipω
sinα cosα

tan β sinβ
√

1− sin2 α sin2 β
√

1 + tan2 β cos2 α
,(2.270)

η2 =
3

916
Mmr2

R3Ipω
sinα

sinβ
√

1− sin2 α sin2 β
√

1 + tan2 β cos2 α
. (2.271)

Neglecting the eccentricity of the orbit, the average value of η2 is zero
since on changing β into −β, quantity η2 changes sign.

If α is very small, the foregoing formulae become

φ = β, (2.272)
θ = α sinβ, (2.273)
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η =
3

916
Mmr2

R3Ipω
α sinβ, (2.274)

η1 =
3

916
Mmr2

R3Ipω
α sin2 β, (2.275)

η2 =
3

916
Mmr2

R3Ipω
α sinβ cosβ. (2.276)

Assuming a circular orbit, the average values of η1 and η2 are

η1 =
1
2

3
916

Mmr2

R3Ipω
α, (2.277)

η2 = 0. (2.278)

The axis of the Earth rotates around the axis of the ecliptic with an
angular velocity n = η1/ sinα which, for small α, is

n =
η1

α
=

1
2

3
916

Mmr2

R3Ipω
=

3
2

M

R3ω

Ip − Ie

Ip
. (2.279)

After having added the effect of the Moon and having neglected the
nutation, we get

n =
3
2
Ip − Ie

Ip

(
M

R3ω
+

M ′

R′3ω

)
(2.280)

and, from this,

Ip =
3
2

(Ip − Ie)
(

M

R3
+

M ′

R′3

)
1
n

1
ω

. (2.281)

If time is measured in years/2π, we have

M

R3
= 1,

M ′

R′3 = 2.25,
1
n

= 25800, ω = 366. (2.282)

It follows that
Ip ' 344 (Ip − Ie) (2.283)

and, since Ip − Ie = mr2/916,

Ip =
344
916

mr2 = 0.375mr2, (2.284)

which is too high a value, since Ip/(Ip − Ie) = 305.
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21. RADIATION THEORY (PART 2)

Let us consider once more the Hamiltonian

H0 +
∞∑

s=1

(
1
2

p2
s + 2π2 ν2

s q2
s

)
+

∞∑

s=1

e

mc
ps·bs qs, (2.285)

bs being a vector33 that depends on position and such that its average
value is

|bs|2 =
4πc2

Ω
. (2.286)

Let ψn be the eigenfunction of the nth stationary state of the unper-
turbed atom and ψrs

s the eigenfunction of the rth state of the sth unper-
turbed oscillator. Neglecting any interaction, the eigenfunction of the
whole system will be

ψ =
∑

n,r1,r2,...

an,r1,r2,r3,r4,...ri... ψn ψr1
1 ψr2

2 . . . ψri
r . . . , (2.287)

where the quantities a are constant. However, due to interactions, these
a will depend on time, in accordance with the following differential equa-
tions

h̄

i
ȧn,r1,r2,... =

∑
an′,r′1,r′2,... An,r1,r2,...,n′,r′1,r′2,..., (2.288)

A denoting the interaction matrix. It is immediately clear that the only
terms that can be different from zero are those corresponding to an atom
changing its state and to the quantum number of the oscillators changing
by one unit. For r′s = rs±1 we have

An,r1,r2,...rs...,n′,r1,r2,...r′s...

=
e

c
2πi (νn − νn′)

(
bx
sηx

nn′ + by
sη

y
nn′ + bz

sη
z
nn′

)

×
√

h̄(rs + 1/2± 1/2)
4πνs

exp {2πi(νn − νn′±νs)t}, (2.289)

wherein ηx, ηy, ηz are the polarization matrices along the x, y, z axis of
the unperturbed atom, respectively, and νn are the levels of the atom,
that is, νn = En/h. We have assumed bs to be constant.

33@ Note that here the author considered a sort of generalization of what had been done in
Sec. 2.19: The vector potential is written as C = bq, treating q as a scalar quantity (in a
certain sense).
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Let us suppose that the atom is initially in the state n, while the
oscillators are in the ground state. It will then suffice to take all the
quantities a to be zero, with the exception of

an,0,0,0,... = 1. (2.290)

After a quite short time we shall have

ȧn′,0,...,0,1,0,... =
i

h̄
An′,0,...,0,1,0,...,n,0,...,0,...

= − e

c

2π

h̄
νnn′ bs·ηnn′

√
h̄

4πνs
exp {2πi(νnn′ − νs)t}, (2.291)

setting νnn′ = νn′ − νn. Thus

an′,0,...,0,1,0,... =
e

c

i

h̄
νnn′ bs·ηnn′

√
h̄

4πνs

e2πi(νnn′−νs)t − 1
νnn′ − νs

, (2.292)

so that

|an′,0,...,0,1,0,...|2 =
e2

c2

1
h̄2 ν2

nn′ |bs·ηnn′ |2
√

h̄

4πνs

4 sin2 π(νnn′ − νs)t
(νnn′ − νs)2

=
e2

c2

ν2
nn′

πh̄νs
|bs·ηnn′ |2

sin2 π(νnn′ − νs)t
(νnn′ − νs)2

. (2.293)

Since the average value of |bs·ηnn′ |2 is

|bs·ηnn′ |2 =
4
3

πc2

Ω
|η|2 (2.294)

and the value of νs is close to νnn′ , the probability to find the atom in
the state n′ is

P =
4
3

e2

c2

πc2

Ω
|η|2 νnn′

1
πh̄

∫ 8πν2
nn′Ω
c3

sin2 π(νnn′ − νs)t
(νnn′ − νs)2

dνs

=
64
3

2π5

h̄

e2|η|2ν3
nn′

c3
t, (2.295)

while the depopulation rate due to the n → n′ transition is34

dP

dt
=

64π4e2ν3
nn′ |η|2

3hc3
=

16π4e2ν4
nn′ |2η|2

3c3

1
hνnn′

. (2.296)

34@ In the last formula we have restored the Planck constant h, as in the original manuscript.
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22. ABOUT MATRICES

A physical quantity A can be represented by a linear operator that trans-
forms vectors into vectors, in a space with infinite dimensions. Let us fix
an arbitrary reference frame and denote by ψ1, ψ2, . . . ,ψn, . . . the unit
vectors along the various axes. They may also be complex. In this case
the orthogonality relations will be

ψi·ψ∗
k = δik. (2.297)

A matrix Ars can be associated with the operator A, but this matrix will
depend on the choice of the reference frame. Its elements35 are defined
by the relation36

A ψs = Ars ψr. (2.300)

Let us introduce a new set of reference axes and let χ1,χ2, . . . ,χn, . . .
be the unit vectors along these new axes. For real axes, the operator S
transforming the vectors ψ into the vectors χ reduces to a rotation. Its
matrix is defined by the relation

χk = Sik ψi, (2.301)

and, due to Eq. (2.297), which also holds for χ,

Sik S∗il = δkl. (2.302)

If S−1 is the inverse operator of S, we have

ψj = S−1
kj χk (2.303)

and, substituting in Eq. (2.301),

χk = Sik S−1
li χl. (2.304)

Thus
Sik S−1

li = δkl, (2.305)

35@ Notice that the author denoted by the same symbol the operator and its representative
matrix. However, any confusion is avoided by noting that a matrix has always two subscripts
labelling explicitly the row and the column.
36The multiplication rule can be deduced as follows

A B s = A Brs r = Atr Brs r, (2.298)
that is,

(A B)ts = Atr Brs. (2.299)
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and this is satisfied if
S−1

rs = S∗sr. (2.306)

In fact, in this case,
Sik S−1

li = Sik S∗il. (2.307)

Equation (2.305) can be immediately derived from the relation

S−1 S = 1, (2.308)

which can be written in the form

S−1
li Sik = Sik S−1

li = δkl. (2.309)

Then, from Eq. (2.308), it follows that

Ski S
−1
il = Ski S

∗
li = δkl. (2.310)

This relation is similar to Eq. (2.302), but it refers to the rows rather
than to the columns.

Let us go back to Eq. (2.300) and replace the vectors ψ with their
expressions from Eq. (2.303):

AS−1
rs χr = Ars S−1

ir χi; (2.311)

on setting37

A χs = A′rs χr, (2.312)
A′ir S−1

rs χi = Ars S−1
ir χi, (2.313)

they become

A′ir S−1
rs = S−1

ir Ars, (2.314)
A′ir S−1

rs Ssj = S−1
ir Ars Ssj , (2.315)

A′ij = S−1
ir Ars Ssj . (2.316)

In the same way, on substituting Eq. (2.301) into Eq. (2.312), we find

ASrs ψr = A′rs Sir ψi, (2.317)
Air Srs ψi = A′rs Sir ψi, (2.318)

Air Srs = Sir A′rs, (2.319)
Aij = Sir A′rs Ssj . (2.320)

37@ Note that Eq. (2.312) defines the matrix (A′rs) representing the operator A in the basis
{�}.
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These formulae are analogous to the ones written above and can be
directly derived from them. For example, from Eq. (2.316) it follows
that

Sai A
′
ij S−1

jb = Sai S
−1
ir Ars Ssj S−1

jb , (2.321)

Ars = Sai A
′
ij S−1

jb , (2.322)

which is identical to Eq. (2.320).
Denoting by [A] and [A′] the matrices corresponding to the operator

A in the two reference frames, and by [S] and [S−1] the matrices having
elements Srs and S−1

rs , we then have

[A] [S] = [S] [A′], (2.323)[
A′

]
= [S−1] [A] [S]. (2.324)

In all the previous derivations we have assumed S to be the operator
that transforms the vectors ψ into the vectors χ, which means that we
can write

χi = S ψi. (2.325)

This requires the vectors χ and ψ to be numbered by the same set of
indices; on the other hand, such a condition is not actually needed. We
can therefore associate the matrix [S] not really with an operator, but
simply with a function Srs of two variables, namely, of the indices r and
s of vectors ψr and χs: a function satisfying the relation

χs = Srs ψr. (2.326)

23. RADIATION THEORY (PART 3)

Let us consider again that the atom is initially in the nth state and that
the oscillators are at rest. If an inner state n′ exists, to first order we
can neglect any other stationary state of the atom. While the volume in
which the atom is enclosed tends to infinity, the probability of exciting
only one frequency νs tends to zero. This means that we can treat
nearly all the oscillators as if they were at rest for the duration of the
emission.38 From Eq. (2.289), we have

ȧn′,0,...0,1,0... = − e

c

2π

h̄
νnn′ bs·ηn′n

38More precisely, we exclude the quantum states corresponding to two or more excited oscil-
lators.
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×
√

h̄

4πνs
e2πi(νnn′−νs)t an,0,...0,0,0..., (2.327)

ȧn,0,...0,0,0... =
∑
s

e

c

2π

h̄
νnn′ bs·ηnn′

×
√

h̄

4πνs
e−2πi(νnn′−νs)t an′,0,...0,1,0.... (2.328)

We can suppose that ηnn′ is real and thus ηnn′ = ηn′n. We shall now
try to satisfy these equations by setting an,0,...0,0,0... = exp{−γt/2}. We
then get

ȧn′,0,...0,1,0... = − e

c

2π

h̄
νnn′ bs·ηnn′

×
√

h̄

4πνs
e2πi(νnn′−νs)t e−γt/2 (2.329)

and thus

an′,0,...0,1,0... = − e

c

2π

h̄
νnn′ bs·ηnn′

×
√

h̄

4πνs

e2πi(νnn′−νs−γ/2)t − 1
2πi(νnn′ − νs)− γ/2

, (2.330)

ȧn,0,...0,0,0... = −
∑
s

e2

c2

4π2

h̄2

h̄

4πνs
ν2

nn′ |bs·ηnn′ |2

× e−γt/2 − e2πi(νnn′−νs)t

2πi(νnn′ − νs)− γ/2
e−γt/2. (2.331)

Assuming, as usual, that νs is very close to νnn′ and that Eq. (2.294)
holds, and on transforming the sum into an integral, we find

ȧn,0,...0,0,0... = − e2

c2

4π2

h̄2

h̄

4πνs
ν2

nn′
4
3

πc2

Ω
|ηnn′ |2

× 8πν2
nn′

c3
Ω e−γt/2

∫ e−γt/2 − e2πi(νnn′−νs)t

2πi(νnn′ − νs)− γ/2
dνs

= − 32π3e2ν3
nn′ |ηnn′ |2

3h̄c3
e−γt/2

∫ e−γt/2 − e2πi(νnn′−νs)t

2πi(νnn′ − νs)− γ/2
dνs. (2.332)

Then, since

ȧn,0,...0,0,0... = − γ

2
e−γt/2,
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we deduce that

γ

2
=

32π3e2ν3
nn′ |ηnn′ |2

3h̄c3

∫ e−γt/2 − e2πi(νnn′−νs)t

2πi(νnn′ − νs)− γ/2
dνs. (2.333)

It can be proven that the integral on the r.h.s. equals 1/2, and thus39

γ =
32π3e2ν3

nn′ |ηnn′ |2
3h̄c3

. (2.334)

24. PERTURBED KEPLERIAN MOTION IN
A PLANE

Let us consider a point-particle of unitary mass attracted by a force
M/r2 acting towards a fixed center O. The equation of the trajectory is

r =
k

1 + e cos(θ − α)
, (2.335)

where k, e and α are constants. Indeed, putting

k =
r2V 2

t

M
e =

√
(k − r)2V 2

t + k2V 2
r

kM
,

α = θ − arctan
kVr

(k − r)Vt

= θ − arcsin
k

re

Vr

Vt
= θ − arccos

k − r

re
,

(2.336)

with Vr and Vt denoting the radial and the transverse velocities, Eq.
(2.335) is identically satisfied when Eqs. (2.337) are substituted in it.
Moreover, the quantities k, e, α given in Eq. (2.336) are constant. In-

39@ In the original manuscript, the beginning of an attempt to prove this result is reported
(the complex exponential is expanded into trigonometric functions). Here we only quote
the following words: “The imaginary part of the integral is undetermined, but we are only
interested in the real part of γ, since only this quantity enters in the expression of |an|2,
which is what has physical meaning.”
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deed,

k̇ =
d
dt

r4θ̇2

M
=

2r3θ̇

M

(
2ṙθ̇ + rθ̈

)
=

2r3θ̇

M
at = 0,

ė =
1
e

[
− k

ṙ

r2

(
k

r
− 1

)
+

k

M
ṙ r̈

]

=
kṙ

eM

(
r̈ − r θ̇2 +

M

r2

)
=

kṙ

eM

(
ar +

M

r2

)
= 0,

α̇ = θ̇ − r e Vt

kṙ

kṙ

er2
= θ̇ − Vt

r
= 0.

(2.337)

An expression for the semi-major axis can be deduced:

a =
k

1− e2
=

k2M

kM − (k − r)2V 2
t − k2V 2

r

=
k2M

kM − k2V 2 + 2krV 2
t − kM

=
M

2M/r − V 2

=
r

2− rV 2/M
=

r

2− V 2/V 2
0

= r
V 2

0

2V 2
0 − V 2

, (2.338)

in which V =
√

V 2
r + V 2

t is the total speed and V0 =
√

M/r the speed
corresponding to circular motion. The semi-minor axis will be

b =
k√

1− e2
=
√

k a =
r2Vt√

M
√

2− rV 2/M

=
rVt√

2M/r − V 2
= r

Vt√
2V 2

0 − V 2
. (2.339)

The radius k normal to the major axis can also be written as

k =
r2V 2

t

M
= r

V 2
t

V 2
0

. (2.340)

The distance of the moving point-particle from the second focus is

r′ = 2a − r =
r2V 2/M

2 − rV 2/M
= r

V 2

2V 2
0 − V 2

, (2.341)

and the period of revolution is

T =
2πab

rVt
=

2πM
(
2M/r − V 2

)3/2
=

2π√
M

a3/2. (2.342)
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Let us now assume that an arbitrary field is superimposed on the
Newtonian field, and let us denote by χr and χt the radial and trans-
verse components of this additional force. Equation (2.335) will still
hold, but now k, e, α are no longer constant. They are varying functions
that depend on r, θ, Vr and Vt, and are defined by Eqs. (2.336). We’ll
obviously have

k̇ =
∂k

∂Vr
χr +

∂k

∂Vt
χt = 2

r2Vt

M
χt = 2k

χt

Vt
, (2.343)

ė =
∂e

∂Vr
χr +

∂e

∂Vt
χt

=
(

2
k − r

eM
V 2

t +
k

eM
V 2

r

)
χt

Vt
+

k

eM
Vrχr, (2.344)

α̇ =
k + r

e2M
Vr χt − k − r

e2M
Vt χr, (2.345)

ȧ =
2
M

a2 (Vr χr + Vt χt) . (2.346)

Then, let us assume we know χr and χt as functions of r, θ and t. From
Eq. (2.335), they can be expressed as functions of k, e, α, θ, t, as well as
Vr and Vt :

Vt =

√
kM

r
= Vt(k, e, α, θ), (2.347)

Vr = Vt
re

M
sin (θ − α) = Vr(k, e, α, θ). (2.348)

On substituting in the three independent equations (2.343),(2.344),(2.345)
[Eq. (2.346) actually can be derived from the previous ones], we find

k̇ = k̇(k, e, α, θ, t), (2.349)
ė = ė(k, e, α, θ, t), (2.350)
α̇ = α̇(k, e, α, θ, t). (2.351)

Thus another equation is needed in order to determine the motion. It
comes from the first of Eqs. (2.336):

θ̇ =

√
kM

r2
= θ̇(k, e, α, θ). (2.352)

From the initial values k0, e0, α0, θ0 of the four variables at time t0, the
values of k, e, α and θ at any instant can be evaluated by using Eqs.
(2.349)-(2.352). If the perturbation is small, the problem is solved by
successive approximations. Denoting by θ′ the value of θ at any instant
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of time in the case of no perturbation, as derived from Kepler’s equation,
in the zeroth-order approximation we’ll have

θ = θ′, k = k0, e = e0, α = α0. (2.353)

In first approximation, we instead have k = k1, e = e1, α = α1, θ = θ1,
with

k1 = k0 +
∫ ∞

t0
k̇(k0, e0, α0, θ

′, t) dt,

e1 = e0 +
∫ ∞

t0
ė(k0, e0, α0, θ

′, t) dt, (2.354)

α1 = α0 +
∫ ∞

t0
α̇(k0, e0, α0, θ

′, t) dt.

It is not possible to write a similar expression for θ, since in the exact
expression

θ = θ0 +
∫ ∞

t0
θ̇(k, e, α, θ, t) dt (2.355)

the two terms on the r.h.s. are of the same order of magnitude, so that,
if we set an approximate value for θ on the r.h.s., we wouldn’t get a more
approximate value on the l.h.s. However, we can try to transform Eq.
(2.352). To this end, let us note that the form of the function θ̇(k, e, α, θ)
does not depend on the perturbing forces, and it thus is the same if no
perturbation is present. We shall then have

θ̇′ = θ̇(k0, e0, α0, θ
′); (2.356)

and, setting
θ = θ′ + γ, (2.357)

we shall get

γ̇ = θ̇(k, e, α, θ) − θ̇(k0, e0, α0, θ
′)

= θ̇(k, e, α, θ) − θ̇′ = γ̇(k, e, α, θ, t). (2.358)

If instead of Eq. (2.352) we wanted to use the equation

θ̇ = θ̇′ + γ̇(k, e, α, θ, t), (2.359)

this would not have been adequate for our calculation by successive ap-
proximations, since, by setting an approximate value of θ in γ̇(k, e, α, θ, t),
we do not get an approximate value for γ̇ (because γ̇ is not zero when
perturbative forces are absent, unless we use for θ its exact value θ′).
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In order to evaluate θ1 it is necessary to use the expression40

t = t0 +
∫ 2π

θ0

dθ1

θ̇(k′1, e′1, α′1, θ1)
, (2.360)

in which we will have set

k′1 = k1[θ
′(θa)], e′1 = e1[θ

′(θa)], α′1 = α1[θ
′(θa)], (2.361)

with θ′ = θ′(t), t = θ
′(θ′), k1 = k1(r), and so on. In general, for the

expressions approximated to order n (n > 1), the following formulae
hold:

kn = k0 +
∫ ∞

t0
k̇ (kn−1, en−1, αn−1, θn−1, t) dt,

en = e0 +
∫ ∞

t0
ė (kn−1, en−1, αn−1, θn−1, t) dt,

αn = α0 +
∫ ∞

t0
α̇ (kn−1, en−1, αn−1, θn−1, t) dt,

t = t0 +
∫ 2π

θ0

dθn

θ̇(k′n, e′n, α′n, θn)
,

(2.362)

where

k′n = kn

(
θn−1(θn)

)
, e′n = en

(
θn−1(θn)

)
, α′n = αn

(
θn−1(θn)

)
;

kn = kn(t), en = en(t), αn = αn(t).

The last of Eqs. (2.362) is justified by the fact that, knowing k, e, α as
functions of t to order n (that is to say up to infinitesimals of order n,
when the perturbing forces tend to zero) and knowing t as a function
of θ to order n − 1, it is possible to derive k, e and α as functions of θ
to order n, since dk/dt, de/dt,dα/dt are themselves infinitesimals of the
first order.

Let us now suppose that the perturbing forces are constant in time
or, more precisely, that they can be considered as such on time scales
longer than the revolution period. Let us also assume that they are small
enough so that k, e and α change little during a period. We shall denote
by k̇, ė and α̇ the secular variations of these quantities, i.e., the average

40@ In the original manuscript, the upper limit of the integral is not explicitly given.
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values of the quantities k̇, ė, α̇ over the entire period. Clearly, we shall
have

k̇ = k̇(k, e, α, t), ė = ė(k, e, α, t), α̇ = α̇(k, e, α, t). (2.363)

The explicit form of Eqs. (2.363) depends on the form of the functions

χr = χr(r, θ, t), χt = χt(r, θ, t), (2.364)

and the time dependence obtains only if χr and χt depend on time, with
the constraint (as assumed) that the time variation is small.

Let us now examine the specific case in which χt = 0; χr = ε rn. From
Eqs. (2.343), (2.344), (2.345), we deduce

k̇ = 0, ė =
k

eM
Vr ε rn,

α̇ =
r − k

e2M
Vt ε rn =

1
e2

√
k

M

(
rn − k rn−1

)
ε,

(2.365)

and thus

k̇ = 0, ė = 0, α̇ =
1
e2

√
k

M

(
rn − k rn−1

)
ε, (2.366)

with

rn =
(1− e2)3/2

2π
kn

∫ 2π

0

dθ

(1 + e cos θ)n+r
. (2.367)

It follows that

r−1 =
(
1 − e2

)
k−1,

r−2 =
(
1 − e2

)3/2
k−2,

r−3 =
(
1 − e2

)3/2
k−3,

r−4 =
(
1 − e2

)3/2
(

1 +
1
2

e2
)

k−4,

r−5 =
(
1 − e2

)3/2
(

1 +
3
2

e2
)

k−5,

r−6 =
(
1 − e2

)3/2
(

1 + 3 e2 +
3
8

e4
)

k−6,

(2.368)
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and41

r =
(
1 − e2

)−1
(

1 +
1
2

e2
)

k,

r2 =
(
1 − e2

)−2
(

1 +
3
2

e2
)

k2,

r3 =
(
1 − e2

)−3
(

1 + 3 e2 +
3
8

e4
)

k3,

r4 =
(
1 − e2

)−4
(

1 + 5 e2 +
15
8

e4
)

k4,

r5 =
(
1 − e2

)−5
(

1 +
15
2

e2 +
45
8

e4 +
5
16

e6
)

k5,

r6 =
(
1 − e2

)−6
(

1 +
21
2

e2 +
105
8

e4 +
35
16

e6
)

k6,

r7 =
(
1 − e2

)−7
(

1 + 14 e2 +
105
4

e4

+
35
4

e6 +
35
128

e8
)

k7,

r8 =
(
1 − e2

)−8
(

1 + 18 e2 +
189
4

e4

+
105
4

e6 +
315
128

e8
)

k8.

(2.369)

41@ In the original manuscript, the explicit expressions for r, r2, . . . , r8 are missing.
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We then infer that

n = 0, α̇ =

√
k

M
ε,

n = −1, α̇ =

√
k

M

(
1 − e2

) 1−√1− e2

e2

ε

k
,

n = −2, α̇ = 0,

n = −3, α̇ = −
√

k

M

(
1 − e2

)3/2 1
2

ε

k3
,

n = −4, α̇ = −
√

k

M

(
1 − e2

)3/2 ε

k4
,

n = −5, α̇ = −
√

k

M

(
1 − e2

)3/2
(

3
2

+
3
8

e2
)

ε

k5
.

25. RADIATION THEORY (PART 4)

Let us consider two atomic quantum states labeled by indices 1 and 2
and let ν be the transition frequency. Let A21 be the probability that
an atom in the state 2 will spontaneously make a transition to state
1 in unit time, B21U the probability for the same transition due to
radiation of frequency ν, quantity U being the radiation energy per unit
frequency and unit volume. Let also B12U denote the probability of the
inverse transition, and N1, N2 the number of atoms in states 1 and 2,
respectively. At the equilibrium we shall have

N1

N2
=

A21 + B21U

B12U
. (2.370)

If the background temperature is T and Boltzmann’s law is assumed, we
find42

N2

N1
= e−hν/kT , (2.371)

42@ In this section we use Planck’s constant h as in the original manuscript.
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U =
8π

c3

ν3h

ehν/kT − 1
, (2.372)

from which

B12
8π

c3

ν3h

ehν/kT − 1

= A21 e−hν/kT + B21
8π

c3

ν3h

ehν/kT − 1
e−hν/kT , (2.373)

which is always satisfied only if

B12 = B21, (2.374)

A21 =
8π

c3
ν3 hB12. (2.375)

Let us now try to obtain these results using the radiation theory
developed above. Let

ψ0 =
∑

n,r1,...,rs,...

ψn,r1,...,rs,... an,r1,...,rs,... (2.376)

be the eigenfunction at an arbitrary time. If we neglect all the quantum
states other than 1 and 2, we shall get

ȧ1,...,ns+1,... = −
∑ e

c

4π2

h
ν bs·η12

√
h(ns + 1)

8π2νs

× exp {2πi(ν − νs)t} a2,...,ns−1,..., (2.377)

because of the fact that we can assume that in the transition 2 → 1 the
emitted energy has a characteristic frequency close to ν. In the same
way we can write

ȧ2,...,ns−1,... =
e

c

4π2

h
ν bs·η12

√
hns

8π2ν

× exp {2πi(νs − ν)t} a1,...,ns,.... (2.378)

Since

N1 =
∑

|a1,...|2 , (2.379)

N2 =
∑

|a2,...|2 , (2.380)

it follows that

Ṅ1 =
∑ (

a1,... ȧ
∗
1,... + ȧ1,... a

∗
1,...

)
. (2.381)
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In order to simplify our calculations, let us suppose that all the a1s are
initially zero. The previous equation would seem to yield Ṅi = 0, but this
is wrong, since it results from an incorrect use of a limit procedure with
an infinite number of frequencies. The calculation must be performed
in the same manner as in Sec. 2.21. The only difference with respect
to what was done there is that now the argument of the square root is
ns + 1 instead of 1. Since in the final result there appears the square
of such square root, all we have to do is multiplying the result by the
average value of ns + 1. Denoting by n the average value of ns, we find

Ṅ1 = N2
64π4ν3e2|η12|2

3hc3
(n + 1) . (2.382)

In the same way, on assuming all the atoms to be initially in state 1, we
find the same formula, apart from changing N1 into N2, and vice versa,
and having n instead of n + 1, due to the fact that in Eq. (2.378) we
have ns and not ns + 1:

Ṅ2 = N1
64π4ν3e2|η12|2

3hc3
n. (2.383)

From the foregoing, we can now derive Einstein’s A and B coefficients:

A21 =
64π4ν3e2|η12|2

3hc3
, (2.384)

B21 = B12 =
nA21

U
=

A21

(8π/c3)ν3h
, (2.385)

which agree with Eqs. (2.374) and (2.375).

26. DEFINITE INTEGRALS 43

(13) We have ∫ 1

0

(
1 − x2

)n
=

1
2n + 1

22nn!2

(2n)!
. (2.386)

For large n, the l.h.s. is approximated by
∫ ∞

0
e−nx2

dx =
1
2

√
π

n
,

43See Sec. 1.37.
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from which, for large n, we find

n!222n

(2n)!
=
√

πn + . . . , (2.387)

as it can immediately be seen from Stirling’s formula (see Sec.
1.27).

(14) We have

∫ ∞

−∞
eix

a + ix
dx =





2π e−a, a > 0,

0, a < 0.
(2.388)

(15) We have ∫ ∞

−∞
cosx

a2 + x2
dx =

π

a
e−a. (2.389)

(16) We have ∫ ∞

−∞
x sinx

a2 + x2
dx = π e−a. (2.390)

(17) We have
∫ ∞

−∞
eiax

1 + k2x2
dx =

π

k
e−a/k, k > 0, a > 0. (2.391)

(18) We have 44

∫ ∞

−∞
xeiax

1 + k2x2
dx =

iπ

k2
e−a/k,

a

k
> 0. (2.392)

(19) We have ∫ ∞

−∞
eix2

dx =
1 + i√

2

√
π. (2.393)

(14bis) We have

∫ ∞

−∞
eikx

1 + ix
dx =





2π e−k, k > 0,

0, k < 0.
(2.394)

44@ More precisely, this result holds for a > 0 (keeping a/k > 0), while for a < 0 we simply
get the opposite.
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(20) On setting dq1 = dx1dy1dz1, and r1 =
√

x2
1 + y2

1 + z2
1 , one gets:45

∫
e−ar1 dq1 =

8π

a3
, a > 0, (2.395)

∫ 1
r1

e−ar1 dq1 =
8π

a3

a

2
, a > 0. (2.396)

(21) On setting

dτ = dx1dy1dz1dx2dy2dz2,

r12 =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2,

r1 =
√

x2
1 + y2

1 + z2
1 , r2 =

√
x2

2 + y2
2 + z2

2 , a, b > 0,

one gets:
∫

e−ar1 e−br2 dτ =
64π2

a3b3
, (2.397)

∫ 1
r1

e−ar1 e−br2 dτ =
64π2

a3b3

a

2
, (2.398)

∫ 1
r12

e−ar1 e−br2 dτ =
64π2

a3b3

a2 + 3ab + b2

2(a + b)3
ab. (2.399)

27. SERIES EXPANSIONS 46

(1) Let us consider the following function of x:

y =
∞∑

n=0

f(n)xn

n!
(−1)n. (2.400)

Under certain constraints, we have

lim
x→∞

xry

ex
= 0 (2.401)

for any value of r. If f(n) =constant, then Eq. (2.401) is surely
satisfied. If f(n) = n, then y = −xe−x and Eq. (2.401) is again
satisfied. In the same way we can prove that it is satisfied when

45@ The following integrals are evaluated over the entire real axis for each variable.
46See Secs. 1.22 and 3.1.
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f(n) = n(n − 1) or f(n) = n(n − 1)(n − 2), and so on. More-
over, the same holds for f(n) = 1/(n + 1) or 1/(n + 1)(n + 2) or
1/(n + 1)(n + 2)(n + 3), and so on. It follows that Eq. (2.401) is
satisfied when f(n) is any rational function of n or, more generally,
when f(n) can be expanded in decreasing powers of n, the first one
being an arbitrary power nk (with integer k).
Equation (2.401) is also satisfied if f(n) can be expanded in de-
creasing powers of n, each power step being unity, for example,
and the first power nc being rational or irrational. In this case, in
fact, the function f1(n) in the series

y + y′ =
∑ f1(n)xn

n!

can be expanded starting from nc−1. Thus, for a given arbitrary
value of r, Eq. (2.401) will be satisfied when y is replaced by

y + k y′ +
k(k − 1)

2
y′′ + . . . + y(k), (2.402)

quantity k depending on r. Now, if we set

lim
x→∞

xr(z + z′)
ex

= 0, (2.403)

which is equivalent to

z + z′ = α x−r ex, (2.404)

with an infinitesimal α, then it follows that

z = e−x
∫

α x−r e2x dx = e−x β x−r e2x = β x−r ex, (2.405)

where β is another infinitesimal. By repeating this procedure k
times, we find that Eq. (2.401) is also satisfied by y.
Equation (2.401) also holds if f(n) is the product of log n and an
algebraic function of n, and this can be proven as we did above.
More in general, replacing f(n) by

f(n) − k f(n− 1) +
k(k − 1)

2
f(n− 2)

− k(k − 1)(k − 2)
6

f(n− 3) + . . . ± f(n− k), (2.406)

it is possible, by appropriately choosing k, to make y infinitesimal
of an arbitrarily large order (for large n), and Eq. (2.401) gets
satisfied.
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(2) In first approximation, for large n and small ε/n, we have
(

n
n/2 + ε

)
=

n!
(n/2 + ε)! (n/2 − ε)!

= 2n

√
2

πn
e−2ε2/n.

(2.407)

(3) For large x, the series expansion of θ (which is, however, always
divergent) reads

θ(x) =
2√
π

∫ x

0
e−x2

dx

= 1 − 1√
π

e−x2
(

1
x
− 1

2x3
+

3
4x5

− 15
8x7

+
105
16x9

− . . .

)
.

Although this is a divergent expansion, it nevertheless can be used,
since it supplies values that approximate the true ones by excess
or by defect, alternately.

28. RADIATION THEORY (PART 5): FREE
ELECTRON SCATTERING

We have considered the stationary waves that may be present in a volume
Ω without any assumption about their form or about the shape of the
volume. For simplicity, here we assume that the potential Cs relative to
the radiation of frequency νs is of the following form, which is compatible
with Eq. (2.215):

Cs =
√

4πc2/Ω qs e2πi(γ′sx+γ′′s y+γ′′′s z) As, (2.408)

where As is a unit vector normal to the propagation direction. The
frequency is given by

νs = c
√

γ′2s + γ′′2s + γ′′′2s , (2.409)

and the number of oscillators, relative to the wave numbers, in the in-
tervals γ′s − γ′s + dγ′s, γ′′s − γ′′s + dγ′′s , and γ′′′s − γ′′′s + dγ′′′s , will be

dN = 2 Ωdγ′s dγ′′s dγ′′′s . (2.410)

We shall assume the following eigenfunctions for the free electron:

Un =
1√
Ω

exp
{
2πi(δ′nx + δ′′ny + δ′′′n z)

}
, (2.411)
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and there will be
dn = Ω dδ′n dδ′′n dδ′′′n (2.412)

of them. The electron momenta corresponding to Eq. (2.411) will be

pn
x = −h δ′n, pn

y = −hδ′′n, pn
z = −hδ′′′n . (2.413)

In the same way, the momenta of the light quanta are, from Eq. (2.408),

ps
x = −h γ′s, ps

y = −hγ′′s , ps
z = −hγ′′′s . (2.414)

The first- and second-order interaction terms in the total Hamiltonian
(see Sec. 2.6) are

∑
s

e

mc
p·As

√
4πc2

Ω
qs e2πi(γ′sx+γ′′s y+γ′′′s z)

+
e2

2mc2

4πc2

Ω

∑
r,s

qr qs Ar·As e2πi[(γ′r+γ′s)x+(γ′′r +γ′′s )y+(γ′′′r +γ′′′s )z]. (2.415)

Since only the second-order perturbation terms will enter in the per-
turbation matrix, the first-order terms are either small or changing too
fast. By neglecting the first-order terms, the only non-zero elements in
the matrix will be the ones corresponding to an arbitrary exchange of
electrons and to a one-level transition (in either directions) of two and
only two oscillators. Since we are only interested in large and slowly
varying terms, let us suppose that one of these oscillators, say the rth,
undergoes the transition from the quantum number kr to kr + 1, while
the other, say the sth, undergoes the transition ks to ks−1. The matrix
element corresponding to such a transition is

Bn,kr,ks;n′,kr+1,ks−1 =
4πe2

2mΩ2
Ar·As

√
h̄(r + 1)

4πνr

√
h̄s

4πνs

×
∫

e2πi[(γ′r−γ′s−δ′n+δ′
n′ )x+...] dτ e2πi(νn′−νn+νr−νs)t. (2.416)

Let us suppose the volume Ω is a cube of side length a. Then the
absolute value of the integral becomes

sinπ(γ′r − γ′s − δ′n + δ′n′)a
π(γ′r − γ′s − δ′n + δ′n′)

sinπ(γ′′r − γ′′s − δ′′n + δ′′n′)a
π(γ′′r − γ′′s − δ′′n + δ′′n′)

× sinπ(γ′′′r − γ′′′s − δ′′′n + δ′′′n′)a
π(γ′′′r − γ′′′s − δ′′′n + δ′′′n′)

. (2.417)

Furthermore let us assume that at time t = 0 all the atoms are in the
state n and the oscillators in the state 0, apart from the oscillator s
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which is in the state ks. We shall associate the coefficient 1 with the
eigenfunction corresponding to this state and the coefficient 0 to all the
others. For a small period of time we have the following: If an′,1,ks−1

is the coefficient of the eigenfunction corresponding to the atom in the
state n′, the rth oscillator in state 1, and the oscillator s in the state
ks − 1, then

ȧn′,1,ks−1 =
i

h̄
Bn′,1,ks−1;n,0,ks , (2.418)

that is, neglecting a phase factor,

ȧn′,1,ks−1 = Ar·As
e2

2mΩ2

√
ks

νrνs
e2πi(νn−νn′+νs−νr)t

× sinπ(γ′r − γ′s − δ′n + δ′n′)a
π(γ′r − γ′s − δ′n + δ′n′)

sinπ(γ′′r − γ′′s − δ′′n + δ′′n′)a
π(γ′′r − γ′′s − δ′′n + δ′′n′)

× sinπ(γ′′′r − γ′′′s − δ′′′n + δ′′′n′)a
π(γ′′′r − γ′′′s − δ′′′n + δ′′′n′)

, (2.419)

so that

∣∣an′,1,ks−1

∣∣2 = |Ar·As|2 e4

4m2Ω4

ks

νrνs

× sinπ(γ′r − γ′s − δ′n + δ′n′)a
π(γ′r − γ′s − δ′n + δ′n′)

sinπ(γ′′r − γ′′s − δ′′n + δ′′n′)a
π(γ′′r − γ′′s − δ′′n + δ′′n′)

× sinπ(γ′′′r − γ′′′s − δ′′′n + δ′′′n′)a
π(γ′′′r − γ′′′s − δ′′′n + δ′′′n′)

sinπ(νn − νn′ + νs − νr)t
π2(νn − νn′ + νs − νr)2

. (2.420)

Summing over all the values of r and n′ and transforming the sum into
an integral, we get

∑

n′,r

∣∣an′,1,ks−1

∣∣2 =
e4

Ω2m2

ks

νs

∫
dγ′sdγ′′s dγ′′′s dδ′ndδ′′n dδ′′′n

|Ar·As|2
νs

× sinπ(γ′r − γ′s − δ′n + δ′n′)a
π(γ′r − γ′s − δ′n + δ′n′)

sinπ(γ′′r − γ′′s − δ′′n + δ′′n′)a
π(γ′′r − γ′′s − δ′′n + δ′′n′)

× sinπ(γ′′′r − γ′′′s − δ′′′n + δ′′′n′)a
π(γ′′′r − γ′′′s − δ′′′n + δ′′′n′)

sinπ(νn − νn′ + νs − νr)t
π2(νn − νn′ + νs − νr)2

. (2.421)

Let us suppose that a is very large. The integrand will be significantly
different from zero only for those transitions that satisfy the momentum
conservation, that is,

γ′r − γ′s − δ′n + δ′n′ = 0 (2.422)
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(and similarly for the other components). On integrating over dγ′r, dγ′′r
and dγ′′′r , we find

∑

n′,r

∣∣an′,1,ks−1

∣∣2 =
e4

Ω2m2

ks

νs

∫
dδ′ndδ′′n dδ′′′n

× |Ar·As|2
νs

Ω
sinπ(νn − νn′ + νs − νr)t
π2(νn − νn′ + νs − νr)2

, (2.423)

where
νr = c

√
γ′2r + γ′′2r + γ′′′2r , (2.424)

the components γr being given by Eq. (2.422). If t is large enough, the
following must hold:

νn − νn′ + νs − νr ' 0. (2.425)

We can then restrict the integration to those values of δn′ that, through
Eqs. (2.422) and (2.424), satisfy Eq. (2.425). To calculate the intensity,
let us consider low-energy light quanta and slow electrons. Then we have

νr ' νs; (2.426)

and, denoting by θ the angle between the incident and the scattered
quantum, we moreover have

|Ar·As|2 =
1
2
− 1

4
sin2 θ

2
, (2.427)

1
h̄
|pn′ − pn| = − 4π

νs

c
sin

θ

2
, (2.428)

so that the integral in Eq. (2.423) becomes

∑

n′,r

∣∣an′,1,ks−1

∣∣2 =
4e4ks

m2Ωc2

∫
π cos

θ

2
dθ sin2 θ

2

×
(

1
2
− 1

4
sin2 θ

2

)
sin2 πcrt sin θ/2
π2c2r2 sin2 θ/2

dr

= πt
4e4ks

m2Ωc3

∫ π

0
cos

θ

2
sin

θ

2

(
1
2
− 1

4
sin2 θ

2

)
dθ

= πt
4e4KS

3m2c3Ω
=

4
3

πe4t

m2c3

u

hνs
, (2.429)

u being the energy per unit volume.
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29. DE BROGLIE WAVES

The expression

ψ =
∫ ∞

−∞
e−i2πγx ei2πνt dγ

α + i 2π(γ − γ0)
(2.430)

represents a wavepacket with phase velocity

vph = ν/γ.

If α tends to zero, Eq. (2.430) reduces to

ψ = e−i2πγ0x ei2πν0t
∫ ∞

−∞
exp {i2π(γ − γ0) (t dν0/dγ0 − x)} d(γ − γ0)

α + i 2π(γ − γ0)

= e−i2πγ0x ei2πν0t
∫ ∞

−∞
eiy dy

2π [(t dν0/dγ0 − x) α + iy]
. (2.431)

If α → 0, we get the following (see Eq. (2.388)). For α > 0:

ψ =





e−i2πγ0x ei2πν0t, for t dν0/dγ0 − x > 0,

0, for t dν0/dγ0 − x < 0.
(2.432)

This represents a plane wave extending from x = −∞ to x = (dν0/dγ0)t
whose (forward) wavefront moves with the group velocity

vgr =
dν0

dγ0
. (2.433)

For α < 0:

ψ =





0, for t dν0/dγ0 − x > 0,

e−i2πγ0x ei2πν0t, for t dν0dγ0 − x < 0.
(2.434)

This represents a plane wave extending from x = (dν0/dγ0)t to x = +∞
whose (backward) wavefront moves with the group velocity (2.433).
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30. e2 ' hc ?

Let us consider two electrons A and B placed at a distance ` from each
other. In some sense, the surrounding region47 will be quantized. As a
first approximation we can describe the situation in terms of a pointlike
mass moving with a group velocity equal to the light speed c. Let us
also make the arbitrary assumption that such a point-particle moves
periodically between A and B and back. Let us further suppose that
it is free of interactions while travelling between A and B, whereas in
A and in B it inverts its velocity due to the collision with the electrons
sitting there. If its motion is quantized, we have

|p| = nh/2` (2.435)

and, assuming n = 1,
|p| = h/2`. (2.436)

At every collision the electron receives a “kick” equal to

2 |p| = h/`, (2.437)

and the number of collisions per unit time is

1
T

=
c

2`
, (2.438)

so that a continuous force will be acting on each electron, whose magni-
tude is

F =
2p

T
=

hc

2`2
. (2.439)

If we identify Eq. (2.439) with Coulomb’s law

F =
e2

`2
, (2.440)

we find

e =

√
hc

2
. (2.441)

Such a value is, however, 21 times greater than the real one.

47@ The word used in the original manuscript literally means “aether.”



156 ETTORE MAJORANA: NOTES ON THEORETICAL PHYSICS

31. THE EQUATION y00 + Py = 0

Let us consider the equation

y′′ + P y = 0. (2.442)

On setting

y = u exp
{

i

∫
(k/u2) dx

}
, (2.443)

we obtain

y′ =
(

u′ + i
k

u

)
exp

{
i

∫
(k/u2) dx

}
, (2.444)

y′′ =

(
u′′ − k2

u3

)
exp

{
i

∫
(k/u2) dx

}
, (2.445)

u′′ − k2

u3
+ uP = 0. (2.446)

Given the initial conditions y0 and y′0 at x = x0, we set

u0 = |y0|, (2.447)

so that the arbitrary (real) additive constant of the integral in Eq.
(2.443) is determined modulo 2π. For y0 6= 0, according to Eq. (2.444),
we then put

y′0 =
y0

|y0|
(

u′0 + i
k

|y0|
)

. (2.448)

We can suppose that both u′0 and k are real. Then, if P is also real, the
integration of Eq. (2.442) with a complex variable is equivalent to the
integration of Eq. (2.446) with a real variable.

Note that, if y′0/y0 is real, then k = 0 and Eq. (2.446) reduces to
(2.442).

Given an arbitrary solution of Eq. (2.446) with an arbitrary value of
k, not only the function y in Eq. (2.443) but also its complex conjugate

y = u exp
{
−i

∫
(k/u2) dx

}
, (2.449)

satisfy Eq. (2.442), so that the general solution to Eq. (2.442) is

y = u

[
A exp

{
i

∫
(k/u2) dx

}
+ B exp

{
−i

∫
(k/u2) dx

}]
. (2.450)

On setting
u1 = u/

√
k, (2.451)
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we obtain
u′′1 −

1
u3

1

+ u1 P = 0, (2.452)

and the general solution can still be written in the form

y = u1

[
A exp

{
i

∫
dx/u2

1

}
+ B exp

{
−i

∫
dx/u2

1

}]
. (2.453)

From this it follows that we can always reduce the problem to the k = 1
case. When the initial values for y and y′ are given, it is possible to
proceed as described above, since Eq. (2.443) now becomes

y =
√

k u1

[
i

∫
dx/u2

1

]
, (2.454)

and the constant
√

k, the integration constants, and the initial values
u1 0 and u′1 0 can be determined from Eqs. (2.447), (2.448), and (2.451).
Alternatively, we can find an arbitrary solution of Eq. (2.452), fix arbi-
trarily the integration constants, and then the coefficients A and B can
be determined in such a way that the initial conditions on y0 and y′0 are
met.

Assuming P to be a slowly varying function, in first approximation
the function

u = P−1/4 (2.455)

is a solution of Eq. (2.452). The general solution, to first order, then is




y =
1

4
√

P

(
A cos

∫ √
Pdx + B sin

∫ √
Pdx

)
, P > 0,

y =
1

4
√−P

[
A exp

{∫ √
−Pdx

}

+B exp
{
−

∫ √
−Pdx

}]
, P < 0.

(2.456)

The condition that P be a slowly varying function is expressed as
∣∣∣∣
P ′

P

∣∣∣∣ ¿ 1.

In order to derive the second-order approximation, we can replace u′′ in
Eq. (2.452) with the value obtained from Eq. (2.455). Thus, in second
approximation, we get

− 1
4

P ′′ P−5/4 +
5
16

P ′2 P−9/4 − 1
u3

+ uP = 0. (2.457)
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On replacing u with P−1/4 + ∆u and setting

1
u3

' P 3/4 − 3P ∆u, (2.458)

Eq. (2.457) becomes

− 1
4

P ′′ P−5/4 +
5
16

P ′2 P−9/4 + 4P ∆u = 0, (2.459)

from which it follows that

∆u =
1
16

P ′′ P−9/4 − 5
64

P ′2 P−13/4 (2.460)

and

u = P−1/4

(
1 +

P P ′′ − (5/4) P ′2

16P 3

)
. (2.461)

In this order of approximation, the following will be valid:

1
u2

= P 1/2

(
1 − P P ′′ − (5/4)P ′2

8P 3

)
, (2.462)

∫ dx

u2
= − P ′

8P 3/2
+

∫ √
P

(
1 − P ′2

32P 3

)
dx, (2.463)

and the solutions for y will be of the kind

y =
1

4
√

P

(
1 +

P P ′′ − (5/4)P ′2

16P 3

)

×
{

sin
cos

[
− P ′

8P 3/2
+

∫ √
P

(
1 − P ′2

32P 3

)
dx

]
,(2.464)

for P > 0. Similar solutions hold for P < 0:

y =
1

4
√−P

(
1 +

P P ′′ − (5/4)P ′2

16P 3

)

× exp

{
±

[
− P ′

8(−P )3/2
+

∫ √
−P

(
1 − P ′2

32P 3

)
dx

]}
,(2.465)

or, by setting P1 = −P ,

y =
1

4
√

P1

(
1 − P1 P ′′

1 − (5/4)P ′2
1

16P 3
1

)

× exp

{
±

[
P ′

1

8P
3/2
1

+
∫ √

P1

(
1 +

P ′2
1

32P 3
1

)
dx

]}
. (2.466)
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Let us consider, in general, the case for which P < 0, so that P1 > 0.
Equation (2.442) can then be written as

y′′ − P y = 0. (2.467)

Let us set
y = z exp

{∫ √
P1dx

}
. (2.468)

We then have

y′ =
(
z′ + z

√
P1

)
exp

{∫ √
P1dx

}
, (2.469)

y′′ =
[
z′′ + 2z′

√
P1 + z

(
P1 +

P ′
1

2
√

P1

)]
exp

{∫ √
P1dx

}
,(2.470)

z′′ + 2z′
√

P1 + z
P ′

1

2
√

P1
= 0, (2.471)

z′′

2
√

P1 z
+

z′

z
+

1
4

P ′
1

P1
= 0. (2.472)

If P is slowly varying, we can in first approximation set

z = P
−1/4
1 ; (2.473)

and, by considering both signs of
√

P1, we find again Eq. (2.456).

If y1 is a solution of Eq. (2.443), the general solution reads

y = Ay1 + B y1

∫ dx

y2
1

. (2.474)

Indeed, on setting

y2 = y1

∫ dx

y2
1

,

we get

y′2 = y′1
∫ dx

y2
1

+
1
y1

,

y′′2 = y′′1
∫ dx

y2
1

,

and thus

0 = y′′2 −
y′′1
y1

y2 = y′′2 + P y2. (2.475)
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32. INDETERMINACY OF VECTOR AND
SCALAR POTENTIALS

Let us consider a magnetic and an electric field in a given spacetime
region. The potentials φ and C are rather undetermined since we can
set

H = ∇×C = ∇×C1, (2.476)

E = −∇φ − 1
c

∂C
∂t

= ∇φ1 − 1
c

∂C1

∂t
, (2.477)

with φ1 6= φ and C1 6= C. Correspondingly, we could write two wave
equations for an electron:

[
−

(
W

c
+

e

c
φ

)2

+
∑

i

(
pi +

e

c
Ci

)2

+ m2c2

]2

ψ = 0, (2.478)

[
−

(
W

c
+

e

c
φ1

)2

+
∑

i

(
pi +

e

c
C1 i

)2

+ m2c2

]2

ψ1 = 0. (2.479)

We can always put

C1 − C = ∇A, (2.480)

φ1 − φ = − 1
c

∂A

∂t
, (2.481)

with A an arbitrary function of space and time. This function is no
longer arbitrary if we impose the so-called continuity constraint48

∇ ·C +
1
c

∂φ

∂t
= ∇ ·C1 +

1
c

∂φ1

∂t
= 0, (2.482)

since, in this case,

∇2 A − 1
c2

∂2A

∂t2
. (2.483)

From

W exp
{

i

h̄

e

c
A

}
= exp

{
i

h̄

e

c
A

}
[W + e (φ1 − φ)] , (2.484)

pi exp
{

i

h̄

e

c
A

}
= exp

{
i

h̄

e

c
A

} [
pi +

e

c
(C1 i − Ci)

]
, (2.485)

48@ This is more widely known as the Lorenz gauge condition.
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we deduce that(
W

c
+

e

c
φ1

)
exp

{
i

h̄

e

c
A

}
= exp

{
i

h̄

e

c
A

} (
W

c
+

e

c
φ

)
, (2.486)

(
W

c
+

e

c
φ1

)2

exp
{

i

h̄

e

c
A

}
= exp

{
i

h̄

e

c
A

} (
W

c
+

e

c
φ

)2

, (2.487)

and that(
pi +

e

c
C1 i

)
exp

{
i

h̄

e

c
A

}
= exp

{
i

h̄

e

c
A

} (
pi +

e

c
Ci

)
, (2.488)

(
pi +

e

c
C1 i

)2

exp
{

i

h̄

e

c
A

}
= exp

{
i

h̄

e

c
A

} (
pi +

e

c
Ci

)2

. (2.489)

It follows that, if ψ is a solution of Eq. (2.478), then the quantity

ψ1 = ψ exp
{

i

h̄

e

c
A

}
(2.490)

will be a solution of Eq. (2.479). Since the phase shift of ψ given by
Eq. (2.490) is physically irrelevant, due to the fact that it is identical
for all the eigenfunctions evaluated at the same point and at the same
time, we have then proven that the two Hamiltonians considered by us
are equivalent.

33. ON THE SPONTANEOUS IONIZATION
OF A HYDROGEN ATOM PLACED IN A
HIGH POTENTIAL REGION

Let us consider a hydrogen atom placed at the common center of two
spheres of radii R and R+dR, respectively. On the first of these spheres
there is a charge −Q′/dR and on the second a charge (Q′/dR) − e (we
set Q′ = QR); then we take dR to be infinitesimal. The atomic electron
will experience a potential:





V = e/x − A, x < R,

V = 0, x > R,
(2.491)

x being the distance from the center and A a constant.49 For the sake of
simplicity, we adopt the radius of the first Bohr orbit as the unit length,

49@ In the original manuscript, the value A = Q2/R2 is given. But, for dimensional reasons,
this is wrong. The constant A can be fixed by requiring the continuity of the potential; in
this case we have A = e/R.
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e as the unit charge and h̄ as the unit action. Our unit for energy will be
me4/h̄2 = 4πRyh̄, and then 1/(4πRy) will be the unit time, where Ry is
Rydberg’s frequency. Furthermore, we choose the electron mass as the
unit mass. The Schrödinger equation corresponding to zero azimuthal
quantum number, when and setting χ = ψ/x, will be





χ′′ + 2 (E − A + 1/x) χ = 0, x < R,

χ′′ + 2E χ = 0, x > R.
(2.492)

Let us set E − A = E1. If the atom is in its ground state, then E1 is
approximately equal to −1/2.50 We then set

−E1 =
1
2

+
1
2

α, (2.493)

so that Eqs. (2.492) become




χ′′ + (1 − α + 2/x) χ = 0, x < R,

χ′′ + (2A − 1 − α) χ = 0, x > R.
(2.494)

A solution to the first of these equations for α = 0 is

χ = x e−x. (2.495)

Let us cast the solution for α 6= 0 in the form

χ = x e−x + α y, (2.496)

with the constraints y(0) = 0, y′(0) = 0. On substituting into Eq.
(2.494), we find

y′′ = x e−x + (1 + α − 2/x) y, (2.497)

showing that y depends on α. Since the initial conditions on y have been
fixed, y is completely determined. For large values of x, this takes the
asymptotic form

y = kα ex
√

1+α/x1/
√

1+α. (2.498)

Since we have assumed that α is small, as an approximation we could
set kα = k0, and k0 will be evaluated from the asymptotic form for y

50@ The ground state energy of a hydrogen atom is −e2/2aB , where aB is the Bohr radius.
In the adopted units, this energy equals −1/2.
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with the constraints y(0) = 0, y′(0) = 0. The differential equation for
such y is

y′′ = x e−x + (1 − 2/x) y, (2.499)

and the asymptotic expression for the solution will be of the form

y = k0 ex/x. (2.500)

Let us then evaluate k0. The function y can be expanded in increasing
powers of x:

y =
1
6

x3 − 1
9

x4 + . . . + an xn + . . . , (2.501)

where the coefficients ar can be obtained from the recursive relation

an = − (−1)n n− 2
n!

+
an−2 − 2an−1

(n− 1)n
. (2.502)

Starting from a2, these can be written in the form

a2n+1 =
1

(2n)!

[
n

2n + 2
2n + 1

−
(

1 +
1
3

+
1
5

+ . . . +
1

2n− 1

)]
, (2.503)

a2n = − 1
(2n− 1)!

[
n−

(
1 +

1
3

+
1
5

+ . . . +
1

2n− 1

)]
. (2.504)

Indeed, if Eqs. (2.503) and (2.504) hold for some value of n (and it can
be directly verified that they hold for n = 1), then Eq. (2.504) will still
be valid if we replace n with n + 1 since, from Eq. (2.502), we derive

− (2n + 1)! a2n+2 =
n

n + 1
− n

n + 1

(
1 +

1
3

+
1
5

+ . . . +
1

2n− 1

)

− 1
n + 1

(
1 +

1
3

+
1
5

+ . . . +
1

2n− 1

)
+

n2

n + 1
+

2n

2n + 1

= n + 1−
(

1 +
1
3

+
1
5

+ . . . +
1

2n + 1

)
,

and thus Eq. (2.504) holds for a2n+2 too. In the same way, by using
again Eq. (2.502), we find

(2n + 2)! a2n+3 =
2n + 1
2n + 3

− 2n + 1
2n + 3

(
1 +

1
3

+
1
5

+ . . . +
1

2n− 1

)

− 2
2n + 3

(
1 +

1
3

+
1
5

+ . . . +
1

2n− 1

)
+ n

2n + 2
2n + 3

+
2n + 2
2n + 3

= (n + 1)
2n + 2
2n + 3

−
(

1 +
1
3

+
1
5

+ . . . +
1

2n + 1

)
,
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and thus Eq. (2.503) holds for a2n+3 as well. Equations (2.503) and
(2.504) then always apply.

The expansion (2.501) can be indefinitely derived term by term. We
can thus set

y′′′ + 3y′′ + 3y′ + y =
∞∑

0

br xr; (2.505)

and, in general, we have

br = ar + 2(r + 1)ar+1 + 3(r + 1)(r + 2)ar+2

+ (r + 1)(r + 2)(r + 3)ar+3, (2.506)

or, due to Eqs. (2.503) and (2.504):

(2n + 1)! b2n = − 2n2(2n + 1) + 3n(2n + 1)(2n + 2)
− 3(n + 1)(2n + 1)(2n + 2) + (n + 1)(2n + 1)(2n + 4)

+2n(2n + 1)
(

1 +
1
3

+ . . . +
1

2n− 1

)

− 3(2n + 1)2
(

1 +
1
3

+ . . . +
1

2n− 1

)

+3(2n + 1)(2n + 2)
(

1 +
1
3

+ . . . +
1

2n + 1

)

− (2n + 1)(2n + 3)
(

1 +
1
3

+ . . . +
1

2n + 1

)
= 1, (2.507)

(2n + 2)! b2n+1 = n(2n + 2)2 − 3(n + 1)(2n + 2)2

+3(n + 1)(2n + 2)(2n + 4)− (n + 2)(2n + 2)(2n + 4)

− (2n + 1)(2n + 2)
(

1 +
1
3

+ . . . +
1

2n− 1

)

+3(2n + 1)2
(

1 +
1
3

+ . . . +
1

2n + 1

)

− 3(2n + 2)(2n + 3)
(

1 +
1
3

+ . . . +
1

2n + 1

)

+(2n + 2)(2n + 4)
(

1 +
1
3

+ . . . +
1

2n + 3

)
= 1 − 1

2n + 3
. (2.508)

It follows that
∞∑

0

br xr =
∞∑

1

xs−1

s!
−

∞∑

0

x2s+1

(2s + 3)!

=
1
x

∞∑

1

xs

s!
− 1

x2

∞∑

1

x2s+1

(2s + 1)!



VOLUMETTO II 165

=
ex − 1

x
− ex − e−x − 2x

2x2

=
ex

x
− ex − e−x

2x2

= ex
(

1
x
− 1

2x2

)
+ e−

1
2x2 . (2.509)

By substituting into Eq. (2.505) and rewriting the l.h.s., we find

(
y′′ + 2y′ + y

)
+

d
dx

(
y′′ + 2y′ + y

)

= ex
(

1
x
− 1

2x2

)
+ e−x 1

2x2
, (2.510)

and thus

y′′ + 2y′ + y = e−x
{∫ [

e2x
(

1
x
− 1

2x2

)
+

1
2x2

]
dx + C

}
. (2.511)

Since, for x = 0, we have y = 0, y′ = 0, y′′ = 0, this becomes

y′′ + 2y′ + y = ex 1
2x

− e−x
(

1
2x

+ 1
)

, (2.512)

that is,

(
y′ + y

)
+

d
dx

(
y′ + y

)
= ex 1

2x
− e−x

(
1
2x

+ 1
)

, (2.513)

so that

y′ + y = e−x

{∫ [
e2x

2x
−

(
1
2x

+ 1
)]

dx + C

}
. (2.514)

Taking into account the initial conditions, we get

y′ + y = −x e−x + e−x
∫ x

0

e2x − 1
2x

dx (2.515)

and

y = e−x

[∫ (
−x +

∫ x

0

e2x − 1
2x

dx

)
dx + C

]
; (2.516)

and finally, using again the initial conditions, we find

y = − 1
2

x2 e−x + e−x
∫ x

0
dx1

∫ x1

0

e2x2 − 1
2x2

dx2. (2.517)
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As a further check, let us evaluate y′ and y′′:

y′ = −x e−x +
1
2

x2 e−x − e−x
∫ x

0
dx1

∫ x1

0

e2x2 − 1
2x2

dx2

+ e−x
∫ x

0

e2x − 1
2x

dx, (2.518)

y′′ = − e−x + 2x e−x − 1
2

x2 e−x + e−x
∫ x

0
dx1

∫ x1

0

e2x2 − 1
2x2

dx2

− 2 e−x
∫ x

0

e2x − 1
2x

dx +
ex − e−x

2x
. (2.519)

Since
∫ x

0
dx1

∫ x1

0

e2x2 − 1
2x2

dx2 = x

∫ x

0

e2x − 1
2x

dx − 1
4

e2x +
1
2

x +
1
4
,

the previous formulae become

y = x e−x
∫ x

0

e2x − 1
2x

dx − 1
4

ex +
(

1
4

+
1
2
x− 1

2
x2

)
e−x, (2.520)

y′ = (1− x) e−x
∫ x

0

e2x − 1
2x

dx +
1
4

ex

+
(
− 1

4
− 3

2
x +

1
2

x2
)

e−x, (2.521)

y′′ = (x− 2) e−x
∫ x

0

e2x − 1
2x

dx + ex
(

1
2x

− 1
4

)

+e−x
(
− 1

2x
− 3

4
+

5
2

x − 1
2

x2
)

. (2.522)

From these it follows that

y′′ =
(

1 − 2
x

)
y + x e−x, (2.523)

that is, the differential equation (2.499) is satisfied. Moreover, clearly

y(0) = y′(0) = 0, (2.524)

as we required. For x →∞ we get
∫ x

0

e2x − 1
2x

dx = e2x
(

1
4x

+
1

γx2
+ higher order terms

)
, (2.525)

and the asymptotic expression for y is

y =
1
8

ex

x
, (2.526)
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from which we can obtain the constant k0 in Eq. (2.500):

k0 =
1
8
. (2.527)

For large values of x, the solution of Eqs. (2.491) and (2.492) then is
approximately

χ = x e−x +
α

8
ex
√

1+α/x1/
√

1+α. (2.528)

We now suppose that R is large in our units; this means that R has
to be large with respect to atomic dimensions. We then have

χ(R) = R e−R +
α

8
eR
√

1+α

R1/
√

1+α
, (2.529)

χ′′(R) = (1−R) e−R +
α

8
eR
√

1+α

R1/
√

1+α

(√
1 + α − 1

R
√

1 + α

)
.(2.530)

For reasons that will be clear later on, we are only interested in very
small values of α, so that the second term in the expression of χ(R) is
of the same order as the first one. This means that α has to be of the
order R2e−2R. It is then possible to replace

√
1 + α with 1 everywhere.

Neglecting also 1 relative to R, the equations above become

χ(R) = R e−R +
α

8
eR

R
,

χ′′(R) = −R e−R +
α

8
eR

R
.

(2.531)

Equation (2.528) takes a simple form for large values of x smaller than
R:

χ = x e−x +
α

8
ex

x
. (2.532)

For x > R the second equation in (2.492) must be satisfied. Let us
suppose that E < 0, because otherwise no spontaneous ionization would
take place. Since

E = A − 1
2
− 1

2
α, (2.533)

A has to be much larger than 1
2 . The second equation in (2.492) thus

has sinusoidal solutions. For x greater than R we then have

χ =

(
R e−R +

α

8
eR

R

)
cos

√
2E(x−R)

+
1√
2E

(
−R e−R +

α

8
eR

R

)
sin
√

2E(x−R). (2.534)
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Let us set
B = A − 1

2
+ 4R2 e−2R A− 1

A
. (2.535)

The quantities E, B and A− 1/2 have all values that are very close one
another so that, when they appear as factors in some expression, it is
definitely possible to substitute one for the other in order to simplify
the formulae. In expressions that are arguments of sines and cosines,
another approximation is required. Since

E = B − 4(A− 1)
A

R2 e−2R − 1
2

α, (2.536)

we’ll set
√

2E =
√

2B − 1√
2E

(
4(A− 1)

A
R2 e−2R +

1
2

α

)
. (2.537)

We denote by γ the second term above divided by 2π: 51

γ = − 1
2π

1√
2E

(
4(A− 1)

A
R2 e−2R +

1
2

α

)
, (2.538)

so that
α = − 4π

√
2E γ − 8(A− 1)

A
R2 e−2R. (2.539)

If this is substituted into Eq. (2.534) and the approximations described
above are used, we find

χ =

(
1
A

R e−R −
√

2B

4
eR

R
2πγ

)
cos

(√
2B + 2πγ

)
(x−R)

+

(
−
√

2B

A
R e−R − 1

4
eR

R
2πγ

)
sin

(√
2B + 2πγ

)
(x−R) , (2.540)

or, again as an approximation,

χ =

√
2
A

R2 e−2R +
A

8
R−2 e2R 4π2γ2

× cos
[(√

2B + 2πγ
)

(x−R) + z
]
, (2.541)

where z is an angle that depends on γ. If we choose χ to be normalized
with respect to dx, then it must be multiplied by a factor N :

u = N χ (2.542)

51@ The author considers this γ as the (correction to) the momentum of the system under
consideration (in the adopted units).
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such that

N

√
2
A

R2 e−2R +
A

8
R−2 e2R 4π2γ2 = 2. (2.543)

Indeed,

lim
ε→0

∫ ∞

0
χ(γ) dx

∫ +ε

−ε
χ(γ + ε) dε = 1/N2. (2.544)

This yields the following normalized eigenfunctions for x < R and x > R,
respectively:

u =

√
A

2
eR

R√
1 +

π2A2

4
e4R

R4
γ2

(
2x e−x +

α

4
ex

x

)
eiBt e2πi

√
2Bγt,

u = 2 cos
[(√

2B + 2πγ
)

(x−R) + z
]

eiBt e2πi
√

2Bγt.

(2.545)

Here we have taken into account the time dependence and the fact
that E = B + 2π

√
2Bγ. Note that in Eq. (2.545) the term 2xe−x +

(α/4)(ex/x) has been factored out since

∫ R

0

(
2x e−x +

α

4
ex

x

)2

dx '
∫ R

0

(
2x e−x)2 dx ' 1, (2.546)

so that, for small values of x, it represents the eigenfunction of the quasi-
stationary state 1s, normalized in the usual way.

Let us now suppose that initially the electron is in the ground state.
Its eigenfunction is approximately spherically symmetric, so that we can
write

ψ = U(x)/x, (2.547)

where at time 0 we have

U0 ' 2x e−x. (2.548)

Denoting by u0 the functions u defined above at time t = 0, let us expand
U0 in series of u0 :

U0 =
∫ ∞

−∞
c u0 dγ. (2.549)

We shall have

c =
∫ ∞

0
U0 u0 dx '

√
A

2
eR

R

/√
1 +

π2A2

4
e4R

R4
γ2 ; (2.550)
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and, since, for an arbitrary t,

U =
∫ ∞

−∞
c udγ, (2.551)

on substituting Eqs. (2.547) and (2.550), we find for x less than R :

U = eiBt A
e2R

R2

(
x e−x +

α

8
ex

x

) ∫ ∞

−∞
e2πi

√
2Bγt dγ

1 + (π2A2e4R/4R4)γ2
,

(2.552)
where it is simple to show (from Eq. (2.539)) that

α = − A− 1
A

8R2 e−2R −
√

2B

A
8R2 e−2R (2.553)

coincides with the α relative to the stationary ground state considered
here; the demonstration is similar to the one exposed in what follows,
which will lead to Eq. (2.560)).52 Now

∫ ∞

−∞
e2πi

√
2Bγt dγ

1 + (π2A2e4R/4R4)γ2

=
4
R

R2 e−2R
∫ ∞

−∞

e2πi
√

2Bγt d
(
Ae2Rγ/4R2

)

1 + 4π2
(
Ae2Rγ/4R2

)2

=





2
A

R2 e−2R exp

{
4R2

√
2B

Ae2R
t

}
, for t < 0,

2
A

R2 exp

{
−4R2

√
2B

Ae2R
t

}
, for t > 0.

(2.554)

We are only interested in the solution for t > 0, since we shall set the
initial conditions regardless of the way the system reached such initial
state. Thus, for t > 0 and x < R, we’ll have

U =
(

x e−x +
α

8
ex

x

)
eiBt exp

{
−4R2

√
2B t/Ae2R

}
, (2.555)

while, for x > R,

U = eiBt 2

√
A

2
eR

R

∫ ∞

−∞

cos
[(√

2B + 2πγ
)

(x−R) + z
]

e2πi
√

2Bγt

√
1 + (π2A2e4R/4R4)γ2

dγ,

(2.556)

52@ This paragraph is added as a postponed footnote in the original manuscript.
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U = eiBt eR

R

[∫ ∞

−∞
1− (πA

√
2Be2R/2R2)γ

1 + (π2A2e4R/4R4)γ2

× cos
(√

2B + 2πγ
)

(x−R) e2πi
√

2Bγt dγ

−
∫ ∞

−∞

√
2B + (πAe2R/2R2)γ

1 + (π2A2e4R/4R4)γ2
sin

(√
2B + 2πγ

)
(x−R) e2πi

√
2Bγt dγ

]

= eiBt eR

R

[
ei
√

2B(x−R)
∫ ∞

−∞
M + Ni

2
e2πi[

√
2Bt+(x−R)]γ dγ

+ e−i
√

2B(x−R)
∫ ∞

−∞
M −Ni

2
e2πi[

√
2Bt−(x−R)]γ dγ

]
, (2.557)

with

M =
1− (πA

√
2Be2R/2R2)γ

1 + (π2A2e4R/4R4)γ2
, (2.558)

N =

√
2B + (πAe2R/2R2)γ

1 + (π2A2e4R/4R4)γ2
. (2.559)

We have
∫ ∞

−∞
e2πi[

√
2Bt±(x−R)]γ

/(
1 +

π2A2

4
e4R

R4
γ2

)
dγ

=





2
A

R2

e2R
exp

{
+

4
A

R2

e2R
[
√

2Bt±(x−R)]

}
,

for
√

2B t± (x−R) < 0,

2
A

R2

e2R
exp

{
− 4

A

R2

e2R
[
√

2Bt±(x−R)]

}
,

for
√

2B t± (x−R) > 0.

(2.560)

Moreover:53

∫ ∞

−∞
γ e2πi[

√
2Bt±(x−R)]γ dγ

1 + (π2A2e4R/4R4)γ2

53@ In the original manuscript the signs of the results of the integral were reversed, but here
the correct expressions are used.
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=





−i
4

πA2

R4

e4R
exp

{
+

4
A

R2

e2R
[
√

2Bt±(x−R)]

}
,

for
√

2B t± (x−R) < 0,

i
4

πA2

R4

e4R
exp

{
− 4

A

R2

e2R
[
√

2Bt±(x−R)]

}
,

for
√

2B t± (x−R) > 0.

(2.561)

Thus, although we will be concerned only with the solutions for x > R
and t > 0, we will have to consider two separate cases, depending on
whether

√
2Bt− (x− R) is positive or negative, while

√
2Bt + (x− R)

is always positive. Since the quantity
∫ ∞

−∞
(1/2)(M + Ni) e2πi[

√
2Bt+(x−R)]γ dγ (2.562)

is identically zero when
√

2B + x − R > 0, due to Eqs. (2.560) and
(2.561), we have, respectively54

U =





√
8
A

R

eR
eiBt exp

{
−i arcsin

√
(2A− 1)/2A − i

√
2B(x−R)

}

× exp
{
4R2(x−R)/(Ae2R) − 4R2

√
2B t/(Ae2R)

}
,

for
√

2Bt− (x−R) > 0,

0, for
√

2Bt− (x−R) < 0,
(2.563)

having again made use of the approximation 2B = 2A−1 where possible.
For

√
2Bt − (x − R) > 0, independently of the small time-dependent

damping factor and of the space-dependent growth factor, Eq. (2.563)
represents a progressive plane wave moving towards high values of x.
For sufficiently small values of t and x − R, the electron flux per unit
time is

F =
8R2

√
2B

Ae2R
. (2.564)

On the other hand, the damping factor can be written as

e−t/2T , (2.565)

where T is the time-constant.55 It follows, as it is natural, that

F =
1
T

, T =
Ae2R

8R2
√

2B
. (2.566)

54@ Note that the author missed a factor 2 in front of the following expression.
55@ Below, in this section, we shall call T the “mean-life”, following the author’s terminology.
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In his notes on the half-life of α particles in radioactive nuclei, Gamov56

assumed an exponential time dependence and postulated that, at large
distances from the nucleus, the eigenfunction of the α particle is a spher-
ical progressive wave, thus determining T by using Eq. (2.566). The
previous discussion shows how well grounded his arguments were and
also that Gudar’s objections on alleged inconsistencies arising from the
space dependent growth factor in U from Eq. (2.563) were not true.
Indeed, the first equation in (2.563) holds only up to a distance

x − R =
√

2B t, (2.567)

while beyond it we have U = 0. This means that, for times close to t = 0,
Eq. (2.563) is verified only in a region close to the nucleus, whereas, with
the passing of time (taking into account the approximations used), it is
valid within a radius

√
2Bt = vt, where v is precisely the velocity of

the emitted particles. Notice that, even if the finite life of the quasi-
stationary state induces a small uncertainty in the emission velocity, the
wavefront appears sharp due to the approximations we have made in
the computation. We shall shortly show how, by reducing the approxi-
mation further, it is possible to highlight such an uncertainty of v, and
to determine the velocity curve independently of the general statistical
principles of quantum mechanics.

The formulae that we have just derived suggest some interesting ob-
servations:

I. Having verified that the first of Eqs. (2.563) holds at short distances
almost since the beginning, we can try to derive directly a solution of the
required form, without worrying about what happens at larger distances.
This is Gamov’s method. In other words, let us assume that the time
dependence is, at any distance, given by

e2πiνt e−t/2T = e2πit(ν−1/4πiT ), (2.568)

so that ψ represents formally a stationary state with a complex eigen-
value. Now, from Eqs. (2.532) and (2.534) and taking account of the
time dependence, with a suitable approximate normalization, the general

56@ The author refers here to G.Gamov, Z. Phys. 41 (1928) 204. He had already worked on
Gamov’s theory also in connection with his Thesis work [E.Majorana, The Quantum Theory
of Radioactive Nuclei (in Italian), E. Fermi supervisor, unpublished].
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solution for the stationary states becomes to be

U =





eiEt 2
(

x e−x +
α

8
ex

x

)
, for x < R,

eiEt 2

[(
R

eR
+

α

8
eR

R

)
cos

√
2E(x−R)

+
1√
2E

(
− R

eR
+

α

8
eR

R

)
sin
√

2E(x−R)

]
,

for x > R.

(2.569)

For x > R, we can also write

U = eiEt

{[
R

eR
+

α

8
eR

R
− i√

2E

(
− R

eR
+

α

8
eR

R

)]
ei
√

2E(x−R)

+

[
R

eR
+

α

8
eR

R
+

i√
2E

(
− R

eR
+

α

8
eR

R

)]
e−i

√
2E(x−R)

}
. (2.570)

The requirement for having no ingoing wave is

R

eR
+

α

8
eR

R
− i√

2E

(
− R

eR
+

α

8
eR

R

)
= 0, (2.571)

whence

α = −
√

2E + i√
2E − i

8R2 e−2R, (2.572)

and, setting in first approximation
√

2E =
√

2A− 1,

α = − A− 1
A

8R2 e−2R − i

√
2A− 1

A
8R2 e−2R, (2.573)

so that

E = A − 1
2
− 1

2
α = B + i

√
2A− 1

A
8R2 e−2R, (2.574)

or, to the same order of approximation,

E = B + i

√
2B

A
4R2 e−2R. (2.575)

It follows that, for x < R,

U = eiBt 2

[
x e−x −

(
A− 1

A
R2 e−2R + i

√
2B

A
R2 e−2R

)
ex

x

]

× e
−
√

2B

A
4R2e−2R

, (2.576)
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as already found. Then, by this method one can also determine the
“mean-life” T :

T =
A√
2B

e2R

8R2
. (2.577)

II. The “mean-life” T is proportional to A/
√

2B, where B is the mean
energy of the electron or, which is the same, the mean kinetic energy
of the electron when it crosses the spherical surface of radius R. Since,
using a very rough approximation, B ' A − 1/2, the mean-life is pro-
portional to (B +1/2)/

√
2B. If we take A = 1/2, that is to say that A is

equal exactly to the ionization potential, then B = 0, and the mean-life
naturally becomes infinite. What may be surprising is that the ioniza-
tion probability per unit time increases with increasing B until it reaches
a maximum value, and then starts to decrease and eventually fall off to
zero as B → ∞. The maximum is achieved when B = 1/2 and thus
A = 1, that is to say, at twice the value of the ionization potential. The
minimum mean-life is then

T =
e2R

8R2
. (2.578)

The explanation of this paradox is the following. Whenever there is a
surface that sharply separates two regions with different potentials, it
behaves as a reflecting surface not only for the particles coming from the
region with lower potential energy, but also for the ones coming from
the opposite side, provided that the absolute value of the kinetic energy
(positive or negative) is small with respect to the abrupt potential energy
jump.

III. We have seen that the energy of the electron has been determined
with inaccurately. We can talk in terms of probability that it lies between
E and E + dE or, analogously, of probability that the speed of the
emitted electron falls between v and v + dv. From Eq. (2.537), we have

v =
√

2E '
√

2B + 2π γ, (2.579)
dv ' 2π dγ. (2.580)

The probability that γ has a value between γ and γ + dγ is c2dγ ; from
Eq. (2.550), the probability of v lying in the interval v, v + dv is

(Ae2R/4πR2)dv

1 + (π2A2e4R/4R4)γ2
' (Ae2R/4πR2)dv

1 + (A2e4R/16R4) (v −
√

2B)2
. (2.581)
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In first approximation, the same holds for the energy. The probability
for unit energy is

(Ae2R/4π
√

2BR2

1 + (A2e4R/32BR4) (E −B)2
=

K1/π

1 + K2
2 (E −B)2

=
1/πK

1 + (E −B)2/K2 . (2.582)

As we shall show later, when considering radioactive phenomena, if we
deal with quasi-stationary states, we always find the same probability,
independently of the form of the potential (provided it has spherical
symmetry). The parameter K which defines the probability amplitude
is related to the mean-life T by the relation

K = 1/2T = τ, (2.583)

or, going back to the usual units,

K = h̄/2T. (2.584)

Note that such expressions agree with the general uncertainty relations.

IV. Let us push further the approximation in the case x > R, while
keeping the definition (2.538) for γ. We now have

E = B + 2π
√

2B γ, (2.585)

and, instead of Eq. (2.537), in second approximation we get

√
2E =

√
2B + 2π γ − 2π2

√
2B

γ2. (2.586)

Equation (2.557) now becomes

U = eiEt eR

R

[
ei
√

2B(x−R)
∫ ∞

−∞
M + Ni

2

× exp

{
2πi[

√
2Bt + (x−R)]γ − 2π2iγ2

√
2B

(x−R)

}
dγ

+e−i
√

2B(x−R)
∫ ∞

−∞
M −Ni

2

× exp

{
2πi[

√
2Bt− (x−R)]γ +

2π2iγ2

√
2B

(x−R)

}
dγ

]
. (2.587)
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34. SCATTERING OF AN α PARTICLE BY A
RADIOACTIVE NUCLEUS

Let us consider the emission of an α particle by a radioactive nucleus
and assume that such a particle is described by a quasi-stationary wave.
As Gamov has shown, after some time this wave scatters at infinity. In
other words, the particle spends some time near the nucleus but even-
tually ends up far from it. We now begin to study the features of such
a quasi-stationary wave, and then address the inverse of the problem
studied by Gamov.57 Namely, we want to determine the probability
that an α particle, colliding with a nucleus that has just undergone an
α radioactive transmutation, will be captured by the nucleus so as to
reconstruct a nucleus of the element preceding the original one in the
radioactive genealogy. This issue has somewhat been addressed by Gu-
dar, although not deeply enough. It is directly related to our hypothesis
according to which, under conditions rather different from the ones we
are usually concerned with, a process can take place that reconstitutes
the radioactive element.

Following Gamov, let us suppose that spherical symmetry is realized,
so that the azimuthal quantum of the particle near the nucleus is zero.
For simplicity, we neglect for the moment the overall motion of the other
nuclear components. The exact formulae will have to take account of
that motion, and thus the formulae that we shall now derive will have
to be modified; but this does not involve any major difficulty. For the
spherically symmetric stationary states, setting, as usual, ψ = χ/x, we
shall have

d2χ

dx2
+

2m

h̄2 (E − U) χ = 0. (2.588)

Beyond a given distance R, which we can assume to be of the order of the
atomic dimensions, the potential U practically vanishes. The functions
χ will then be symmetric for E > 0. For definiteness, we require U to
be exactly zero for x > R, but it will be clear that no substantial error
is really introduced in this way in our calculations. For the time being,
let us consider the functions χ to depend only on position, and —as it is
allowed— to be real. Furthermore, we use the normalization condition

∫ R

0
χ2 dx = 1. (2.589)

57@ Once more, the author is referring to G.Gamov, Z. Phys. 41 (1928) 204: See the previous
footnote.
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Let us now imagine that it exists a quasi-stationary state such that it
is possible to construct a function u0 which vanishes for x > R, satisfies
the constraint ∫ R

0
|u0|2 dx = 1, (2.590)

and approximately obeys58 the differential equation (2.588) at the points
where its value is large. This function u0 will be suited to represent the
α particle at the initial time. It is possible to expand it in terms of the
functions χ that are obtained by varying E within a limited range. Let
us then set

E = E0 + W. (2.591)

The existence of such a quasi-stationary state is revealed by the fact
that for x < R the functions χ, normalized according to Eq. (2.589),
and their derivatives are small for small W .

In first approximation, we can set, for x < R,

χW = χ0 + W y(x),

χ′W = χ′0 + W y′(x),
(2.592)

and these are valid (as long as U has a reasonable behavior) with great
accuracy and for all values of W in the range of interest. In particular,
for x = R:

χW (R) = χ0(R) + W y(R),

χ′W (R) = χ′0(R) + W y′(R).
(2.593)

Bearing in mind that Eq. (2.588) simply reduces for x > R to

d2χW

dx2
+

2m

h̄2 (E0 + W ) χW = 0, (2.594)

for x > R we get

χW = (a + bW ) cos
1
h̄

√
2m(E0 + W )(x−R)

+ (a1 + b1W ) sin
1
h̄

√
2m(E0 + W )(x−R),

(2.595)

58For an approximately determined value of t, while being almost real.
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having set

a = χ0(R), b = y(R),

a1 =
h̄ χ′0(R)√

2m(E0 + W )
, b1 =

h̄ y′(R)√
2m(E0 + W )

.
(2.596)

Note that a1 and b1 are not strictly constant but, to the order of ap-
proximation for which our problem is determined, we can consider them
as constant and replace them with

a1 =
h̄ χ′0(R)√

2mE0
, b1 =

h̄ y′(R)√
2mE0

. (2.597)

Moreover, since E0 is not completely determined, we shall fix it in order
to simplify Eq. (2.595); with this aim, we can shift R by a fraction of
wavelength h/

√
2mE0. It will then be found that Eq. (2.595) can always

be replaced with the simpler one

χW = α cos
√

2m(E0 + W ) (x−R)/ h̄

+βW sin
√

2m(E0 + W ) (x−R)/ h̄.

(2.598)

We set
√

2m(E0 + W ) / h̄ =
√

2mE0 / h̄ + 2π γ = C + 2π γ, (2.599)

and, in first approximation, the following will hold:

2π γ ' W

h̄
√

2E0/m
=

W

h̄v
, (2.600)

v being the (average) speed of the emitted α particles. On substituting
into Eq. (2.598), we approximately find

χW = α cos(C + 2πγ)(x−R)

+β′ γ sin(C + 2πγ)(x−R),
(2.601)

with
β′ = β 2πh̄

√
2E0/m. (2.602)

For the moment, the χW functions are normalized as follows:
∫ R

0
χ2

W dx = 1.
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We denote by ηW the same eigenfunctions normalized with respect to
dγ. For x > R, we then get

ηW =
2√

α2 + β′2γ2
[α cos(C + 2πγ)(x−R)

+ β′ γ sin(C + 2πγ)(x−R)
]

=
2√

α2 + β′2γ2
χW .

(2.603)

We expand u0, which represents the α particle at the initial time, as
a series in ηW , and get

u0 =
∫ ∞

−∞
Kγ ηW dγ. (2.604)

Now, since u0 = χW for x ≤ R and therefore

Kγ =
∫ ∞

0
ηW u0 dx =

2√
α2 + β′2γ2

∫ R

0
χ2

W dx =
2√

α2 + β′2γ2
,

(2.605)
on substituting into Eq. (2.604), we obtain

u0 =
∫ ∞

−∞
4χW

α2 + β′2γ2
dγ. (2.606)

For small values of x, the different functions χW actually coincide and
are also equal to u0; it must then be true that

1 =
∫ ∞

−∞
4

α2 + β′2γ2
dγ = − 4π

αβ′
, (2.607)

and, consequently,

β′ = − 4π

α
(2.608)

must necessarily hold. Because of Eq. (2.600), if we introduce the time
dependence, we approximately get

u = eiEt/h̄
∫ ∞

−∞

4χW exp
{

2πi
√

2E0/m γt

}

α2 + 16π2γ2/α2 dγ. (2.609)

For small values of x the χW ’s can be replaced with u0, and we have

u = u0 eiE0t/h̄ exp
{
−α2

√
2E0/m t/2

}
. (2.610)

This can be written as

u = u0 eiE0t/h̄ e−t/2T , (2.611)
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quantity T denoting the time-constant (“mean-life”)

T =
1

α2
√

2E0/m
=

1
α2v

. (2.612)

In this way, and using also Eq. (2.608), both α and β′ can be expressed
in terms of T :

α =
±1√
vT

=
±1

4
√

2(E/m)T 2
, (2.613)

β′ = ∓4π
√

vT = ∓4π 4

√
2(E/m)T 2. (2.614)

It will be clear that only one stationary state corresponds to a hyperbolic-
like orbit in the classical theory. The revolution period or, more precisely,
the time interval between two intersections of the orbit with the spherical
surface of radius r, is given by

PW =
4

(α2 + β′2γ2)v
, (2.615)

and the maximum value is reached for W = 0:

PW =
4

α2v
= 4T. (2.616)

As a purely classical picture suggests, the probabilities for the realization
of single stationary states are proportional to the revolution periods
(see Eq. (2.605)), and T itself can be derived from classical arguments.
Indeed, if a particle is on an orbit W and inside the sphere of radius
R, on average it will stay in this orbit for a time TW = (1/2)PW =
(2/v)/(α2 + β′2γ2), and the mean value of TW will be

TW =
∫ ∞

0
T 2

W dγ

/∫ ∞

0
TW dγ =

1
α2v

= T. (2.617)

However, we must caution that, by pushing the analogy even further to
determine the expression for the survival probability, we would eventu-
ally get a wrong result.

The eigenfunction u takes the form in Eq. (2.610) only for small val-
ues of x. Neglecting what happens for values of x that are not too small,
but still lower than R, and considering, moreover, even the case x > R,
from Eqs. (2.602) and (2.606) we have

u = eiE0t/h̄
[∫ ∞

0

4α cos(C + 2πγ)(x−R)
α2 + β′2γ2

e2πivγt dγ

−
∫ ∞

0

4β′γ sin(C + 2πγ)(x−R)
α2 + β′2γ2

e2πivγt dγ

]
, (2.618)
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where α and β′ depend on T according to Eqs. (2.613), (2.614). Equa-
tion (2.618) can be written as

u = eiE0t/h̄
[
eiC(x−R)

∫ ∞

0

(2α− 2iβ′γ)
α2 + β′2γ2

e2πi(vt+x−R)γ dγ

+e−iC(x−R)
∫ ∞

0

(2α + 2iβ′γ)
α2 + β′2γ2

e2πi[vt−(x−R)]γ dγ

]
. (2.619)

Since α and β′ have opposite signs and, for t > 0 and x > R, one has
vt + x−R > 0, the first integral is zero, while the second one equals

∫ ∞

0

(2α + 2iβ′γ)
α2 + β′2γ2

e2πi[vt−(x−R)]γ dγ = 2
∫ ∞

0

e2πi[vt−(x−R)]γ

α− iβ′γ
dγ

=





−4π

β′
e2π(α/β′)[vt−(x−R)] = −4π

β′
e−(α2/2)[vt−(x−R)],

0,

(2.620)

for vt− (x−R) > 0 and vt− (x−R) < 0, respectively. On substituting
into Eq. (2.621) and recalling that, from Eq. (2.599), C = mv/h̄, we
finally find

u =





α eiE0t/h̄ e−imv(x−R)/h̄ e−t/2T e(x−R)/(2vT ),

0,
(2.621)

for vt − (x − R) > 0 and vt − (x − R) < 0, respectively. Let us
now assume that the nucleus has lost the α particle; this means that,
initially, it is u0 = 0 near the nucleus. We now evaluate the probability
that such a nucleus will re-absorb an α particle when bombarded with
a parallel beam of particles. To characterize the beam we’ll have to give
the intensity per unit area, the energy per particle, and the duration of
the bombardment. The only particles with a high absorption probability
are those having energy close to E0, with an uncertainty of the order
h/T . On the other hand, in order to make clear the interpretation of
the results, the duration τ of the bombardment must be small compared
to T . Then it follows that, from the uncertainty relations, the energy of
the incident particles will be determined with an error greater than h/T .
Thus, instead of fixing the intensity per unit area, it is more appropriate
to give the intensity per unit area and unit energy close to E0; so, let
N be the total number of particles incident on the nucleus during the
entire duration of the bombardment, per unit area and unit energy.

Suppose that, initially, the incident plane wave is confined between
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two parallel planes at distance d1 and d2 = d1 + ` from the nucleus,
respectively. Since we have assumed that the initial wave is a plane
wave, it will be

u0 = u0(ξ), (2.622)

ξ being the abscissa (distance from the nucleus) of a generic plane that
is parallel to the other two. Then, for ξ < d1 or ξ > d2, it is u0 = 0.
Furthermore, we’ll suppose d1 > R and, without introducing any further
constraint,

` =
hρ

m
√

2E0/m
=

hρ

mv
= ρ λ, (2.623)

with ρ an integer number and λ the wavelength of the emitted α particle.
We can now expand ψ0 between d1 and d2 in a Fourier series and thus
as a sum of terms of the kind

kσ eσ2πi(ξ−d1)/`, (2.624)

with integer σ. The terms with negative σ roughly represent outgoing
particles, and thus we can assume them to be zero. Let us concentrate
on the term

kρ eρ2πi(ξ−d1)/` = kρ eimv(ξ−d1)/h̄ (2.625)

and let us set59

u0 = ψ0 + kρ eimv(ξ−d1)/h̄. (2.626)

The eigenfunctions of a free particle moving perpendicularly to the in-
coming wave, normalized with respect to dE, are60

ψσ =
1√

2hE/m
ei
√

2mE(ξ−d1)/h̄. (2.627)

Note that the square root at the exponent must be considered once with
the positive sign and once with the negative sign, and E runs twice
between 0 and ∞. However, only the eigenfunctions with the positive
square root sign are of interest to us, since they represent the particles
moving in the direction of decreasing ξ. We can set

ψ0 =
∫ ∞

0
cE ψρ dE, (2.628)

59@ Note that the author split the wavefunction of the incident particles into a term related
to the principal energy E0 (the second term in Eq. (2.626)) plus another term which will be
expanded according to Eq. (2.628).
60@ In the original manuscript, these eigenfunctions are denoted by ψρ, but here, for clarity,
they will be denoted by ψσ
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wherein

cE =
∫ d2

d1

ψ0 ψ∗ρ dξ. (2.629)

In particular, we put

cE0 =
∫ d2

d1

ψ0
1√
hv

e−imv(ξ−d1)/h̄ dξ =
kρ`√
hv

. (2.630)

Since, evidently,
N = c2

E0
, (2.631)

one finds

N =
k2

ρ`
2

hv
. (2.632)

Let us now expand u0 in terms of the eigenfunctions associated with
the central field produced by the remaining nuclear constituents. Since
only the spherically symmetric eigenfunctions having eigenvalues very
close to E0 are significantly different from zero near the nucleus, we
shall concentrate only on these. For x > R, the expression of these
eigenfunctions is given in Eqs. (2.603), (2.613), (2.614). Actually, the
ηW given by Eq. (2.603) are the eigenfunctions relative to the problem
reduced to one dimension. In order to have the spatial eigenfunctions,
normalized with respect to γ, we must consider

gW =
ηW√
4πx

. (2.633)

In this way we will set

ψ0 =
∫ ∞

0
pγ gW dγ + . . . , (2.634)

wherein

pγ =
∫∫∫

dS gW ψ0 =
∫ d2

d1

2π x gW dx

∫ x

d1

ψ0 dξ. (2.635)

We can set

gW =
1√
4πx

[
Aγ ei(C+2πγ)(x−d1) + Bγ e−i(C+2πγ)(x−d1)

]
, (2.636)

and, from Eq. (2.603),

Aγ =
α− iβ′γ√
α2 + β′2γ2

ei(C+2πγ)(d1−R),

Bγ =
α + iβ′γ√
α2 + β′2γ2

e−i(C+2πγ)(d1−R).

(2.637)
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We can now assume that d1, and thus d2, is arbitrarily large; but ` =
d2−d1 has to be small because the duration of the bombardment, which
is of the order `/v, must be negligible with respect to T . Since 2πγ is
of the same order as α2, that is to say, of the same order as 1/vT (see
Eq. (2.612)), 2πγ` is absolutely negligible. For d1 < x < d2 it is then
possible to rewrite Eq. (2.636) as

gW =
1√
4πx

[
Aγ eimv(x−d1)/h̄ + Bγ e−imv(x−d1)/h̄

]
, (2.638)

given Eqs. (2.637).
Let us now substitute this into Eq. (2.635), taking into account Eqs.

(2.626) and (2.632). We’ll simply have

pγ =
2πBγ√

4π

∫ d2

d1

e−imv(x−d1)/h̄ dx

∫ x

d1

eimv(ξ−d1)/h̄ dξ

=
hBγkρ`

i
√

4π mv
=

Bγh3/2
√

N

i
√

4π m
√

v
= q Bγ , (2.639)

with

q =
h3/2N1/2

i m v1/2
√

4π
. (2.640)

Substituting into Eq. (2.634), one gets

ψ0 = q

∫ ∞

0
BγgW dγ + . . . (2.641)

and, at an arbitrary time,

ψ = eiE0t/h̄ q

∫ ∞

0
Bγ gW e2πivγt dγ + . . . , (2.642)

or, taking into account Eqs. (2.633) and (2.603),

ψ = eiE0t/h̄ q√
4πx

∫ ∞

0

2Bγ√
α2 + β′2γ2

χW e2πivγt dγ + . . . . (2.643)

We now want to investigate the behavior of ψ near the nucleus. There,
assuming that other quasi-stationary state different from the one we are
considering do not exist, the terms we have not written down in the
expansion of ψ can contribute significantly only during a short time
interval after the scattering of the wave. If this is the case, ψ will have
spherical symmetry near the nucleus. We set

ψ =
u√
4πx

, (2.644)
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so that the number of particles that will eventually be captured is
∫
|u2| dx (2.645)

(the integration range should extend up to a reasonable distance, for
example up to R). Substituting into Eq. (2.643), and noting that for
small values of x we approximately have χW = χ0, one obtains

u = q χ0 eiE0t/h̄
∫ ∞

0

2
α− iβ′γ

e2πi[vt−(d1−R)]γ dγ. (2.646)

Since, as we already noted, αβ′ < 0, and setting d = d1 − R, from Eqs.
(2.613), we find

u =





q α χ0 eiE0t/h̄ e
− t− d/v

2T = q α e−iCd e
− t− d/v

2T , for t >
d

v
,

0, for t <
d

v
.

(2.647)
The meaning of these formulae is very clear: The α-particle beam, which
by assumption does not last for a long time, reaches the nucleus at the
time t = d/v, and there is a probability |qα|2 that a particle is captured
(obviously, q2α2 ¿ 1). The effect of the beam then ceases and, if a
particle has been absorbed, it is re-emitted on the time scale predicted
by the laws of radioactive phenomena. If we set n = |qα|2, then from
Eqs. (2.612) and (2.640) we get

n =
2π2h̄3

m2v2T
N, (2.648)

which tells us that the absorption probabilities are completely indepen-
dent of any hypothesis on the form of the potential near the nucleus,
and that they only depend on the time-constant T . 61

Equation (2.648) has been derived using only mechanical arguments

61@ The original manuscript then continues with two large paragraphs which have however
been crossed out by the author. The first one reads as follows:
“Since only the particles with energy near E0 are absorbed, we can think, with some imagina-
tion, that every energy level E0 + W is associated with a different absorption coefficient `W ,
and that such `W is proportional to the probability that a particle in the quasi-stationary
state has energy E0 + W . From (2.600), (2.608), (2.612), and (2.605), we then have

`W =
D

1 + 4T 2W 2/h̄2
. (2.649)
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but, as a matter of fact, we can get the same result using thermodynam-
ics. Let us consider one of our radioactive nuclei in a bath of α particles
in thermal motion. To the degree of approximation we have treated the
problem so far, we can consider the nucleus to be at rest. Due to the
assumed spherical symmetry of the system, a particle in contact with
the nucleus is in a quantum state with a simple statistical weight. Such
a state, of energy E0, is not strictly stationary, but has a finite half-life;
this should be considered, as in all similar cases, as a second-order effect.
Assuming that the density and the temperature of the gas of α particles
is such that there exist D particles per unit volume and unit energy near
E0, then, in an energy interval dE, we will find

D dE (2.654)

particles per unit volume. Let us denote by p the momentum of the
particles, so that we have

p =
√

2mE0, (2.655)

dp =
√

m/2E0 dE. (2.656)

E0 appears instead of E in the previous equations because we are consid-
ering particles with energy close to E0. The DdE particles fill a unitary
volume in ordinary space, and in momentum space they fill the volume
between two spheres of radii p and p + dp, respectively. Thus, in phase
space they occupy a volume

4π p2 dp = 4π m2
√

2E0/mdE = 4π m2 v dE. (2.657)

Since the number of incident particles per unit area and unit energy with energy between
(E0 + W ) and (E0 + W ) + dW is NdW , we must have

n = N

∫ ∞

−∞
`W dW = N D

πh̄

2T
, (2.650)

from which, comparing with (2.648),

D =
1

π

h2

m2v2
=

λ2

π
. (2.651)

This is a very simple expression for the absorption cross section of particles with energy E0,
i.e., the particles with the greatest absorption coefficient. If we set

N ′ = N
πh̄

2T
, (2.652)

then Eq. (2.648) becomes

n =
λ2

π
N ′, (2.653)

which means that the absorption of N ′ particles of energy E0 is equivalent to the absorption
of N particles per unit energy.” The second paragraph is not reproduced here since it appears
to be incomplete.
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This volume contains
m2v

2π2h̄3 dE (2.658)

quantum states. Therefore, on average, we have

D
2π2h̄3

m2v
(2.659)

particles in every quantum state with energy close to E0. This is also
the mean number of particles inside the nucleus, provided that the ex-
pression (2.659) is much smaller than 1, so that we can neglect the in-
teractions between the particles. Since the time-constant (“mean-life”)
of the particles in the nucleus is T , then

n =
2π2h̄3D

m2vT
(2.660)

particles will be emitted per unit time and, in order to maintain the
equilibrium, the same number of particles will be absorbed. Concerning
the collision probability with a nucleus, and then the absorption proba-
bility, D particles per unit volume and energy are equivalent to a parallel
beam of N = Dv particles per unit area, unit energy and unit time. On
substituting, we then find

n =
2π2h̄3

m2v2T
N, (2.661)

which coincides with Eq. (2.648).

35. RETARDED POTENTIAL 62

Let us consider a periodic solution of Eq. (1.21) and let

H = u sinωt, (2.662)

with u a time-independent function. The equation

∇2 u +
ω2

c2
u = 0 (2.663)

will hold; and, setting k2 = ω2/c2, we find

∇2 u + k2 u = 0. (2.664)
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φ

O
r

σ

Fig. 2.1. Definition of some quantities used in the text.

Equation (1.33) then becomes

u sinωt =
1
4π

∫ [
sinω(t− r/c)

(
u cosφ + r

∂u

∂n

)

+
ωr

c
u cosφ cosω(t− r/c)

]
dσ

r2
, (2.665)

and thus

u =
1
4π

∫ [
cos

ωr

c

(
u cosφ + r

∂u

∂n

)
+

ωr

c
u cosφ sin

ωr

c

]
dσ

r2
.

(2.666)
If the distances r are large with respect to the wavelength, we will simply
have

u =
1
4π

∫ 1
r

(
∂u

∂n
cos

ωr

c
+ u

ω

c
cosφ sin

ωr

c

)
dσ, (2.667)

or, in terms of the wavelength,

u =
1
2λ

∫ 1
r

(
λ

2π

∂u

∂n
cos

2πr

λ
+ u cosφ sin

2πr

λ

)
dσ; (2.668)

note that we are dealing with stationary waves.

62See Sec. 1.2.
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Table 2.3. Matching values for the solutions of the equation y′′ = xy (see the text).

x M M ′ N N ′

−4 0.2199 −1.2082 0.5732 1.3972
0 1 0 0 1
4 68.1777 131.6581 93.5172 180.6092

36. THE EQUATION y00 = xy

It is easy to find approximate solutions to this equation with Wentzel’s
method (see Sec. 2.31 and also 2.5). However, these do not hold anymore
when x approaches zero. Therefore the problem that arises is how to
connect the asymptotic expressions for x > 0 (by a few units, at least)
with those for x < 0. Since the equation is homogenous, we need only to
know how to match two particular solutions, to be able to perform the
matching for any solution. Let us consider the following two particular
solutions:

M = 1 +
x3

2·3 +
x6

2·3·5·6 +
x9

2·3·5·6·8·9 + . . . ,

N = x +
x4

3·4 +
x7

3·4·6·7 +
x10

3·4·6·7·9·10
+ . . . .

(2.669)

For |x| > 4 the first and, even better, second-approximation asymptotic
expressions are practically exact. It is then enough to compute, from Eq.
(2.669), the values of M,N,M ′, N ′ for x = ±4. These can be found in
Table 2.3.63 In Fig.2.2 we report the functions M and N in the interval
−4 < x < 0.

37. RESONANCE DEGENERACY FOR
MANY-ELECTRON ATOMS

Let us consider n electrons q1, q2, . . . , qn in n orbits described by the
eigenfunctions ψ1, ψ2, . . . , ψn with different eigenvalues. If we neglect the

63@ Note that the numerical values reported in Table 2.3, as written in the original
manuscript, were obtained from Eqs. (2.669) by taking the expansions up to the non-
vanishing tenth term (and the same is true for the derivatives), which means up to the x27

and x28 power terms for M and N , respectively (and x29, x30 for M ′ and N ′, respectively).
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Fig. 2.2. The functions M (solid line) and N (dashed line) in the interval −4 <
x < 0.

interaction, in the zeroth-order approximation, we can assume that the
eigenfunction of the system is the product of eigenfunctions of the single
electrons. Since the different electron eigenfunctions can be ordered in n!
different ways, we shall have n! independent eigenfunctions of the kind

Ψr = ψ1(qr1)ψ2(qr2) · · ·ψn(qrn), (2.670)

r1, r2, . . . , rn being an arbitrary permutation of the first n numbers. Let
us denote by Pr the substitution

(
1 2 3 . . . n
a1 a2 a3 . . . an

)
, (2.671)

and define also Pr as the operators acting on functions of n variables or
groups of variables, which we briefly write as q:

Pr f(q) = f(Pr q). (2.672)

In the previous equation, Pr on the l.h.s. must be considered as an
operator, and on the r.h.s. as a substitution that alters the order of
the independent variables. Clearly, this double meaning cannot lead to
misunderstandings. It is also understood that P1 is the identity permu-
tation. From Eq. (2.670) it follows that

Ψ1 = ψ1(q1)ψ2(q2) · · ·ψn(qn), (2.673)

and, from Eqs. (2.670), (2.672), and (2.673),

Ψr = Pr Ψ1. (2.674)
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As a perturbation term, let us introduce in the Hamiltonian the inter-
action H, which we’ll have to consider symmetric with respect to q, so
that

Pr H(q) = H(q), r = 1, 2, . . . , n!. (2.675)

The Hrs term of the perturbation matrix will be

Hrs =
∫

Ψ∗
r H Ψs dq =

∫
Pr ψ∗1 H Ps ψ1 dq, (2.676)

where dq obviously denotes the volume element in the space of the q
variables. Note that the last integral extends from −∞ to ∞ for all the
variables, and thus it does not depend on q. Consequently the operator
Pr will reduce to unity when it is applied to it.64

38. VARIOUS FORMULAE

38.1 Schwarz Formula
The Schwarz formula is

∣∣∣∣∣
n∑

i=1

ai bi

∣∣∣∣∣
2

≤
n∑

i=1

a2
i ·

n∑

i=1

b2
i . (2.677)

Indeed,

n∑

i=1

a2
i ·

n∑

i=1

b2
i −

∣∣∣∣∣
n∑

i=1

ai bi

∣∣∣∣∣
2

=
1
2

n∑

i,j=1

(ai bj − aj bi)
2 . (2.678)

If it is understood that every couple i, j must be taken only once, and,
since the terms i = j are zero, by introducing for example the condition
i < j, the term on the l.h.s. can be rewritten as

∑

i<j

(ai bj − aj bi)2.

There is also another Schwarz formula:
∣∣∣∣∣
∫ b

a
y z dx

∣∣∣∣∣
2

≤
∫ b

a
y2 dx

∫ b

a
z2 dx (2.679)

64@ This section was evidently left incomplete by the author.
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(with b > a). Indeed,
∫ b

a
y2 dx

∫ b

a
z2 dx −

∣∣∣∣∣
∫ b

a
y z dx

∣∣∣∣∣
2

=
1
2

∫ x=b

x=a

∫ ξ=b

ξ=a
[y(x) z(ξ) − y(ξ) z(x)]2 dxdξ. (2.680)

38.2 Maximum Value of Random Variables
Let x1, x2, . . . , xn be n random independent variables, following the same
normal distribution law

Px =
1√
π

e−x2
, (2.681)

which can also be viewed as n independent realizations of the same
random variable x. Let y be the largest (in the algebraic sense) of these.
Its distribution is clearly

Py =
d
dy

(
1− θ(y)

2

)n

, (2.682)

with
θ(y) =

2√
π

∫ y

0
e−y2

dy. (2.683)

For large n, the values of y for which Py is significantly different from
zero are large themselves. Limiting our analysis to such a part of the
curve representing Py, we can then derive its asymptotic behavior for
large n by the Equation in item 3) of Sec. 2.27. As a first approximation,
we have

Py =
d
dy

(
1 − 1

2
√

π

e−y2

y

)n

, (2.684)

which approximately is

Py =
d
dy

exp

{
−ne−y2

2
√

2y

}
; (2.685)

and, with a further approximation, becomes

Py =
n√
π

exp

{
−

(
ne−y2

2
√

2y
+ y2

)}
. (2.686)

Let y0 be the value for which Py has a maximum. Since

d
dy

(
n

2
√

π

e−y2

y
+ y2

)
= − n√

π
e−y2 − n

2
√

π

e−y2

y2
+ 2y, (2.687)
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in first approximation one gets

y0 =
√

log n, absolute error → 0,

n

2
√

π
e−y2

0 =
√

log n, absolute error → 0,

n

2
√

π

e−y2
0

y0
= 1,

e−y2
0 =

2
√

π log n

n
, relative error → 0.

It follows that

Py0 =
n√
π

e−y2
0 exp

{
− n

2
√

π

e−y2
0

y

}
=

2
√

log n

e
. (2.688)

Thus we have obtained both the maximum value of Py and the corre-
sponding value of y:

y0 =
√

log n, (2.689)

Py0 =
2
√

log n

e
=

2y0

e
. (2.690)

Moreover, the width of Py (the interval in which Py is large enough)
is of the order 1/y0. We haven’t yet succeeded in establishing whether
the value of y0 is given by

√
log n with a precision greater than 1/y0, as

would be desirable. It is then convenient to follow another procedure.
Since

Py =
d
dy

(
1√
π

∫ y

−∞
e−y2

dy

)n

, (2.691)

if we require P ′
y0

= 0, we have

(n− 1) e−y2
0 = 2y0

∫ y

−∞
e−y2

dy, (2.692)

i.e., with a relative error tending to 0,

n

2
√

π
e−y2

0 = y0. (2.693)

Taking the logarithm of the previous expression, up to infinitesimals, we
get

log n − log 2
√

π − y2 = log y. (2.694)
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On setting y0 =
√

log n + ε, we obtain, in first approximation,

− log 2
√

π − 2ε
√

log n = log
√

log n, (2.695)

which yields

ε = − log 2
√

π log n

2
√

log n
. (2.696)

Thus, the second-order approximation for y0 becomes

y0 = log n − log 2
√

π log n

2
√

log n
. (2.697)

It follows that the correction term goes to zero less rapidly than the am-
plitude of the Py curve, which behaves as 1/

√
log n. This is something

we have to bear in mind.
Pushing further the approximation would not yield corrections com-

parable with 1/
√

log n. Then, we use the following as a first-order ap-
proximation values for y0 and Py0 :

y0 =
√

log n− log 2
√

π log n

2
√

log n
, (2.698)

Py0 = (2/e)
√

log n, (2.699)

or

Py0 = 2y0/e. (2.700)

38.3 Binomial Coefficients

n

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1
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n

11 1 11 55 165 330 462
462 330 165 55 11 1

12 1 12 66 220 495 792
924 792 495 220 66 12
1

13 1 13 78 286 715 1287
1716 1716 1287 715 286 78
13 1

14 1 14 91 364 1001 2002
3003 3432 3003 2002 1001 364
91 14 1

15 1 15 105 455 1365 3003
5005 6435 6435 5005 3003 1365
455 105 15 1

n

16 1 16 120 560 1820 4368
8008 11440 12870 11440 8008 4368
1820 560 120 16 1

17 1 17 136 680 2380 6188
12376 19448 24319 24310 19448 12376
6188 2380 680 136 17 1

18 1 18 153 816 3060 8568
18564 31824 43758 48620 43758 31824
18564 8568 3060 816 153 18

1
19 1 19 171 969 3876 11628

27132 50388 75582 92378 92378 75582
50388 27132 11628 3876 969 171

19 1
20 1 20 190 1140 4845 15504

38760 77520 125970 167960 184756 167960
125970 77520 38760 15504 4845 1140

190 20 1

38.4 Expansion of 1/(1 − x)n

We have

1
(1− x)n

=
∞∑

r=0

(
n + r − 1

r

)
xr =

∞∑

r=0

(
n + r − 1

n− 1

)
xr. (2.701)

It follows that
(

n + r − 1
r

)
=

r∑

r=0

(
n + r − 2

r

)
, (2.702)
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Table 2.4. Coefficients of the expansion of the function 1/(1− x)n.

r = 0 1 2 3 4 5 6 7 8 9

n = 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9 10
3 1 3 6 10 15 21 28 36 45 55
4 1 4 10 20 35 56 84 120 165 220
5 1 5 15 35 70 126 210 330 495 715
6 1 6 21 56 126 252 462 792 1287 2002
7 1 7 28 84 210 462 924 1716 3003 5005
8 1 8 36 120 330 792 1716 3432 6435 11440
9 1 9 45 165 495 1287 3003 6435 12870 24310

10 1 10 55 220 715 2002 5005 11440 24310 48620

or
r∑

r=0

(
k − 1 + r

r

)
=

(
k + r

r

)
. (2.703)

In Table 2.4 we report some coefficients of the expansion of 1/(1−x)n.

38.5 Relations between the Binomial
Coefficients

(
n− 1
r − 1

)
+

(
n− 1

r

)
=

(
n
r

)
, (2.704)

n∑

r=0

1
2n+r

(
n + r

n

)
= 1 (2.705)

(see Sec. 1.32) ;
∞∑

r=0

1
2n+r

(
n + r

n

)
= 2 (2.706)

(see Sec. 1.32). It follows that
∞∑

r=1

1
22n+r

(
2n + r

n

)
= 1, (2.707)

l∑

r=0

(
n + r

r

)
=

(
n + l + 1

l

)
(2.708)

(see previous subsection); or

l∑

r=0

(
n + r

n

)
=

(
n + l + 1

n + 1

)
, (2.709)
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2r>n∑

r=0

1
2r + 1

(
n
2r

)
=

2n

n + 1
. (2.710)

38.6 Mean Values of rn between Concentric
Spherical Surfaces 65

Let P be a point with coordinates α = 0, β = 0, γ = 1, and P1 a point
on the spherical surface whose equation is

α2 + β2 + γ2 = x2 < 1. (2.711)

If r is the distance between P and P1, we’ll denote by Sn the mean
value66 of rn :

Sn =
1

4πx2

∫ 4πx2

0
rn dσ =

1
4π

∫ 4π

0
rn dω; (2.712)

it follows that

dSn

dx
=

1
4π

∫ 4π

0
∇rn ·u dω, (2.713)

x2 dSn

dx
=

1
4π

∫ 4πx2

0
∇rn ·udσ, (2.714)

u being a unitary vector normal to the sphere. From Eq. (2.714), we
have

x2 dSn

dx
=

1
4π

∫ 4πx3

0
∇2 rn dS

=
1
4π

∫ 4πx3

0
n(n + 1) rn−2 dS, (2.715)

d
dx

(
x2 dSn

dx

)
=

n(n + 1)
4π

∫ 4πx2

0
rn−2 dσ

= n(n + 1)x2 Sn−2. (2.716)

We thus get
d2Sn

dx2
+

2
x

dSn

dx
= n(n + 1)Sn−2, (2.717)

65See Sec. 1.21.
66@ In what follows, the author denoted by dσ, dω, and dS the surface element, the solid
angle element, and the volume element, respectively.
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which can also be written in the form

1
x

d2(xSn)
dx2

= n(n + 1)Sn−2. (2.718)

On the other hand, Eq. (2.713) can be rewritten as

dSn

dx
=

1
4π

∫ 4π

0
n rn−1 r2 + x2 − 1

2xr
dω, (2.719)

that is,
dSn

dx
=

n

2x
Sn − n

1− x2

2x
Sn−2. (2.720)

Taking the derivative of the last expression and substituting it into Eq.
(2.717), we finally get

(n + 2)Sn − 2n (1 + x2) Sn−2 + (n− 2) (1− x2)2 Sn−4 = 0. (2.721)

Equations (2.718) and (2.721), with the obvious relations

S0 = 1, S−1 = 1, Sn(0) = 1, (2.722)

make it possible to evaluate all the Sn.
Let us evaluate S1; from Eqs. (2.718) and (2.722), we have

d2(xS1)
dx2

= 2x,

d(xS1)
dx

= 1 + x2,

x S1 = x +
1
3

x3,

S1 = 1 +
1
3

x2. (2.723)

Substituting n = 0 into Eq. (2.721), one gets

2 − 2(1− x2)2 S−4 = 0, (2.724)

from which
S−4 =

1
(1− x2)2

. (2.725)

From Eq. (2.718) one obtains

d2(xS−2)
dx2

=
2x

(1− x2)2
,
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d(xS−2)
dx

=
1

1− x2
,

x S−2 =
1
2

log
1 + x

1− x
,

S−2 =
1
2x

log
1 + x

1− x
. (2.726)

Since we now know the values of S1, S−4, and S−2 from Eqs. (2.723),
(2.725), and (2.726), all the remaining Sn can be evaluated using only
Eq. (2.721). For example, setting n = 2, one gets

4S2 − 4(1 + x2) = 0, (2.727)

from which

S2 = 1 + x2, (2.728)

as can be directly checked. Here we report the values of the first Sn with
positive n:

S0 = 1, S0(1) = 1,

S1 = 1 +
1
3
x2 =

(1 + x)3 − (1− x)3

6x
, S1(1) =

4
3
,

S2 = 1 + x2 =
(1 + x)4 − (1− x)4

8x
, S2(1) = 2,

S3 = 1 + 2x2 +
1
5
x4 = . . . , S3(1) =

16
5

,

S4 = 1 +
10
3

x2 + x4 = . . . , S4(1) =
16
3

.

In general, for n > −2, we have

Sn(1) =
2n+1

n + 2
. (2.729)

Clearly, in this formula Sn(1) is the mean value of the nth powers of the
distances between two surface elements on a sphere of unit radius (see
Sec. 1.21 for the analogous formulae corresponding to surface elements
on a circle).
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For negative n, we instead have

S0 = 1, S0(1) = 1,

S−1 = 1, S−1(1) = 1,

S−2 =
1
2x

log
1 + x

1− x
, S−2(1) = ∞,

S−3 =
1

1− x2
=

1
2x

(
1

1− x
− 1

1 + x

)
,

S−4 =
1

(1− x2)2
=

1
4x

(
1

(1− x)2
− 1

(1 + x)2

)
,

S−5 =
1 +

1
3
x2

(1− x2)3
=

1
6x

(
1

(1− x)3
− 1

(1 + x)3

)
.

Notice that, with the exception of S−2, the quantities Sn (with integer
n) are rational functions. Let us set

Sn =
∞∑

r=0

ar
n x2r, (2.730)

with (see Eq. (2.722))
a0

n = 1. (2.731)

Equation (2.718) can be written, more in general, as

1
x

d2k(xSn)
dx2k

= (n + 1)n(n− 1)· · ·(n− 2k + 2)Sn−2k. (2.732)

Thus, from Eqs. (2.722), it follows that

ar
n (2r + 1)! = (n + 1)n(n− 1)· · ·(n− 2r + 2), (2.733)

so that

ar
n =

(n + 1)n(n− 1)·(n− 2r + 2)
(2r + 1)!

, (2.734)

Sn =
∞∑

r=0

(n + 1)n(n− 1)· · ·(n− 2r + 2)
(2r + 1)!

x2r. (2.735)

The last equation can also be written in the form

Sn =
∞∑

r=0

(
n + 1

2r

)
x2r

2r + 1
. (2.736)
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For integer n > −2, the sum reduces to a finite polynomial. In particular,
we recover Eq. (2.729) (cf. Eq. (2.710)):

Sn(1) =
2r≥n+1∑

r=0

(
n + 1

2r

)
1

2r + 1
=

2n+1

n + 2
. (2.737)

Then we get

S6 = 1 + 7x2 + 7x4 + x6, S6(1) = 16,

S5 = 1 + 5x2 + 3x4 +
1
7
x6, S5(1) =

64
7

,

S4 = 1 +
10
3

x2 + x4 = . . . , S4(1) =
16
3

,

S3 = 1 + 2x2 +
1
5
x4 = . . . , S3(1) =

16
5

,

S2 = 1 + x2 =
(1 + x)4 − (1− x)4

8x
, S2(1) = 2,

S1 = 1 +
1
3
x2 =

(1 + x)3 − (1− x)3

6x
, S1(1) =

4
3
,

S0 = 1, S0(1) = 1,

S−1 = 1, S−1(1) = 1,

S−2 = 1 +
1
3
x2 +

1
5
x4 +

1
7
x6 + . . . ,

S−3 = 1 + x2 + x4 + x6 + . . . ,

S−4 = 1 + 2x2 + 3x4 + 4x6 + . . . ,

S−5 = 1 +
2·5
3

x2 +
3·7
3

x4 +
4·9
3

x6 + . . . ,

S−6 = 1 +
4·5·6
4!

x2 +
6·7·8
4!

x4 +
8·9·10

4!
x6 + . . . ,
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and so on. Equation (2.735) can be rewritten for the two cases n > −2
and n < −2, respectively, as follows:67

Sn =
2r=n+1/2±1/2∑

r=0

(
n + 1

2r

)
x2r

2r + 1
, n > −2, (2.738)

Sn =
∞∑

r=0

1
−n− 2

( −n− 2 + 2r
−n− 3

)
x2r, n < −2. (2.739)

Now, let y dr be the probability that r lies between r and r + dr. We
have

y = 0, for |r − 1| > x. (2.740)
Otherwise, let us consider the point with coordinates α = 0, β = 0,
γ = x on the internal sphere. Take the spherical surface with center at
this point and with radius r,

α2 + β2 + (γ − x)2 = r2, (2.741)

and let it intersect the external spherical surface

α2 + β2 + γ2 = 1. (2.742)

For the circumference common to the two spherical surfaces,

2γ x − x2 = 1 − x2,

γ =
1 + x2

2x
− r2

2x
, (2.743)

we’ll have
y =

1
2

∣∣∣∣
dγ

dr

∣∣∣∣ =
r

2x
. (2.744)

In conclusion,

y =





0, for r < 1− x,

r

2x
, for 1− x < r < 1 + x,

0, for 1 + x < r;

(2.745)

and, in particular,

y(1− x) =
1− x

2x
,

y(1 + x) =
1 + x

2x
.

(2.746)

67@ The + sign in the upper limit for the sum refers to odd n, the − sign to even n.
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We then infer that

Sn =
∫ ∞

−∞
rn y dr =

∫ 1+x

1−x

rn+1

2x
dr

=
(1 + x)n+2 − (1− x)n−2

2(n + 2)x
, (2.747)

which contains Eqs. (2.729), (2.735), (2.738), and (2.739). Equation
(2.747) does not hold for n = −2, in which case one has

S−2 =
∫ 1+x

1−x

1
2rx

dr =
1
2x

log
1 + x

1− x
, (2.748)

as already obtained above.
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VOLUMETTO III: 28 JUNE 1929

1. EVALUATION OF SOME SERIES

(17)
∞∑

r=1

1
r
e−ry sin rx = arctan

sin x

ey − cos x

= arctan
tan x/2
tanh y/2

− x

2
, (3.1)

or, setting K = e−y,

∞∑

r=1

Kr

r
sin rx = arctan

K sin x

1 − K cos x

= arctan
(

1 + K

1−K
tan

x

2

)
− x

2
. (3.2)

Special cases:

(a) K=1:
∞∑

r=1

sin rx

r
=

π

2
− x

2
; (3.3)

see (12).

(b) x = π/2 :

K − 1
3
K3 +

1
5
K5 + . . . = arctan K. (3.4)

(c) Setting x = π/4 in (a), after some simple algebra we obtain

2
3·5 − 2

7·9 +
2

11·13
− 2

15·17
+ . . . =

π

2
√

2
− 1. (3.5)

205
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(18)
2

1·3 +
2

3·5 +
2

5·7 +
2

7·9 + . . . = 1,

2
1·3 +

2
5·7 +

2
9·11

+ . . . =
π

4
,

2
3·5 +

2
7·9 +

2
11·13

+
2

15·17
+ . . . = 1 − π

4
,

2
3·5 +

2
11·13

+
2

19·21
+

2
27·29

+ . . . = π

√
2− 1
8

,

2
7·9 +

2
15·17

+
2

23·25
+

2
31·33

+ . . . = 1 − π

√
2 + 1
8

.

(19)
2

82(82 − 1)
+

2
162(162 − 1)

+
2

242(242 − 1)
+ . . .

= 1 − π

√
2 + 1
8

− π2

192
.

(20)
2

84(84 − 1)
+

2
164(164 − 1)

+
2

244(244 − 1)
+ . . .

= 1 − π

√
2 + 1
8

− π2

192
− π4

90·2048
.

(21)
∞∑

r=0

(
n + 1

2r

)
x2r

2r + 1
=

(1 + x)n+2 − (1− x)n+2

2(n + 2)x

for x ≤ 1; see Sec. 2.38.6. If n is a positive integer, the series reduces to
a finite sum up to 2r = n + 1/2± 1/2.

Special cases:

(a) x = 1:
∞∑

r=0

(
n + 1

2r

)
1

2r + 1
=

22n+1

n + 2
. (3.6)

(b) The above formula fails for n = −2; in this limit:

1 +
1
3
x2 +

1
5
x4 +

1
7
x6 + . . . =

1
2x

log
1 + x

1− x
. (3.7)
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(c) For other interesting expressions with integer n, see Sec. 2.38.6.

(22)
∞∑

r=1

cos rx

r
= − log 2 − log sin

x

2

for 0 < x < 2π.

(23) Changing k (a non-odd integer) in −k in Eq. (3.274) and summing
the two expressions, from y(k) + y(−k) = 0, we obtain

1
1− k2

− 3
9− k2

+
5

25− k2
− 7

49− k2
+ . . . ± 2n + 1

(2n + 1)2 − k2
+ . . .

=
π

4 cos kπ/2
(3.8)

2. THE EQUATION 2H = r

We first give a formula related to the simpler equation:

∇2 V = p. (3.9)

Since 1/r is a harmonic function, we have

1
r

∇2 V =
1
r

∇2 V − V ∇2 1
r

= ∇ ·
(

1
r

∇V − V ∇ 1
r

)
; (3.10)

and, from (3.9),

∇ ·
(

1
r

∇V − V ∇ 1
r

)
=

p

r
. (3.11)

If r is the distance between P0 and an arbitrary point P , on integrating
over a region S′ between a closed surface σ around P0 and a sphere of
radius ε centered in P0, we get

∫

S′

p

r
dS =

∫

σ

(
V cos α + r

∂V

∂n

)
dσ

r2
−

∫ 4πε2

0

(
V + ε

∂V

∂n

)
dσ

ε2
,

(3.12)
n being the outward normal and α the angle between this normal and
the position vector. For ε → 0, S′ tends to the whole region S enclosed
by σ and Eq. (3.12) becomes

V (P0) = − 1
4π

∫

S

p

r
dS +

1
4π

∫

σ

(
V cos α + r

∂V

∂n

)
dσ

r2
. (3.13)
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Let us now consider the differential equation

∇2 H − 1
c2

∂2H

∂t2
= r, (3.14)

r being a known function of space and time. If r is again the distance
from a reference point P0, and we define the function H1 to be

H1(P, t) = H(P, t− r

c
), (3.15)

then it follows:

H(P, t) = H1(P, t + r/c),

H ′
x(P, t) = H ′

1 x(P, t + r/c) +
x

rc
H ′

1 t(P, t + r/c),

H ′′
xx(P, t) = H ′′

1 xx(P, t + r/c)
2x

rc
H ′′

1 xt(P, t + r/c)

+
x2

r2c2
H ′′

1 tt(P, t + r/c) +
r2 − x2

r3c
H ′

1 t(P, t + r/c),

∇2 H(P, t) = ∇2 H1(P, t + r/c) +
1
c2

H ′′
1 tt(P, t + r/c)

+
2
c

H ′′
1 tr(P, t + r/c) +

2
rc

H ′
1 t(P, t + r/c),

1
c2

H ′′
tt(P, t) =

1
c2

H ′′
tt(P, t + r/c).

From Eq. (3.14), it follows:

r(P, t) = ∇2 H1(P, t+ r/c) +
2
c

H ′′
1 tr(P, t+ r/c) +

2
rc

H ′
1 t(P, t+ r/c),

(3.16)
or, changing t + r/c into t:

∇2 H1(P, t) +
2
c

H ′′
1 tr(P, t) +

2
rc

H ′
1 t(P, t) = r(P, t− r/c). (3.17)

If A is an arbitrary function of space and time, we write

A(P, t) = A(P, t− r/c), (3.18)

and Eq. (3.17) becomes

∇2 H1 +
2
c

∂2H1

∂t∂r
+

2
rc

∂H1

∂t
= r. (3.19)

Let us set

p = r − 2
c

∂2H1

∂t∂r
− 2

rc

∂H1

∂t
; (3.20)
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then Eq. (3.19) becomes
∇2 H1 = p. (3.21)

For a given value of t, H1 and p are space-dependent functions, and we
can use Eq. (3.13). We then get

H1(P0, t) = − 1
4π

∫

S

p

r
dS +

1
4π

∫

σ

(
H1 cos α + r

∂H1

∂n

)
dσ

r2

= − 1
4π

∫

S

r

r
dS +

1
4π

2
c

∫

S

(
∂2H1

∂t∂r
+

1
r

∂H1

∂t

)
dS

r

+
1
4π

∫

σ

(
H1 cos α + r

∂H1

∂n

)
dσ

r2
. (3.22)

Furthermore,
∫

S

(
∂2H1

∂t∂r
+

1
r

∂H1

∂t

)
dS

r
=

∫
dω

∫ (
r

∂2H1

∂t∂r
+

∂H1

∂t

)
dr

=
∫

dω

∫
∂

∂r

(
r

∂H1

∂t

)
dr

=
∫

σ
r

∂H1

∂t
dω

=
∫

σ
r

∂H1

∂t
cos α

dσ

r2
. (3.23)

Substituting this expression in Eq. (3.22), we find

H1(P0, t) = − 1
4π

∫

S

r

r
dS

+
1
4π

∫

σ

(
H1 cos α + r

∂H1

∂n
+

2r

c

∂H1

∂t
cos α

)
dσ

r2
.

(3.24)

However,

H1(P0, t) = H(P0, t),
H1(P, t) = H(P, t− r/c) = H(P, t),

∂H1(P, t)
∂n

=
∂H(P, t− r/c)

∂n
=

∂H(P, t)
∂n

− cos α

c

∂H(P, t)
∂t

;

and, on substitution into Eq. (3.24):

H(P0, t) = − 1
4π

∫

S

r

r
dS

+
1
4π

∫

σ

(
H cos α + r

∂H

∂n
+

r

c

∂H

∂t
cos α

)
dσ

r2
,

(3.25)
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which clearly expresses, setting r = 0, a more general principle than that
of Huygens.

Let us consider a periodic solution of Eq. (3.14):

H = u eiσt. (3.26)

On setting
k =

σ

c
, (3.27)

Eq. (3.14) becomes

∇2 u + k2 u = r e−iσt. (3.28)

Let us consider
r = y eiσt, (3.29)

with y a function depending only on space variables; it follows that

∇2 u + k3 u = y. (3.30)

If Eqs. (3.26) and (3.29) are satisfied, then, to every function that is
solution of Eq. (3.14), there corresponds a function that is solution of
Eq. (3.30); the same holds if we change i in −i in Eqs. (3.26) and (3.29).
If u satisfies Eq. (3.30), then, from Eqs. (3.25), (3.26), and (3.29), we
obtain

u(P0) = − 1
4π

∫

S

e−ikr

r
y dS

+
1
4π

∫

σ

(
u (1 + ikr) cos α + r

∂u

∂n

)
e−ikr dσ

r2
. (3.31)

Changing i into −i, we obtain a second expression for u:

u(P0) = − 1
4π

∫

S

eikr

r
y dS

+
1
4π

∫

σ

(
u (1 − ikr) cos α + r

∂u

∂n

)
eikr dσ

r2
. (3.32)

Taking the sum of these two expressions and dividing the result by 2,
we get a third expression for u, which is explicitly real:

u(P0) = − 1
4π

∫

S

cos kr

r
y dS +

1
4π

∫

σ

(
u cos kr cos α

+ u kr sin kr cos α + r
∂u

∂n
cos kr

)
dσ

r2
. (3.33)
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If instead we take the difference of the two expressions and divide by 2i,
we obtain the remarkable identity

0 = − 1
4π

∫

S

sin kr

r
y dS

+
1
4π

∫

σ

(
u sin kr cos α − u kr cos kr cos α + r

∂u

∂n
sin kr

)
dσ

r2
,

that is,
∫

S

sin kr

r
y dS

=
∫

σ

(
u sin kr cos α − u kr cos kr cos α + r

∂u

∂n
sin kr

)
dσ

r2
.

(3.34)

On taking the limit k → 0, Eq. (3.30) reduces to Eq. (3.9) and Eq.
(3.33) to Eq. (3.13). Substituting Eq. (3.30) into (3.34), we have:

∫

S

sin kr

r

(
∇2 u + k2 u

)
dS

=
∫

σ

(
u sin kr cos α − u kr cos kr cos α + r

∂u

∂n
sin kr

)
dσ

r2
,

(3.35)

which is a true identity holding for an arbitrary function u. In particular
in Eq. (3.35) we can take k arbitrarily small and expand each term as
a power series of k. On equating the first-order terms on the two sides
we find ∫

S
∇2 u dS =

∫

σ

∂u

∂n
dσ, (3.36)

which is the well-known divergence theorem. Other identities can be
obtained by equating higher order terms; for example, from third-order
terms:

∫

S

(
u − 1

6
r2 ∇2 u

)
dS =

∫

σ

(
1
3
u r cos α − 1

6
r2 ∂u

∂n

)
dσ, (3.37)

which can be directly proven by observing that

u − 1
6

r2 ∇2 u =
1
6

(
u∇2 r2 − r2 ∇2 u

)
. (3.38)

Let us now consider again Eq. (3.31) within some approximations.
First, let us suppose that r is large with respect to the wavelength,
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so that we can neglect 1 compared to ikr; furthermore, let σ be the
surface of a progressive wave that has a curvature radius smaller than
its wavelength. At small distances such a wave can be treated as a plane
wave, and approximately we shall have

∂u

∂n
= ± i k u, (3.39)

where the signs ± correspond to a wave approaching or leaving P0.
Within these approximations, Eq. (3.31) reduces to

u(P0) =
k i

4π

∫

σ
u (cos α± 1)

e−i kr

r
dσ (3.40)

or, introducing the wavelength from the relation

k =
2π

λ
, (3.41)

u(P0) =
i

λ

∫

σ

cos α± 1
2

u e−
2πi
λ

r

r
dσ. (3.42)

If α is small and the wave is approaching P0 :

u(P0) =
i

λ

∫

σ

e−
2πi
λ

r

r
udσ. (3.43)

3. EQUILIBRIUM OF A ROTATING
HETEROGENEOUS LIQUID BODY
(CLAIRAUT PROBLEM)

Suppose that a rotating body is a superposition of incompressible liquid
layers each of a given density. Assuming a small angular velocity ω,
the deformations of the body are of order ω2, and we’ll take ω2 as the
reference small quantity.

The liquid elements attract one another according to Newton’s law,
in which we keep, with some convenient choice of the unit system, the
attraction coefficient to be unity. When the body is at rest, the density
is a never-increasing function of the distance from the center:

ρ = ρ(r), ρ′ ≤ 0. (3.44)
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In the same way, Newton’s potential (generated by the forces) depends
on r:

V0 = V0(r). (3.45)

We denote by D the average density of the part of the body at a distance
smaller than r:

D =

∫ r

0
ρ r2 dr

r3/3
. (3.46)

It follows:

r3 D = 3
∫ r

0
ρ r2 dr, (3.47)

3r2 D + r3 D′ = 3 ρ r2, (3.48)

that is,
3 ρ = 3D + r D′; (3.49)

and, taking the derivative,

3 ρ′ = 4D′ + r D′′, (3.50)

which will be useful later on.
The force acting on a unit mass at a distance r will be

(
1
r2

) ∫ r

0
4πr2 ρ dr =

4
3
π r D, (3.51)

so that
V ′

0 = −4
3
π r D. (3.52)

Now let us set the body in rotation; in the new equilibrium configu-
ration, an element in P will have moved to P ′ . Let us put

η = PP ′ cos
(
r , PP ′

)
. (3.53)

The normal shift η can be expanded in spherical functions Y :

η =
∑

H Y, (3.54)

with H being functions that depend on the radius. If the rotation takes
place about the z axis, only the spherical functions that are symmetric
with respect to the z axis will appear in the expansion (3.54), and these
can be expressed in terms of the Legendre polynomials

Pn(cos θ). (3.55)
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Furthermore, η should not be sensitive to changes of z in −z. Thus
we can restrict our calculations to the spherical functions of even order.
Moreover, on the surface of the sphere of radius r, we have

∫
η dσ = 0. (3.56)

Hence the zeroth-order spherical function should not be considered. The
first contribution comes from the second-order function, which we take
in the form

Y = (x2 + y2 − 2z2)/r2. (3.57)

Here we suppose that for all the other functions we have H = 0. This
corresponds to assuming that, in a first approximation, the equal-density
surfaces are ellipsoids. This hypothesis is clearly satisfied by the free
surface. Equation (3.54) then reduces to

η = H Y, (3.58)

with Y given by Eq. (3.57).
The flattening of the equal-density surfaces with average radius equal to
r clearly is

s = 3H/r. (3.59)

In the same way we suppose that the Newtonian potential is, in first
approximation,

V = V0 + LY. (3.60)

Adding the contribution from the centrifugal force, we obtain the total
potential to be considered for the local equilibrium:

U = V +
1
2
ω2

(
x2 + y2

)

= V0 +
1
3

ω2 r2 +
(

L +
1
6

ω2 r2
)

Y. (3.61)

In first approximation, from Eqs. (3.53) and (3.58), the density ρ of the
rotating fluid is

ρ1 = ρ − η ρ′ = ρ − H ρ′ Y. (3.62)

To determine H and L, which are unknowns in the present problem,
we have to use the Poisson equation and impose the condition that
the equal-density surfaces coincide with the equipotential surfaces. The
Poisson equation gives

∇2 V = − 4π ρ1, (3.63)
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or, using

∇2 V0 = 4π ρ, (3.64)
V − V0 = L Y, (3.65)
ρ1 − ρ = −H ρ′ Y, (3.66)

simply
∇2 L Y = 4π H ρ′ Y. (3.67)

Dividing by Y , we get

4π H ρ′ = L′′ +
2
r

L′ − 6
r2

L. (3.68)

In a first approximation the equipotential surfaces (U = const.) are
ellipsoids of revolution about z. The flattening of the meridian section
will, in first approximation, be

sU = −3
L + (1/6)ω2 r2

r V ′
0

= +3
L + (1/6)ω2 r2

(4/3)π r2 D
. (3.69)

If, as we have seen, the equal-density surfaces are ellipsoids of revolution
as well, with flattening given by Eq. (3.59), in order for the two families
of surfaces to coincide, we should have

s = sU , (3.70)

that is

H =
L + (1/6)ω2 r2

(4/3)π r D
. (3.71)

Extracting L from Eq. (3.71), we get

L =
4
3
π r D H − 1

6
ω2 r2, (3.72)

L′ =
4
3
π D H +

4
3
π r D′H +

4
3
π r D H ′ − 1

3
ω2 r, (3.73)

L′′ =
8
3
π D′H +

8
3
π D H ′ +

8
3
π r D′H ′

+
4
3
π r D′′H +

4
3
π r D H ′′ − 1

3
ω2. (3.74)

Substituting in Eq. (3.68), we eliminate L:

3H ρ′ = − 4D H

r
+ 4D′H + 4D H ′ + 2r D′H ′

+ r D′′H + r D H ′′; (3.75)
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and, using Eq. (3.50),

3H ρ′ = 4D′H + r D′′H, (3.76)

we finally obtain

0 = − 4 D H

r
+ 4D H ′ + 2r D′ + r D H ′′H ′, (3.77)

or

D

(
−4 + 4r

H ′

H
+ r2 H ′′

H

)
+ 2r D′ r H ′

H
= 0. (3.78)

Let us set
q = r s′/s; (3.79)

remembering that s = 3H/r, we get

s′

s
=

H ′

H
− 1

r
, (3.80)

q = r
H ′

H
− 1, (3.81)

from which we deduce:

r
H ′

H
= 1 + q, (3.82)

H ′

H
+ r

H ′′

H
− r

(
H ′

H

)2

= q,′ (3.83)

r
H ′

H
+ r2 H ′′

H
− r2

(
H ′

H

)2

= r q,′ (3.84)

1 + q + r2 H ′′

H
− (1 + q)2 = r q,′ (3.85)

r2 H ′′

H
= r q′ + q + q2. (3.86)

Substituting Eqs. (3.82) and (3.86) into Eq. (3.78), we find

D
(
r q′ + 5 q + q2

)
+ 2r D′ (1 + q) = 0, (3.87)

which is the Clairaut equation.
If rD′/D tends to 0 as r tends to 0, for r = 0 we should have

5 q + q2 = 0, (3.88)

that is,
q = 0, − 5. (3.89)
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Now, expanding V around the center of the rotating body, we have

V = V (0) + A
(
x2 + y2

)
+ B z2 + . . . . (3.90)

Assuming ρ′(0) to be finite (and, in particular, zero), V can be expanded
in series of x, y, z and, for symmetry reasons, the odd power terms vanish.
Denoting by ε a small function of 4th order in r, we get

U = V (0) + A
(
x2 + y2

)
+

1
2

ω2
(
x2 + y2

)
+ B z2 + ε, (3.91)

with, obviously,
4A + 2B = − 4π ρ(0). (3.92)

Let us consider
U = const.; (3.93)

we find (A1 = −A, B1 = −B)
(

A1 − 1
2

ω2
) (

x2 + y2
)

+ B1 z2 + ε = const., (3.94)

and, neglecting second-order terms:

s =
1/

√
A1 − ω2/2 − 1/

√
B1

1/
√

A1 − ω2/2
= 1 −

√
A1 − ω2/2

B1
. (3.95)

We then have
s′(0) = 0 (3.96)

and, a fortiori,

q(0) =
r s′(0)
s(0)

= 0. (3.97)

The point
(r, q) = (0, 0). (3.98)

belongs to the integral curve defined by Eq. (3.87).
Let us assume that D can be expanded in an even power series of r:

D = D(0) + ar2 + br4 + cr6 + . . . (3.99)

and, in the same way,

q = q0 + αr2 + βr4 + γr6 + . . . , (3.100)
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or, by setting

a0 = D0, (3.101)
a2 = a, (3.102)
a4 = b, (3.103)
a6 = c, (3.104)
. . . ,

α0 = q0 = 0, (3.105)
α2 = α, (3.106)
α4 = β, (3.107)
α6 = γ, (3.108)
. . . ,

D =
∑

a2n r2n, (3.109)

q =
∑

α2n r2n; (3.110)

and, substituting in Eq. (3.87),
(∑

a2n r2n
) [∑ (

2nα2n r2n + 5α2n r2n
)

+
(∑

α2n r2n
)2

]

+ 2
∑

2nα2n r2n
(
1 +

∑
α2n r2n

)
= 0. (3.111)

Let us evaluate the initial coefficients of the expansions of q. We have:

D = D0 + ar2 + br4 + cr6 + . . . , (3.112)
r D′ = 2ar2 + 4br4 + 6cr6 + . . . , (3.113)

q = αr2 + βr4 + γr6 + . . . , (3.114)
r q′ = 2αr2 + 4βr4 + 6γr6 + . . . , (3.115)
q2 = α2r4 + 2αβr6 + . . . , (3.116)

r q′ + 5 q + q2 = 7αr2 + (9β + α2)r4 + . . . (3.117)
= (11γ + 2αβ)r6 + . . . ,

1 + q = 1 + αr2 + βr4 + γr6 + . . . , (3.118)

D
(
r q′ + 5 q + q2

)
= 7α D0 r2 +

(
(9β + α2)D0 + 7αa

)
r4

+
(
(11γ + 2αβ)D0 + (9β + α2)a+

+ 7αb) r6 + . . . , (3.119)
2 r D′ (1 + q) = 4ar2 + (4αa + 8b)r4

+ (4βa + 8αb + 12c)r6 + . . . . (3.120)
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It follows that

7α D0 + 4a = 0, (3.121)
9β + α2)D0 + 7αa + 4αa + 8b = 0, (3.122)
(11γ + 2αβ)D0 + (9β + α2)a + 7αb

+4βa + 8αb + 12c = 0. (3.123)

The force of attraction on the surface of a planet with mass M is given
by a potential that in first approximation reads

V =
M

r
+
I0 − 3 I/2

r3
, (3.124)

where I is the moment of inertia with respect to the line OP 1 and I0

is the (polar, not axial) moment of inertia with respect to the center of
mass.

On the surface we have

U =
M

r
+
I0 − 3 I/2

r3
+

1
2

ω2
(
x2 + y2

)
= const. (3.125)

by denoting with Rp the polar radius and with Re the equatorial radius,
we get

M

Rp
− C − A

R3
p

=
M

Re
+

1
2

C − A

R3
e

+
1
2

ω2 R2
e, (3.126)

where C is the moment of inertia with respect to the polar axis 2 and A
the moment of inertia with respect to any equatorial axis, so that

I0 = A +
1
2

C. (3.127)

Let us denote by f the ratio between the centrifugal force and the gravi-
tational force at the equator and with r1 the average radius of the planet;
in first approximation we then have

f =
ω2 r3

1

M
. (3.128)

From Eq. (3.126), it follows, in first approximation, that

M

(
1

Rp
− 1

Re

)
=

3
2

C − A

r3
1

+
1
2

f

r1
M ; (3.129)

1@ Joining the center of the planet with the considered external point.
2@ Above, this quantity was denoted by I.
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and, setting as usual

s1 =
Re − Rp

Re
, (3.130)

we have, again in first approximation,

s1 =
3
2

C − A

Mr2
1

+
1
2

f, (3.131)

or, denoting by D1 the average density inside the planet

s1 − 1
2

f =
9 (C − A)
8π r5

1 D1
. (3.132)

The average moment of inertia of the Earth becomes

I =
8π

3

∫ r1

0
ρ r4 dr. (3.133)

Now, we have
∫ r1

0
ρ r4 dr =

∫ r1

0
r2 ρ r2 dr =

∫ r1

0
r2 d

(
1
3
r3D

)

=
1
3

r5
1 D1 − 2

3

∫ r1

0
r4 D dr, (3.134)

from which it follows that

I =
8π

9

(
r5
1 D1 − 2

∫ r1

0
r4 D dr

)
. (3.135)

In first approximation, we get

C ' I; (3.136)

and, substituting in Eq. (3.132), we find

s1 − 1
2

f =
C − A

C

(
1 − 2

r5
1 D1

∫
r4 D dr

)
. (3.137)

Let us consider again the Clairaut equation (3.87) and evaluate the
expression

d
dr

(
r5 D

√
1 + q

)
= 5 r4 D

√
1 + q + r5 D′√1 + q

+ r5 D
q′

2
√

1 + q

=
5 r4 D√
1 + q

(
1 + q +

rD′

5D
(1 + q) +

rq′

10

)
.(3.138)
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From Eq. (3.87), we find

rD′

5D
(1 + q) = − rq′

10
− q

2
− q2

10
, (3.139)

so that, substituting in Eq. (3.138), we get

d
dr

(
r5 D

√
1 + q

)
=

5 r4 D√
1 + q

(
1 +

1
2

q − 1
10

q2
)

, (3.140)

from which it follows that 3

r5
1 D1

√
1 + q1 =

∫ r1

0

5 r4 D√
1 + q

(
1 +

1
2

q − 1
10

q2
)

dr. (3.141)

Let us set

K =
1 + q/2 − q2/10√

1 + q
(3.142)

so that Eq. (3.141) becomes 4

r5
1 D1

√
1 + q1 =

∫ r1

0
5 r4 D K dr. (3.143)

If q is sufficiently small, K is approximately unity: 5

q k

0 1
0.1 1.00018
0.2 1.00051
0.3 1.00072
0.4 1.00066
0.5 1.00021
0.6 0.99928
0.7 0.99782
0.8 0.99580
0.9 0.99317
1 0.98995
2 0.92376
3 0.8

3@ In the original manuscript, the upper limit of the integral is r; however, it is evident that
the appropriate limit is r1.
4@ See the previous footnote.
5@ In the table below, the author reported only the values for K = 1, 1.00074, 1.00021, 0.98995
corresponding to q = 0, 0.3, 0.5, 0.9, respectively. Particular emphasis is given to the value
for q = 0.3.
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The maximum of q occurs on the surface q = q1, and its minimum at
the center (r , q) = (0 , 0).

Let us evaluate q1; as we have seen in Eq. (3.131), on an equipotential
surface outside the planet,

s =
1
2

f +
3
2

C − A

Mr2
. (3.144)

In first approximation, the first term on the l.h.s. increases as r3. Then,
deriving the above equation, we get

r s′ =
3
2

f − 3
C − A

M r2
. (3.145)

Comparison with Eq. (3.144) gives

r s′ + 2s =
5
2

f,

r s′ =
5
2

f − 2s, (3.146)

q =
r s′

s
=

5
2

f

s
− 2.

In particular, if f is evaluated with respect to the surface of the planet,
one gets

q1 =
5
2

f

s1
− 2. (3.147)

For the Earth q1 = 0.57. Thus K takes a value very close to 1. Assuming
K = 1 (this hypothesis can always be made when the planet’s density
is not exceedingly inhomogeneous), Eq. (3.143) becomes

r5
1 D1

√
5
2

f

s1
− 1 '

∫
5 r4 D dr, (3.148)

or, using Eq. (3.137),
√

5
2

f

s1
− 1 ' 5

2
− 5

2
C

C − A

(
s1 − 1

2
f

)
. (3.149)

For the Earth

f = 1/288, (3.150)
C

C − A
= 305, (3.151)

and thus
s1 = 1/297, (3.152)
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which is in excellent agreement with experiment. Substituting these
values in Eq. (3.145) we find

1
297

=
1
2

1
288

+
3
2

C − A

Mr2
1

, (3.153)

from which
C − A =

1
920

M r2
1, (3.154)

and, using Eq. (3.151),

C = 0.332M r2
1 (3.155)

while for a constant density we would have I = 0.4Mr2
1.

Values reported at the Madrid Conference 6are

Re ' 6378, (3.156)
Rp = 6357, (3.157)

s = 1/297, (3.158)
D1 = 5.515. (3.159)

Let us suppose that the density of the Earth can be expressed in the
form:

ρ = a + b r2 + c r4. (3.160)

We want to find the unknown coefficients using the conditions

D1 = 5.515,

ρ1 = 2.5, (3.161)
I = 0.332M r2

1.

We have

ρ1 = a + b r2
1 + c r4

1, (3.162)
1
3

r3
1 D1 =

∫ r1

0

(
a r2 + b r4 + c r6

)
dr

=
1
3

a r3
1 +

1
5

b r5
1 +

1
7

c r7
1, (3.163)

that is,

D1 = a +
3
5

b r2
1 +

3
7

c r4
1. (3.164)

6@ The author does not provide details about this reference.
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Moreover,

I =
8π

3

∫ r1

0

(
a r4 + b r6 + c r8

)
dr

=
8π

3

(
1
5

a r5
1 +

1
7

b r7
1 +

1
9

c r9
1

)
, (3.165)

that is,
I
r5
1

=
8π

3

(
1
5

a +
1
7

b r2
1 +

1
9

c r4
1

)
. (3.166)

On the other hand,

M

r3
1

=
4
3
π D1 +

4
3

M

(
a +

3
5

b r2
1 +

3
7

c r4
1

)
, (3.167)

from which it follows that

I
Mr2

1

=
2
5

a + 5
7 b r2

1 + 5
9 c r4

1

a + 3
5 b r2

1 + 3
7 c r4

1

. (3.168)

The l.h.s. of Eqs. (3.162), (3.164), (3.168) involve known quantities, so
that the set of linear equations in the unknowns a, br2

1, cr4
1 is

a + b r2
1 + c r4

1 = ρ1,

a (1 − δ) + br2
1

(
5
7
− δ

3
5

)
+ cr4

1

(
5
9
− δ

3
7

)
= 0, (3.169)

a +
3
5

b r2
1 +

3
7

c r4
1 = D1,

where we have set

δ =
5
2

I
Mr2

1

. (3.170)

Moreover let us put
ε = ρ1/D1. (3.171)

From Eqs. (3.169) it then follows that

a (1 − δ) + br2
1

(
5
7
− 3

5
δ

)
+ cr4

1

(
5
9
− 3

7
δ

)
= 0,

(3.172)

a (1 − ε) + br2
1

(
1 − 3

5
ε

)
+ cr4

1

(
1 − 3

7
δ

)
= 0,
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from which

br2
1 = −

4
9
− 4

7
δ +

8
63

ε

10
63

− 6
35

δ +
4

147
ε

a, (3.173)

cr4
1 =

2
7
− 2

5
δ +

4
35

ε

10
63

− 6
35

δ +
4

147
ε

a. (3.174)

It follows that

a = ` (175 − 189 δ + 30 ε) ,

br2
1 = − ` (490 − 630 δ + 140 ε) , (3.175)

cr4
1 = ` (315 − 441 δ + 126 ε) .

Substituting in Eq. (3.169), we get

16 ε ` = ρ1,

0 = 0, (3.176)
16 ` = D1.

From which, invoking Eq. (3.171)

l = D1/16. (3.177)

Finally, we get

ρ =
(175 − 189 δ + 30 ε) D1

16

− (490 − 630 δ + 140 ε) D1

16
r2

r2
1

(3.178)

+
(315 − 441 δ + 126 ε) D1

16
r4

r4
1

,

with δ and ε defined in Eqs. (3.170) and (3.171). For the Earth, from
Eqs. (3.175), it follows that

δ = 0.83, ε = 0.45. (3.179)

Substituting these values into Eq. (3.178), we find

ρ1 = D1

(
1.977 − 1.881

r2

r2
1

+ 0.354
r4

r4
1

)
. (3.180)
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The maximum value for the density (at the center of the Earth) then
would be

ρ0 = 1.977D1 = 1.977 · 5.515 = 10.90. (3.181)

From

1.977 − 1.881 + 0.354 = 0.45, (3.182)

1.977 − 1.881 · 3
5

+ 0.354 · 3
7

= 1.000, (3.183)

1.977 · 2
5
− 1.881 · 2

7
+ 0.354 · 2

9
= 0.332, (3.184)

setting

ρ = D1

(
α + β

r2

r2
1

+ γ
r4

r4
1

)
, (3.185)

the coefficients α, β, γ are seen to satisfy the equations

α + β + γ =
ρ1

D1
,

α +
3
5

β +
3
7

γ = 1, (3.186)

2
5

α +
2
7

β +
2
9

γ =
I

Mr2
1

,

which are simpler than Eqs. (3.169).

4. DETERMINATION OF A FUNCTION
FROM ITS MOMENTS

Let y be a function of x:
y = y(x), (3.187)

and suppose that, for x2 > a2, we have y = 0 and an integral
∫ ∞

−∞
|y| dx (3.188)

that is finite. Let us define the moments µ0, µ1,..., µn of order 0, 1, 2, ..., n
as

µ0 =
∫

y dx,

µ1 =
∫

x y dx,
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Fig. 3.1. The density of the Earth ρ as a function of the distance from its center
(see the text for notation).

. . . , (3.189)

µn =
∫

xn y dx,

and set

z(t) =
∫

y eixt dx, (3.190)

so that

y =
1
2π

∫ ∞

−∞
e−ixt z dt. (3.191)

From Eq. (3.190), it then follows that

dz

dt
= i

∫
x y eixt dx,

. . . , (3.192)
dnz

dtn
= in

∫
xn y eixt dx.

For t = 0, we have z(0) = µ0 and, in general,

(
dnz

dtn

)

0
= in µn. (3.193)



228 ETTORE MAJORANA: NOTES ON THEORETICAL PHYSICS

From the assumptions mentioned above, z can be expanded in a abso-
lutely convergent Mac-Laurin series:

z =
∞∑

0

µn
(it)n

n!
. (3.194)

Substituting in Eq. (3.191), we then have

y =
1
2π

∫ ∞

−∞
e−ixt

∞∑

0

µn
(it)n

n!
dt, (3.195)

where, obviously, the integral and the series cannot be inverted.
We can also write

y =
1
π

∫ ∞

0
cos xt

∞∑

0

(−1)r µ2r
t2r

(2r)!
dt

+
1
π

∫ ∞

0
sin xt

∞∑

0

(−1)r µ2r+1
t2r+1

(2r + 1)!
dt. (3.196)

Example 1. Let y = 1 for 0 < x < 1 and y = 0 for x < 0 and x > 1.
The moments of this function will be

µ0 = 1, µ1 =
1
2
, . . . µn =

1
n + 1

.

Let us substitute them in Eq. (3.196) and note that, in the present case,

∞∑

0

(−1)r µ2r
t2r

(2r)!
=

∞∑

0

(−1)r t2r

(2r + 1)!

=
1
t

∞∑

0

(−1)r t2r+1

(2r + 1)!
=

sin t

t
, (3.197)

∞∑

0

(−1)r µ2r+1
t2r+1

(2r + 1)!
=

1
t

∞∑

0

(−1)r t2r+2

(2r + 2)!

=
1
t

(
1 −

∞∑

0

(−1)r t2r

(2r)!

)
=

1 − cos t

t
. (3.198)

We have

y =
1
π

∫ ∞

0

cos xt sin t + sin xt (1 − cos t)
t

dt

=
1
π

∫ ∞

0

sin (1− x)t
t

dt +
1
π

∫ ∞

0

sin xt

t
dt. (3.199)
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The first integral takes the values π/2 for x < 1 and −π/2 for x > 1.
The second integral takes the values −π/2 for x < 0 and π/2 for x > 0.
We then have:

for x < 0, y =
1
2
− 1

2
= 0;

for 0 < x < 1, y =
1
2

+
1
2

= 1;

for x > 1, y = − 1
2

+
1
2

= 0;

(3.200)

as we supposed.
Example 2. Let y = 0 for x < 0 and y = e−x for x > 0. Now the

conditions above are not satisfied, and we have to abandon mathematical
rigor somewhat. We have

µn = n!. (3.201)

Substituting in Eq. (3.195), we get

∞∑

0

µn
(it)n

n!
=

∞∑

0

(it)n =
1

1 − it
, (3.202)

which is valid only for t2 < 1, since otherwise the expansion does not
converge. However, let us suppose that we can always write

∞∑

0

(it)n =
1

1 − it
, (3.203)

so that Eq. (3.195) becomes

y =
1
2π

∫ ∞

−∞
e−ixt

1 − it
dt. (3.204)

If in the formula (14bis) in Sec. 2.26),
∫ ∞

−∞
eix dx

a + ix
=

{
2π e−a, a > 0,
0, a < 0,

(3.205)

we replace a with x and x with −tx, we get
∫ ∞

−∞
e−ixt xdt

x − itx
=

∫ ∞

−∞
e−ixt dt

1 − it

=
{

2π e−x, for x > 0,
0, for x < 0,

. (3.206)



230 ETTORE MAJORANA: NOTES ON THEORETICAL PHYSICS

resulting in

y =
{

e−x, for x > 0,
0, for x < 0,

(3.207)

as we supposed.
Example 3. Let y = e−x2

. We then have

µ2r+1 = 0, (3.208)

µ2r =
(

2r − 1
2

)
!

=
√

π · 1
2
· 3
2
· . . . · 2r − 1

2
,

=
√

π
(2r)!
r! · 22r

. (3.209)

It follows that

∞∑

0

(−1)r µ2r
t2r

(2r)!
=
√

π
∞∑

0

(−1)r t2r

22r r!
=
√

πe−
t2

4 . (3.210)

Substituting in Eq. (3.195),

y =
1

2
√

π

∫ ∞

−∞
e−ixt e−

t2

4 dt

=
1

2
√

π
e−x2

∫ ∞

−∞
e−( t

2
+ix)2

dt

=
1√
π

e−x2
∫ ∞

−∞
e−( t

2
+ix)2

d
(

t

2
+ ix

)

= e−x2
. (3.211)

as we supposed.
Example 4. Let us consider the problem of finding the function

whose moments are

µ0 = 1, (3.212)

µ1 =
1
4
, (3.213)

µ2 =
1
9
, (3.214)

. . . ,

µn =
1

(n + 1)2
. (3.215)
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We have

z =
∞∑

0

µn
(it)n

n!
=

∞∑

0

(it)n

(n + 1)! (n + 1)
, (3.216)

z it =
∞∑

1

(it)q

q! q
, (3.217)

i
(
z′t + z

)
= i

∞∑

1

(it)q−1

q!
, (3.218)

it
(
z′t + z

)
=

∞∑

1

(it)q

q!
= eit − 1, (3.219)

z′ = − z

t
+

eit − 1
it2

. (3.220)

Then, noting that z = 1 for t = 0, we get

z =
1
t

∫ t

0

eit − 1
it

dt. (3.221)

Substitution into Eq. (3.195) or (3.191) gives

y =
1
2π

∫ ∞

−∞
e−ixt dt · 1

t

∫ t

0

eit1 − 1
it1

dt1

=
1
π

(∫ ∞

0

cos xt

t
dt

∫ t

0

sin t1
t1

dt1

+
∫ ∞

0

sin xt

t
dt

∫ t

0

1 − cos t1
t1

dt1

)

=
1
π

∫ π
4

0

dθ

sin θ cos θ

∫ ∞

0

(
1
r

)
[cos (xr cos θ) sin (r sin θ)

+ sin (xr cos θ) (1 − cos (r sin θ))] dr

=
1
π

∫ π
4

0

dθ

sin θ cos θ
·

·
∫ ∞

0

1
r
{sin [r(sin θ − x cos θ)] + sin (rx cos θ)} dr. (3.222)

For 0 < θ < π/4, the second integral takes the value

0, if x < 0,
π, if 0 < x < tan θ.

(3.223)

For 0 < x < 1, we then have

y =
∫ π

4

arctan x

dθ

sin θ cos θ
= [log tan θ]arctan x

π
4

= − log x. (3.224)
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The function is thus determined for all values of x:
for x < 0, y = 0,
for 0 < x < 1, y = − log x,
for x > 1, y = 0.

(3.225)

It is easy to check that the function y defined above satisfies the required
conditions.

Example 5. Let y dx be the probability that the distance between
two points (i.e., surface elements) belonging to a circle of unitary radius
lies between x and x + dx. From (7) in Sec. 1.21, the moments of y are

µn =
4

n + 4
(n + 1)!

(1 + n/2)! (1 + n/2)!
. (3.226)

In particular,

µ0 = 1, (3.227)

µ1 =
128
45π

, (3.228)

µ2 = 1, (3.229)
. . . .

Substitution into (3.194) gives

z =
∞∑

0

µn
(it)n

n!
=

∞∑

0

4
n + 1
n + 4

(it)n

(1 + n/2)! (1 + n/2)!

=
∞∑

0

2 (n + 1)(it)n

(1 + n/2)! (2 + n/2)!
. (3.230)

Let us set z = z1 + iz2. We get

z1 =
∞∑

0

(−1)r 2 (2r + 1)
t2r

(r + 1)! (r + 2)!
, (3.231)

∫ t

0
z1 dt =

∞∑

0

(−1)r 2
t2r+1

(r + 1)! (r + 2)!
, (3.232)

t2
∫ t

0
z1 dt =

∞∑

0

(−1)r 2
t2r+3

(r + 1)! (r + 2)!

= −
∞∑

1

(−1)s 2
t2s+1

s! (s + 1)!

= −
∞∑

1

(−1)s 2
(2t/2)2s+1

s! (s + 1)!

= 2t − 2I1(2t), (3.233)
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whence
∫ t

0
z1 dt =

2
t
− 2

I1(2t)
t2

, (3.234)

z1 = − 2
t2
− 4

I ′1(2t)
t2

+
I1(2t)

t3
; (3.235)

and, since

I ′1(2t) = I0(2t) − 1
2t

I1(2t), (3.236)

it follows that
z1 = − 2 + 4 I0(2t)

t2
+

I1(2t)
t3

. (3.237)

For z2 we have instead

z2 =
∞∑

0

(−1)r 4 (r + 1)
t2r+1

(r + 3/2)! (r + 5/2)!
, (3.238)

∫ t

0
z2 dt =

∞∑

0

(−1)r 2
t2r+2

(r + 3/2)! (r + 5/2)!
, (3.239)

t2
∫ t

0
z2 dt =

∞∑

0

(−1)r 2
t2r+4

(r + 3/2)! (r + 5/2)!
, (3.240)

and so on.
Example 6. Let y(r) dr be the probability that the distance between

two points belonging to two concentric spherical surfaces, one with unit
radius and the other with a radius a < 1, lies between r and r + dr. In
this case the moments of y(r) are

µ0 = 1, (3.241)

µ1 = 1 +
1
3

a2, (3.242)
· · · ,
µn =

(1 + a)n+2 − (1− a)n+2

2(n + 2)a
, (3.243)

· · · ;
see Sec. 2.38.6. Substituting in Eq. (3.194) we get

z =
(1 + a)2

2a

∞∑

0

(1 + a)n (it)n

n! (n + 2)

− (1− a)2

2a

∞∑

0

(1− a)n (it)n

n! (n + 2)
, (3.244)
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∫ t

0
z dt =

1 + a

2a i

∞∑

0

(1 + a)n+1 (it)n+1

(n + 2)!

− 1− a

2a i

∞∑

0

(1− a)n+1 (it)n+1

(n + 2)!
, (3.245)

t

∫ t

0
z dt = − 1

2a

∞∑

0

(1 + a)n+2 (it)n+2

(n + 2)!

+
1
2a

∞∑

0

(1− a)n+2 (it)n+2

(n + 2)!
,

= − 1
2a

(
ei (1+a) t − 1 − i (1 + a) t

)

+
1
2a

(
ei (1−a) t − 1 − i (1− a) t

)

=
ei (1−a) t − ei (1+a) t

2a
+ i t, (3.246)

∫ t

0
z dt =

ei (1−a) t − ei (1+a) t

2at
+ i, (3.247)

z =
ei (1+a) t − ei (1−a) t

2at2

− i
(1 + a) ei (1+a) t − (1− a) ei (1−a) t

2at
. (3.248)

However,

∫ ∞

−∞
z e−i r t dt =

[
e−i r t

∫ t

0
z dt

]∞

−∞

−
∫ ∞

−∞
−i r e−i r t dt

∫ t

0
z(t1) dt1

=

[
e−i r t

(
ei (1−a) t − ei (1+a) t

2at
+ i

)]∞

−∞

+
i r

2a

∫ ∞

−∞
ei (1−a−r) t − 1

t
dt

− i r

2a

∫ ∞

−∞
ei (1+a−r) t − 1

t
dt

− r

∫ ∞

−∞
e−i r t dt. (3.249)
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The first and fourth terms on the l.h.s. are indeterminate, and their
mean values are zero. The second term takes the values

−π
r

2a
, for r < 1 − a,

π
r

2a
, for r > 1 − a.

(3.250)

The third term assumes the values

π
r

2a
, for r < 1 + a,

−π
r

2a
, for r > 1 + a.

(3.251)

Then, from Eq. (3.191), changing x into r, it follows that

y = 0, for r < 1 − a,

y =
r

2a
, for 1 − a < r < 1 + a,

y = 0, for r > 1 + a;

(3.252)

see Sec. 2.38.6.

5. PROBABILITY CURVES

(1) Probability that two points belonging to two concentric spherical
surfaces with radii a and b < a are at a distance r from each other:
The probability density y = dP/dr is given by

y = 0, for r < a − b,

y =
r

2ab
, for a − b < r < a + b,

y = 0, for r > a + b;

(3.253)

see Secs. 2.39.6 and 3.4. Its moments then are

µn =
∫

rn y dr =
(a + b)n+2 − (a− b)n+2

2ab(n + 2)
. (3.254)
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In particular,

µ−1 =
1
a
, (3.255)

µ0 = 1, (3.256)

µ1 = a +
1
3

b2

a
, (3.257)

µ2 = a2 + b2, (3.258)
. . . .

(2) Probability density that two points on a length ` segment are at a
distance r from each other:

y(r) =
2(`− r)

l2
, 0 < r < `,

y(r) = 0, otherwise.

(3.259)

Its moments are
µn =

2`n

(n + 1) (n + 2)
. (3.260)

In particular

µ0 = `, (3.261)

µ1 =
`

3
, (3.262)

µ2 =
`2

6
, (3.263)

. . . .

(3) Probability density that two points on two co-planar and concen-
tric circumferences with radii a and b < a are at a distance r from
each other:

y =
2r

π
√− (a2 − b2)2 + 2(a2 + b2)r2 − r4

. (3.264)

For b = a, we have simply

y =
2r

π
√

4a2r2 − r4
. (3.265)
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6. EVALUATION OF THE INTEGRAL∫ �=2
0

sin kx
sinx dx

From the relation

sin (k + 2)x − sin kx = 2 cos (k + 1)x sin x, (3.266)

we deduce

sin (k + 2)x

sin x
=

sin kx

sin x
+ 2 cos (k + 1)x. (3.267)

Integrating between 0 and π/2 and setting

y(k) =
∫ π/2

0

sin kx

sin x
dx, (3.268)

we find

y(k) − y(k + 2) = − 2
k + 1

sin
sin (k + 1)π

2
. (3.269)

Considering this relation with k replaced by k + 2, k + 4, . . ., k + 2n,
respectively, and noting that

lim
k→∞

∫ π/2

0

sin kx

sin x
dx = lim

k→∞

∫ ∞

0

sin kx

x
dx

=
∫ ∞

0

sin x

x
dx =

π

2
, (3.270)

that is,
y(∞) =

π

2
, (3.271)

we get

y(k) =
π

2
−

∞∑

0

2
k + 1 + 2r

sin
(k + 1 + 2r) π

2
, (3.272)

that is,

y(k) =
π

2
− sin

(k + 1)π

2

∞∑

0

2(−1)r

(k + 1) + 2r
. (3.273)

In other words, we have

y(k) =
π

2
− 2

(
1

k + 1
− 1

k + 3
+

1
k + 5

− . . .

)
sin

(k + 1)π
2

.

(3.274)
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Let us consider the following function defined for positive α:

φ(α) = 1 − 1
1 + α

+
1

1 + 2α
− 1

1 + 3α
+ . . . , (3.275)

while, for α = 0, we define

φ(0) = lim
α→0

φ(α) =
1
2
. (3.276)

This is always an increasing function of its argument taking values be-
tween 1/2 and 1.

Notice that the identity

φ(α) +
1

1 + α
φ

(
α

1 + α

)
= 1, (3.277)

enables us to determine the series expansion of φ(α) for α → 0. We can
also give an integral formula for φ(α):

φ(α) =
∫ 1

0

dx

1 + xα
, (3.278)

from which we deduce the following particular values:

φ(0) = lim
α→0

φ(α) =
1
2
, φ(1) = log 2, φ(2) =

π

4
. (3.279)

For integer α, we have

1
1 + xα

=
(

1
1 − x δ

+
1

1 − x δ3
+ . . . +

1
1 − x δ2α−1

)
1
α

, (3.280)

where δ = eiπ/α, that is the first αth root of −1. Equation (3.280) can
be immediately verified by expanding the two sides of it in a power series
of x or of 1/α, depending on whether α is less than or greater than 1,
respectively.

Substituting Eq. (3.280) in Eq. (3.278), for integer α we have

φ(α) = − 1
α

[
1
δ

log (1 − δ) +
1
δ3

log (1 − δ3) + . . .

+
1

δ2α−1
log (1 − δ2α−1)

]
; (3.281)

or, noting that δ2α = 1,

φ(α) = − 1
α

[
δ2α−1 log (1 − δ) + δ2α−3 log (1 − δ3) + . . .

+ δ log (1 − δ2α−1)
]
. (3.282)
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Note that the imaginary part of each logarithm on the r.h.s. of Eq.
(3.282) is univocally determined when it belongs to the interval (−iπ/2,
iπ/2). In view of the fact that the terms on the r.h.s. of Eq. (3.282) are
complex conjugate in pairs and that

log (1 − δr) = log
(

2 sin
r π

2

)
+ i

r π

2α
− i

π

2
, (3.283)

δ2α−r = cos
r π

α
− i sin

r π

α
, (3.284)

Eq. (3.282) becomes

φ(α) = cos
π

α
log

(
2 sin

π

2α

)

+ cos
3π

α
log

(
2 sin

3π

2α

)
+ . . .

+ cos
(2α− 1)π

α
log

(
2 sin

(2α− 1)π
2α

)

+
π

2α
sin

π

α
+

3π

2α
sin

3π

α
+ . . .

+
(2α− 1)π

α
sin

(2α− 1)π
α

. (3.285)

We deduce the following particular cases:

φ(0) =
1
2
, φ(1) = log 2, φ(2) =

π

4
,

φ(3) =
1
3

log 2 +
√

3
9

π, φ(4) = . . . .
(3.286)

We can then evaluate φ(α) for integer α; however, the repeated use of
Eq. (3.277) allows us to evaluate this function for arbitrary values of
the independent variable in the form α/(1 + nα), with integer α and n.
Excluding the trivial case with α = 0, for each value of n and varying
α between 1 and ∞, we have a discrete group of possible values of the
independent variable for which the function can be evaluated; the lowest
value is 1/(n + 1), while the upper limit is 1/n. The set of values for
which the function can be evaluated is then made of a discrete set of
points of the form 1/n; hence it is not possible to evaluate the whole
function based on the considerations above and continuity properties.
If we know the value of φ(α) for an arbitrary value of α, using Eq.
(3.277) we can always reduce the problem to the case with α < 1, since
α/(1+α) < 1. Using Eq. (3.277) twice, we can also restrict the problem
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Table 3.1. Some values of the function φ(α).

α φ(α)

0 0.50000
0.02 0.50500
0.04 0.51000
0.06 0.51498
0.08 0.51994
0.10 0.52488
0.12 0.52979
0.14 0.53467
0.16 0.53951
0.18 0.54431
0.20 0.54907
0.22 0.55378
0.24 0.55843

α φ(α)

0.26 0.56304
0.28 0.56759
0.30 0.57201
0.32 0.57652
0.34 0.58089
0.36 0.58521
0.38 0.58946
0.40 0.59366
0.42 0.59779
0.44 0.60186
0.46 0.60587
0.48 0.60982
0.50 0.61371

to the case with α < 1/2. We then have the results listed in the Table
3.1. 7

For small α, the following expansion is useful:

φ(α) =
1
2

+
1
4

α − 1
8

α3 +
1
4

α5 − 17
16

α7 + . . . . (3.287)

Substituting Eq. (3.275) in Eq. (3.274), we get

y(k) =
π

2
− φ

(
2

k + 1

) (
2

k + 1

)
sin

(k + 1)π
2

. (3.288)

We infer

y(0) = 0,

y(2) = 2,

y(4) = 2
(

1 − 1
3

)
=

4
3
,

y(6) = 2
(

1 − 1
3

+
1
5

)
,

y(8) = 2
(

1 − 1
3

+
1
5
− 1

7

)
,

y(10) = 2
(

1 − 1
3

+
1
5
− 1

7
+

1
9

)
,

y(1) = y(3) = y(5) = . . . = y(2n + 1) =
π

2
.

7@ In the original manuscript, only the values corresponding to α = 0, α = 0.40, and α = 0.50
were reported in the Table.
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This relation is immediately verified when k = 1, while it follows from
Eq. (3.269) when k is an arbitrary odd integer. We deduce:

∫ ∞

0

sin x

x
dx = lim

k→∞

∫ π/2

0

sin kx

sin x
dx =

π

2
. (3.289)

7. INFINITE PRODUCTS

(1) We have
2
1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· . . . =

π

2
. (3.290)

(2) For k > 0:

(1 − k)
(

1 − k

4

) (
1 − k

9

) (
1 − k

16

)
. . . =

sin π
√

k

π
√

k
(3.291)

On setting x = π
√

k, k = x2/π2, we can write

sin x

x
= (1 − k)

(
1 − k

4

) (
1 − k

9

) (
1 − k

16

)
. . . . (3.292)

For x = π/2 (k = 1/4) we recover the Wallis formula (1).

(3) We have

1
2
· 4

2·7
53

· 7
2·10
83

· 102·13
113

· 132·16
143

· . . . =
(

lim
x→∞

P1

P2

)3

= λ3

(3.293)
(see Sec. 2.5), with

P ′′
1 (x) = x P1(x), P1(0) = 1, P ′

1(0) = 0,
P ′′

2 (x) = x P2(x), P2(0) = 0, P ′
2(0) = 1.

From
P2 = P1

∫ ∞

0

dx

P 2
1

, (3.294)

it follows that
1
λ

=
∫ ∞

0

dx

P 2
1

. (3.295)
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8. BERNOULLI NUMBERS AND
POLYNOMIALS

Bernoulli polynomials can be derived from the generating function

ψ(x, t) =
t ext

et − 1
=

∞∑

0

Bn(x)
n!

tn. (3.296)

Bernoulli numbers are the constant terms in the polynomials Bn(x):

Bn = Bn(0). (3.297)

On setting x = 0 in Eq. (3.296), we directly deduce the definition of
Bernoulli numbers:

t

et − 1
=

∞∑

0

Bn

n!
tn. (3.298)

We list the first few Bernoulli numbers and polynomials:

B0 = 1, B1 = − 1
2
, B2 =

1
6
, B3 = 0,

B4 = − 1
30

, B5 = 0, B6 =
1
42

, B7 = 0,

B8 = − 1
30

, B9 = 0, B10 =
5
66

, B11 = 0.

B0(x) = 1,

B1(x) = x − 1
2
,

B2(x) = x2 − x +
1
6
,

B3(x) = x3 − 3
2

x2 +
1
2

x,

B4(x) = x4 − 2x3 + x2 − 1
30

,

B5(x) = x5 − 5
2

x4 +
5
3

x3 − 1
6

x,
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B6(x) = x6 − 3x5 +
5
2

x4 − 1
2

x2 +
1
42

,

B7(x) = x7 − 7
2

x6 +
7
2

x5 − 7
6

x3 +
1
6

x,

B8(x) = x8 − 4x7 +
14
3

x6 − 7
3

x4 +
2
3

x2 − 1
30

,

B9(x) = x9 − 9
2

x8 + 6x7 − 21
5

x5 + 2x3 − 3
10

x,

B10(x) = x10 − 5x9 +
15
2

x8 − 7x6 + 5x4 − 3
2

x2 +
5
66

,

B11(x) = x11 − 11
2

x10 +
55
6

x9 − 11 x7 + 11 x5 − 11
2

x3 +
5
6

x.

9. POISSON BRACKETS

In quantum mechanics, the Poisson bracket of two quantities a and b is
defined as the following expression 8:

[a , b] =
i

h̄
(a b − b a) = − [b , a] . (3.299)

Denoting by q and p the canonical variables and observing that p =
−(h̄/i)∂/∂q, we have

[qi , pi] = 1, (3.300)

[a , b] =
∑

i

(
∂a

∂qi

∂b

∂pi
− ∂a

∂pi

∂b

∂qi

)
, (3.301)

[x , H] =
∑

i

(
∂x

∂qi

∂H

∂pi
− ∂x

∂pi

∂H

∂qi

)

=
∑

i

(
∂x

∂qi
q̇i +

∂x

∂pi
ṗi

)
= ẋ. (3.302)

Let us cite the expressions for the Poisson brackets of some quantities:

8@ In the original manuscript, the old notation h/2π is used for the quantity we here denote
by h̄.
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(1) Given

ux = qy pz − qz py, (3.303)
uy = qz px − qx pz, (3.304)
uz = qx py − qy px, (3.305)

(3.306)

it follows that

[ux , uy] = − [uy , ux] = uz, (3.307)
[uy , uz] = − [uz , uy] = ux, (3.308)
[uz , ux] = − [ux , uz] = uy, (3.309)

[
u2

x , uy

]
= ux uz + uz ux, (3.310)

[
u2

x , uz

]
= −ux uy − uy ux, etc., (3.311)

[
ux , u2

y

]
= uy uz + uz uy, (3.312)

[
ux , u2

z

]
= −ux uy − uy ux, etc., (3.313)

[
u2

x + u2
y + u2

z , ux

]
= 0, etc.. (3.314)

(2) Given

qx = r sin θ cos φ, (3.315)
qy = r sin θ sin φ, (3.316)
qz = r cos θ, (3.317)

we have

[r , px] =
qx

r
= sin θ cos φ, (3.318)

[r , py] =
qy

r
= sin θ sin φ, (3.319)

[r , pz] =
qz

r
= cos θ, (3.320)

[cos θ , px] = − qx qz

r3
= − sin θ cos θ cos φ

r
, (3.321)

[cos θ , py] = − qy qz

r3
= − sin θ cos θ sin φ

r
, (3.322)

[cos θ , pz] = − r2 − q2
z

r3
=

sin2 θ

r
, (3.323)
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[sin θ , px] =
cos2 θ cos φ

r
, (3.324)

[sin θ , py] =
cos2 θ sin φ

r
, (3.325)

[sin θ , pz] = − sin θ cos θ

r
, (3.326)

[θ , px] =
cos θ cos φ

r
, (3.327)

[θ , py] =
cos θ sin φ

r
, (3.328)

[θ , pz] = − sin θ

r
, (3.329)

[cos φ , px] =
sin2 φ

r sin θ
, (3.330)

[cos φ , py] = − cos φ sin φ

r sin θ
, (3.331)

[cos φ , pz] = 0, (3.332)

[sin φ , px] = − cos φ sin φ

r sin θ
, (3.333)

[sin φ , py] =
cos2 φ

r sin θ
, (3.334)

[sin φ , pz] = 0, (3.335)

[φ , px] = − sin φ

r sin θ
, (3.336)

[φ , py] =
cos φ

r sin θ
, (3.337)

[φ , pz] = 0. (3.338)

(3) Let us set, for simplicity:

X = ux, (3.339)
Y = uy, (3.340)
Z = uz. (3.341)

Denoting by k the azimuthal quantum number and m (or n) the
equatorial quantum number, we have the following matrices of
degeneration in units h̄:

Zm,n = δm,n m, (3.342)

Xm,n =
1
2

(δm+1,n + δm,n+1)
√

k(k + 1)−mn, (3.343)
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Ym,n =
i

2
(δm+1,n − δm,n+1)

√
k(k + 1)−mn. (3.344)

For example, for k = 2, we have

Z =




2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2




, (3.345)

X =




0 1 0 0 0
1 0

√
3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0




, (3.346)

Y =




0 i 0 0 0
−i 0 i

√
3
2 0 0

0 −i
√

3
2 0 i

√
3
2 0

0 0 −i
√

3
2 0 i

0 0 0 −i 0




, (3.347)

Z2 =




2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 4




, (3.348)

X2 =




1 0
√

3
2 0 0

0 5
2 0 3

2 0√
3
2 0 3 0

√
3
2

0 3
2 0 5

2 0
0 0

√
3
2 0 1




, (3.349)

Y 2 =




1 0 −
√

3
2 0 0

0 5
2 0 −3

2 0
−

√
3
2 0 3 0 −

√
3
2

0 −3
2 0 5

2 0
0 0 −

√
3
2 0 1




, (3.350)
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X2 + Y 2 + Z2 =




6 0 0 0 0
0 6 0 0 0
0 0 6 0 0
0 0 0 6 0
0 0 0 0 6




, (3.351)

X Y =




−i 0 0i
√

3
2 0 0

0 −1
2 i 0 3

2 i 0
−i

√
3
2 0 0 0 i

√
3
2

0 −3
2 i 0 1

2 i 0
0 0 −i

√
3
2 0 i




, (3.352)

Y X =




i 0 0i
√

3
2 0 0

0 1
2 i 0 3

2 i 0
−i

√
3
2 0 0 0 i

√
3
2

0 −3
2 i 0 −1

2 i 0
0 0 −i

√
3
2 0 −i




, (3.353)

X Z =




0 1 0 0 0
2 0 0 0 0
0

√
3
2 0 −

√
3
2 0

0 0 0 0 −2
0 0 0 −1 0




, (3.354)

Z X =




0 2 0 0 0
1 0

√
3
2 0 0

0 0 0 0 0
0 0 −

√
3
2 0 −1

0 0 0 −2 0




, (3.355)

Y Z =




0 i 0 0 0
−2i 0 0 0 0
0 −i

√
3
2 0 −i

√
3
2 0

0 0 0 0 −2i
0 0 0 i 0




, (3.356)

Z Y =




0 2i 0 0 0
−i 0 i

√
3
2 0 0

0 0 0 0 0
0 0 i

√
3
2 0 −i

0 0 0 2i 0




, (3.357)
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[X , Y ] = i (X Y − Y X) =




2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2




= Z,

(3.358)

[Y , Z] = i (Y Z − Z Y ) =




0 1 0 0 0
1 0

√
3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0




= X,

(3.359)

[Z , X] = i (Z X − X Z) =




0 i 0 0 0
−i 0 i

√
3
2 0 0

0 −i
√

3
2 0 i

√
3
2 0

0 0 −i
√

3
2 0 i

0 0 0 −i 0




.

(3.360)

10. ELEMENTARY PHYSICAL QUANTITIES

We give the following quantities 9 in absolute units 10. With a * we
indicate the experimental quantities from which all the other ones can
be derived. 11 12

9@ In the tables we report the updated value for each quantity. These slightly differ from the
ones given by the author. The values for the last 10 quantities do not appear in the original
manuscript.
10@ In particular, the author gives length in m, mass in g, time in s and electric charge in
esu. Other units are derived from these.
11@ However, nowadays, fundamental quantities, which are most precisely known, do not
coincide with the ones marked in the following tables.
12@ With reference to the 8th line of the following table, the present convention for the
atomic mass unit is 12C mass/12, rather than 16O mass/16.
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Quantity Value

e (electron charge) 4.80320×10−10 *

m (electron rest mass) 0.91094×10−27

h (quantum of action) 6.62607×10−27

h/2π 1.05457×10−27

k = R/N (Boltzmann constant) 1.38065×10−16

R (perfect gas constant) 8.31447×107 *

N (Avogadro number) 6.02214×1023

MH = 1/N (16O mass/16) 1.66054×10−24

e/mc 1.75878×107 *

c (speed of light) 2.99792×1010 *

F = eN/c (Faraday constant) 9648.29 *

R/c = (2π2me4)/(h3c) (Rydberg wave number) 109734.564 *

R = (2π2me4)/h3 (Rydberg frequency) 3.28984×1015

Rh = (2π2me4)/h2 (Rydberg energy) 2.17987×10−11

r = h2/(4π2me2) (first Bohr radius) 0.52918×10−10

µ = (eh)/(4πmc) (Bohr magneton) 9.27378×10−21

ν = e/(4πmc) (Larmor frequency for a unitary field) 1.39959×106

e/(4πmc2) (Larmor wave number for a unitary field) 4.66841×10−5

(hc2)/(104e) (volts corresponding to 1µ) 1.23990

(Rhc)/(108e) (volts corresponding to 1Rydberg) 13.60603

(mc3)/(108e) (volts corresponding to m) 511037

(108e)/(ck) (temperature corresponding to 1V ) 11604.2

(104ch)/k (temperature corresponding to 1µ) 14388.1
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11. “CHASING THE DOG”

Let us consider a point Q in motion on the x axis with a constant
velocity u such that its rectangular coordinates are Q(ut, 0). Another
point P (x, y) is moving with constant velocity v towards Q; we have
to determine the trajectory of P . The tangent in P to such trajectory
intersects Q at an arbitrary time; the envelope of the lines PQ is, then,
the path of pursuit. Let us introduce the parameter α, signifying the
angle between PQ and the x-axis. The coordinates of P satisfy the
equation of the straight line intersecting P and Q:

y = (u t − x) tan α; (3.361)

and, since P also belongs to the envelope of such straight lines, x and
y also satisfy the equation given by the derivative of Eq. (3.361) with
respect to time 13:

(u t − x)
(
1 + tan2 α

) dα

dt
+ u tan α = 0; (3.362)

from which we get

x = u t + u
dt

dα
sin α cos α, (3.363)

y = −u
dt

dα
sin2 α (3.364)

and, on differentiation,

ẋ = 2u cos2 α + u
d2t

dα2

dα

dt
sin α cos α, (3.365)

ẏ = − 2u sin α cos α − u
d2t

dα2

dα

dt
sin2 α, (3.366)

On the other hand, we have

ẋ = v cos α, ẏ = − v sin α, (3.367)

so that, comparison with Eq. (3.365) or (3.366) gives

2 cos α +
d2t

dα2

dα

dt
sin α =

v

u
, (3.368)

13@ See also Eq. (3.367).
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that is,

d
dα

log
dt

dα
=

v

u sin α
− 2

cos α

sin α
,

log
dt

dα
=

v

u
log tan

α

2
− 2 log sin α + const.,

dt

dα
= c1

(tan α/2)v/u

sin2 α
, (3.369)

t = c1

∫ (tan α/2)v/u

sin2 α
dα + c2 . (3.370)

Substitution into Eqs. (3.363) and (3.364), results in

x = u c1

[∫ (tan α/2)v/u

sin2 α
dα +

cos α

sin α
(tan α/2)v/u

]
+ u c2 (3.371)

y = −u c1 (tan α/2)v/u . (3.372)

As is natural to expect, the shape of the curves depends only on the
ratio v/u. Let us assume, for example, u = v; we have

∫ tan α/2
sin2 α

dα +
1
2

log tan
α

2
+

1
4

tan2 α

2
− 1

4
(3.373)

and, setting
u = v = 1, c1 = −1, c2 = 0, (3.374)

we get

t = − 1
2

log tan
α

2
− 1

4
tan2 α

2
+

1
4
, (3.375)

x = t − tan α/2
tan α

, (3.376)

y = tan
α

2
. (3.377)

We use the last expression to eliminate α:

t = − 1
2

log y − 1
4

y2 +
1
4
, (3.378)

x = − 1
2

log y +
1
4

y2 − 1
4
. (3.379)

Since, for t = 0, one has x = 0, y = 1, t gives the length of the arc of
the curve between the point (0, 1) and the arbitrary point (x, y). From
Eqs. (3.378) and (3.379), it follows that

t = x +
1
2
− 1

2
y2. (3.380)
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From Eq. (3.379) it is seen that the minimum value of x is 0 (for y = 1);
the point (0, 1), considered as the origin of the arcs, is thus the point in
which the tangent to the curve is vertical.

12. STATISTICAL POTENTIAL IN
MOLECULES

The potential between electrons in a gas satisfies, statistically, the dif-
ferential equation

∇2 V = − kV 3/2. (3.381)

When the equipotential surfaces are approximately known, V can ap-
proximately be determined in the following way. Let

f(x, y, z) = p (3.382)

be the approximate expression for the equipotential surfaces as function
of a parameter p. Setting

V = V (p), (3.383)

we have
∇V =

dV

dp
∇ p (3.384)

and, denoting with n the outward normal to the surface,
∫

σ

∂V

∂n
dσ =

dV

dp

∫

σ

∂p

∂n
dσ = y1(p)

dV

dp
, (3.385)

where y1(p) is a known function. While integrating Eq. (3.381) over the
space between two equipotential surfaces corresponding to p and p+dp,
V 3/2 can be moved outside the integral:

∫

∆S
∇2 V dS = − k V 3/2

∫

σ

(
∂p

∂n

)−1

dpdσ = − k V 3/2 y2(p) dp,

(3.386)
where

y2(p) =
∫

σ

(
∂p

∂n

)−1

dσ (3.387)

is again a known function of p. On the other hand, from the divergence
theorem

∫

∆S
∇2 V dS =

∫

σ(p+dp)

∂V

∂n
dσ(p + dp) −

∫

σ(p)

∂V

∂n
dσ(p)
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= y1(p + dp) V ′(p + dp) − y1(p) V ′(p)
=

(
y1 V ′′ + y′1 V ′) dp,

so that, on comparison with Eq. (3.386),

y1 V ′′ + y′1 V ′ = − k V 3/2 y2. (3.388)

This equation makes it possible to determine V (p) when the boundary
conditions are assigned.

Let us consider, for example, a diatomic molecule with identical nuclei
and assume that it has the following approximate equipotential surfaces

p =
r1 r2

r1 + r2
=

(
1
r1

+
1
r2

)−1

. (3.389)

We then have

∇ p = − p2 ∇ 1
p

= − p2 ∇ 1
r1
− p2 ∇ 1

r2
. (3.390)

Thus denoting by u and v two unitary vectors in the directions of in-
creasing r1 and r2, respectively,

∇ p =
p2

r2
1

u +
p2

r2
2

v, (3.391)

∂p

∂n
= |∇ p| , (3.392)

from which we can calculate y1 and y2. However, it is better to perform
the calculations using elliptic coordinates. Also note that

y2 =
∂S

∂p
, (3.393)

where S is the volume enclosed by the equipotential surface p. Moreover,
y1 is the outward flux of ∇ p = −p2∇ (1/p); and, since 1/p is harmonic
with singularities of the type 1/r1 and 1/r2 at the nuclei, the outward
flux of ∇ (1/p) is −8π; it thus follows that

y1(p) = 8π p2. (3.394)

Let us consider a meridian cross section of the volume enclosed by the
surface p; in rectangular coordinates x and z, let the nuclei be situated
on the x axis at the points (a, 0) and (−a, 0). Introducing the elliptic
coordinates

u = (r1 + r2) /2, v = (r1 − r2) /2, (3.395)



254 ETTORE MAJORANA: NOTES ON THEORETICAL PHYSICS

we have

r1 = u + v, r2 = u − v, x =
u v

a

y2 =
(u2 − a2)(a2 − v2)

a2
, S = π

∫

s
y2 dx, (3.396)

where the integral is evaluated over the boundary of the meridian semi-
cross section (y > 0). Equation (3.389), which must be satisfied on the
boundary, becomes

p =
(
u2 − v2

)/
2u, (3.397)

with

v2 = u2 − 2u p, v = ±
√

u2 − 2u p, u = p +
√

p2 + v2, u > 0.

(3.398)
We have y = 0 at the points

u = p +
√

p2 + a2, v = a,

u = p +
√

p2 + a2, v = − a,

u = a, v =
√

a2 − 2ap,

u = a, v = −√
a2 − 2ap.

The first two points are always real; the last two are real and distinct
only when p < a/2, while they coincide in (u , v) = (a , 0) when p = a/2.
Let us introduce the variable

t =
v

u
, (3.399)

wherein u and v can be expressed in terms of rational functions of t:

u =
2p

1− t2
, v =

2pt

1− t2
; (3.400)

and, since x = uv/a, it follows that

dx =
1
a

d (uv) =
2p

a
d

t

(1− t2)2
=

2p

a

1 + 3t2

(1− t2)3
dt. (3.401)

If we evaluate the integral only over the positive values allowed for t, we
find

S =
4πp

a3

∫ (
4p2

(1− t2)2
− a2

) (
a2 − 4p2t2

(1− t2)2

)
1 + 3t2

(1− t2)3
dt,

(3.402)
where the lower limit of the integral is zero when p ≥ a/2, while it is√

a2 − 2ap/a when p < a/2; the upper limit is, in any case, a/(p +√
p2 + a2).
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13. THE GROUP OF PROPER UNITARY
TRANSFORMATIONS IN TWO
VARIABLES

Let us consider the group U(2) of unitary transformations in two vari-
ables ξ and η, with determinant equal to 1. If

(
α β
γ δ

)

is the matrix corresponding to a particular transformation, that is,

ξ′ = α ξ + β η, η′ = γ ξ + δ η, (3.403)

then the following relations must be true:

α∗ α + β∗ β = 1, α∗ γ + β∗ δ = 0,
γ∗ γ + δ∗ δ = 1, α δ − β γ = 1.

(3.404)

On making the substitutions

α = α1 + i α2, β = β1 + i β2,

γ = γ1 + i γ2, δ = δ1 + i δ2,

in Eq. (3.404), the following relations between real quantities must hold:

α2
1 + α2

2 + β2
1 + β2

2 = 1,
γ2
1 + γ2

2 + δ2
1 + δ2

2 = 1,
α1 γ1 + α2 γ2 + β1 δ1 + β2 δ2 = 0,
α1 γ2 − α2 γ1 + β1 δ2 − β2 δ1 = 0,
α1 δ1 − α2 δ2 − β1 γ1 + β2 γ2 = 1,
α1 δ2 + α2 δ1 − β1 γ2 − β2 γ1 = 0.

On multiplying the last four of these six equations by α1, −α2, −β1,
−β2, respectively, and summing the resulting expressions, from the first
equation we infer

γ1 = −β1.

Analogously, we find

γ2 = β2, δ1 = α1, δ2 = −α2.

We can thus arbitrarily choose α1, α2, β1, β2 so that they satisfy the
first of the above set of six equations and then determine the other
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unknowns from the immediately forgoing relations; the remaining five
equations, including the second one which has not explicitly been taken
into account, will then be automatically satisfied. On setting

α1 = x, α2 = λ, β1 = −µ, β2 = ν,

where x, λ, µ, ν are arbitrary real numbers that satisfy the equation

x2 + λ2 + µ2 + ν2 = 1, (3.405)

the elements of the most general unitary matrix with determinant equal
to 1 will read

α = x + i λ, β = −µ + i ν,
γ = −β∗ = µ + i ν, δ = α∗ = x − i λ.

(3.406)

Every transformation of the group is defined by the 4 real numbers x,
λ, µ, ν; it will accordingly simply be denoted by

(x , λ , µ , ν) .

Let us consider two transformations of the group and their product:

A =
(

x + i λ −µ + i ν
µ + i ν x − i λ

)
, B =

(
x′ + i λ′ −µ′ + i ν ′
µ′ + i ν ′ x′ − i λ′

)
,

AB =
(

x′′ + i λ′′ −µ′′ + i ν ′′
µ′′ + i ν ′′ x′′ − i λ′′

)
,

where, per definition,

x′′ = xx′ − λλ′ − µµ′ − νν ′,
λ′′ = xλ′ + λx′ − µν ′ + νµ′,
µ′′ = xµ′ + λν ′ + µx′ − νλ′,
ν ′′ = xν′ − λµ′ + µλ′ + νx′;

(3.407)

in short,

(x , λ , µ , ν)
(
x′ , λ′ , µ′ , ν ′

)
=

(
x′′ , λ′′ , µ′′ , ν ′′

)
. (3.408)

which coincides with the multiplication rule of quaternions.
In the space of v + 1 = 2j + 1 dimensions, let us consider the vector

with components
ξr ηv−r

f(v, r)
, r = 0, 1, ..., v. (3.409)

The present group transforms this into the vector with components

ξ′ r η′ v−r

f(v, r)
, r = 0, 1, ..., v. (3.410)
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From Eqs. (3.403), the components of the transformed vector can be
obtained as a linear combination of the components of the original one,
this combination being univocal, since the v + 1 monomials ξr ηv−r

(r = 0, 1, . . . , v) are linearly independent. We thus have a (2j + 1)-
dimensional representation Dj of the group. Obviously, the same repre-
sentation holds for all transformations of the kind in Eq. (3.403), that is,
for all affine linear transformations in 2 dimensions, or for all members
of the sub-group O(2) of the linear transformations with unitary deter-
minant, our group U(2) being a sub group of it. The function f(v, r)
can be determined in such a way that the unitary transformations of
the group U(2) are represented with unitary transformations as well. To
this end, it must be true that

∑
r

|ξr ηv−r|2
f2(v, r)

(3.411)

(we are assuming f to be real) depends only on |ξ|2+|η|2; that is, setting
|ξ|2 = a and |η|2 = b,

∑
r

ar bv−r

f2(v, r)
(3.412)

is a function of a + b. For this to happen, it suffices to equate the first
quantity to the v-th power of the second quantity, and thus 14:

f(v, r) =
(

v
r

)−1/2

=
√

r!(v − r)!/v!, (3.413)

or, since f(v, r) can always be multiplied by an r-independent quantity,
more simply:

f(v, r) =
√

r!(v − r)!. (3.414)

Thus, ξ and η define a vector in a space of 2j + 1 dimensions with
components

ξr ηv−r

√
r!(v − r)!

, r = 0, 1, . . . , v. (3.415)

Let us consider the transformation

(x, εa, εb, εc) . (3.416)

Once εa, εb, εc are given, x is determined apart from its sign, which we
may choose to be positive. Let us assume that ε is small; thus x will

14@ The author wanted to obtain the formula for the power of a binomial.
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differ from unity by a second-order term, so that

lim
ε→0

(x, εa, εb, εc) − (1, 0, 0, 0)
ε

= (0, a, b, c) . (3.417)

The transformation (0, a, b, c), whose definition is given by Eqs. (3.406),
is an infinitesimal transformation. In general, it does not belong to
U(2), but it is always a (real) multiple of a unitary transformation with
determinant equal to 1. By contrast, the transformation

(x, λ, µ, ν) = e(0,a,b,c) t (3.418)

does belong to U(2), where t is an arbitrary real number; that is, we
necessarily have x2 + λ2 + µ2 + ν2 = 1. Given a, b, c, the quantities
x, λ, µ, ν are functions of t (from Eq. (3.418)), and we have

(
dx

dt
,
dλ

dt
,
dµ

dt
,
dν

dt

)
= (x, λ, µ, ν) (0, a, b, c)

= (0, a, b, c) (x, λ, µ, ν) , (3.419)

that is,

dx

dt
= − aλ − b µ − c ν,

dλ

dt
= a x − c µ + b ν = a x + c µ − b ν = a x, (3.420)

dµ

dt
= b x,

dν

dt
= c x.

Differentiating the first equation with respect to t, one gets

d2x

dt2
= −

(
a2 + b2 + c2

)
x, (3.421)

from which

x = cos t
√

a2 + b2 + c2, (3.422)

λ =
a√

a2 + b2 + c2
sin t

√
a2 + b2 + c2,

µ =
b√

a2 + b2 + c2
sin t

√
a2 + b2 + c2, (3.423)

ν =
c√

a2 + b2 + c2
sin t

√
a2 + b2 + c2.

Choosing t = 1, it follows that the infinitesimal transformation (0, a, b, c)
can be deduced from the transformation

(x, λ, µ, ν) = e(0,a,b,c) (3.424)
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by setting

x = cos
√

a2 + b2 + c2,

λ =
a√

a2 + b2 + c2
sin

√
a2 + b2 + c2,

µ =
b√

a2 + b2 + c2
sin

√
a2 + b2 + c2,

ν =
c√

a2 + b2 + c2
sin

√
a2 + b2 + c2.

(3.425)

Equations (3.425) tells us that an arbitrary transformation of the group
U(2) can be cast in the form given by Eq. (3.424), where the constants
a, b, c can be univocally determined from the conditions

a , b , c ≥ 0, 0 ≤
√

a2 + b2 + c2 ≤ 2π. (3.426)

Let us now consider an arbitrary representation of the group U(2).
We set

lim
ε→0

U(x, εa, εb, εc) − 1
ε

= aP1 + b P2 + c P3. (3.427)

As a consequence,

ea P1 + b P2 + c P3 = lim
ε→0

(1 + ε (aP1 + b P2 + c P3))
1/ε

= lim
ε→0

(U(x, εa, εb, εc))1/ε = lim
ε→0

U(x, εa, εb, εc)1/ε

= lim
ε→0

U ((1, 0, 0, 0) + ε(0, a, b, c))1/ε = U
(
e(0,a,b,c)

)

and, from Eq. (3.424),

U(x, λ, µ, ν) = U
(

e(0,a,b,c)
)

= ea P1 + b P2 + c P3 , (3.428)

which has to be true together with Eq. (3.425). It is then sufficient
to know the matrices P1, P2, P3 in order to have a representation of the
group U(2). However, the matrices P1, P2, P3 cannot be chosen arbi-
trarily. This happen, first of all, because if one relaxes the constraints
(3.426) for continuity reasons, an element of U(2) can be represented
by different sets (a, b, c), (a′, b′, c′), . . ., while for the uniqueness of the
representation we must have

ea P1 + b P2 + c P3 = ea′ P1 + b′ P2 + c′ P3 = . . . . (3.429)
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Secondly, there must be a correspondence between the product of two
elements of the group and the product of the two related transformations.
Let us suppose that the first condition is satisfied; then, for t = 0, we
get

U
(
e(0,at,bt,ct) e(0,a′t,b′t,c′t)

)
= e(a P1 + b P2 + c P3)t e(a′ P1 + b′ P2 + c′ P3)t.

(3.430)
Let us set

e(0,at,bt,ct) e(0,a′t,b′t,c′t) = e(0,x,y,z). (3.431)

The quantities x, y, z will then be functions of t that can be determined
in an infinite number of ways from Eqs. (3.424) and (3.425); however
we will demand that they satisfy the continuity requirement and the
conditions x = y = z = 0 for t = 0. From Eq. (3.428), Eq. (3.430)
becomes

ex P1 + y P2 + z P3 = e(a P1 + b P2 + c P3)t e(a′ P1 + b′ P2 + c′ P3)t. (3.432)

Expanding Eq. (3.431) in a power series, we get

1 + xP1 + yP2 + zP3 +
1
2

[
x2P 2

1 + y2P 2
2 + z2P 2

3

+xy (P1P2 + P2P1) + yz (P2P3 + P3P2) + zx (P1P3 + P3P1)]

+
1
6

[
x3P 3

1 + y3P 3
2 + z3P 3

3 + x2y
(
P 2

1 P2 + P1P2P1 + P2P
2
1

)

+xy2
(
P1P

2
2 + P2P1P2 + P 2

2 P1

)
+ y2z

(
P 2

2 P2 + P2P3P2 + P3P
2
2

)

+yz2
(
P2P

2
3 + P3P2P3 + P 2

3 P2

)
+ z2z

(
P 2

3 P1 + P3P1P3 + P1P
2
3

)

+x2z
(
P3P

2
1 + P1P3P1 + P 2

1 P3

)
+ xyz (P1P2P3 + P2P3P1

+P − 3P1P2 + P1P3P2 + P2P1P3 + P3P2P1)] + . . .

= 1 + t
(
aP1 + bP2 + cP3 + a′P1 + b′P2 + c′P3

)

+
t2

2

[
a2P 2

1 + b2P 2
2 + c2P 2

3 + ab (P1P2 + P2P1) + bc (P2P3 + P3P2)

+ca (P1P3 + P3P1) + a′2P 2
1 + b′2P 2

2 + c′2P 2
3 + a′b′ (P1P2 + P2P1)

+b′c′ (P2P3 + P3P2) + c′a′ (P1P3 + P3P1) + 2aa′P 2
1 + 2bb′P 2

2

+2cc′P 2
3 + 2ab′P1P2 + 2bc′P2P3 + 2ca′P3P1

+2ac′P1P3 + 2ba′P2P1 + 2cb′P3P2
]
+ . . . . (3.433)

Since x, y, z are infinitesimals with respect to t and a, b, c, a′, b′, c′ are
arbitrary constants, by equating the terms of the same order in the two
sides of Eq. (3.433), we find the relations that P1, P2, P3 must satisfy.
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Actually, we want to find the first terms in the expansion of x, y, z in t;
to this end let us expand (3.431) in series up to second-order terms. We
find

1 + (0, at, bt, ct) + (0, a′t, b′t, c′t) +
1
2
(0, at, bt, ct)2

+
1
2
(0, a′t, b′t, c′t)2 + (0, at, bt, ct)(0, a′t, b′t, c′t) + . . .

= (1, 0, 0, 0) + (0, x, y, z) +
1
2
(0, x, y, z)2 + . . .

from which follows, on equating components of the quaternions corre-
sponding

1− 1
2
t2

[
(a + a′)2 + (b + b′)2 + (c + c′)2

]
+ . . .

= 1− 1
2

(
x2 + y2 + z2

)
+ . . . , (3.434)

(a + a′)t + (cb′ − bc′)t2 + . . . = x + at + . . . , (3.435)
(b + b′)t + (ac′ − ca′)t2 + . . . = y + at + . . . , (3.436)
(c + c′)t + (ba′ − ab′)t2 + . . . = z + at + . . . . (3.437)

From the last three equations (the first one is an obvious consequence of
these), we can deduce the expansion to second-order of x, y, z. Substitut-
ing in Eq. (3.433), we find that, up to first-order terms, it is identically
satisfied. Equating the second-order terms, we get

(cb′ − bc′)P1 + (ac′ − ca′)P2 + (ba′ − ab′)P3

+
1
2

[
(a + a′)2P 2

1 + (b + b′)2P 2
2 + (c + c′)2P 2

3

+(a + a′)(b + b′)(P1P2 + P2P1) + (b + b′)(c + c′)(P2P3 + P3P2)
+(c + c′)(a + a′)(P3P1 + P1P3)

]

=
1
2

[
(a + a′)2P 2

1 + (b + b′)2P 2
2 + (c + c′)2P 2

3

+(a + a′)(b + b′)(P1P2 + P2P1) + (b + b′)(c + c′)(P2P3 + P3P2)
+(c + c′)(a + a′)(P3P1 + P1P3) + (ab′ − ba′)(P1P2 − P2P1)
+(bc′ − cb′)(P2P3 − P3P2) + (ca′ − ac′)(P3P1 − P1P3)

]
. (3.438)

Since these relations must be true for arbitrary values of the constants
appearing in them, we get the following exchange relations:

P1P2 − P2P1 = −2P3,

P2P3 − P3P2 = −2P1, (3.439)
P3P1 − P1P3 = −2P2.
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Let us consider the representations Dj of the group U(2) composed
of transformations acting on the vector (3.415). The vector with com-
ponents

ξr ηv−r

√
r!(v − r)!

is transformed by P3 into the vector with components
[

d
dε

(ξ − iεη)r (η + iεξ)v−r

√
r!(v − r)!

]

ε=0

=
r i ξr−1 ηv−r+1

√
r!(v − r)!

+
(v − r)ξr+1 ηv−r−1

√
r!(v − r)!

= i
√

r(v − r + 1)
ξr−1 ηv−r+1

√
(r − 1)!(v − r + 1)!

+ i
√

(r + 1)(v − r)
ξr+1 ηv−r−1

√
(r + 1)!(v − r − 1)!

,

so that, setting m = v/2− r = j − r, we get the matrix P3:

(P3)m,m−1 = i
√

(j + m)(j −m + 1) = i
√

j(j + 1)−m(m− 1),
(P3)m,m+1 = i

√
(j + m + 1)(j −m) = i

√
j(j + 1)−m(m + 1),

(3.440)
with m = −j,−j + 1, . . .; and all the other components are zero. The
matrix P3 is thus emisymmetric, i.e., iP3 is a Hermitian matrix. In
other words, like all the infinitesimal unitary transformations, P3 is a
pure imaginary quantity.

The same vector (3.415) is transformed by P2 into the vector with
components

[
d
dε

(ξ − εη)r (η + εξ)v−r

√
r!(v − r)!

]

ε=0

=
− r ξr−1 ηv−r+1

√
r!(v − r)!

+
(v − r)ξr+1 ηv−r−1

√
r!(v − r)!

= −
√

r(v − r + 1)
ξr−1 ηv−r+1

√
(r − 1)!(v − r + 1)!

+
√

(r + 1)(v − r)
ξr+1 ηv−r−1

√
(r + 1)!(v − r − 1)!

.

It follows that the only non-zero components of the matrix P2 are

(P2)m,m−1 = −√
(j + m)(j −m + 1) = −√

j(j + 1)−m(m− 1),
(P2)m,m+1 =

√
(j + m + 1)(j −m) =

√
j(j + 1)−m(m + 1).

(3.441)
The matrix P1 transforms the vector (3.415) into the vector with com-
ponents

[
d
dε

(ξ + iεξ)r (η − iεη)v−r

√
r!(v − r)!

]

ε=0
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=
r i ξr ηv−r

√
r!(v − r)!

− (v − r) i ξr ηv−r

√
r!(v − r)!

.

Consequently the only non-zero elements of P1 are the diagonal ones,
with

(P1)m,m = 2mi. (3.442)

We then have the following representations:

• j = 0

P1 = 0, P2 = 0, P3 = 0.

• j = 1
2

P1 =
(

i 0
0 −i

)
, P2 =

(
0 −1
1 0

)
, P3 =

(
0 i
i 0

)
.

• j = 1

P1 =




2i 0 0
0 0 0
0 0 −2i


 , P2 =




0 −√2 0√
2 0 −√2

0
√

2 0


 ,

P3 =




0 i
√

2 0
i
√

2 0 i
√

2
0 i

√
2 0


 .

• j = 3
2

P1 =




3i 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −3i


 , P2 =




0 −√3 0 0√
3 0 −2 0

0 2 0 −√3
0 0

√
3 0


 ,

P3 =




0 i
√

3 0 0
i
√

3 0 2i 0
0 2i 0 i

√
3

0 0 i
√

3 0


 .
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• j = 2

P1 =




4i 0 0 0 0
0 2i 0 0 0
0 0 0 0 0
0 0 0 −2i 0
0 0 0 0 −4i




, P2 =




0 −2 0 0 0
2 0 −√6 0 0
0

√
6 0 −√6 0

0 0
√

6 0 −2
0 0 0 2 0




,

P3 =




0 2i 0 0 0
2i 0 i

√
6 0 0

0 i
√

6 0 i
√

6 0
0 0 i

√
6 0 2i

0 0 0 2i 0




.

It is easy to test that the exchange relations are satisfied by these ma-
trices. In fact, if we also include the vanishing components, the matrices
can be written in the form

(P1)m,n = 2mi δm,n,

(P2)m,n =
√

j(j + 1)−mn (δm,n−1 − δm,n+1) , (3.443)

(P3)m,n =
√

j(j + 1)−mn (iδm,n−1 + iδm,n+1) .

It follows that

(P1P2)m,n = 2m i
√

j(j + 1)−mn (δm,n−1 − δm,n+1) ,

(P2P1)m,n = 2n i
√

j(j + 1)−mn (δm,n−1 − δm,n+1) ,

(P1P2 − P2P1)m,n =
√

j(j + 1)−mn (− 2 i δm,n−1 − 2 i δm,n+1)

= − 2 (P3)m,n ,

(P2P3)m,n = i
√

j(j + 1)−m(m + 1)

×
√

j(j + 1)− (m + 1)(m + 2) δm+2,n

− 2mi δm,m − i
√

j(j + 1)−m(m− 1)

×
√

j(j + 1)− (m− 1)(m− 2) δm−2,n,

(P3P2)m,n = i
√

j(j + 1)−m(m + 1)

×
√

j(j + 1)− (m + 1)(m + 2) δm+2,n

+ 2mi δm,m − i
√

j(j + 1)−m(m− 1)
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×
√

j(j + 1)− (m− 1)(m− 2) δm−2,n,

(P3P2 − P2P3)m,n = − 4miδm,m = − 2 (P1))m,n,

(P3P1)m,n = 2 n i
√

j(j + 1)−mn (i δm,n−1 + i δm,n+1) ,

(P1P3)m,n = 2 mi
√

j(j + 1)−mn (i δm,n−1 + i δm,n+1) ,

(P3P1 − P1P3)m,n =
√

j(j + 1)−mn (− 2 δm,n−1 + 2 δm,n+1)

= − 2 (P2)m,n .

14. EXCHANGE RELATIONS FOR
INFINITESIMAL TRANSFORMATIONS
IN THE REPRESENTATIONS OF
CONTINUOUS GROUPS

Let us consider a continuous group with n parameters

s = (q1, q2, . . . , qn) . (3.444)

We choose the parameters in such a way that all the coordinates of the
unit element are zero:

1 = (0, 0, . . . , 0) . (3.445)

Let us also consider a given representation of the group

U(s) = U (q1, q2, . . . , qn) . (3.446)

An infinitesimal transformation is defined by

lim
ε→0

U(εa1, εa2, . . . , εan)− 1
ε

= a1P1 + a2P2 + . . . + anPn, (3.447)

i.e., the infinitesimal transformations can be expressed in terms of linear
combinations of n particular transformations. The matrices P1, P2, ..., Pn

obey algebraic relations that do not depend on the number of dimensions
and on the particular representation but only on the structure of the
given group. The exchange relations are some of these. Let us consider
the “commutator”

c = (x1, x2, . . . , xn) = (α, 0, 0, . . . , 0) (0, β, 0, . . . , 0)
× (α, 0, 0, . . . , 0)−1 (0, β, 0, . . . , 0)−1 , (3.448)



266 ETTORE MAJORANA: NOTES ON THEORETICAL PHYSICS

i.e., setting

s = (α, 0, 0, . . . , 0) , t = (0, β, 0, . . . , 0) , (3.449)
c = s t s−1 t−1, (3.450)

we have

s t = c t s, (3.451)
U(s)U(t) = U(c)U(t)U(s). (3.452)

Take the derivative of this with respect to α,

dU(s)
dα

U(t) =
∑

i

∂xi

∂α

∂U(s)
∂xi

U(t)U(s)

+ U(c)U(t)
dU(s)
dα

, (3.453)

and then the derivative of the outcome with respect to β

dU(s)
dα

dU(t)
dβ

=
∑

i

∂2xi

∂α∂β

∂U(s)
∂xi

U(t)U(s)

+
∑

i,k

∂xi

∂α

∂xk

∂β

∂2U(c)
∂xi∂xk

U(t)U(s)

+
∑

i

∂xi

∂α

∂U(c)
∂xi

∂U(t)
∂β

U(s) +
∑

i

∂xi

∂β

∂U(c)
∂xi

U(t)
∂U(s)
∂α

+U(c)
∂U(t)
∂β

∂U(s)
∂α

. (3.454)

For vanishing α or β, the commutator reduces to the unit element. For
α = β = 0 we then have, for i = 1, 2, . . . , n,

U(c) = 1, (3.455)
∂xi

∂α
=

∂xi

∂β
= 0, (3.456)

∂2xi

∂α∂β
= a1,2

i , (3.457)

∂U(c)
∂xi

= Pi, (3.458)

∂U(s)
∂α

= P1, (3.459)

∂U(t)
∂β

= P2, (3.460)

U(s) = U(t) = 1; (3.461)
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the superscripts 1 and 2 in Eq. (3.457) denote the first coordinate of
s and the second one of t, respectively, the other coordinates all being
zero; similar formulas hold for every pair r, s of coordinates and the ar,s

i
are manifestly antisymmetric in the upper indices. The formula (3.454)
then reads

P1 P2 =
∑

i

a1,2
i Pi + P2 P1, (3.462)

that is,
P1 P2 − P2 P1 =

∑

i

a1,2
i Pi, (3.463)

or, more generally,

Pr Ps − Ps Pr =
∑

i

ar,s
i Pi, (3.464)

which are the so-called exchange relations

15. EMPIRICAL RELATIONS FOR A
TWO-ELECTRON ATOM

Let us consider a two-electron atom with charge Z in its ground state.
We denote by a = <1/r1 >=<1/r2 > the mean value of the inverse of
the distance of each electron from the nucleus, and with b =< 1/r12 >
the mean value of the inverse of the distance between the two electrons.
Expressing the distances in electronic units and the energy in Ry, we
have

E = −2 aZ + b, (3.465)

since the energy is equal to half the mean value of the potential energy.
If we now consider an atom with atomic number Z + dZ, perturbation
theory gives

dE = − 4 a dZ, (3.466)

and thus we have two equations in the three unknown Z functions E, a, b.
We now add another empirical relation between a and b, which is pre-
sumably a good approximation:

b = (2Z − 2a) (2a − Z). (3.467)

This relation can be deduced from the following considerations. For
sufficiently high values of Z, perturbation theory gives

E = −2Z2 +
5
4

Z + . . . ; (3.468)
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but, on the other hand,

b =
5
8

Z + . . . , (3.469)

so that, from Eq. (3.465),

a = Z − 5
16

+ . . . , (3.470)

which, in first approximation, satisfies Eq. (3.467). For very small values
of Z we can consider that the first electron is next to the nucleus, while
the other one is practically at an infinite distance; then we have a ' Z/2,
b ' 0, and Eq. (3.467) is again satisfied. We finally assume that it is
also a good approximation for intermediate values of Z.

Substituting Eq. (3.467) in Eq. (3.465), we find

E = −2 aZ + (2Z − 2a) (2a − Z)
= − 2Z2 + 4 aZ − 4 a2. (3.471)

On differentiating this relation, we get

dE = − 4Z dZ + 4 a dZ + 4Z da − 8 ada; (3.472)

and, comparing this with Eq. (3.466), we find

dZ = da, (3.473)

from which, since we know the value of a for infinite Z, we deduce

a = Z − 5
16

. (3.474)

Substitution of this in (3.471), yields

E = −2Z2 +
5
4

Z − 25
64

. (3.475)

This formula can be used only for Z ≥ 5/8, since for Z = 5/8 we have
b = 0. For the helium atom (Z = 2), we find E = −5.89, against
the experimental value of 5.807, with an error in excess of 1.13V for the
ionization potential (25.59V instead of 24.46V). For the hydrogen atom
(Z = 1) we find instead E = −1.141, from which the ionization potential
would be 1.91 (electron affinity). 15 The procedure used here is not very

15@ Note that the actual experimental values of the ionization potential for the hydrogen
atom, the (neutral) helium atom, and the once ionized helium atom are 13.5984 V, 24.5874 V,
and 54.4178 V, respectively, corresponding to ionization energies of 0.9995, 1.8072, and 3.9998
(measured in Ry, as used in the text), respectively. The electron affinity of the hydrogen (i.e.,
the difference between the ground state energies of the neutral atom and the once-ionized
atom) is 0.7542 eV.
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satisfactory, since for very small Z the quantity b would vanish faster
than a first-order term and it would become negative.

Instead of Eq. (3.467), let us now choose the approximation

b =
5
8

√
k2 + Z2 − 5

8
k, (3.476)

where k has to be determined. Substituting in (3.465), we obtain

E = −2 aZ +
5
8

√
k2 + Z2 − 5

8
k; (3.477)

and, on differentiating,

dE = −2 a dZ − 2Z da +
5Z dZ

8
√

k2 + Z2
. (3.478)

Compare this with Eq. (3.466):

− 4 a dZ = −2 adZ − 2Z da +
5Z dZ

8
√

k2 + Z2
,

2Z da = 2 a dZ +
5Z dZ

8
√

k2 + Z2
,

da

dZ
=

a

Z
+

5
16
√

k2 + Z2
, (3.479)

from which, noting that for Z → ∞ the quantity a/Z tends to 1, we
infer that

a = Z

(
1 +

∫ ∞

0

5 dZ

16Z
√

k2 + Z2

)
. (3.480)

In this formula a becomes negative for sufficiently small values of Z;
in order to eliminate this drawback, it is necessary that, for small Z, b
vanishes as a term of order greater than 2.

Instead of (3.476), let us therefore choose

b =
5
8

Z e−k/Z , (3.481)

so that Eq. (3.465) becomes

E = −2 aZ +
5
8

Z e−k/Z . (3.482)

Differentiation gives

dE = −2 adZ − 2Z da +
5
8

e−k/Z dZ +
5k

8Z
e−k/ZdZ; (3.483)
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comparing this with Eq. (3.466)

da

dZ
=

a

Z
+

5
16Z

e−k/Z +
5k

16 Z2
e−k/Z , (3.484)

we get

a = Z

(
1 +

∫ ∞

0

5Z + 5k

16 Z3
e−k/Z dZ

)
. (3.485)

Since for small Z we must have a ' Z/2, we can choose k such that
∫ ∞

0

5Z + 5k

16Z3
e−k/Z dZ =

1
2
, (3.486)

i.e., k = 5/4. However, in this way we obtain a bad approximation.
Indeed, we would have

a =
Z

2
+

(
Z

2
+

5
16

)
e−1.25/Z , (3.487)

b =
5
8

Z e−1.25/Z , (3.488)

E = −Z2 − Z2 e−1.25/Z , (3.489)

and for helium (Z = 2) we would get E = −5.14, which is a value far
from the experimental one.

Let us set
b =

5
8

(
3
√

k3 + Z3 − k
)

. (3.490)

Equation (3.465) now becomes

E = − 2 aZ +
5
8

3
√

k3 + Z3 − 5
8

k, (3.491)

and thus

dE = − 2 adZ − 2Z da − 5Z2dZ

8 (k3 + Z3)2/3
. (3.492)

On comparing with Eq. (3.466), we get

da

dZ
=

a

Z
+

5Z

16 (k3 + Z3)2/3
, (3.493)

from which we deduce

a = Z

(
1 +

∫ ∞

0

5 dZ

16 (k3 + Z3)2/3

)
, (3.494)

where the constant k can be determined in a way similar to that leading
to Eq. (3.486). However, we note that relations analogous to Eq. (3.490)
are arbitrary, and there is no a priori reason to prefer one or the other.
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16. THE GROUP OF ROTATIONS O(3) 16

Let us consider a point on a unit sphere with coordinates (x, y, z) and
its image on the equatorial plane z = 0 through the south pole, whose
coordinates are (0, 0,−1). The coordinates (x, y, z) are related to those
of the image point (x′, y′, z′) by the equations

x =
2x′

1 + x′2 + y′2
, y =

2y′

1 + x′2 + y′2
, z =

1− x′2 − y′2

1 + x′2 + y′2
. (3.495)

On setting
x′ + i y′ = η/ξ, (3.496)

relations (3.495) transform into

x + i y =
2 ηξ∗

ξξ∗ + ηη∗
, x − i y =

2 η∗ξ
ξξ∗ + ηη∗

, z =
ξξ∗ − ηη∗

ξξ∗ + ηη∗
.

(3.497)
Let us now consider a unitary transformation (with determinant equal
to 1) of the group SU(2) acting on ξ and η; the transformed variables
are given by

ξ1 = x ξ + i λ ξ − µ η + i ν η,

η1 = µ ξ + i ν ξ + x η − i λ η

(with x2 + λ2 + µ2 + ν2). As a consequence, the point (x, y, z) is trans-
formed into the point with coordinates (x1, y1, z1):

x1 + iy1 = 2
(xµ + λν + ixν − iλµ)(ξξ∗ − ηη∗)

ξξ∗ + ηη∗

+2
(x2 − λ2 − 2ixλ)ηξ∗ + (−µ2 + ν2 − 2iµν)ξη∗

ξξ∗ + ηη∗
,

x1 − iy1 = 2
(xµ + λν − ixν + iλµ)(ξξ∗ − ηη∗)

ξξ∗ + ηη∗

+2
(x2 − λ2 + 2ixλ)ηξ∗ + (−µ2 + ν2 + 2iµν)ξη∗

ξξ∗ + ηη∗
,

z1 =
(x2 + λ2 − µ2 − ν2)(ξξ∗ − ηη∗)

ξξ∗ + ηη∗

+2
(−xµ + λν + ixν + iλµ)ηξ∗ + (−xµ + λν − ixν − iλµ)ξη∗

ξξ∗ + ηη∗
,

16@ In the original manuscript, this group is denoted by δ3; however, here we use the modern
notation O(3). Note also that sometimes the author uses the same notation for a group and
for its restriction to transformations with determinant equal to 1 (which, in modern notations,
is denoted with an S preceding the name of the group; for example O(3) and SO(3)).
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that is,

x1 + iy1 = 2 (xµ + λν + ixν − iλµ) z

+(x2 − λ2 − 2ixλ)(x + iy) + (−µ2 + ν2 − 2iµν)(x− iy),
x1 − iy1 = 2 (xµ + λν − ixν + iλµ) z

+(x2 − λ2 + 2ixλ)(x− iy) + (−µ2 + ν2 + 2iµν)(x + iy),
z1 = (x2 + λ2 − µ2 − ν2) z + 2 (−xµ + λν + ixν + iλµ)(x + iy)

+ (−xµ + λν − ixν − iλµ)(x− iy),

or

x1 = (x2 − λ2 − µ2 + ν2)x + 2(xλ− µν)y + 2(xµ + λν)z,

y1 = −2(xλ + µν)x + (x2 − λ2 + µ2 − ν2)y + 2(xν − λµ)z,

z1 = 2(−xµ + λν)x + 2(−xν − λµ)y + (x2 + λ2 − µ2 − ν2)z.

(3.498)

This represents a rotation (the most general one) in three-dimensional
space; for each rotation we can choose the constants x, λ, µ, ν in two
ways, related by a sign change in the components of the quaternion.
Note that Eqs. (3.498) correspond to the representation D1 of the group
SU(2). By inverting these relations (and losing, however, the unique-
ness), we can consider Dj as representations of O(3); the ones with
non-integer j are twofold, while the ones with integer j are unique, since
in these representations two equal and opposite quaternions correspond
to the same transformation. In the representations Dj with non-integer
j (for example D1/2), derived from the inversion of (3.498), to each ro-
tation in the three-dimensional space there correspond two equal and
opposite matrices.

An infinitesimal rotation (through an angle ε) about the z axis corre-
sponds to the quaternion

(
1,−1

2
ε, 0, 0

)

(out of two possible ones, we have chosen the quaternion nearest to
unity). Analogously, an infinitesimal rotation about the x axis corre-
sponds to the quaternion

(
1, 0, 0,−1

2
ε

)
,

while an infinitesimal rotation about the y-axis corresponds to the quater-
nion (

1, 0,
1
2
ε, 0

)
.
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It then follows that the infinitesimal rotations along the x,y,z axes can
be expressed through the fundamental infinitesimal transformations P1,
P2, and P3 by the simple relations:

Rz = − 1
2

P1, Rx = − 1
2

P3, Ry =
1
2

P2, (3.499)

and this holds for an arbitrary representation of U(2), as long as it is
considered as a (unique or twofold) representation of O(3). From Eqs.
(3.439), the exchange relations

RxRy −RyRx = Rz,

RyRz −RzRy = Rx, (3.500)
RzRx −RxRz = Ry

then follow. Moreover, from Eqs. (3.443) we deduce the following ex-
pressions for the matrices Rx, Ry, Rz in the Dj representations (changing
the sign of m and n, i.e., setting m = j − r) :

(
Rz

i

)

m,n
= m δm,n,

(
Rx

i

)

m,n
= − i

2

√
j(j + 1)−mn (δm+1,n + δm−1,n) , (3.501)

(
Ry

i

)

m,n
=

i

2

√
j(j + 1)−mn (δm+1,n − iδm−1,n) .

We then have the following matrices:

• j = 0

Rz

i
= 0,

Rx

i
= 0,

Ry

i
= 0.

• j = 1
2

Rz

i
=

(
1
2 0
0 −1

2

)
,

Rx

i
=

(
0 −1

2
1
2 0

)
,

Ry

i
=

(
0 − i

2
i
2 0

)
.

• j = 1

Rz

i
=




1 0 0
0 0 0
0 0 −1


 ,

Rx

i
=




0 −
√

2
2 0

−
√

2
2 0 −

√
2

2

0 −
√

2
2 0


 ,
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Ry

i
=




0 −i
√

2
2 0

i
√

2
2 0 −i

√
2

2

0 i
√

2
2 0


 .

• j = 3
2

Rz

i
=




3
2 0 0 0
0 1

2 0 0
0 0 −1

2 0
0 0 0 −3

2


 ,

Rx

i
=




0 −
√

3
2 0 0

−
√

3
2 0 −1 0

0 −1 0 −
√

3
2

0 0 −
√

3
2 0




,

Ry

i
=




0 −i
√

3
2 0 0

i
√

3
2 0 −i 0
0 i 0 −i

√
3

2

0 0 i
√

3
2 0




.

• j = 2

Rz

i
=




2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2




,
Rx

i
=




0 −1 0 0 0
−1 0 −

√
6

2 0 0
0 −

√
6

2 0 −
√

6
2 0

0 0 −
√

6
2 0 −1

0 0 0 −1 0




,

Ry

i
=




0 −i 0 0 0
i 0 −i

√
6

2 0 0
0 i

√
6

2 0 −i
√

6
2 0

0 0 i
√

6
2 0 −i

0 0 0 i 0




.

• j = 5
2

Rz

i
=




5
2 0 0 0 0 0
0 3

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 −1

2 0 0
0 0 0 0 −3

2 0
0 0 0 0 0 −5

2




,
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Rx

i
=




0 −
√

5
2 0 0 0 0

−
√

5
2 0 −√2 0 0 0

0 −√2 0 −3
2 0 0

0 0 −3
2 0 −√2 0

0 0 0 −√2 0 −
√

5
2

0 0 0 0 −
√

5
2 0




,

Ry

i
=




0 −i
√

5
2 0 0 0 0

i
√

5
2 0 −i

√
2 0 0 0

0 i
√

2 0 −i3
2 0 0

0 0 i3
2 0 −i

√
2 0

0 0 0 i
√

2 0 −i
√

5
2

0 0 0 0 i
√

5
2 0




.

• j = 3

Rz

i
=




3 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −2 0
0 0 0 0 0 0 −3




,

Rx

i
=




0 −
√

6
2 0 0 0 0 0

−
√

6
2 0 −

√
10
2 0 0 0 0

0 −
√

10
2 0 −√3 0 0 0

0 0 −√3 0 −√3 0 0
0 0 0 −√3 0 −

√
10
2 0

0 0 0 0 −
√

10
2 0 −

√
6

2

0 0 0 0 0 −
√

6
2 0




,

Ry

i
=




0 −i
√

6
2 0 0 0 0 0

i
√

6
2 0 −i

√
10
2 0 0 0 0

0 i
√

10
2 0 −i

√
3 0 0 0

0 0 i
√

3 0 −i
√

3 0 0
0 0 0 i

√
3 0 −i

√
10
2 0

0 0 0 0 i
√

10
2 0 −i

√
6

2

0 0 0 0 0 i
√

6
2 0




.
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17. THE LORENTZ GROUP

This group is composed of the orthogonal transformations of the vari-
ables

ct,
x

i
,

y

i
,

z

i
.

Restricting our study to the orthogonal transformations with determi-
nant equal to 1 (excluding, then, those with determinant equal to −1),
we have the proper group of (real or complex) rotations SO(4) in a
four-dimensional space.

Let us consider the variables x1, x2, x3, x4 in a four-dimensional space
and let ξ1, ξ2, ξ3, ξ4 be the variables of the dual space, which transform
in the contragradient way. Thus, if the x variables linearly transform
into the variables x′1, x′2, x′3, x′4, the variables ξ transform in such a way
that the following relation must hold:

x1 ξ1 + x2 ξ2 + x3 ξ3 + x4 ξ4 = x′1 ξ′1 + x′2 ξ′2 + x′3 ξ′3 + x′4 ξ′4. (3.502)

If
x′i =

∑

k

aik xk, (3.503)

by substituting in Eq. (3.502), we get
∑

i

xi ξi =
∑

i,k

aik ξ′i xk =
∑

k

xk

∑

i

aik ξ′i. (3.504)

Since this relation must hold for arbitrary values of the x and ξ variables,
we conclude

ξk =
∑

i

aik ξ′i, (3.505)

which expresses the contragradient variation law for the ξ variables. A
transformation acting only on some of the x variables, say x1 and x2,
will act in the dual space only on the corresponding ξ variables (in the
present case, ξ1 and ξ2) and vice-versa. This directly follows from Eqs.
(3.503) and (3.505).

Consider a transformation σ12 belonging to the group SL(2, C) 17 of
the homogenous linear transformations in two variables with determi-
nant equal to 1 that acts on the variables x1 and x2. Let also a trans-
formation σ34 of the same group act on the variables x3 and x4. The
transformations

σ = (σ12, σ34) , (3.506)

17@In the original manuscript, this group is denoted by c2; however, here we use the modern
notation SL(2, C).
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acting on the 4 variables x1, x2, x3, x4, constitute a representation of
the abstract group (SL(2, C))2 whose elements are pairs (σ, τ) of the
elements of SL(2, C) and satisfy the composition rule

(σ, τ)
(
σ′, τ ′

)
=

(
σ σ′, τ τ ′

)
. (3.507)

Let us consider the expressions

z1 = x1 ξ3, z2 = x2 ξ3, z3 = x1 ξ4, z4 = x2 ξ4, (3.508)

which reduce the quadratic form

z1 z4 − z2 z3 (3.509)

to zero. Under a transformation σ, the x and ξ variables transform as
follows:

x′1 = αx1 + βx2, x′2 = γx1 + δx2,
x′3 = α1x3 + β1x4, x′4 = γ1x3 + δ1x4,

(3.510)

with αδ − βγ = α1δ1 − β1γ1 = 1, and

ξ′1 = δξ1 − γξ2, ξ′2 = −βξ1 + αξ2,
ξ′3 = δ1ξ3 − γ1ξ4, ξ′4 = −β1ξ3 + α1ξ4.

(3.511)

On substituting in Eqs. (3.508), we get

z′1 = αδ1z1 + βδ1z2 + αγ1z3 − βγ1z4,
z′2 = γδ1z1 + δδ1z2 − γγ1z3 − δγ1z4,
z′3 = −αβ1z1 − ββ1z2 + αα1z3 + βα1z4,
z′4 = −γβ1z1 − δβ1z2 + γα1z3 + δα1z4,

(3.512)

from which we deduce

z′1 z′4 − z′2 z′3 = z1 z4 − z2 z3, (3.513)

i.e., the quadratic form (3.509) is invariant under the transformation
(3.512). The matrix of the transformation (3.512) comes from the (com-
muting) product of matrices:




α β 0 0
γ δ 0 0
0 0 α β
0 0 γ δ


 ·




δ1 0 −γ1 0
0 δ1 0 −γ1

−β1 0 α1 0
0 −β1 0 α1


 , (3.514)

and its determinant is equal to 1, so that Eqs. (3.512) constitute a
representation of (SL(2, C))2.
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Every homogeneous transformation, with determinant equal to 1, that
preserves the quadratic form (3.509) can be cast in the form (3.512) in
two ways (the sign of the 8 constants α, β, γ, δ, α1, β1, γ1, δ1 is arbitrary).
The quantities

z′1 = x4 ξ2, z′2 = −x4 ξ1, z′3 = −x3 ξ2, z′4 = x3 ξ1 (3.515)

transform as zi since, from the unimodularity of σ12 and σ34, the vari-
ables x1 and x2 transform as ξ2 and −ξ1, while ξ3 and ξ4 transform as x4

and −x3. Moreover, each linear combination of the vectors z and z′ will
transform in the same way; in particular this holds for the combination
with components

z′′1 = z1 + z′1, z′′2 = z2 + z′2, z′′3 = z3 + z′3, z′′4 = z4 + z′4.
(3.516)

Let us introduce the quantities ct, x/i, y/i, z/i and consider their trans-
formation law as defined by

ct ∼ z1 + z4 ∼ z′′1 + z′′4 ,
x/i ∼ (z2 + z3)/i ∼ (z′′2 + z′′3 )/i,
y/i ∼ z3 − z2 ∼ z′′3 − z′′2 ,
z/i ∼ (z1 − z4)/i ∼ (z′′1 − z′′4 )/i.

(3.517)

Then, we have

c2t2 − x2 − y2 − z2 ∼ 4
(
z′′1 z′′4 − z′′2 z′′3

)
; (3.518)

and since the r.h.s. is invariant, it follows that the transformation σ
represents a Lorentz transformation of the space time variables x, y, z, t.
Relations (3.517) can be written as

ct ∼ ξ1x3 + ξ2x4 + ξ3x1 + ξ4x2,
x/i ∼ iξ1x4 + iξ2x3 − iξ3x2 − iξ4x1,
y/i ∼ ξ1x4 − ξ2x3 − ξ3x2 + ξ4x1,
z/i ∼ iξ1x3 − iξ2x4 − iξ3x1 + iξ4x2,

(3.519)

and the expressions on the right are of the form∑

ik

γα
ik ξi xk, α = 1, 2, 3, 4. (3.520)

The matrices γα
ik are Hermitian and satisfy the relation

1
2

(γα γβ + γβ γα) = δαβ. (3.521)

Furthermore, if σ is a matrix defined by Eqs. (3.512), the transformed
matrices σ−1γασ corresponding to ct′, x′/i, y′/i, z′/i are linear combi-
nations of those corresponding to ct, x/i, y/i, z/i; see the next section.
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18. DIRAC MATRICES AND THE LORENTZ
GROUP

In an n-dimensional space, we have to construct the p Hermitian oper-
ators

α1, α2, . . . , αp (3.522)

obeying the relations

αiαk + αkαi

2
= δik. (3.523)

For arbitrary n and p, the problem might have no solutions or have
only one fundamental solution (i.e., to which all the other possible sets
of matrices α1, α2, . . . , αp; α′1, α′2, . . . , α′p; . . . are related by means of a
unitary transformation) or, even, have several different solutions that
cannot be related by unitary transformations.

Let us consider the case p = 1. The only condition to be satisfied
then is

α2
1 = 1, (3.524)

so that all the eigenvalues of α1 are either 1 or −1. Thus, the space Rn

is divided into the sum of two subspaces R′
r + R′′

n−r; the first one being
r-dimensional (0 ≤ r ≤ n), corresponds to the positive eigenvalue +1
(which is degenerate r − 1 times), while the second one corresponds to
the negative eigenvalue −1 (which is n− r − 1 times degenerate). If we
assume that the first r fundamental vectors are r arbitrary unitary and
orthogonal vectors of R′

r and that the last n − r fundamental vectors
are n− r arbitrary unitary and orthogonal vectors of R′′

n−r, then the α1

matrix is diagonal, with the first r diagonal elements equal to 1 and the
last n − r ones equal to −1. Allowing r to assume values from n to 0,
we then obtain the n + 1 fundamental solutions to the problem in the
special case considered here.

Let us consider the case p = 2. The conditions to be satisfied now are

α2
1 = 1, α2

2 = 1, α1α2 + α2α1 = 0. (3.525)

Let R′
r be the subspace corresponding to the eigenvalue +1 of α1, and

R′′
n−r that corresponding to the eigenvalue −1. With a denoting a vector

of R′
r; from the last equation of (3.525) we then have

(α1α2 + α2α1) a = 0, (3.526)

or
(α1 + 1) α2 a = 0. (3.527)
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It follows that α2a belongs to R′′
n−r, and since the determinant of α2 is

different from zero,
n − r ≥ r (3.528)

obtains. Now, let b be a vector of R′′
n−r; from the last equation of (3.525),

we get (α1 − 1) α2b = 0, i.e., α2b belongs to R′
r and then r ≥ n− r. By

combining this relation with Eq. (3.528) we get

r = n/2. (3.529)

It follows that in the case p = 2 solutions exist only if n is even. As-
suming n = 2r with integer r, we can choose r arbitrary unitary and
orthogonal vectors of R′

r as the first r fundamental vectors. On the other
hand, the last r fundamental vectors can be chosen to be the transformed
vectors 18 with α2 ≤ 1, α2 ≤ 2, . . ., α2 ≤ r. These obviously are orthog-
onal to the first r fundamental vectors because they belong to R′′

r (which
is orthogonal to R′

r), but they are also unitary and mutually orthogonal
since α2 is Hermitian and coincides with its inverse. The matrices α1

and α2 then, have the forms

α1 =







1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1







0 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0







0 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0







−1 0 ... 0
0 −1 ... 0
... ... ... ...
0 0 ... −1







,

α2 =







0 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0







1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1







1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1







0 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0







.

(3.530)

Thus, for p = 2 and even n, the problem has only one fundamental
solution, while for odd n there is no solution at all.

18@ That is, the vectors α2a.
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Let us now consider the case p > 2. We have the p matrices

α1, α2, α3, . . . , αp. (3.531)

As above, we choose the first r = n/2 fundamental vectors in the space
R′

r corresponding to the positive eigenvalue +1 and the last n−r vectors
in the space R′′

r obtained by applying the matrix α2 to the first ones. The
only difference with the previous case is that we don’t choose arbitrarily
the first r fundamental vectors in the space R′

r, but we choose them from
a specific representation of α3, α4, . . . , αp. To this end, we set

α2α3 = iβ1, α3 = iα2β1,
α2α4 = iβ2, α4 = iα2β2

· · · ,
α2αp = iβp−2, αp = iα2βp−2.

(3.532)

The operators β1, β2, . . . , βp−2 transform vectors of R′
r into vectors of

R′
r, and vectors of R′′

r into vectors of R′′
r . Then, given

αi+2 =
(

0 iγi

iδi 0

)
, (3.533)

their matrix form is seen to have the structure

βi =
(

δi 0
0 γi

)
, i = 1, 2, . . . , p− 2, (3.534)

where γi and δi are matrices of dimension n/2. Moreover, from

αi+2αk+2 + αk+2αi+2

2
= δik (3.535)

we deduce, with the help of Eqs. (3.532), that

1
2

(α2βiα2βk + α2βkα2βi) = − δik; (3.536)

and, since

iβ1α2 = α2αi+2α2 = α2 (αi+2α2)
= −α2 (α2αi+2) = −αi+2 = −i α2 βi,

it follows that

βiα2 = −α2βi, βkα2 = −α2βk. (3.537)

Thus, the relation (3.536) becomes

− α2βiα2βk + α2βkα2βi = −α2 (βiα2)βk + α2 (βkα2) βi

= α2 (α2βi) βk + α2 (α2βk) βi = β1βk + βkβi = 2 δik, (3.538)
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so that the matrices β satisfy relations analogous to Eqs. (3.523). How-
ever, we still have not used some of the relations in Eq. (3.523); in
particular, we have not used the relations involving the matrices α2 and
αi+2 (i + 1, 2, . . . , p − 2) or, from Eqs. (3.532), relation (3.537) from
which relations (3.538) derive their validity. Now, given the form in
Eq. (3.530) for α2, Eq. (3.537) implies that the sub-matrices γi, δi of
dimensions n/2 satisfy the relation

γi = − δi, (3.539)

so that Eq. (3.538) is satisfied when

γi γk + γk γi = 2 δik, i, k = 1, 2, . . . , p− 2. (3.540)

Note that, by assuming the matrices γi to be Hermitian, the matrices
αi+2 are automatically Hermitian; thus, our problem is fully analogous
to the one with n′ = n/2 and p′ = p − 2. If again p′ > 2, we revert to
one of the cases studied earlier: if n is odd, we have n + 1 fundamental
solutions when p = 1, otherwise there is no solution.If instead p′ ≤ 2, we
return to one of the two cases studied early in this section.

We have solved the problem and obtained a procedure by which we
can construct all the possible fundamental solutions.

Let us set p in the form p = 2k or p = 2k + 1; the problem has
solutions only if n can be divided by 2k; more precisely, there is only
one solution if p is even, while there are (n/2k) + 1 solutions if p is odd.
As particular cases we have the solutions for p = 1 and p = 2 discussed
above.

We can also consider the special case in which p takes the maximum
allowed value for fixed n. Decomposing n in first factors and denoting
with t the exponent of the number 2 in such decomposition, we have
pmax = 2t+1 and the number of fundamental solutions is (n/2t)+1 ≥ 2,
where the equal sign applies only when n is an integer power of 2.

Non-Hermitian operators. Let us now relax the assumption that the
α1, α2, . . . , αp are Hermitian operators. In this case, all the solutions that
are related via an arbitrary coordinate transformation can be regarded
as the same fundamental solution. This means that, if αi is a solution,
then α′i = SαiS

−1 is also a solution if S is an arbitrary operator with
determinant different from zero. For the representation of αi we choose
a non-normal coordinate system and proceed exactly as in the previous
case, replacing the orthonormality condition with the condition of lin-
ear independence of the fundamental vectors. Thus we arrive exactly
at the same Hermitian matrices obtained above but, since the coordi-
nate system is non-normal, in general they will not represent Hermitian
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operators. Going back to normal coordinates, the matrices represent-
ing the Hermitian operators can be obtained from the fundamental ones
by means of a unitary transformation, while the matrices representing
non-Hermitian operators can be obtained from the same fundamental
matrices by means of a non-unitary transformation; in general, these
matrices will be non-Hermitian.

Examples. Let us now give some examples of fundamental matrices,
when n = 2t and p = 2t + 1 takes their maximum allowed values. We
always have two fundamental solutions which differ only in the sign of
the last matrix.

• n = 1, p = 1

αi = ± 1

• n = 2, p = 3

α1 =
(

1 0
0 −1

)
, α2 =

(
0 1
1 0

)
, α3 =

(
0 i
−i 0

)
.

• n = 4, p = 5

α1 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 , α2 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ,

α3 =




0 0 i 0
0 0 0 −1
−i 0 0 0
0 i 0 0


 , α4 =




0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0


 ,

α5 =




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


 .
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• n = 8, p = 7

α1 =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1




,

α2 =




0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0




,

α3 =




0 0 0 0 i 0 0 0
0 0 0 0 0 i 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 −i
−i 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 0 0 i 0 0 0 0




,

α4 =




0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 i
0 0 0 0 i 0 0 0
0 0 0 0 0 i 0 0
0 0 −i 0 0 0 0 0
0 0 0 −i 0 0 0 0
−i 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0




,
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α5 =




0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0




,

α6 =




0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0




,

α7 =




0 0 0 0 0 0 0 −i
0 0 0 0 0 0 i 0
0 0 0 0 0 i 0 0
0 0 0 0 −i 0 0 0
0 0 0 i 0 0 0 0
0 0 −i 0 0 0 0 0
0 −i 0 0 0 0 0 0
i 0 0 0 0 0 0 0




.

Interpretation according to group theory. Let us consider the
operators

α1, α2, . . . , αp, (3.541)

obeying the usual relations

αiαk + αkαi = 2 δik, (3.542)

and the compound operators obtained by multiplying an arbitrary set
of αs in arbitrary order. From the relations (3.542) it follows that they
can always be cast in the form

g : ±αε1
1 αε2

2 . . . αεp
p , (3.543)

and that they form a finite group. In the expression above, εi take
the values 0 and 1. Operators (3.543) can be viewed as elements of
a group containing 2p+1 elements. In order to have a representation
of this group, it is sufficient to find p matrices that obey Eq. (3.542);
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they correspond to p fundamental elements of the group (3.543), which
are the operators α themselves and that can be obtained from group
(3.543) by taking the + sign and setting all the ε but one equal to
zero. All the other elements of the group can be obtained by taking
the product of these fundamental matrices. The problem of finding p
matrices obeying relations (3.542) has already been solved for all the
values of n, so that it can be solved in any possible way for a given n.
We then have a corresponding number of representations for the group
g. However, these are not all the possible representations. In fact, the
composition rule for the elements of the group has been derived from Eq.
(3.542), even though these cannot really be derived from the composition
rule, except when opposite matrices correspond to elements of the group
marked with the same ε but with opposite sign. Consider, in particular,
irreducible representations. The element

−α0
1 α0

2 . . . α0
p (3.544)

commutes with all the elements of the group; and, since its square is the
identity, in the irreducible representations it will correspond to the unit
matrix or to its opposite. Note that only in this second case the fun-
damental matrices satisfy the relations (3.542), and this happens for an
arbitrary representation only when it can be decomposed into irreducible
representations corresponding to the second case. Irreducible represen-
tations corresponding to the first case are, necessarily, one-dimensional
ones since they are shortened representations of g, i.e., representations
of the Abelian group g′ that can be obtained from Eq. (3.543) by iden-
tifying with a unique element the ones with opposite signs. Group g is
composed of equivalent elements with respect to the invariant subgroup
formed with the unit element and the element in Eq. (3.544). Since the
group g′ contains 2p elements, the one-dimensional irreducible represen-
tations, corresponding to the first case, are exactly 2p. The irreducible
elements obviously are

ηε1
1 ηε2

2 . . . ηεp
p . (3.545)

Furthermore, let us assume that there exist s irreducible representations
corresponding to the second case. For the “completeness” theorem we
must have

n2
1 + n2

2 + . . . + n2
s = 2p+1 − 2p = 2p. (3.546)

Let us suppose that ni are ordered in a non-decreasing way; in this case
n1 is the smallest value of n for which it is possible to find p matrices
obeying Eq. (3.542). If p = 2k is even, we know that such minimum
value is n = 2k = 2p/2; then it follows from Eq. (3.546) that only one
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irreducible representation corresponding to the second case exists, with

n = 2p/2 = 2k, p = 2k. (3.547)

Instead, if p = 2k + 1 is odd, we again have n1 = 2k, but a second irre-
ducible representation of the same dimension must exist. Then, for odd
p, we have two irreducible representations corresponding to the second
case with

n1 = n2 = 2
p−1
2 = 2k, p = 2k + 1. (3.548)

Since a representation in which relations (3.542) are satisfied can be
decomposed in irreducible representations corresponding to the second
case, it is now easy to understand the theorem (see the paragraph Non-
Hermitian operators), i.e., the problem of finding p matrices of dimen-
sion n obeying Eq. (3.542) can be solved only if n can be divided by
2k. Moreover, we also understand that such solution is unique (apart
from transformations) if p is even, since in this case the possible decom-
position into irreducible matrices is unique. If p is odd, then there are
n/2k +1 fundamental solutions, since in the decomposition of the repre-
sentation of dimension n into irreducible representations of the second
kind, with the last one having the same dimension 2k, one of them can
fit an integer number of times between 0 and n/2k.
When n is a multiple of 2k, we can adapt the coordinates to the de-
composition into irreducible representations; we then obtain for the α
matrices a form which is simpler than the one obtained in the direct
way, since they are formed of partial matrices of dimension 2k which,
with a convenient choice of the coordinates, can be deduced from the
ones already considered for the case n = 2k. 19

19. THE SPINNING ELECTRON

Let us consider the Dirac equations in the form

Hψ ≡
[
α1

i

(
mc +

W

c
+

e

c
φ

)
+ α2

(
px +

e

c
Ax

)

+α3

(
py +

e

c
Ay

)
+ α4

(
pz +

e

c
Az

)
+

mc

i

]
ψ = 0, (3.549)

19@ This section ends with: For the connection between the Dirac matrices and the Lorentz
group, see the section “Invariance of the Dirac equations.” However, in the five Volumetti
there is no section that deals with this subject.
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where the α matrices are the ones displayed in Sec. 3.18 with n = 4,
p = 5. Let H1 be the operator obtained from H by changing its last
term mc/i into −mc/i, and consider the quantity H1Hψ 20:

[
−

(
mc +

W

c
+

e

c
φ

)2

+
(

px +
e

c
Ax

)2

+
(

py +
e

c
Ay

)2

+
(

pz +
e

c
Az

)2

+ m2c2

+α1α2
eh̄

c
Ex + α1α3

eh̄

c
Ey + α1α4

eh̄

c
Ez

− eh̄

ci
α2α3Hz − eh̄

ci
α3α4Hx − eh̄

ci
α4α2Hy

]
ψ = 0. (3.550)

The first five terms give the relativistic Hamiltonian for an electron with-
out spin, while the others represent the corrections induced by spin.
By noting that the square of the matrices α1α2, α1α3, α1α4, α2α3,
α3α4, α4α2 is −1, so that their eigenvalues are ±i, and that the clas-
sical Hamiltonian, in first approximation, is H1H/2m, we deduce that
the electron has a magnetic moment eh̄/2mc and an imaginary electric
moment eh̄/2mci.

Let us consider the equivalent, but more convenient, expressions for
Eqs. (3.549):

[
−

(
mc +

W

c
+

e

c
φ

)
+ α1 mc + α2

(
px +

e

c
Ax

)

+α3

(
py +

e

c
Ay

)
+ +α4

(
pz +

e

c
Az

)]
ψ = 0, (3.551)

which can be cast in the form

Hψ ≡
[
(α1 − 1) mc2 − e

c
φ + α2 c

(
px +

e

c
Ax

)

+ α3 c

(
py +

e

c
Ay

)
+ α4 c

(
pz +

e

c
Az

)]
= W ψ. (3.552)

Let us assume that the magnetic field is constant, with intensity H, and
that it is directed along the z axis. We then have

Ax = − 1
2

y H, Ay =
1
2

xH, Az = 0, (3.553)

20@ In the original manuscript, the old notation h/2π is used, while we here denote the
same quantity with h̄. Note also that φ and A are the scalar and vector electromagnetic
potentials, respectively, while in the following E and H denote the electric and magnetic
fields, respectively.
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so that Eqs. (3.552) become

Hψ ≡
[
(α1 − 1) mc2 − e

c
φ + α2 c

(
px − e

2c
yH

)

+ α3 c

(
py +

e

2c
xH

)
+ α4 c pz

]
= W ψ. (3.554)

Let us denote with ψn the scalar solutions of the Schrödinger equation

− h̄2

2m
∇2 ψn − e φ ψn − Wn ψn = 0 (3.555)

and with
xnn′ , ynn′ , znn′ (3.556)

the polarization matrices. Then, Eqs. (3.554) have the explicit forms

−e φ ψ1 + c

(
px − e

2c
yH

)
ψ3 + c i

(
py +

e

2c
xH

)
ψ3

+ c i pz ψ4 = W ψ1, (3.557)

−e φ ψ2 + c

(
px − e

2c
yH

)
ψ4 − c i

(
py +

e

2c
xH

)
ψ4

+ c i pz ψ3 = W ψ2, (3.558)

−2mc2 ψ3 − e φ ψ3 + c

(
px − e

2c
yH

)
ψ1

− c i

(
py +

e

2c
xH

)
ψ1 − c i pz ψ2 = W ψ3, (3.559)

−2mc2 ψ4 − e φ ψ4 + c

(
px − e

2c
yH

)
ψ2

+ c i

(
py +

e

2c
xH

)
ψ2 − c i pz ψ1 = W ψ4. (3.560)

Here we neglect the solutions corresponding to the positive electron
(positron), i.e., in first approximation, the ones with large ψ3 and ψ4

and small ψ1 and ψ2. Thus, in first approximation, the Dirac equations
are solved by the double system of vector functions ψn1 and ψn2 whose
components are the following:

1st comp. 2nd comp. 3rd comp. 4th comp.

ψn1 ψn 0 (2mc)−1(px − ipy)ψn −(2mc)−1ipzψ
n

ψn2 0 ψn −(2mc)−1ipzψ
n (2mc)−1(px + ipy)ψn

(3.561)
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These functions are mutually orthogonal and, in first approximation,
normalized. To determine the eigenvalues in second approximation (i.e.,
when taking into account in first approximation relativistic, spin and
magnetic field effects), we substitute Eqs. (3.557)-(3.560) into Eq. (3.555).
For ψn1 and ψn2, we obtain, respectively:

(a) For ψn1 : (3.562)

−e φψ + c

(
px − e

2c
y H

)
ψ3 + c i

(
py +

e

2c
xH

)
ψ3

+ c i pz ψ4 − Wn ψ1 ≡ (δH ψ)1

=
eH

4mc
(x py − y px) ψn +

i eH

4mc
(x px + y py) ψn;

−e φψ2 + c

(
px − e

2c
yH

)
ψ4 − c i

(
py − e

2c
xH

)
ψ4

+ c i pz ψ3 − Wn ψ2 ≡ (δH ψ)2

= − eH

4mc
(x − i y) pz ψn,

−2mc2 ψ3 − e φ ψ3 + c

(
px − e

2c
yH

)
ψ1

− c i

(
py +

e

2c
xH

)
ψ1 − c i pz ψ2 − Wn ψ3 ≡ (δH ψ)3

= − 1
2mc

(Wn + e φ) (px − i py) ψn − ieH

2
(x − i y) ψn,

−2mc2 ψ4 − e φ ψ4 + c

(
px − e

2c
yH

)
ψ2

+ c i

(
py +

e

2c
xH

)
ψ2 − c i pz ψ1 − Wn ψ4 ≡ (δH ψ)4

=
i

2mc
(Wn + e φ) pz ψn.

(b) For ψn2 : (3.563)

−e φψ + c

(
px − e

2c
y H

)
ψ3 + c i

(
py +

e

2c
xH

)
ψ3

+ c i pz ψ4 − Wn ψ1 ≡ (δH ψ)1

=
eH

4mc
(x + i y) pz ψn,
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−e φ ψ2 + c

(
px − e

2c
yH

)
ψ4 − c i

(
py − e

2c
xH

)
ψ4

+ c i pz ψ3 − Wn ψ2 ≡ (δH ψ)2

=
eH

4mc
(x py − y px) ψn − i e H

4mc
(x px + y py) ψn,

−2mc2 ψ3 − e φ ψ3 + c

(
px − e

2c
yH

)
ψ1

− c i

(
py +

e

2c
xH

)
ψ1 − c i pz ψ2 − Wn ψ3 ≡ (δH ψ)3

= − i

2mc
(Wn + e φ) pz ψn,

−2mc2 ψ4 − e φ ψ4 + c

(
px − e

2c
yH

)
ψ2 + s

+ c i

(
py +

e

2c
xH

)
ψ2 − c i pz ψ1 − Wn ψ4 ≡ (δH ψ)4

= − 1
2mc

(Wn + e φ) (px + i py) ψn +
ieH

2
(x + i y) ψn.

Assume that Wn has degeneracy q and let

y1, y2, . . . , yq (3.564)

be the orthonormalized Schrödinger eigenfunctions associated with the
eigenvalue Wn. Note that, because of the spin, we instead have 2q vector
eigenfunctions with eigenvalue next to Wn. In first approximation, these
will be obtained as linear combinations of the 2q approximate eigen-
functions y11, y21, . . . , yq1, y12, y22, . . . , yq2 given by Eqs. (3.561), with
ψn replaced by y1, y2, . . . , yq, respectively. (We have set, generically,
yn1 = ψn1, yn2 = ψn2.) The corrections to the eigenvalues will then
be given, in first approximation, by the eigenvalues of the matrix δH.
We calculate this quantity in first approximation (a better knowledge is
illusory) by setting

δHri,sk =
4∑

γ=1

∫
yri∗

γ

(
δH ysk

)
γ
dτ (3.565)

(i, k = 1, 2 and r, s = 1, 2, . . . , q). Note that the approximation consists
in the fact that we use yr1 (or ysk) as given by Eq. (3.561), which are
normalized only in first approximation. We can divide the perturba-
tion matrix δHri,sk into the sum of two quantities, the first one being
independent of the magnetic field and the second one proportional to it:

δHri,sk = Ari,sk + H Bri,sk. (3.566)
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We start the discussion with a particular case; let us assume that
the magnetic field is zero and that Wn is a simple (non-degenerate)
eigenvalue of the Schrödinger equation. 21 Since q = 1, there are only
two basic functions, y11 and y12. Neglecting the indices r and s, which
are automatically equal to 1, and taking into account the expressions for
(δH y1)γ and (δH y2)γ (γ = 1, 2, 3, 4) in Eqs. (3.562) and (3.563), from
Eq. (3.565) we have

δH11 = − 1
4m2c2

[∫ (
p∗x + ip∗y

)
y1∗ · (Wn + eφ) (px − ipy) y1 dτ

+
∫

p∗z y1∗ · (Wn + eφ) pz y1 dτ

]

= − 1
4m2c2

[∫
y1∗ (px + ipy) (Wn + eφ) (px − ipy) y1 dτ

+
∫

y1∗ pz (Wn + eφ) pz y1 dτ

]

= − 1
4m2c2

∫
y1∗ (Wn + eφ)

(
p2

x + p2
y

)
y1 dτ

− 1
4m2c2

∫
− 4e

2πi
y1∗

(
∂φ

∂x
+ i

∂φ

∂y

)
(px − ipy) y1 dτ

− 1
4m2c2

∫
y1∗ (Wn + eφ) p2

z y1 dτ

− 1
4m2c2

∫
− 4e

2πi
y1∗ ∂φ

∂z
pz y1 dτ.

On setting V = −eφ and noting that, from the Schrödinger equation,
(
p2

x + p2
y + p2

z

)
y1 = 2m (Wn − V ) y1, (3.567)

we get

δH11 = − 1
2mc2

∫
y1∗ (Wn − V )2 y1 dτ

− h̄2

4m2c2

∫
y1∗ (∇V ∇ ) y1 dτ (3.568)

+
ih̄2

4m2c2

∫
y1∗

(
∂V

∂x

∂y1

∂y
− ∂V

∂y

∂y1

∂x

)
dτ. (3.569)

Using the assumption of no degeneracy, we obtain that y1 is real, so
that it coincides with y1∗; then the second integral in Eq. (3.568) can

21@ Note that the author considers degeneracy coming only from non-spinning properties; as
discussed below (see discussion leading to Eq. (3.574)), the spin makes all the energy levels
two-fold degenerate.
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be simplified via an integration by parts, while the third one vanishes,
so that we simply get

δH11 = − 1
2mc2

∫
(Wn − V )2 (y1)2 dτ +

h̄2

8m2c2

∫
(y1)2 ∇2 V dτ.

(3.570)
Obviously we understand that when V has a singularity like −k/r, in
an infinitesimal region ∆τ around the singularity P0 we find

∫

∆τ
(y1)2 ∇2 V dτ = 4π k (y1)2(P0).

The expression for δH22 can be obtained from Eq. (3.568) by changing
i into −i in the third term; but, since the third integral is zero, it then
coincides with the expression for δH11 in Eq. (3.570).

Now calculate δH12. We have

δH12 =
i

4m2c2

[∫ (
p∗x + ip∗y

)
y1∗ (Wn − V ) pz y1 dτ

−
∫

p∗z y1∗ (Wn − V ) (px + ipy) y1 dτ

]

=
i

4m2c2

[∫
y1∗ (px + ipy) (Wn − V ) pz y1 dτ

−
∫

y1∗ pz (Wn − V ) (px + ipy) y1 dτ

]

=
i h̄2

4m2c2

∫
y1∗

[(
∂V

∂x
+ i

∂V

∂y

)
∂y1

∂z

− ∂V

∂z

(
∂y1

∂x
+ i

∂y1

∂y

)]
dτ. (3.571)

δH21 can be obtained from δH12 by changing i into −i only in the
expression under the integral sign, so that we obviously get

δH21 = δH12. (3.572)

In the case considered, since y1 is real, we get δH12 = δH21 = 0. We
thus see that the eigenvalues of the perturbation matrix are all the same,
and we simply have

δWn = δH11 = δH22. (3.573)

Thus spin doesn’t break the degeneracy of the energy level; however,
the two degenerate levels are shifted by the magnetic field. Note that
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without a magnetic field all the energy levels are at least two-fold de-
generate, and this holds not only in first approximation but is an exact
property. Indeed from a solution of Eqs. (3.557)-(3.560) we can obtain
another solution by setting

ψ′1 = −ψ∗2, ψ′2 = ψ∗1, ψ′3 = ψ∗4, ψ′4 = −ψ∗3. (3.574)

Since δWn is equal to δH11, in absence of magnetic field and degeneracy,
its expression given by Eq. (3.570) is made up of two terms: the first
one represents the relativistic correction, while the second one gives the
correction coming from the spin.

As an example, let us calculate the corrections (in second approxima-
tion) to the energy of the ground state of an atom with atomic number
Z but with only one electron; we have

Wn = −Z2 R h = − me4Z2

2h̄2 , (3.575)

y1 = c e−Zr/a =
(
e3mZ/h̄3

)√
πmZ e−me2Zr/h̄2

, (3.576)

δWn = − 5
2

W 2
n

mc2
+ 2

W 2
n

mc2
= − 1

2
W 2

n

mc2
; (3.577)

the first term in the sum for δWn is the relativistic correction, while the
second one is the correction for the spin. Note that relativistic effects
are reduced by a factor 5 due to spin. We can deduce Eq. (3.577) from
the known fine-structure formula

W

mc2
=

[
1 +

α2Z2

(n− j − 1/2 +
√

(j + 1/2)2 − α2Z2)2

]−1/2

− 1, (3.578)

where n is the principal quantum number and α = e2/h̄c the fine struc-
ture constant. Expanding this formula up to second-order terms and
denoting with Wn = −R hZ2/n2 the Balmer term, we find

W = Wn −
(

2n

j + 1/2
− 3

2

)
W 2

n

mc2
. (3.579)

Since in the case under consideration we have n = 1, j = 1/2, Eq.
(3.577) immediately follows. Note that the (false) relativistic correction
without a spin correction term could be obtained from Eq. (3.578) or
from Eq. (3.579) by replacing j by the azimuthal quantum number k.
In the case that we are considering we would have k = 0 and then, in
first approximation, δWn = −(5/2)Wn/mc2, as already found. Writing
down the Balmer term explicitly, Eq. (3.579) can be cast in the form

W = − R hZ2

n2
− Z2α2

n3

(
1

j + 1/2
− 3

4n

)
R h. (3.580)
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Consider now the case of a central field and let Wn be degenerate only
for the presence of spin, i.e., with a 2k + 1 degeneracy, k > 0 being
the azimuthal quantum number. In first approximation, the degenerate
eigenfunctions will be

y11, y21, . . . , y(2k+1)1, y12, y22, . . . , y(2k+1)2,

or, introducing the equatorial quantum number m,

ym1, ym2, with m = k, k − 1, . . . ,−k + 1,−k. (3.581)

The perturbation matrix is the sum of two terms, the first of which,
containing only the diagonal elements

δH′m1,m1 = δH′m2,m2 = − 1
2mc2

∫
(Wn − V )2 ψ ψ∗ dτ

+
h̄2

4m2c2

∫ (
1
r

dV

dr
+

1
2

d2V

dr2

)
ψ ψ∗ dτ, (3.582)

depends on m and is an absolute constant to be added to the eigenvalues
of the second matrix δH′′. The elements of this second matrix are

δH′′m1,n1 =
h̄

4m2c2
uz mn

∫ 1
r

dV

dr
ψ ψ∗ dτ, (3.583)

where uz is the orbital (angular) momentum along the z axis. Analo-
gously,

δH′′m1,n2 =
h̄

4m2c2
(−uy mn + iux mn)

∫ 1
r

dV

dr
ψ ψ∗ dτ (3.584)

=
h̄

4m2c2

(
−u∗y nm + iu∗x nm

) ∫ 1
r

dV

dr
ψ ψ∗ dτ = δH′′n2,m1,

δH′′m2,n1 =
h̄

4m2c2
(−uy mn − iux mn)

∫ 1
r

dV

dr
ψ ψ∗ dτ (3.585)

=
h̄

4m2c2

(
−u∗y nm − iu∗x nm

) ∫ 1
r

dV

dr
ψ ψ∗ dτ = δH′′n1,m2,

δH′′m2,n2 = − h̄

4m2c2
uz mn

∫ 1
r

dV

dr
ψ ψ∗ dτ. (3.586)

We can assume that the (2k + 1)-dimensional matrices uz, ux, uy are
given, up to a factor h̄, by the matrices Rz/i, Rx/i, Ry/i in Eqs. (3.501),
where j is replaced by k. However, to avoid imaginary quantities, we set

uz = h̄
Rz

i
= h̄ Tz,

ux = − h̄
Ry

i
= − h̄ Ty, (3.587)

uy = h̄
Rx

i
= h̄ Tx.
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We also write

δH′′mr,ns =
h̄2

4m2c2
Qmr,ns

∫ 1
r

dV

dr
ψ ψ∗ dτ, (3.588)

where the (4k + 2)-dimensional matrix Q has the form

Q =
(

Tz −Tx − iTy

−Tx + iTy −Tz

)
, (3.589)

or explicitly, from Eqs. (3.501),

Qm1,n1 = mδm,n, (3.590)
Qm2,n2 = −mδm,n, (3.591)

Qm1,n2 =
√

k(k + 1)−mnδm+1,n = Qn2,m1, (3.592)

Qm2,n1 =
√

k(k + 1)−mnδm−1,n = Qn1,m2. (3.593)

It follows that the matrix Q is built from the 2k + 1 partial matrices
composed of the following rows and columns:

k, 1; k − 1, 1; and k, 2; k − 2, 1; and k − 1, 2; . . . ;
k − r, 1; and k − r + 1, 2; . . . ; (3.594)

−k, 1; and − k + 1, 2; −k, 2.

The first and the last partial matrices have only one element, and their
eigenvalue is k. The 2k intermediate matrices (r = 1, 2, . . . , 2k) have the
form
(

k − r
√

k(k + 1)− (k − r)(k − r + 1)√
k(k + 1)− (k − r)(k − r + 1) −k + r − 1

)
,

(3.595)
and their eigenvalues are k and −(k + 1). We then have 2k + 2 eigen-
functions corresponding to the eigenvalue k of Q and 2k eigenfunctions
corresponding to the eigenvalue −(k + 1) of Q. The first group of eigen-
functions is represented by the internal quantum number j = k + 1/2
and the second group by the internal quantum number j = k − 1/2.
The spin thus splits the energy level in two parts, but the degeneracy
remains for both levels since, even in the best case for which k = 1, the
highest energy level has degeneracy 4 while the lowest has degeneracy
2. This is consistent with Eqs. (3.574): All the energy levels are at least
two-fold degenerate in the absence of a magnetic field.

If in Eq. (3.595) we set

` = k +
1
2
− r, (3.596)
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then the matrix takes the form(
`− 1/2

√
(k + 1/2)2 − `2√

(k + 1/2)2 − `2 −(` + 1/2)

)
. (3.597)

The quantity ` represents the total (angular) momentum along the z axis,
which is common to the two solutions corresponding to Eq. (3.597).
The eigenfunctions corresponding to j = k + 1/2 are given, in first
approximation, by

ψ′` =
1√

2k + 1

(√
k + ` + 1/2 y`−1/2,1 −

√
k − ` + 1/2 y`+1/2,2

)
.

(3.598)
On varying ` between j (= k + 1/2) and −j (= −k − 1/2), we obtain
not only the solutions deriving from matrix (3.595) but also the ones
with l = ±(k + 1/2) deriving from the first and the last matrices in
Eq. (3.594). These extreme solutions, corresponding to an (angular)
momentum along the z axis equal to ±(k +1/2), are not included in the
solutions with j2 = k − 1/2. These 2j2 + 1 = 2k solutions are, instead,
given in first approximation by

ψ′′` =
1√

2k + 1

(√
k − ` + 1/2 y`−1/2,1 +

√
k + ` + 1/2 y`+1/2,2

)
,

(3.599)
where ` is an integer varying from j2 to −j2. Notwithstanding the appar-
ent symmetry between Eqs. (3.598) and (3.599), we have 2k+2 solutions
of the first kind and 2k of the second. Since ys1 and ys2 are defined only
for |s| < k, note that, if we set ` = ±(k +1/2) in Eq. (3.599), these rela-
tions do not make sense any more; this does not happen for Eq. (3.598)
because in these relations the Schrödinger eigenfunctions are multiplied
by 0.

From Eqs. (3.582) and (3.588), the corrections to the eigenvalue due
to relativistic effects and to the spin are given, in first approximation,
by:

For j = k + 1/2:

δW ′
n = − 1

2mc2

∫
(Wn − V )2 ψ ψ∗ dτ

+
h̄2

4m2c2

∫ (
k + 1

r

dV

dr
+

1
2

d2V

dr2

)
ψ ψ∗ dτ ; (3.600)

For j = k − 1/2:

δW ′′
n = − 1

2mc2

∫
(Wn − V )2 ψ ψ∗ dτ
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+
h̄2

4m2c2

∫ (
−k

r

dV

dr
+

1
2

d2V

dr2

)
ψ ψ∗ dτ. (3.601)

The splitting of the energy level is, in first approximation:

δW ′
n − δW ′′

n =
(2k + 1)h̄2

4m2c2

∫ 1
r

dV

dr
ψ ψ∗ dτ, (3.602)

or, in terms of the wave number,

δn =
(2k + 1)h̄

4m2c3

∫ 1
r

dV

dr
ψ ψ∗ dτ. (3.603)

20. CHARACTERS OF Dj AND REDUCTION
OF Dj×D0j 22

The representations Dj of O(3), both unique and double, can be viewed
as (unique) irreducible representations of the group SU(2) of unitary
transformations in two dimensions with determinant equal to 1. In par-
ticular, O(3) itself, considered as equivalent to Dj , is an irreducible
representation of SU(2). The law of this representation is expressed in
Eqs. (3.498).

Every element of SU(2) can be reduced, by a unitary transformation,
to diagonal form (

ε 0
0 ε−1

)
, (3.604)

with |ε| = 1. The matrix in Eq. (3.604) is an element of SU(2), and since
we can always require the unitary transformation to have determinant
equal to 1, so that it belongs to SU(2), the considered element of our
group is conjugate to the main element (3.604). Now, all the elements
conjugate to the form (3.604) form a class; more precisely, they form
the most general class of conjugate elements with ε varying under the
constraint |ε| = 1. Each class is thus characterized by the eigenvalues
ε and 1/ε of an arbitrary element belonging to it; the order of these
eigenvalues is not determined. The angle ω in

ε = eiω,
1
ε

= e−iω, (3.605)

22@ In modern terminology, the word “character” usually corresponds to “trace.”
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defined apart for its sign, defines a class.
Since the character is a function of the class, we can limit our discus-

sion to the characters of the main elements in the form (3.604).
In the representation Dj (with dimension 2j +1 = v+1 of SU(2)) the

matrix associated with the element (3.604) transforms the vector with
components

ξr ηv−r

√
r!(v − r)!

, v = 2j, r = 0, 1, . . . , v, (3.606)

into the vectors with components

ξ′r η′v−r

√
r!(v − r)!

=
ξr ηv−r

√
r!(v − r)!

ε2r−v, r = 0, 1, . . . , v. (3.607)

This matrix is thus diagonal, with elements

ε2r−2j , r = v, v − 1, . . . , 0 (3.608)

that is
ε2j , ε2j−2, . . . , ε−2j . (3.609)

The character is then given by

χi = ε2j + ε2j−2 + . . . + ε−2j =
ε2j+1 − ε−(2j+1)

ε − ε−1
. (3.610)

Let us consider an abstract group and two representations G and G′
of it, the first one of dimension n and the second of dimension n′. To
each element σ of the group, there corresponds a matrix S in G acting
on the variables x:

x′i =
∑

k

Sik xk, i, k = 1, 2, . . . , n, (3.611)

and a matrix S′ in G′ acting on the variables y:

y′r =
∑
s

S′rs xs, r, s = 1, 2, . . . , n′. (3.612)

The matrices S×S′ with dimension nn′ are defined as the matrices which
transform the products xiyr into the products x′iy

′
r. They obviously form

a representation, denoted by S×S′, of the same abstract group. From
Eqs. (3.611) and (3.612), we have

x′i y
′
r =

∑

k,s

Sik S′rs xk ys, (3.613)
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from which we get the explicit definition of the matrices S×S′:
(
S×S′

)
ir,ks = Sik S′rs. (3.614)

On setting k = i and s = r, we obtain the diagonal elements of S×S′:
(
S×S′

)
ir,ir = Sii S

′
rr, i = 1, 2, ,̇n; r = 1, 2, . . . , n′, (3.615)

from which follows that

χ(S×S′) = χS χS′ . (3.616)

Let us consider the representations Dj×D′j of the group SU(2), the
character of which is given by χjχj′ . Decomposing Dj×D′j into irre-
ducible representations Dτ , we find

χj χj′ =
∑

χτ . (3.617)

From Eq. (3.610), on multiplying by ε− ε−1, we get
(
ε2j + ε2j−2 + . . . + ε−2j

) (
ε2j′+1 − ε−(2j′+1)

)

=
∑ (

ε2τ+1 − ε−(2τ+1)
)

. (3.618)

Since the first term in Eq. (3.618) can be rewritten as 23

ε1+2j′+2j − ε−(1+2j′+2j) + ε1+2j′+2j−2 − ε−(1+2j′+2j−2)

+ . . . + ε1+2j′−2j − ε−(1+2j′−2j), (3.619)

it follows that Eq. (3.618) can be identically satisfied only if the values
of τ are univocally (i.e., each value can be realized only once) given by

j′ + j, j′ + j − 1, . . . , j′ − j, if j′ ≥ j,
j + j′, j + j′ − 1, . . . , j − j′ if j ≥ j′. (3.620)

(The second part of rules (3.620) can be derived from obvious symmetry
arguments, since, in Eq. (3.618) and in Eq. (3.619), j and j′ can be
exchanged.)

Note that the main element (3.604) represents a rotation in ordinary
space. On setting

x = cos ω, λ = sin ω, µ = ν = 0 (3.621)

23@ Equation (3.619) can be obtained from Eq. (3.618) by multiplying the first term in the
first bracket by the first term in the second bracket and the last one in the first bracket by
the second one in the second bracket, and so on.
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in Eqs. (3.498), we see that such a rotation is given by

x′ = x cos 2ω + y sin 2ω,
y′ = −x sin 2ω + y cos 2ω,
z′ = z,

(3.622)

i.e., we have a rotation along the z axis through an angle −2ω.

21. INTENSITY AND SELECTION RULES
FOR A CENTRAL FIELD

Consider an energy level with internal quantum number j, so that it
has spin degeneracy 2j + 1, and let us assume that it has no further
degeneracy. Let us furthermore suppose that a perturbation which is
symmetric along the z axis is acting on the system. Introducing the
magnetic quantum number m (= j, j − 1, . . . ,−j) to label the 2j +
1 independent quantum states, the perturbation matrix W (m,m′) is
necessarily diagonal, since the Hermitian form

∑
W (m,m′) x∗m x′m′ (3.623)

has to be invariant under rotations around the z-axis (see the previous
section), that is, when we change xm into

ym = ε2m xm. (3.624)

It follows that, in general, this perturbation breaks the degenerate level
into 2j + 1 adjacent levels labeled by the magnetic quantum number.
There also exists another level, with internal quantum number j′, which
is broken by the perturbation into 2j′+1 levels labeled by the magnetic
quantum number m′. Let q be the electric moment of the atom with
components qx, qy, qz:

qx = − e (x1 + x2 + . . .) , etc. (3.625)

The intensity of the spectral line jm− j′m′ is proportional to the square
of the element (m,m′) of the part of the q matrix

q(m,m′) (3.626)

that corresponds to the transformation Rj − Rj′ . Let us consider a
rotation s acting on the system; a transformation corresponding to s in
the representation Dj×D′j acts on the Hermitian form

∑
q(m,m′) x∗m x′m′ . (3.627)
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On the other hand, under the action of such transformation, the compo-
nents qx, qy, qz from (3.627) must transform as x, y, z under the action
of s; this follows from Eq. (3.625) and expresses the fact that q is a
vector. The quantity in (3.627) is said to be a vector quantity in the
representative space of Dj×D′j and of Dj×D′j ; (since the Dj represen-
tations are defined except for a (unitary) transformation, D and Dj are
equivalent (in a narrow sense)). In turn, the transformation s acting on
qx, qy, qz is equivalent to Dj . The problem of determining the maximum
number of linear independent combinations of such vector quantities can
be answered in terms of a general rule. Let d be a vector quantity, i.e.,
defined by r components:

d1 = a11x1 + a12x2 + . . . + a1rxr,
d2 = a21x1 + a22x2 + . . . + a2rxr,
· · · ,
dr = ar1x1 + ar2x2 + . . . + arrxr,

(3.628)

which are linear combinations of m (≥ r) variables xj and let us consider
two representations of a group g, the first one h being r-dimensional and
irreducible and the second one H being n-dimensional. To each element
σ of the group there correspond the matrices

s in h and S in H. (3.629)

If the transformation S acts on the xi, and the di given by Eq. (3.628)
transform exactly as they do under the action of s, then the vector quan-
tity d is said to be h-covariant. Consider the problem of determining
the maximum number of such covariant quantities that are linearly in-
dependent. To solve this problem, let us adapt the coordinates in the
representative space of H to the decomposition into irreducible repre-
sentations of y and let the irreducible representation h be present k
times. A part (k r) of the new variables forms a basis for the irreducible
representations of h:

x1
1, x1

2, . . . , x1
r; x2

1, x2
2, . . . , x2

r; . . . ; xk
1, xk

2, . . . , xk
r (3.630)

and, eventually, other variables remain on which the remaining irre-
ducible representations act. The components y of a covariant quantity
can be expressed by the formula

y = A1x1 + A2x2 + . . . + Akxk + . . . + Ak+lxx+l + . . . , (3.631)

where A1, A2, Ak are square matrices of dimension kr, while the Ak+l

are matrices with r rows and pl columns, pl being the number of xk+l
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variables (xk+l
1 , xk+l

2 , . . . , xk+l
pl

). On these variables an arbitrary inequiv-
alent irreducible representation of h, present in the decomposition of H,
acts. From the definition of a h-covariant quantity, we must have

A1sx1 + A2sx2 + . . . + Aksxk + . . . + Ak+lslxx+l + . . . = sy

= sA1x1 + sA2x2 + . . . + sAkxk + . . . + Ak+lsxx+l + . . . , (3.632)

from which, since the xj are arbitrary,

sA1 = A1s; sA2 = A2s; . . . ; sAk = Aks; . . . ;
sAk+l = Ak+lsl; . . . . (3.633)

From the fundamental theorem on irreducible representations, 24 assum-
ing that s and sl are inequivalent irreducible representations of the group
g, we deduce that

A1, A2, . . . , Ak are multiples of the unit matrix,
Ak+l, . . . are zero.

(3.634)

It follows that all the h-covariant quantities are linear combinations, k
of which are independent; indeed, since

di = a1x
1
i + a2x

2
i + akx

k
i (3.635)

(with constant a), we have

d = α1 d1 + α2 d2 + . . . + αk dk, (3.636)

where dγ (γ = 1, 2, . . . , k) are the components

dγ
i = xγ

i , γ = 1, 2, . . . , k; i = 1, 2, . . . , r, (3.637)

so that they are linearly independent. The number of dγ ’s is equal to
the number of times the irreducible representation h is contained in H,
and this evidently solves the posed problem.

Going back to the quantity (3.627), which is Dj-covariant in the space
of the representation Dj×Dj′ of the group SU(2), the problem of de-
termining the maximum number of such covariant quantities that are
linearly independent is translated into the problem of determining how

24@ In the original manuscript, there appears a reference: see W. page 124. Most probably
the author refers to p. 124 of Gruppentheorie und Quantenmechanik by H. Weyl (Hirzel,
Leipzig, 1928). For the English version, see p.153 of H. Weyl, The Theory of Groups and
Quantum Mechanics (translation from the 2nd revised German edition) (Dover, New York,
1931).
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many times Dj is contained in Dj×Dj′ . According to the rule estab-
lished previously, we have a non-vanishing value for quantities such as
those appearing in Eq. (3.627) only in the following three cases:

j′ = j − 1, j′ = j 6= 0, j′ = j + 1, (3.638)

which expresses the selection rules for the internal quantum number.
Note that, when conditions (3.638) are met, the form (3.627) is deter-
mined, except for a constant factor, by arguments based on group the-
ory.25 The selection rules for the magnetic quantum number is simple as
well. The component qz has to remain unchanged when a rotation along
the z axis is performed, so that qz(m,m′) must be diagonal. On the
other hand, the quantity qx + iqy acquires a factor ε−2 when a rotation
is performed, while qx − iqy acquires a factor ε2. In turn, the product
x∗mx′m′ acquires a factor ε−2(m′−m) under a rotation, so that the allowed
transitions are (for the convention on the sign of m, see its definition in
terms of j in Sec. 3.16):

for qz, m → m,
for qx + iqy, m → m + 1,
for qx − iqy, m → m − 1.

(3.639)

Let us now determine 26 the vector form (3.627), except for a constant
factor, when it is different from zero (according to form (3.627)). To this
end, let us consider the expression

1
k!

(
ξ∗ξ′ + η∗η′

)k
, (3.640)

which is invariant if a unitary transformation of the group SU(2) acts
on ξ,η and ξ′,η′. From Eqs. (3.497), it follows that x + iy, x− iy and z
transform as ηξ∗, η∗ξ, and ξξ∗ − ηη∗, respectively. On the other hand,
a transformation of the group SU(2) can be written as

ξ1 = α ξ + β η, η1 = −β∗ ξ + α∗ η, (3.641)

from which

ξ∗1 = α∗ ξ∗ + β∗ η∗, η∗1 = −β ξ∗ + α η∗, (3.642)

25@ In the original manuscript, there is here a reference: see W. page 158. Most probably
the author refers again to Weyl’s book, p.158 (in German) or p.199 (in the Dover edn.).
26@ In the original manuscript, there is here a reference: see W. p. 154. Most probably the
author refers again to Weyl’s book, p.154 ( in German ) or p.197 et seq. (in the Dover edn.)
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or

η∗1 = α η∗ + β (− ξ∗) , − ξ∗1 = −β∗ η∗ + α∗ (− ξ∗) , (3.643)

so that (ξ, η) transform as (η∗,−ξ∗). On changing the sign in the first
one of Eqs. (3.641), we get

η1 = α∗ η + β∗ (− ξ) , − ξ∗1 = −β η + α (− ξ) , (3.644)

so that, inversely, from Eqs. (3.642), (ξ∗, η∗) transform as (η,−ξ). It fol-
lows that (x+iy, x−iy, z) transform as (η2,−ξ2, ξη) or (−ξ∗2, η∗2, ξ∗η∗):

x + i y ∼ η2, x − i y ∼ − ξ2, z ∼ ξη, (3.645)
x + i y ∼ − ξ∗2, x − i y ∼ − η∗2, z ∼ ξ∗η∗. (3.646)

Allowing (ξ′, η′) to transform as (ξ, η), we also have

x + i y ∼ 2η′ξ∗, x − i y ∼ 2ξ′η∗, z ∼ ξ′ξ∗ − η′η∗, (3.647)
x + i y ∼ η′2, x − i y ∼ − ξ′2, z ∼ ξ′η′. (3.648)

On multiplying the invariant (3.630) by the right-hand sides of Eqs.
(3.646), (3.647), or (3.648), we always obtain the components of a vector
quantity, which transform as x + iy, x− iy, z.

Let us first consider in Eqs. (3.640) the case where k = 2j − 2 = 2j′,
corresponding to the first case in (3.638). Let us multiply the invariant
by Eqs. (3.646); we then obtain the Hermitian forms

(qx + i qy) (m,m′) x∗m x′m′ ,
(qx − i qy) (m,m′) x∗m x′m′ ,

qz(m,m′), x∗m x′m′ ,
(3.649)

where

xm =
ξj−mηj+m

√
(j −m)!(j + m)!

, m = j, j − 1, . . . ,−j, (3.650)

x′m′ =
ξ′j′−m′

η′j′+m′

√
(j′ −m′)!(j′ + m′)!

, m′ = j′, j′ − 1, . . . ,−j′, (3.651)

so that the monomials x∗mx′m′ transform according to Dj×Dj′ . It follows
that the expressions in Eq. (3.649) are, except for a constant factor, the
components of the vector in Eq. (3.627) for the transition j → j′ = j−1.
The product of Eq. (3.640) with the r.h.s.s of Eqs. (3.646) yields the
polarization matrices for the transition j → j′ = j − 1:

(qx + i qy) (m,m′) =
√

(j −m)(j −m′) δm+1,m′ ,

(qx − i qy) (m,m′) =
√

(j + m)(j + m′) δm−1,m′ , (3.652)

qz(m,m′) =
√

(j + m)(j −m) δm,m′ .
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For the second transition in Eq. (3.638), on multiplying Eq. (3.640),
with k = 2j − 1 = 2j′ − 1, by the r.h.s. of (3.647), we obtain, for
j → j′ = j 6= 0,

(qx + i qy) (m,m′) =
√

(j −m)(j + m′) δm+1,m′ ,

(qx − i qy) (m,m′) =
√

(j + m)(j −m′) δm−1,m′ ,

qz(m,m′) = −m δm,m′ .

These relations coincide with the ones in Eq. (3.501) for the elementary
rotations −(Rx+iRy)/i, −(Rx−iRy)/i, −Rz/i in the representation Dj .
This is not surprising, since such elementary rotations can be viewed as
corresponding to a vector-type quantity in the space of representations
Dj×Dj .

For the last transition in Eq. (3.638), we have to multiply the ex-
pression (3.640) with k = 2j = 2j′ − 2 by the right-hand sides of Eqs.
(3.648); we find, for j → j′ = j + 1:

(qx + i qy) (m, m′) =
√

(j + m + 1)(j + m′ + 1) δm+1,m′ ,

(qx − i qy) (m, m′) = −
√

(j −m + 1)(j −m′ + 1) δm−1,m′ ,

qz(m, m′) =
√

(j + m + 1)(j −m + 1) δm,m′ .

We notice that the selection rules (3.639) for the magnetic quantum
number are satisfied. Extending SO(3) to O(3) with the inclusion of the
improper rotations, we have two kinds of irreducible representations, D+

j

and D−j . A polar vector, such as the electric moment, is D−j -covariant
and, in its matrix, the components corresponding to the intersection of
two irreducible spaces, R+

j and R+
j′ or R−j and R−j′ , are missing. We thus

have the selection rule for the signature: Only the transitions j → −j
and +j are allowed. The scalar wave theory applied to the electron
gives only the unique irreducible representations (with integer j) for the
group O(3) and, from symmetry properties of the spherical functions,
the signature is +1 for even j and −1 for odd j; then the selection rule
for the signature excludes the transition j → j′ = j. However, in the
presence of spin this restriction is relaxed; to be precise, this restriction
remains (although it is an approximation) but it applies to the orbital
(angular) momentum k rather than to the internal quantum number.
Thus the (approximate) selection rules to be added to Eq. (3.638) are
the following:

k → k′ k + 1, k → k′ k − 1. (3.653)



VOLUMETTO III 307

22. THE ANOMALOUS ZEEMAN EFFECT
(ACCORDING TO THE DIRAC
THEORY) 27

Let us turn to the Dirac equations (3.557)-(3.560) and their approxi-
mate solutions for a given eigenvalue of the Schrödinger equation (3.562),
(3.563). We again consider the case of a central field and furthermore
assume a constant magnetic field along the z axis. With reference to Eq.
(3.566), we calculated only the field-independent part of the perturba-
tion matrix, which is the sum of the constant diagonal term δH′ in Eq.
(3.582) and of the matrix

δH′′ = h̄2

4m2c2
Q

∫
r−1 dV

dr
ψψ∗ dτ,

where Q is given by Eqs. (3.590)-(3.593). Let us evaluate the matrix
Bri,sk in Eq. (3.566); we find

Br1,s1 =
eh̄

2mc
(r + 1) δrs, (3.654)

Br2,s2 =
eh̄

2mc
(r − 1) δrs, (3.655)

Br1,s2 = Br2,s1 = 0. (3.656)

The problem is then to diagonalize δH′′ + HB or, setting

ε =
2emcH

h̄

∫
r−1 (dV/dr) ψψ∗ dτ

, (3.657)

B =
eh̄

2mc
T, (3.658)

so that, from Eqs. (3.654)-(3.656),

Tr1,s1 = (r + 1) δrs,

Tr2,s2 = (r − 1) δrs, (3.659)
Tr1,s2 = Tr2,s1 = 0,

to diagonalize the matrix

h̄2

4m2c2

∫ 1
r

dV

dr
ψψ∗ dτ (Q + ε T ) (3.660)

27See Sec. 3.19.
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or, simply,
Q + ε T = S. (3.661)

From Eq. (3.590)-(3.593) and (3.659) we get

Sm1,m′1 = (m + ε m + ε) δmm′ , (3.662)
Sm2,m′2 = (−m + ε m − ε) δmm′ , (3.663)

Sm1,m′2 =
√

k(k + 1)−mm′ δm+1,m′ , (3.664)

Sm2,m′1 =
√

k(k + 1)−mm′ δm−1,m′ . (3.665)

The matrix S can be decomposed into 2k + 2 submatrices, the first and
the last of which consist of only one element, while the other matrices
are 2×2 matrices, precisely as the matrix Q in Eq. (3.594). In fact,
the term εT does not alter the decomposition property of Q, since it is
diagonal with a suitable choice of the coordinates. The first sub-matrix,
possessing only the k1, k1 element, has the eigenvalue

k1, k1 : k + ε (k + 1) , ` = k +
1
2
. (3.666)

The last sub-matrix, with the single element −k2,−k2, has the eigen-
value

−k2,−k2 : k − ε (k + 1) , ` = − k − 1
2
. (3.667)

The other 2k square sub-matrices can be labeled, as done for Q (see
Eqs. (3.596) and (3.597)), by the total (angular) momentum ` along the
z-axis (` = k − 1/2, k − 3/2, . . . ,−k + 1/2). They have the form

(
`− 1/2 + ε(` + 1/2)

√
(k + 1/2)2 − `2√

(k + 1/2)2 − `2 −(` + 1/2) + ε(`− 1/2)

)
. (3.668)

The eigenvalues of Eq. (3.668) are

− 1
2

+ ` ε ±
√(

k +
1
2

)2

+ ε ` +
1
4

ε2. (3.669)

Taking the factor of Q + εT = S in Eq. (3.660) as the energy unit,
and the corresponding frequency as defined by the Einstein law 28 as
the frequency unit, the separation of the doublet (which is present when

28This is more widely known as the Planck law E = hν.
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the field is turned off) is 2k + 1 and the Larmor frequency is ε. Then,
for ε << 2k + 1, the formulae for the weak-field limit apply, while for
ε >> 2k + 1 we have the strong-field limit (Paschen-Back effect). Let
us assume that ε is small and expand the eigenvalues to first-order in
ε. The eigenvalues given by Eqs. (3.666) and (3.667) are already (and
exactly) of the first-order in ε; for the eigenvalues (3.669) we instead
have, depending on the sign in front of the square root,

k + ε `
2k + 2
2k + 1

= k + ε g′ `, g′ =
2k + 2
2k + 1

, (3.670)

− k − 1 + ε `
2k

2k + 1
= k + ε g′′ `, g′′ =

2k

2k + 1
. (3.671)

The eigenvalue of the first kind, as well as the eigenvalues (3.666) and
(3.667), correspond to the internal quantum number j = k + 1/2 for
H → 0. In fact, the eigenvalues (3.666) and (3.667) can be cast in the
form (3.670) with ` = k +1/2 and ` = −k− 1/2 (with the same value of
g′), respectively. We can thus write the following general formulae for
the weak-field limit:

j = k +
1
2

eigenvalues : k + ε g′ ` (3.672)(
` = k +

1
2
, k − 1

2
, . . . , − k − 1

2

)
,

j = k − 1
2

eigenvalues : − k − 1 + ε g′′ ` (3.673)(
` = k − 1

2
, k − 3

2
, . . . , − k +

1
2

)
.

The separation constants g′ and g′′ given in Eqs. (3.670) and (3.671)
can then be expressed by the single formula

g =
2j + 1
2k + 1

; (3.674)

and we always have

g′ > 1, g′′ < 1, g′ + g′′ = 2. (3.675)
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For example, for k = 1 we get g′ = 4/3, g′′ = 2/3. We also have a general
expression for g′ and g′′ holding for an arbitrary number of electrons:

g = 1 +
j(j + 1) + s(s + 1)− k(k + 1)

2j(j + 1)
. (3.676)

In fact, from (3.676),

g′ = 1 +
(k + 1/2)(k + 3/2) + 3/4− k(k + 1)

(2k + 1)(k + 3/2)

=
2k + 2
2k + 1

(3.677)

g′′ = 1 +
(k − 1/2)(k + 1/2) + 3/4− k(k + 1)

2(k − 1/2)(k + 1/2)

=
2k

2k + 1
, (3.678)

which coincide with the expressions in Eqs. (3.670) and (3.671).
Let us now consider the other limiting case ε → ∞. The eigenvalues

of S are infinities of the first-order; we will expand them up to terms
which do not depend on ε. Even now the two eigenvalues (3.666) and
(3.667) are exactly expressed by their expansion up to the second term.
For the eigenvalues in Eq. (3.669), we have, depending on the sign in
front of the square root:

(
` +

1
2

)
ε + ` − 1

2
, (3.679)

(
` − 1

2

)
ε −

(
` +

1
2

)
. (3.680)

The eigenvalue (3.666) belongs to the class of Eq. (3.679), while the one
in Eq. (3.667) belongs to that of Eq. (3.680), so that, summing up, we
have two sets of eigenvalues, each with 2k + 1 elements:

(
` +

1
2

)
ε + ` − 1

2
(3.681)

(for ` = k + 1/2, k − 1/2, . . . , − k + 1/2),
(

` − 1
2

)
ε −

(
` +

1
2

)
(3.682)

(for ` = k− 1/2, k− 3/2, . . . , − k− 1/2). In the limiting case we have
approximately no transition between different eigenvalues, since the first
kind of eigenvalue corresponds to the electron “spin” oriented along the
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field, while the second kind correspond to the “spin” oriented along the
opposite direction of the field. From this, the Zeeman effect (Paschen-
Back effect) follows. Since for large ε the second term in Eq. (3.661) is
the largest one and T is diagonal as well as (although approximately)
the orbital (angular) momentum along the z-axis, it follows that in first
approximation both ` and the orbital (angular) momentum m are con-
stant. Labelling the eigenvalues according to m, in place of Eqs. (3.681)
and (3.682) we now have:

(m + 1) ε + m, m = k, k − 1, . . . , − k; (3.683)
(m − 1) ε − m, m = k, k − 1, . . . , − k. (3.684)

The sum of the eigenvalues is equal to the sum of the diagonal terms of
S, so that this quantity is always vanishing.

In Fig. 3.2 we show the transition from the anomalous Zeeman effect
to the Paschen-Back effect for k = 1. 29 In the limiting case, for strong
fields, the distance between the energy levels corresponding to the first
kind of eigenvalues is ε + 1, ε being the Larmor frequency in units such
that 2k + 1 is the separation of the doublet, while the distance between
the energy levels of the second kind is ε− 1.

23. COMPLETE SETS OF FIRST-ORDER
DIFFERENTIAL EQUATIONS 30

Let A1, A2, . . . , Aj , . . . , Ar be linear homogeneous differential operators
of 2n variables:

Aj =
2n∑

k=1

ak
j

∂

∂xk
, (3.685)

where ak
j are functions of x1, x2, . . . , x2n. The problem is to find the

common solutions of the following set of equations:

Aj y = 0, j = 1, 2, . . . , r. (3.686)

29@ Figure 3.2 reproduces qualitatively the scheme reported in the original manuscript. We
remark the fact that the analysis made in the text apply only to the weak field limit (ε < 1)
and to the strong field limit (ε À 1). The intermediate region has to be studied by solving
the Dirac equation without approximations (which can only be done numerically). It is
interesting that the author also reports the spectra for the intermediate region in the figure.
30@ In the original manuscript, there is here a reference: see Franck, Physikal. 15, April
1929. Most probably the author refers to the following paper (in German): Philipp Franck,
Phys. Z. 30 (8), 209 (15 April 1929).
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ε = 1.0
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Fig. 3.2. Transition from the anomalous Zeeman effect to the Paschen-Back effect
for k = 1; note that for ε = 3 we have ε = 2k + 1.
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Let us assume that Aj are linearly independent (but, in general, the
coefficients of the linear combinations are x-dependent), so that we nec-
essarily have r ≤ 2n. From Eq. (3.686), we can deduce other linear
homogeneous differential equations that y must obey:

Let us first apply the operator Aj and then the operator Aj′ to y and
vice-versa; from Eq. (3.686) we obtain:

(
Aj Aj′ − Aj′ Aj

)
y = 0. (3.687)

On setting
Bjj′ = Aj Aj′ − Aj′ Aj ; Bjj′ y = 0, (3.688)

from Eq. (3.685) we get

Bjj′ =

(
2n∑

k=1

ak
j

∂

∂xk

) (
2n∑

k′=1

ak′
j′

∂

∂xk′

)

−
(

2n∑

k′=1

ak′
j′

∂

∂xk′

) (
2n∑

k=1

ak
j

∂

∂xk

)

=
∑

k,k′
ak

j ak′
j′

∂2

∂xk∂xk′
+

∑

k,k′
ak

j

∂ak′
j′

∂xk

∂

∂xk′

−
∑

k,k′
ak′

j′ a
k
j

∂2

∂xk′∂xk
−

∑

k,k′
ak′

j′
∂ak

j

∂xk′

∂

∂xk

=
∑

k

∑

k′

(
ak′

j

∂ak
j′

∂xk′
− ak′

j′
∂ak

j

∂xk′

)
∂

∂xk

=
∑

k

(
Aj ak

j′ − Aj′ a
k
j

) ∂

∂xk
≡

∑

k

bk
jj′

∂

∂xk
, (3.689)

where
bk
jj′ = Aj ak

j′ − Aj′ a
k
j . (3.690)

It follows that Eq. (3.687) can be cast in the form

Bjj′ y =
∑

k

bk
jj′

∂y

∂xk
y = 0, (3.691)

which is again an equation of the kind (3.686), that y must obey. By
using the same procedure for each pair of operators Aj and Aj′ and
then for each pair of operators A,B and B, B′, we obtain new linear
differential equations that y must obey. However, taking into account
only the linearly independent equations, the number of which must be
≤ 2n, we see that there comes a point where the procedure does not
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give new equations anymore. The set of linear differential equations thus
obtained is then said to be complete.

Let us assume, for simplicity, that the set (3.686) is already complete;
the conditions for this to happen are

Aj Aj′ − Aj′ Aj =
∑
r

cr
jj′ Ar, (3.692)

where c are x-dependent functions. There is a theorem 31 according to
which the complete set (3.686) has exactly 2n−r independent solutions.
All the possible solutions are thus arbitrary functions of the above 2n−r
Poisson brackets. Let us divide the independent variables x1, x2, . . . into
two groups denoted by

q1, q2, . . . , qn, p1, p2, . . . , pn. (3.693)

Let F and G be two arbitrary functions of q and p; we then define the
Poisson bracket of F and G to be the expression

[F, G] =
n∑

i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
. (3.694)

The following properties hold:

[F, G] = − [G, F ] , [F, F ] = 0, (3.695)
[qi, qk] = 0, [pi, pk] = 0, [qi, pk] = δik. (3.696)

From Eqs. (3.696) it follows that Eq. (3.694) can be also written as

[F,G] =
∑
s>r

∂(F,G)
∂(xr, xs)

[xr, xs] , (3.697)

where
x1 = q1, x2 = q2, . . . , xn = qn,
xn+1 = p1, . . . , x2n = pn.

(3.698)

In Eq. (3.697) the sum can be extended over each pair of indices for
which s < r, since the result is the same; the important thing is, evi-
dently, that each pair of variables xr and xs appears only once in the
sum, albeit with an arbitrary order. Let us assume that G is given; then
[F,G] can be regarded as the result of an operation performed on F .

31@ In the original manuscript, there is here a reference: see for example Goursat, Vorlesun-
gen über die Integration.... However, it is not clear to what paper the author refers.
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This operation has some properties similar to those of the derivation; in
fact, if F is a function of f , then the following rule holds:

[F, G] =
dF

df
[f,G] ; (3.699)

and, more generally, if F is a function of a functions f1, f2, . . . , fa, the
rule

[F, G] =
a∑

i=1

dF

dfi
[fi, G] (3.700)

obtains, which is the analog of the derivation rule for the composite
functions.

Equation (3.697) has several generalizations, one of which leads to Eq.
(3.700) as a particular case. Let us assume that F and G are functions
of b functions depending on the coordinates g1, g2, . . . , gb. From Eq.
(3.694) it follows that

[F, G] =
∑
s>r

∂(F, G)
∂(gr, gs)

[gr, gs] , (3.701)

from which Eqs. (3.697) and (3.700) can be deduced as particular cases.
For example, to obtain Eq. (3.700), it is sufficient to set b = a + 1,
f1 = g1, f2 = g2, . . . , fa = ga, F = F (g1, g2, . . . , ga), G = fb.

Given three functions F,G, H depending on the coordinates, the fol-
lowing Jacobi identity holds:

[F, [G,H]] + [G, [H,F ]] + [H, [F, G]] = 0. (3.702)

We also note the following rule that stems from Eq. (3.700):

[a b, F ] = a [b, F ] + b [a, F ] . (3.703)

Two functions f and g are said to be “involute” if [f, g] = 0; more in
general, several functions are called involute when each pair of functions
is involute. From this definition, it then follows that the q coordinates
are involuted between them, and the same applies to the p coordinates.
By contrast, f and g are “conjugate” if [f, g] = 1; thus, in particular, qi

and pi are conjugate.
Let F1, F2, . . . , Fr be r functions that depend on the coordinates; the

problem is to find the functions that are involuted with all the given F .
Let g be a solution (if it exists) of our problem; the following equations
then hold:

[g, F1] = [g, F2] = . . . = [g, Fr] = 0. (3.704)
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In the particular case r = 1 and F1 = H, our problem reduces to the
general problem of classical mechanics, consisting of the search of the
integrals of motion for a mechanical system described by the Hamiltonian
H. In fact, the relation [g, H] = 0 expresses exactly the fact that g is
a constant of motion when the Hamilton equations are satisfied. In this
particular case, we have 2n functions (q and p) of time that satisfy 2n
ordinary first-order differential equations, and thus there are 2n arbitrary
constants to fix the initial values of the q and the p coordinates; then
there will be 2n independent functions satisfying the relation [g, H] = 0.

Let us return to the general case (3.704). The jth equation in Eq.
(3.704) is

∑

i

∂Fj

∂pi

∂g

∂qi
−

∑

i

∂Fj

∂qi

∂g

∂pi
= Aj g = 0, (3.705)

where Aj is a first-order homogeneous linear differential operator. By
varying j from 1 to r, we obtain a set of r equations. The question
is: What conditions must F satisfy for the set to be complete? It is
sufficient to substitute the expression for Aj in Eq. (3.692). From Eqs.
(3.688) and (3.689) it follows that

∂

∂ps

[
Fj , Fj′

]
=

∑
r

cr
jj′

∂Fr

∂ps
,

∂

∂qs

[
Fj , Fj′

]
= −

∑
r

cr
jj′

∂Fr

∂qs
,

(3.706)

or, written as a single vector equation:

∇ [
Fj , Fj′

]
= −

∑
r

cr
jj′ ∇Fr. (3.707)

Since cr
jj′ are arbitrary functions of the coordinates, from Eq. (3.707)

it follows that, considering a subspace with 2n− r dimensions in which
all the functions F are constants, all the Poisson brackets [Fi, Fj ] are
constant as well, so that they are functions of F themselves:

[
Fj , Fj′

]
= fjj′ (F1, F2, . . . Fr) . (3.708)

The set of differential equations (3.704) is then complete if Eq. (3.708)
are satisfied. It then has exactly 2n − r independent solutions. Then,
the r functions F1, F2, . . . , Fr, satisfying Eq. (3.708), form a basis in
the group of all the functions of F . From Eqs. (3.701) and (3.708)
it follows that the Poisson brackets of two functions belonging to this
group belongs itself to the group.
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Note that also the 2n− r solutions of Eqs. (3.704) with (3.708) form
a group, that is they satisfy equations similar to Eqs. (3.708). As a
particular case, we then have the known theorem according to which,
for a given mechanical problem, the Poisson bracket of two integrals of
motion is itself an integral of motion.
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VOLUMETTO IV: 24 APRIL 1930

1. CONNECTION BETWEEN THE
SUSCEPTIBILITY AND THE ELECTRIC
MOMENT OF AN ATOM IN ITS GROUND
STATE

Let us consider an atom with n electrons in the ground state, which we
will assume is an s level described by the eigenfunction ψ0 corresponding
to the eigenvalue E0. The component of the electric moment along the
z axis is given by

M = − e (z1 + z2 + . . . + zn) = − e z, (4.1)

with z = z1+z2+. . .+zn. An electric field of intensity E acting along the
z axis induces a perturbation of the atom that depends on the potential
EM = H. Assuming that the ground state is not degenerate or, more
precisely, that no p levels correspond to the eigenvalue E0, the element
M00 of the perturbation matrix certainly vanishes. Consequently, for
weak fields the variation of the eigenvalue is given by the second-order
formula

δE0 =
∞∑

1

|M0k|2
E0 − Ek

=
∞∑

1

e2 E2 |zk|2
E0 − Ek

, (4.2)

where
z ψ0 =

∑

k

zk ψk. (4.3)

However, if α is the atomic electric susceptibility, the variation of the
energy is given, to first approximation, by

δE0 = − 1
2

E2 α, (4.4)

from which, on comparison with Eq. (4.2),

α = 2 e2
∑

k

|zk|2
Ek − E0

. (4.5)

319
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Moreover, from (4.3), we deduce

∑

k

|zk|2 =
∫

z2 ψ2
0 dτ = z2. (4.6)

The number of dispersion electrons f = n (from a known theorem) is
given by 1

n =
∞∑

1

(2m/h̄2)(Ek − E0) |zk|2. (4.7)

Let us consider the expressions

A =
∑

k

(Ek − E0) |zk|2 =
nh̄2

2m
,

B =
∑

k

|zk|2 = z2, (4.8)

C =
∑

k

|zk|2
Ek − E0

=
α

2e2
. (4.9)

We necessarily have
B ≤

√
AC (4.10)

(the equality sign holding only in the not realistic case in which zk is
different from zero only for one given value of Ek − E0), that is,

z2 <

√
nαh̄2

4me2
=

√
nαa0

2
, (4.11)

where a0 = h̄2/me2 is the Bohr radius of the ground state orbit of the
hydrogen atom. As long as we assume that the differences Ek − E0 in
the most relevant terms of the expressions A,B, C take nearly the same
value (as happens for H- and He-like atoms but not for Li-like atoms),
the relation (4.11) can be cast in the form

z2 <∼
√

nαa0

2
. (4.12)

For hydrogen, we have n = 1; from the Stark effect we deduce that α is
approximately given by 4.5a3

0, so that

z2 < 1.06 a2
0 (4.13)

1@ In the original manuscript, the old notation h/2π instead of h̄ is used..
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(however, a direct calculation gives z2 = a2
0).

For helium, we have n = 2 and α ' 1.44a3
0 (this can be deduced from

the value of the dielectric constant), so that

z2 < 0.85 a2
0. (4.14)

Since the ground state of the helium atom is known with a good accuracy,
we could evaluate z2 directly. Here we shall only make a rough estimate
of this quantity from the known eigenfunction

c exp
{
−27

16
z1 + z2

a0

}
.

This corresponds to the independent motion of the two electrons, so
that z2 = z2

1 + z2
2 , while we would have z2 < z2

1 + z2
2 ; however, this

eigenfunction also gives values for z2
1 and z2

2 that certainly are lower
that the true values; so, since the two errors of approximation go in
opposite directions, we can presume a good accuracy in our estimation
of z2. We find

z2 = 2
(

16
27

)2

a2
0 = 0.70 a2

0, (4.15)

confirming (4.12). Obviously, this approximation is not as accurate as
it is for the hydrogen atom.

Finally, let us consider an He-like atom with infinite z. We have

α = 2 · 4.5 a3
0/Z

4 = 9a3
0/Z

4

(the value α = 1.44a3
0 for helium follows from this formula if we put

Z4 = 1.58) and, from (4.12),

z2 <
3√
2

a2
0

Z2
= 1.06

2a2
0

Z2
, (4.16)

while the direct calculation gives z2 = 2a2
0/Z

2.
The error of (4.12) for helium thus turns out to be equal to that for
hydrogen.2

2@ In the original manuscript, this paragraph ends with the following remark: “A more

accurate estimate of z2 would probably reduce the error for helium which, however, must
be appreciably greater than the one for the limiting case z = ∞. This happens because in
helium the two electrons must jump jointly from one level to another due to their independent
motions; this makes the range of values for Ek−E0 wider.” This note is followed by a question
mark, reflecting the unclear meaning of his assertion.
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2. IONIZATION PROBABILITY FOR A
HYDROGEN ATOM IN AN ELECTRIC
FIELD

Let us consider a hydrogen-like atom of charge Z. Using electronic units
(i.e. e = 1, h̄ = 1, first Bohr radius a0 = 1; and energy unit e2/a0 =
2Ry), the electron eigenfunction satisfies the differential equation

∇2 ψ + 2
(

E +
Z

r

)
ψ = 0. (4.17)

On introducing an electric field F in the direction of the x axis, Eq.
(4.17) becomes

∇2 ψ + 2
(

E +
Z

r
− F x

)
ψ = 0. (4.18)

Let us adopt the parabolic coordinates

ξ = r + x, η = r − x, tanφ =
x

y
;

x =
1
2
(ξ − η), y =

√
ξ η cos φ, z =

√
ξ η sin φ.

(4.19)

We find

∇2 ψ =
∂ψ

∂ξ
∇2 ξ +

∂ψ

∂η
∇2 η +

∂ψ

∂φ
∇2 φ

+
∂2ψ

∂ξ2
|∇ ξ|2 +

∂2ψ

∂η2
|∇ η|2 +

∂2ψ

∂φ2
|∇φ|2 (4.20)

+ 2
∂2ψ

∂ξ∂η
∇ ξ ·∇ η + 2

∂2ψ

∂ξ∂φ
∇ ξ ·∇φ + 2

∂2ψ

∂η∂φ
∇ η ·∇φ;

and, since

∇2 ξ =
3
2
, ∇2 η =

3
2
, ∇2 φ = 0,

|∇ ξ|2 =
2ξ

r
, |∇ η|2 =

2η

r
, |∇φ|2 =

1
r2 − x2

,

∇ ξ ·∇ η = 0, ∇ ξ ·∇φ = 0, ∇ η ·∇φ = 0,

we get

∇2 ψ =
2
r

(
∂ψ

∂ξ
+

∂ψ

∂η
+ ξ

∂2ψ

∂ξ2
+ η

∂2ψ

∂η2
+

r

2(r2 − x2)
∂2ψ

∂φ2

)
. (4.21)
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On setting
ψ = eimφ y(ξ, η) (4.22)

and substituting in Eq. (4.17), we find

ξ
∂2y

∂ξ2
+

∂y

∂ξ
+ η

∂2y

∂η2
+

∂y

∂η
− m2

4ξη
(ξ + η) y +

1
2

(ξ + η) E y

+Z y − F

4

(
ξ2 − η2

)
y = 0. (4.23)

If we then use the separation of variables

y = P (ξ) Q(η), (4.24)

we obtain 3

ξ P ′′ + P ′ − m2

4ξ
P +

1
2

ξ E P +
1
2

(Z + λ) P − F

4
ξ2 P = 0,

η Q′′ + Q′ − m2

4η
Q +

1
2

η E Q +
1
2

(Z − λ) Q +
F

4
η2 Q = 0.

(4.25)
Equations (4.25) are self-adjoint; they can be written in the simple form:

P ′′ +
1
ξ

P ′ +

(
− m2

4ξ2
+

1
2

E +
Z + λ

2ξ
− F

4
ξ

)
P = 0,

Q′′ +
1
η

Q′ +

(
− m2

4η2
+

1
2

E +
Z − λ

2η
+

F

4
η

)
Q = 0.

(4.26)

The ground state is characterized by m = 0 and by the absence of nodal
points in P and Q. On setting

F = 2 ε (4.27)

for weak fields (ε denotes a small quantity), we thus have

P ′′ +
1
ξ

P ′ +
1
2

(
E +

Z + λ

ξ
− ε ξ

)
P = 0,

Q′′ +
1
η

Q′ +
1
2

(
E +

Z − λ

η
+ ε η

)
Q = 0.

(4.28)

Let us put:
P = u e−

√
−E/2 ξ, Q = v e−

√
−E/2 η. (4.29)

3@ Note that λ is an arbitrary parameter.
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The first equation in (4.28) becomes

u′′ + u′

1

ξ
− 2

√
−E

2


 + u




Z + λ− 2

√
E

2
2ξ

− ε

2
ξ




= 0, (4.30)

while an analogous equation, derived from the second relation in Eq.
(4.28), is obtained by replacing u and ξ with v and η, respectively, and
by changing the signs of λ and ε. In the following we will focus only
on the above equation; similar considerations will be true if we perform
the mentioned replacements. For the ground state, if we switch off the
field (ε = 0), we have λ = 0, E = −Z2/2, and u = 1 (except for a
normalization factor). When the field is non-zero, we set

u = 1 + a1 ξ + a2 ξ2 + a3 ξ3 + . . . ; (4.31)

and, from (4.30), the coefficients will be determined from the relation

an =
1

2n2

[
(2n− 1)

√
−2E − (Z + λ)

]
an−1 +

ε

2n2
an−3. (4.32)

However, we can no longer require that u be a finite polynomial; in the
presence of an electric field, strictly stationary discrete states do not
exist. Thus, we have to use a method of iterative approximations in
which u is a finite polynomial except for terms that go to zero with ε
more rapidly than εn. This means that we neglect quantities that become
appreciable at larger distances from the nucleus as long as ε decreases.
We then set

an = a(0)
n + ε a(1)

n + ε2 a(2)
n + ε3 a(3)

n + . . . , (4.33)

and the order at which each series i for the constants a
(i)
n terminates,

depends on n. Thus for the constants a(0) we have

a
(0)
0 = 1, a

(0)
1 = a

(0)
2 = . . . = a(0)

n = 0. (4.34)

We also put

λ = ε λ1 + ε2 λ2 + ε3 λ3 + . . . (4.35)√
−2E = Z + ε k1 + ε2 k2 + ε3 k3 + . . . . (4.36)

Note that, since a0 = a
(0)
0 = 1, for r > 1 we would have

a
(r)
0 = 0, r > 1. (4.37)
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By substituting the above relations in (4.32) for the ε-independent part,
we find

a(0)
n =

n− 1
n2

Z a
(0)
n−1, (4.38)

which satisfies Eq. (4.34). Furthermore, keeping first-order terms, we
get the relation

a(1)
n =

n− 1
n2

Z a
(1)
n−1 +

1
2n2

[(2n− 1) k1 − λ1] a
(0)
n−1 +

1
2n2

a
(0)
n−3. (4.39)

Requiring that the series of constant a(1) terminates at a certain point,
we deduce that a

(1)
3 = 0; we then obtain identically a

(1)
3+r = 0. On the

other hand, we have

a
(1)
0 = 0, (4.40)

a
(1)
1 =

1
2
(k1 − λ1), (4.41)

a
(1)
2 =

1
8
(k1 − λ1) Z, (4.42)

a
(1)
3 =

k1 − λ1

36
Z2 +

1
18

= 0, (4.43)

from which we get

k1 − λ1 + 2/Z2 = 0. (4.44)

In order to deduce the analogous relations for the function v in (4.29),
λ and ε have to change sign (as discussed above), while

√−2E stays
constant. This means that we have to change the sign of ki (or an) if
i is odd while we have to preserve its sign if i is even; furthermore, we
have to change the sign of λi if i is even while preserving it if i is odd.
In addition to (4.44), we then have the relation

− k1 − λ1 +
2

Z2
= 0, (4.45)

from which we infer that

K1 = 0, λ1 =
2

Z2
, a

(1)
1 = − 1

Z2
, a

(1)
2 = − 1

4Z
. (4.46)
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Thus, to first approximation, we find

u = 1 − ε

(
1

Z2
ξ +

1
4Z

ξ2
)

,

v = 1 − ε

(
1

Z2
ξ +

1
4Z

ξ2
)

,

√−2E = Z + ε · 0,

λ =
2

Z2
ε, F = 2 ε.

(4.47)

Note that the third equation (4.47) expresses the fact that, to first-
order, there is no Stark effect for the ground state. Let us now consider
second-order terms; by equating the terms with ε2 in Eq. (4.32), we get

a(2)
n =

n− 1
n2

Z a
(2)
n−1 +

1
2n2

[(2n− 1) k1 − λ1] a
(1)
n−1 (4.48)

+
1

2n2
[(2n− 1) k2 − λ2] a

(0)
n−1 +

1
2n2

a
(1)
n−3. (4.49)

For the series a(2) to be finite, it is simple to show that we must have
a

(2)
5 = 0, from which it follows that a

(2)
5+r = 0. From Eqs. (4.34), (4.37),

and (4.47), we have

a
(2)
0 = 0, (4.50)

a
(2)
1 =

1
2
(k2 − λ2), (4.51)

a
(2)
2 =

k2 − λ2

8
Z +

1
4Z4

, (4.52)

a
(2)
3 =

k2 − λ2

36
Z2 +

1
18Z3

+
1

36Z3

=
k2 − λ2

36
Z2 +

1
12Z3

, (4.53)

a
(2)
4 =

k2 − λ2

192
Z3 +

1
64Z2

− 1
32Z2

=
k2 − λ2

192
Z3 − 1

64Z2
, (4.54)

a
(2)
5 =

k2 − λ2

1200
Z4 − 1

400Z
+

1
200Z

=
k2 − λ2

1200
Z4 − 3

400Z
= 0, (4.55)
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from which
k2 − λ2 − 9

25
= 0. (4.56)

However, a relation similar to (4.56), in which the sign of k2 is preserved
and that of λ2 is reversed, holds:

k2 + λ2 − 9/25 = 0, (4.57)

so that
λ2 = 0, k2 = 9/25, (4.58)

and

a
(2)
1 =

9
2Z5

, a
(2)
2 =

11
8Z4

, a
(2)
3 =

1
3Z3

, a
(2)
1 =

1
32Z2

. (4.59)

The results obtained to second-order can then be summarized in the
following equations:

u = 1 − F

(
1

2Z2
ξ +

1
8Z

ξ2
)

+F 2
(

9
8Z5

ξ +
11

32Z4
ξ2 +

1
12Z3

ξ3 +
1

128Z2
ξ4

)
,

v = 1 + F

(
1

2Z2
η +

1
8Z

η2
)

+F 2
(

9
8Z5

η +
11

32Z4
η2 +

1
12Z3

η3 +
1

128Z2
η4

)
, (4.60)

√
−2E = Z + F 2 9

4Z5
,

E = − 1
2

Z2 − 9
4Z4

F 2,

λ =
1

Z2
F + 0F 2.

From Eqs. (4.24) and (4.29), to second order, the complete eigenfunction
is

ψ = exp
{
−

(
Z +

9
4Z5

F 2
)

ξ + η

r

}
u(ξ) v(η), (4.61)

where u and v are given by Eqs. (4.60). Using rectangular coordinates
and neglecting third-order terms in F , we have

ψ = exp
{
−

(
Z +

9
4Z5

F 2
)

r

} [
1 − F

(
1

Z2
x +

1
2Z

rx

)

+F 2
(

9
4Z5

r +
1

16Z4

) (
7r2 + 15x2

)
+

1
24Z3

(
r3 + 15rx2

)

+
1

8Z2
r2x2

)]
. (4.62)
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It is useful, also, to expand ψ in spherical functions. Denoting by θ
the angle between the position vector r and the x axis, we find (see the
next section)

ψ = exp
{
−

(
Z +

9
4Z5

F 2
)

r

}

×
[
1 + F 2

(
9r

4Z5
+

3r2

4Z4
+

r3

4Z3
+

r4

24Z2

)

−F

(
r

Z2
+

r2

2Z

)
P1(cos θ)

+F 2

(
5r2

8Z4
+

5r3

12Z3
+

r4

12Z2

)
P2(cos θ)

]
, (4.63)

or, neglecting third-order terms,

ψ = e−Zr

[
1 + F 2

(
3r2

4Z4
+

r3

4Z3
+

r4

24Z2

)

−F

(
r

Z2
+

r2

2Z

)
P1(cos θ)

+F 2

(
5r2

8Z4
+

5r3

12Z3
+

r4

12Z2

)
P2(cos θ)

]
. (4.64)

It is also simple (see the next section) to obtain an expression for ψ2 to
second-order in F :

ψ2 = e−2Zr

[
1 + F 2

(
11r2

6Z4
+

5r3

6Z3
+

r4

6Z2

)

−F

(
2r

Z2
+

r2

Z

)
P1(cos θ)

+F 2

(
23r2

12Z4
+

3r3

2Z3
+

r4

3Z2

)
P2(cos θ)

]
. (4.65)
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3. EXPANSION OF LEGENDRE
POLYNOMIALS IN THE INTERVAL
−1 ≤ x ≤ 1 4

1 = P0,

x = P1,

x2 =
2
3

P2 +
1
3

P0,

x3 =
2
5

P3 +
3
5

P1,

x4 =
8
35

P4 +
4
7

P2 +
1
5

P0,

. . .

xn =
∑

2α≤n

2n−2α (2n− 4α + 1)
(n− α)!n!

α! (2n− 2α + 1)!
Pn−2α(x).

4. MULTIPLICATION RULES FOR
LEGENDRE POLYNOMIALS

We have 5

4See Sec. 1.42.
5@ In the original manuscript, the explicit form of the products P2P3, P2P4, P3P1, P3P2,
P3P3, P3P4, P4P1, P4P2, P4P3, P4P4 are not reported. They are

P2P3 = P3P2 =
9

35
P1 +

4

15
P3 +

10

21
P5,

P2P4 = P4P2 =
2

7
P2 +

20

77
P4 +

5

11
P6,

P3P1 = P1P3,

P3P3 =
1

7
P0 +

4

21
P2 +

18

77
P4 +

100

231
P6,

P3P4 = P4P3 =
4

21
P1 +

2

11
P3 +

20

91
P5

175

429
P7,

P4P4 =
1

9
P0 +

100

693
P2 +

162

1081
P4 +

20

99
P6 +

490

1287
P8.
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P0 P1 P2 P3 P4

P0 P0 P1 P2 P3 P4

P1 P1
1

3
P0 +

2

3
P2

2

5
P1 +

3

5
P3

3

7
P2 +

4

7
P4

4

9
P3 +

5

9
P5

P2 P2
2

5
P1 +

3

5
P3

1

5
P0 +

2

7
P2 +

18

35
P4 P2P3 P2P4

P3 P3 P3P1 P3P2 P3P3 P3P4

P4 P4 P4P1 P4P2 P4P3 P4P4

5. GREEN FUNCTIONS FOR THE
DIFFERENTIAL EQUATION
y00 + (2/x − 1) y + φ(x) = 0

The differential equation

y′′ +
(

2
x
− 1

)
y = −φ(x), (4.66)

with boundary conditions

y(0) = y(∞) = 0, (4.67)

has solutions in the interval [0,∞) only if −φ(x) is orthogonal to the
solution χ of the homogeneous equation

χ′′ +
(

2
x
− 1

)
χ = 0, (4.68)

with boundary conditions analogous to (4.67). A non-vanishing (nor-
malized) solution of (4.68) is

χ = 2x e−x. (4.69)

Then it follows that, if φ(x) is an arbitrary continuous function, the
differential equation

y′′ +
(

2
x
− 1

)
y = −φ(x) + 4x e−x

∫ ∞

0
φ(x) x e−x dx (4.70)

has solutions satisfying the boundary conditions (4.67). We can set

y(x) =
∫

G(x, ξ) φ(ξ) dξ. (4.71)
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Both y and G(x, ξ) (viewed as functions of x for each value of ξ) are
defined apart from a function proportional to χ. We resolve this ambi-
guity by choosing G (and then y) to be orthogonal to χ. In this way, the
Green function G(x, ξ) is necessarily symmetric in x and ξ. If we define

L =
d2

dx2
+

(
2
x
− 1

)
, (4.72)

the Green function is seen to satisfy the differential equation

LG(x, ξ) = 4x e−x ξ e−ξ, (4.73)

and its first derivative must have a singularity for x = ξ in such a way
that

[
d
dx

G(x, ξ)
]

x=ξ+0
−

[
d
dx

G(x, ξ)
]

x=ξ−0
= − 1. (4.74)

Let us set
G(x, ξ) = 4ξ e−ξ p(x, ξ) (4.75)

and consider, for the moment, p as a function of x for constant ξ. From
Eq. (4.73), we have

L p = x e−x. (4.76)

The general solution of Eq. (4.76) is obtained by adding a particu-
lar solution of it to the general solution of the associated homogeneous
equation

Lp = 0. (4.77)

On the other hand, the general solution of Eq. (4.76) is a linear com-
bination of two independent solutions, one of which is χ defined in Eq.
(4.69); the other is, as well known,

χ1 = χ

∫ dx

χ2
= − ex + 2x e−x

∫ e2x

x
dx (4.78)

or, since we can arbitrarily fix the lower limit of the integral,

χ1 = 2x e−x
∫ x

0

e2x − 1
x

dx + 2x e−x log x − ex. (4.79)

A particular solution of Eq. (4.76), the one that vanishes for x = 0 along
with its first derivative, is

p0 =
1
2
x e−x

∫ x

0

e2x − 1
x

dx − 1
4
ex +

(
1
4

+
1
2
x − 1

2
x2

)
e−x. (4.80)
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It follows from Eq. (4.75) that the Green function can be cast in the
form

G(x, ξ) = 4ξ e−ξ p0(x) + ai(ξ) χ(x) + bi(ξ)χ1(x), (4.81)

where the index i takes the value 1 for x < ξ and the value 2 for x > ξ, so
that the problem is reduced to determining the quantities a1(ξ), b1(ξ),
a2(ξ), b2(ξ) which are constant with respect to x. These are deter-
mined by the boundary conditions G = 0 for x = 0 and x = ∞, by the
discontinuity condition (4.74) for x = ξ, and by the orthogonality condi-
tion between the Green function and the solution χ of the homogeneous
equation satisfying the boundary conditions. The condition G(0, ξ) = 0
implies that

b1 = 0. (4.82)

The condition G(∞, ξ) = 0 is satisfied when

b2 = − ξ e−ξ. (4.83)

From the condition (4.74), it follows that

(a1 − a2) χ′(ξ) + (b1 − b2) χ′1(ξ) = 1, (4.84)

that is, taking into account Eqs. (4.82) and (4.83),

a2 = a1 + ξ e−ξ χ′1(ξ)
χ′(ξ)

− 1
χ′(ξ)

; (4.85)

and, performing the calculation, we get

a2 = a1 + ξ e−ξ
∫ ξ

0

e2ξ − 1
ξ

dξ + ξ e−ξ log ξ − eξ

2
. (4.86)

In terms of the function a1 - yet to be determined - we have the follow-
ing expressions for the Green function for x < ξ and x > ξ, respectively:

G(x, ξ) = ξ e−ξ

[
2x e−x

∫ x

0

e2x − 1
x

dx − ex

+
(
1 + 2x − 2x2

)
e−x

]

+ 2 a1(ξ) x e−x, x < ξ; (4.87)

G(x, ξ) = x e−x

(
2ξ e−ξ

∫ ξ

0

e2ξ − 1
ξ

dξ − eξ

)

+ ξ e−ξ
(
1 + 2x − 2x2

)
+ 2ξ e−ξ x e−x (log ξ − log x)

+ 2 a1(ξ) x e−x, x > ξ. (4.88)
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We can now determine a1 through the orthogonality condition
∫

χ(x) G(x, ξ) dx = 0.

We find

a1 =
(

1
2

+
5
2
ξ − ξ2

)
e−ξ − C ξ e−ξ − ξ e−ξ log 2ξ, (4.89)

where C is the Euler constant. We find the final expressions for the
Green function by substitution in Eqs. (4.87) and (4.88):

G(x, ξ) = e−ξ e−x
(
ξ + x + (7− 2C) ξ x − 2 ξ2 x − 2 ξ x2

)

+ 2ξ e−ξ xe−x
∫ x

0

e2x − 1
x

dx

− ξ e−ξ ex − 2ξ e−ξ x e−x log 2ξ, x < ξ; (4.90)

G(x, ξ) = e−ξ e−x
(
ξ + x + (7− 2C) ξ x − 2 ξ2 x − 2 ξ x2

)

+ 2ξ e−ξ xe−x
∫ ξ

0

e2ξ − 1
ξ

dξ

− x e−x eξ − 2ξ e−ξ x e−x log 2x, x < ξ. (4.91)

Note that, as we expected, G(x, ξ) is symmetric in x and ξ, since Eq.
(4.91) can be obtained from Eq.(4.90) by the interchange x ↔ ξ.

6. ON THE SERIES EXPANSION OF THE
INTEGRAL LOGARITHM FUNCTION

The integral logarithm function is defined by the relation

Ei(−x) = −A(x), (4.92)

where 6

A(x) =
∫ ∞

x

e−ξ

ξ
dξ. (4.93)

For ξ > x we can expand the term 1/ξ in a power series using the
methods of finite difference calculus, by requiring that the first n terms

6This function is also known as the incomplete gamma function Γ(0, x).



334 ETTORE MAJORANA: NOTES ON THEORETICAL PHYSICS

of the expansion give the exact result for 1/ξ, where ξ = x, x+1, . . . , x+
n− 1. On setting

ξ = x + y, (4.94)

we find the formula

1
ξ

=
1
x
− y

x(x + 1)
+

y(y − 1)
x(x + 1)(x + 2)

− . . . , (4.95)

and Eq. (4.93) becomes

A(x) =
e−x

x


1 −

∫ ∞

0
y e−y dy

x + 1
+

∫ ∞

0
y (y − 1) e−y dy

(x + 1)(x + 2)
− . . .

. . . ± In

(x + 1)(x + 2)· · ·(x + n)
∓ . . .


 , (4.96)

where

In =
∫ ∞

0
y (y − 1) · · · (y − n + 1) e−y dy. (4.97)

We find

I1 = 1, I2 = 1, I3 = 2, I4 = 4, I5 = 14,
I6 = 38, I7 = 216, I8 = 600, . . . . (4.98)

On substituting in Eq. (4.96), we get

∫ ∞

x

e−ξ

ξ
dξ =

e−x

x

(
1 − 1

x + 1
+

1
(x + 1)(x + 2)

− 2
(x + 1)(x + 2)(x + 3)

+
4

(x + 1)(x + 2)(x + 3)(x + 4)

− 14
(x + 1)(x + 2)· · ·(x + 5)

+
38

(x + 1)(x + 2)· · ·(x + 6)

− 216
(x + 1)(x + 2)· · ·(x + 7)

+
600

(x + 1)(x + 2)· · ·(x + 8)
− . . .

)
. (4.99)

From this we can deduce the expansion of log (1 + y):

log (1 + y) = y − y2

4
+

2y3 − 3y2

36
− y4 − 4y3 + 4y2

96
+ . . . . (4.100)
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More generally, from Eq. (4.94), we obtain

log
(

1 +
y

x

)
=

y

x
− y2

2x(x + 1)
+

2y3 − 3y2

6x(x + 1)(x + 2)

− y4 − 4y3 + 4y2

4x(x + 1)(x + 2)(x + 3)
+ . . . . (4.101)

Let us put t = y/x and consider only n terms in the expansion (4.101)
by setting y = n− 1, so that x = (n− 1)/t except for the case n = 1, for
which we keep y arbitrary. We thus obtain the following formulae for
log (1 + t) with a decreasing degree of approximation:

n = 1 : log (1 + t) = t, (4.102)

n = 2 : log (1 + t) = t − t2

2(1 + t)
, (4.103)

n = 3 : log (1 + t) = t − t2

2 + t
+

t3

3(2 + t)(2 + 2t)
, (4.104)

n = 4 : log (1 + t) = t − 3t2

2(3 + t)
+

3t3

2(3 + t)(3 + 2t)

− 3t4

4(3 + t)(3 + 2t)(3 + 3t)
. (4.105)

For example, the above expressions give for log 2 (t = 1) and log 10
(t = 9), respectively:

n log 2 log 10

1 1.0000 9.00
2 0.7500 4.95
3 0.6944 2.74
4 0.6937 2.56

7. FUNDAMENTAL CHARACTERS OF THE
GROUP OF PERMUTATIONS OF F
OBJECTS

We have7

7@ In the following,P.N. denotes the number of “Partitio Numerorum”, that is, the number
of ways one can collect f objects. In the tables, the given “partitio” is stated in the first row
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f = 1 (P.N. = 1)

nk
Partitio →
Class ↓ 1

1 + (1) 1

f = 2 (P.N. = 2)

Partitio → 1+
nk Class ↓ 2 1

1+ (1)(2) 1 1
1− (12) 1 -1

f = 3 (P.N. = 3)
1+

Partitio → 2+ 1+
nk Class ↓ 3 1 1

1+ (1)(2)(3) 1 2 1
3− (12)(3) 1 0 -1
2+ (123) 1 -1 1

f = 4 (P.N. = 5)
1+

2+ 1+
Partitio → 3+ 2+ 1+ 1+

nk Class ↓ 4 1 2 1 1

1+ (1) . . . 1 3 2 3 1
6− (12) . . . 1 1 0 -1 -1
3+ (12)(34) 1 -1 2 -1 1
8+ (123) . . . 1 0 -1 0 1
6− (1234) 1 -1 0 1 -1

from the third column onwards. Instead, in the second column the classes of the cycles of
permutations of f objects are stated. Finally, in the first column the number of cycles of the
considered class are indicated. In each table, the characters corresponding to a given class
and “partitio” are shown from the third column on and from the second row downwards.
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f = 5 (P.N. = 7)
1+

2+ 1+
3+ 2+ 1+ 1+

Partitio → 4+ 3+ 1+ 2+ 1+ 1+
nk Class ↓ 5 1 2 1 1 1 1

1+ (1) . . . 1 4 5 6 5 4 1
10− (12) . . . 1 2 1 0 -1 -2 -1
15+ (12)(34) . . . 1 0 1 -2 1 0 1
20+ (123) . . . 1 1 -1 0 -1 1 1
20− (123)(45) 1 -1 1 0 -1 1 -1
30− (1234) . . . 1 0 -1 0 1 0 -1
24+ (12345) 1 -1 0 1 0 -1 1

f = 6 (P.N. = 11)
1+

2+ 1+
3+ 2+ 1+ 1+

4+ 3+ 1+ 2+ 2+ 1+ 1+
Partitio → 5+ 4+ 1+ 3+ 2+ 1+ 2+ 1+ 1+ 1+

nk Class ↓ 6 1 2 1 3 1 1 2 1 1 1

1+ (1) . . . 1 5 9 10 5 16 10 5 9 5 1
15− (12) . . . 1 3 3 2 1 0 -2 -1 -3 -3 -1
45+ (12)(34) . . . 1 1 1 -2 1 0 -2 1 1 1 1
15− (12)(34)(56) 1 -1 3 -2 -3 0 2 3 -3 1 -1
40+ (123) . . . 1 2 0 1 -1 -2 1 -1 0 2 1
120− (123)(45) . . . 1 0 0 -1 1 0 1 -1 0 0 -1
40+ (123)(456) 1 -1 0 1 2 -2 1 2 0 -1 1
90− (1234) . . . 1 1 -1 0 -1 0 0 1 1 -1 -1
90+ (1234)(56) 1 -1 1 0 -1 0 0 -1 1 -1 1
144+ (12345) . . . 1 0 -1 0 0 1 0 0 -1 0 1
120− (123456) 1 -1 0 1 0 0 -1 0 0 1 -1

Degrees of the irreducible representations and re-
ciprocal systems: 8

f = 2

2 1+1

1+1 2

1 1

8@ In the following tables the first row lists the irreducible representation considered, the
second row states the corresponding reciprocal system while the third one lists the degree of
the considered representation.
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f = 3

3 2+1 1+1+1

1+1+1 2+1 3

1 2 1

f = 4

4 3+1 2+2 2+1+1 1+1+1+1

1+1+1+1 2+1+1 2+2 3+1 4

1 3 2 3 1

f = 5

5 4+1 3+2 3+1+1

1+1+1+1+1 2+1+1+1 2+2+1 3+1+1

1 4 5 6

2+2+1 2+1+1+1 1+1+1+1+1

3+2 4+1 5

5 4 1

f = 6

6 5+1 4+2 4+1+1 3+3 3+2+1

1+1+1+1+1+1 2+1+1+1+1 2+2+1+1 3+1+1+1 2+2+2 3+2+1

1 5 9 10 5 16

3+1+1+1 2+2+2 2+2+1+1 2+1+1+1+1 1+1+1+1+1+1

4+1+1 3+3 4+2 5+1 6

10 5 9 5 1

f = 7

7 6+1 5+2 5+1+1

1+1+1+1+1+1+1 2+1+1+1+1+1 2+2+1+1+1 3+1+1+1+1

1 6 14 15
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4+3 4+2+1 4+1+1+1 3+3+1 3+2+2 3+2+1+1

2+2+1 3+2+1+1 4+1+1+1 3+2+2 3+3+1 4+2+1

14 35 20 21 21 35

3+1+1+1+1 2+2+2+1 2+2+1+1+1

5+1+1 4+3 5+2

15 14 14

2+1+1+1+1+1 1+1+1+1+1+1+1

6+1 7

6 1

8. EXPANSION OF A PLANE WAVE IN
SPHERICAL HARMONICS

The plane wave
u = eikz = eikr cos θ (4.106)

satisfies the differential equation

∇2 u + k2 u = 0. (4.107)

Each solution of Eq. (4.107) can be expressed in terms of linear combi-
nations of particular solutions

1√
ρ

In+1/2(ρ) ϕi
n(θ, φ) (4.108)

(ρ = kr; n = 0, 1, 2, . . .; i = −n,−n + 1, . . . , n), where In+1/2 denote
the Bessel functions of order n + 1/2 and ϕi

n a generic surface spherical
function of order n. The function u in Eq. (4.106) is symmetric along
the z axis, and only terms that depend on ρ and cos θ will appear in its
expansion:

u = eikz = eiρ cos θ =
∞∑

n=0

an√
ρ

In+1/2(ρ) Pn(cos θ), (4.109)

where Pn are the Legendre polynomials. In order to determine the con-
stants an, we can multiply each side of Eq. (4.109) by Pn(cos θ) and
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integrate over a sphere of radius r = ρ/k; dividing the result by 2πr2 we
get ∫ 1

−1
eiρt Pn(t) dt =

2
2n + 1

an√
ρ

In+1/2(ρ). (4.110)

We consider ρ to be a small quantity and expand the above expression
in powers of ρ. The first non-vanishing term on the l.h.s. is (see Sec.
4.3)

inρn

n!

∫ 1

−1
tn Pn(t) dt =

inρn

n!
2
3
·3
5
· · · n

2n− 1
· 2
2n + 1

=
2n+1n!

(2n + 1)!
in ρn, (4.111)

while on the r.h.s. we obtain

2
2n + 1

an√
ρ

1
(n + 1/2)!

(
ρ

r

)n + 1/2
=

2
2n + 1

√
2
π

an

1·3· · ·(2n + 1)
ρn

=
an

2n + 1

√
2
π

2n+1 n!

(2n + 1)!
ρn. (4.112)

Comparison with the previous expression gives

an = (2n + 1)
√

π

2
in. (4.113)

On substituting this result into Eq. (4.110), we obtain the following
remarkable relation:

In+1/2(ρ) =
√

ρ

2π
(−i)n

∫ 1

−1
eiρt Pn(t) dt. (4.114)

Examples:

I1/2(ρ) =

√
2

π ρ
sin ρ, (4.115)

I3/2(ρ) =

√
2

π ρ

(
− cos ρ +

1
ρ

sin ρ

)
. (4.116)

On substituting Eq. (4.113) in Eq.(4.109), we find the expansion of the
plane wave:

eikz =
∞∑

n=0

2n + 1
ρ

√
πρ

2
in In+1/2(ρ) Pn(cos θ). (4.117)
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Let us write Eq. (4.114) in a form which is similar to that of Eq.
(4.110):

∫ 1

−1
eiρt Pn(t) dt =

√
2π

ρ
in In+1/2(ρ) (4.118)

and expand in powers of ρ. It is simple to see that only the terms with
ρn+2α (α = 0, 1, 2, . . .) are different from zero. Equating the coefficients
of ρn+2α on both sides, we find

in+2α

(n + 2α)!

∫ 1

−1
tn+2α Pn(t) dt =

√
2π in (−1)α

α! (n + α + 1/2)! 2n+2α+1/2
. (4.119)

Simplifying this expression

1
(n + 2α)!

∫ 1

−1
tn+2α Pn(t) dt =

√
π

α! (n + α + 1/2)! 2n+2α (4.120)

and noting that
(

n + α +
1
2

)
! =

√
π

2
·3
2
·5
2
· · ·

(
n + α +

1
2

)

=
√

π

2
1

2n+α
·3·5·7· · · (2n + 2α + 1)

=
√

π

2
(2n + 2α + 1)!
(n + α)! 22n+2α

, (4.121)

we get
∫ 1

−1
tn+2α Pn(t) dt = 2n+1 (n + α)! (n + 2α)!

α! (2n + 2α + 1)!
. (4.122)

Replacing n by n− 2α in Eq. (4.122), we obtain
∫ 1

−1
tn Pn−2α(t) dt = 2n−2α+1 (n− α)!n!

α! (2n− 2α + 1)!
(4.123)

(with 2α ≤ n); and, using the normalization condition for the Legendre
polynomials, ∫ 1

−1
P 2

n(t) dt =
2

2n + 1
,

we deduce the expansion of tn (n− 1 ≤ t ≤ 1) in terms of the Legendre
polynomials:

tn =
∑

2α≤n

2n−2α (2n− 4α + 1)
(n− α)!n!

α! (2n− 2α + 1)!
Pn−2α(t). (4.124)
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9. THE RUTHERFORD FORMULA
DEDUCED FROM CLASSICAL
MECHANICS

Let us consider a uniform beam of particles with charge Z ′e and mass
m moving along the z axis with a speed v. Let io/v be the number of
particles per unit volume, so that io is the flux per unit surface (normal
to the z axis) and per unit time. Moreover, let us consider a scattering
body of charge Ze placed at the origin of the coordinate system; the
problem is to determine the number of scattered particles at the angle
θ per unit time and solid angle. This number can be written as f(θ) io,
where f(θ) has the dimension of a surface (cross section). To solve the
problem, let us note that each particle moves in a plane containing the
z axis. Using polar coordinates in this plane, we have

ρ̈ − ρ θ̇2 =
k

ρ2
, k =

ZZ ′e2

m
;

ρ2θ̇ = c.
(4.125)

Eliminating θ from these expressions, we get

ρ̈ =
k

ρ2
+

c2

ρ3
. (4.126)

Introducing the new variable y = 1/ρ, we find

ρ =
1
y
, (4.127)

ρ̇ = − 1
y2

ẏ = − dy

dθ
ρ2 θ̇ = − c

dy

dθ
, (4.128)

ρ̈ = − c
d2y

dθ2
θ̇ = − c2 y2 d2y

dθ2
. (4.129)

On substituting into Eq. (4.126), we obtain the equation

d2y

dθ2
+ y +

k

c2
= 0, (4.130)

whose general solution is

1
ρ

= y = − k

c2
+ a cos θ + b sin θ. (4.131)

The arbitrary constants will be determined by the initial conditions. For
θ = π we have ρ = ∞, since we consider the case in which the particles
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come from −∞ along the z axis. This implies the condition

a = − k/c2. (4.132)

Moreover, according to the previous hypothesis, for θ = π we will also
have ρ̇ = −v and, since from Eq. (4.128) we have ρ̇ = −c dy/dθ, it
follows that

c b = − v or b = − v/c, (4.133)

so that Eq. (4.131) becomes

1
ρ

= − k

c2
− k

c2
cos θ − v

c
sin θ. (4.134)

This is the equation of an hyperbole with asymptotes along the directions
θ1 = π and θ2 = −2 arctan (k/vc). We still have to determine the
geometric meaning of c, which can be deduced from the second equation
(4.125); however, we prefer to start from Eq. (4.134) and introduce the
rectangular coordinates z = ρ cos θ and ξ = ρ sin θ in the orbital plane,
so that Eq. (4.134) becomes

1 − k

c2

√
z2 + ξ2 +

k

c2
z +

v

c
ξ = 0. (4.135)

From this we find

z2 + ξ2 =

(
z +

vc

k
ξ +

c2

k

)2

, (4.136)

that is,
(

1 − v2c2

k2

)
ξ2 − 2

vc

k
ξ z − 2

c2

k
z − 2

vc3

k2
ξ − c4

k2
= 0, (4.137)

from which we get the equation of the first asymptote:

ξ = − c/v. (4.138)

The absolute value of ξ equals the initial value of the distance of the
particle from the z axis (along which the particle moves). If we choose
the direction of the ξ axis in such a way that ξ is initially positive (and
thus, assuming ZZ ′ > 0, during the entire motion), we have

c = − v δ. (4.139)

From the above remark on the direction of the second asymptote, the
angular deflection of the particle will be

θ = 2 arctan(k/v2 δ). (4.140)
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The scattering angle θ increases with decreasing δ, and the particles
scattered at angles greater than θ are those coming, for high negative
values of z, from a circle of radius δ normal to the z axis. The number
of such particles per unit time is

n = π δ2 io, (4.141)

or, after substituting δ from (4.140),

n =
π k2 io

v4 tan2 θ/2
. (4.142)

The number of particles scattered per unit solid angle will be

dn

dω
=

dn

−2π sin θ dθ

and, since dn/dω = f(θ) io, differentiations of Eq. (4.142) and division
by −2πio sin θdθ, give

f(θ) =
Z2 Z ′2 e4

4m2 v4 sin4 θ/2
=

Z2 Z ′2 e4

16W 2 sin4 θ/2
, (4.143)

where W is the kinetic energy of the free particle. On setting

W =
Z Z ′ e2

l
, (4.144)

l being a length (positive or negative according to the sign of ZZ ′), and
substituting in Eq. (4.143), we obtain the following remarkable formula
for the cross section:

f(θ) =
l2

16 sin4 θ/2
. (4.145)

We can also define a different cross section as the ratio between the
number n of particles scattered at angles greater than θ in unit time and
io. From Eq. (4.142), we have

n =
π Z2 Z ′2 e4 io

m2 v4 tan2 θ/2
=

π Z2 Z ′2 e4 io
4W 2 tan2 θ/2

=
π l2 io

4 tan2 θ/2
, (4.146)

from which it follows that

F (θ) =
π l2

4 tan2 θ/2
. (4.147)

The relation between the two cross sections is obviously the following:

F ′(θ) = − 2π sin θ f(θ). (4.148)
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Table 4.1. The scattering angle θ as a function of the parameter ε (see text).

ε θ

0 0
1 arctan 4/3
2 π/2
3 π − arctan 12/5
4 π − arctan 4/3
5 π − arctan 21/20

The relation between θ and δ expressed by Eq. (4.140) can be cast in
the form

tan
θ

2
=

ε

2
, (4.149)

where ε = l/δ.

10. THE RUTHERFORD FORMULA
DEDUCED AS A FIRST
APPROXIMATION TO THE BORN
METHOD

Let us consider the plane wave 9

ψ0 = e+iγz, (4.150)

representing a uniform flux of particles along the direction of the z axis.
Denoting with m their mass, each particle has the kinetic energy

W =
h̄2

2m
γ2. (4.151)

Let us consider the scattering center of charge Ze at the origin of the
coordinate system, and let Z ′e be the charge of the scattered particles.
If the energy has the form given in Eq.(4.151), the wavefunction obeys
the differential equation

∇2 ψ +

(
γ2 − 2m2 k

h̄2 r

)
ψ = 0, k =

ZZ ′e2

m
. (4.152)

9@ In the original manuscript, the fundamental commutation relation pq−qp = h̄/i is written
near Eq.(4.150). As already stated, here and in the following we prefer to use the modern
notation h̄ in place of h/2π.
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If one assumes that the scattering potential is small, one can consider
(4.150) as the unperturbed eigenfunction and set

ψ = ψ0 + ψ1, (4.153)

ψ1 being a small correction term. On substituting into Eq. (4.152) and
neglecting second-order terms, to first approximation we get

∇2 ψ1 + γ2 ψ1 =
2m2 k

h̄2 r
eiγz. (4.154)

In order to make the solution of Eq. (4.154) unique, we have to re-
quire: (1) that ψ1 vanishes at infinity, i.e., ψ must coincide with the
unperturbed ψ0 for large distances from the scattering center; (2) for
its phenomenological meaning, ψ1 must represent a diverging spherical
wave. The desired solution can be obtained through the Green method,
using - eiγr/4πr as characteristic function. However, in such a way, con-
vergence problems arise. In order to avoid these, we will assume that the
scattering force acts only for distances less than R, and let R → ∞ at
the end of calculations. Then, Eq. (4.154) must be rewritten as follows:

∇2 ψ1 + γ2 ψ1 =
2m2 k

h̄2

(
1
r
− 1

R

)
eiγz, for r < R,

∇2 ψ1 + γ2 ψ1 = 0, for r > R.

(4.155)

Let us write (4.155) in a slightly different form using the velocity of
the free particles

v = γ
h̄

m
. (4.156)

We then have

∇2 ψ1 + γ2 ψ1 =
2γ2 k

v2

(
1
r
− 1

R

)
eiγz, for r < R,

∇2 ψ1 + γ2 ψ1 = 0, for r > R;

(4.157)

and, by using the Green method,

ψi(P1) =
1
4π

∫

S

2γ2 k

v2

(
1
r
− 1

R

)
1

|r1 − r| e
iγ(|r1 − r|+ z) dτ,

(4.158)
where the integral has to be calculated inside a sphere of radius R. (Let
r1, θ1, φ1 be the coordinates of P1 and r, θ, φ those of an arbitrary point
of the integration domain.) Let us assume that r1 À R and neglect in
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ψ1 terms of order 1/r2; in this way we can approximate the quantity
1/|r1 − r| by 1/r1 and Eq. (4.158) becomes

ψ1(P1) =
γ2 k

2π v2 r1

∫

S

(
1
r
− 1

R

)
eiγ(|r1 − r|+ z) dτ. (4.159)

Note that we can neglect terms of order 1/r inside the integral; thus we
can set

|r1 − r| ' r1 − r (cos θ1 cos θ + sin θ1 sin θ cos(φ1 − φ)) (4.160)

and, since z = r cos θ, the integral appearing in (4.159) becomes

eiγr1

∫

s

(
1
r
− 1

R

)
eiγr ((1− cos θ1) cos θ − sin θ1 sin θ cos(φ1 − φ)) dτ.

(4.161)
We can set φ1 = 0 without restrictions, but the integral is not really

simplified. It is useful to choose a different system of polar coordinates,
using the outward bisector of the angle between r and r1 as the polar
axis. The plane containing the z axis and the point P1 is the meridian
plane (Φ = 0); the polar coordinates in this plane will be

r1, Θ1 =
π

2
− θ1

2
, Φ1 = 0, (4.162)

and, moreover,

cos θ = − sin(θ1/2) cosΘ + cos(θ1/2) cos Φ sin Θ, (4.163)

so that

z = − r sin(θ1/2) cos Θ + r cos(θ1/2) cos Φ sin Θ, (4.164)
|r1 − r| ' r1 − r (sin(θ1/2) cos Θ + cos(θ1/2) cosΦ sinΘ) , (4.165)
z + |r1 − r| ' r1 − 2 sin(θ1/2) r cosΘ. (4.166)

Substitution into the integral in Eq. (4.159) gives

eiγr1

∫

S

(
1
r
− 1

R

)
e−2iγr sin(θ1/2) cos θ dτ. (4.167)

Using dτ = r2dr d cosΘ dΦ and integrating over Φ, we get

2π eiγr1

∫ R

0
r2

(
1
r
− 1

R

)
dr

∫ 1

−1
e−2iγr sin(θ1/2) cos θ d cos Θ

=
2π eiγr1

γ sin(θ1/2)

∫ R

0
r

(
1
r
− 1

R

)
sin (2 γ r sin(θ1/2)) dr

=
2π eiγr1

γ sin(θ1/2)

[
1

2γ sin(θ1/2)

(
1 − sin (2 γ R sin(θ1/2))

2 γ R sin(θ1/2)

)]
. (4.168)
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On taking the limit R → ∞, the term with R in the denominator van-
ishes (assuming θ1 6= 0); substituting in Eq. (4.159) and replacing θ1

with θ, we then have

ψ1(P1) =
k eiγr1

2 v2 r1 sin2(θ/2)
. (4.169)

The relevant quantity is the ratio

i1
i0

=
|ψ1|2
|ψ0|2

between the scattered wave and the incident wave. Using the expression
(4.150) for ψ0 and introducing the energy of the particle instead of its
speed, we find

i1 =
Z2 Z ′2 e4 i0

16 W 2 r2
1 sin4(θ/2)

. (4.170)

This formula coincides with that in Eq. (4.143), considering that the
cross section introduced in the previous section by definition is

f(θ) = r2
1

i1
i0

. (4.171)

11. THE LAPLACE EQUATION

Let us consider the differential equation

u′′ +
(

δ0 +
δ1

r

)
u′ +

(
ε0 +

ε1
r

)
u = 0 (4.172)

and apply the Laplace transformation

u =
∫

L
f(z) ezr dz. (4.173)

We have

u′ =
∫

L
z f(z) ezr dz, (4.174)

u′′ =
∫

L
z2 f(z) ezr dz. (4.175)
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On substituting into Eq.(4.172), we deduce

0 =
∫

L

[
z2 f(z) ezr +

(
δ0 +

δ1

r

)
z f(z) ezr

+
(

ε0 +
ε1
r

)
f(z) ezr

]
dz; (4.176)

and, multiplying the previous equation by r and noting that

r ezr =
d
dz

ezr,

we find

0 =
∫

L

[
δ1 z f(z) ezr + ε1 f(z) ezr + z2 f(z)

d
dz

ezr

+ δ0 z f(z)
d
dz

ezr + ε0 f(z)
d
dz

ezr
]

dz

=
∫

L

[
δ1 z f(z) + ε1 f(z)

− d
dz

(
z2 f(z) + δ0 z f(z) + ε0 f(z)

)]
ezr dz

+
∫

L

d
dz

(
z2 f(z) ezr + δ0 z f(z) ezr + ε0 f(z) ezr

)
dz.

Let us choose an integration path in such a way that the quantity
(
z2 f(z) + δ0 z f(z) + ε0 f(z)

)
ezr (4.177)

takes the same value at the integration limits. In order to satisfy Eq.
(4.173), the following differential equation must hold:

δ1 z f(z) + ε1 f(z) − d
dz

(
z2 f(z) + δ0 z f(z) + ε0 f(z)

)
= 0.

(4.178)
Equation (4.178) can be cast in the form

f ′(z)
f(z)

=
(δ1 − 2)z + ε1 − δ0

z2 + δ0z + ε0
=

β1

z − c1
+

β2

z − c2
, (4.179)

where c1 and c2 are the roots of the equation

z2 + δ0 z + ε0 = 0. (4.180)

From Eq. (4.179) it follows that

β1 + β2 = δ1 − 2, (4.181)
β1 c2 + β2 c1 = δ0 − ε1, (4.182)
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from which we get

β1 =
c1δ1 − 2c1 − δ0 + ε1

c1 − c2
,

β2 =
c2δ1 − 2c2 − δ0 + ε1

c2 − c1
,

(4.183)

or, noting that δ0 = −(c1 + c2) from (4.180),

β1 =
ε1 + δ1c1

c1 − c2
− 1, β2 =

ε1 + δ1c2

c2 − c1
− 1. (4.184)

On setting, for simplicity

β1 = α1 − 1, β2 = α2 − 1, (4.185)

we find
β1 =

ε1 + δ1c1

c1 − c2
, β2 =

ε1 + δ1c2

c2 − c1
. (4.186)

On integrating Eq. (4.179), we obtain

f(z) = (z − c1)
α1 − 1 (z − c2)

α2 − 1 . (4.187)

Then the integral representation (4.173) takes the form

u =
∫

L
ezr (z − c1)

α1 − 1 (z − c2)
α2 − 1 dz, (4.188)

and the condition that must be satisfied by the integration path L so
that the quantity in Eq. (4.177) assumes the same value at both ends
of the integration interval, can be cast in the simple form

∫

L

d
dz

(
ezr (z − c1)

α1 (z − c2)
α2

)
dz = 0. (4.189)

12. POLARIZATION FORCES BETWEEN
HYDROGEN ATOMS

In the following we adopt the usual electronic system of units, with
h̄ = e = m = 1 and the energy unit e2/a0 = 2Ry. Let us consider two
hydrogen atoms placed at a large distance R apart (R is normalized to
the Bohr radius). Since the eigenfunctions of the two atoms fall off expo-
nentially with distance, we can assume that the two atoms are perfectly
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separated and that their size is small compared with R. These assump-
tions are quite reasonable, given that we are interested in studying the
interaction between these atoms and this declines as a finite negative
power of R. In particular, there is no need for a distinction between
the symmetric (with respect to the two electrons) and the antisymmet-
ric solutions (given their mass, we consider fixed protons). In fact, the
separation between ortho-states and para-states decreases exponentially
with R. Since the atoms are neutral, in first approximation the interac-
tion is zero; we then calculate the second approximation using the Ritz
method. The unperturbed wavefunction of the two electrons is, apart
from a normalization factor,

ψ0 = e−(r1 + r2), (4.190)

where r1 is the distance of the first electron from the first nucleus, and
r2 is that of the second electron from the second nucleus. Thus ψ0 is
the product of the eigenfunctions of the two electrons; this is because, in
this limit, no resonance occurs. Note that the correct eigenfunctions are
obtained from ψ0 by interchanging r1 and r2 and taking the sum (sym-
metric eigenfunction) or the difference (antisymmetric eigenfunction) of
the two expressions. In our units, the unperturbed Hamiltonian is given
by

H = − 1
2
∇2

1 −
1
2
∇2

2 −
1
r1
− 1

r2
. (4.191)

The perturbation arising from the coexistence of two atoms comes from
their dipole interactions and, for large R, is

δH = − 2x1x2 − y1y2 − z1z2

R3
, (4.192)

where the meaning of each quantity is obvious. We will determine the
perturbed eigenfunction by setting

ψ = ψ0 + c δH ψ0, (4.193)

where c is a constant to be determined. To this end, let us consider the
mean energy

W =
∫

ψ (H + δH) ψ dτ

/∫
ψ2 dτ. (4.194)

On noting that Hψ0 = −ψ0 and using
∫

ψ2
0 δH dτ = 0, (4.195)



352 ETTORE MAJORANA: NOTES ON THEORETICAL PHYSICS

∫
(δH)2 ψ2

0 dτ =
6

R6

∫
ψ2

0 dτ, (4.196)
∫

(δH)3 ψ2
0 dτ = 0, (4.197)

∫
ψ0 (δH) H (δH) ψ0 dτ = −

∫
(δH)2 ψ2

0 dτ

+
∫

ψ0 (δH) (H (δH) − (δH)H) ψ0 dτ = 0, (4.198)

by simple calculations, it follows that

W = − 1 − 12c/R6

1 + 6c2/R6
. (4.199)

In our limit R →∞ we thus have

W = − 1 +
12
R6

c +
6

R6
c2. (4.200)

From the condition dW/dc = 0, we deduce that c = −1, so that

W = − 1 − 6/R6. (4.201)

In regular units our method then yields the expression −6e2/a0R
6 for

the potential energy of the polarization forces; this is quite a good result
compared to the exact expression (−6.47e2/a0R

6) deduced by Landau
with a different method. Note that, according to a known theorem on
the minimization of the energy of a system in its ground state, our
method gives a value exceeding the exact value. On setting c = −1 in
Eq. (4.193), the perturbed eigenfunction is approximately given by

ψ = e−(r1 + r2) + (1/R3)(2x1x2 − y1y2 − z1z2) e−(r1 + r2). (4.202)

Obviously, this approximation is worse than that for the eigenvalue.

13. INTEGRAL REPRESENTATION OF THE
BESSEL FUNCTIONS

The differential equation obeyed by the Bessel functions,

y′′ +
1
x

y′ +

(
1 − λ2

x2

)
y = 0, (4.203)
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can be simplified by setting

y = xλ u. (4.204)

Indeed, substituting in Eq. (4.203) and dividing by xλ, we obtain

u′′ +
2λ + 1

x
u′ + u = 0. (4.205)

This is a particular case of the Laplace equation (4.172) with δ0 = 0,
δ1 = 2λ + 1, ε0 = 1, and ε1 = 0. We can thus use the expansion (4.188),
with constants given by [see Eqs. (4.180) and (4.186)]:

c1 = i, c2 = −i, α1 = α2 =
2λ + 1

2
. (4.206)

Introducing an arbitrary multiplicative constant, we write

u = k

∫

L
ezx

(
z2 + 1

)λ− 1/2
dz, (4.207)

subject to the condition
[
ezx

(
z2 + 1

)λ + 1/2
]B

A

= 0, (4.208)

where A and B are the integration limits. The points +i and −i are
bifurcation points of the integrand function; on setting z = it, they
assume the values ±1 and (4.207) and (4.208) become

u = k

∫

C
eitx

(
t2 − 1

)λ− 1/2
dt, (4.209)

[
eitx

(
t2 − 1

)λ + 1/2
]

C

= 0. (4.210)

In order to define the quantity
(
t2 − 1

)λ+1/2 in the complex plane, we
must give a univocal definition of log(t2 − 1).

To this end, let us divide the complex plane with two half-lines starting
from the bifurcation points ±1, and extending parallel to the positive
imaginary axis, and define log(t2 − 1) as positive (real) for t > 1, while
in the other cases it takes the values obtained by requiring continuity
without crossing the bifurcation lines. Then, let us define the Hankel
functions H1

λ:

H1
λ =

Γ (1/2− λ) (1/2x)λ

π i Γ (1/2)

∫
eitx

(
t2 − 1

)λ− 1/2
dt. (4.211)
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- 1

H
2

λ

+ 1

H
1

λ

Fig. 4.1. The paths in the complex plane used to define the Hankel functions (see
text).

Since this function satisfies the condition in (4.210), H1
λ will be a solution

of Eq. (4.203). Similarly, we define the function H2
λ on the path starting

from −1. For real x we have H1
λ = H1∗

λ and, in general, as can be
deduced from the behavior for x → 0:

Iλ =
1
2
(H1

λ + H2
λ), Nλ =

1
2i

(H1
λ − H2

λ), (4.212)

where Iλ and Nλ are the Bessel and Neumann functions, respectively.
For real x, it follows that

H1
λ(x) = Iλ(x) + i Nλ(x); (4.213)

thus Iλ and Nλ are two real solutions of Eq. (4.203), the first one being
regular for x = 0, while the sum of the squares of the two is regular for
x →∞.

We now calculate the asymptotic behavior of H1
λ(x) for x →∞ (real

x). Let us set

t = 1 + i
s

x
, (4.214)

t2 − 1 = 2i
s

x
− s2

x2
, (4.215)

where s goes from ∞ to 0 and then from 0 to ∞. Given the above
conventions, in the first part of the path the quantity log(t2 − 1) will
take its principal value decreased by 2π, while in the second part it will
assume its principal value (that is, the absolute value of imaginary part
lower than π). After obvious manipulations, one finds

H1
λ(x) =

√
2

πx

exp {i (x− λπ/2− π/4)}
Γ (λ + 1/2)
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×
∫ ∞

0
e−s sλ− 1/2

(
1 +

is

2x

)λ− 1/2
ds. (4.216)

For x →∞, we obtain the asymptotic behavior

H1
λ(x) ∼

√
2

πx
exp {i (x− λπ/2− π/4)} . (4.217)

14. CUBIC SYMMETRY

The group of the 24 (proper) rotations that transform the x, y, z axes
into themselves (except for the order and the direction) is holomorphic to
the group of permutations of 4 objects. The holomorphic correspondence
can be established in the following way:

I - Identity (1+)
Direction cosines Rotation Permutation
of the rotation angle

0 identity

II - Class 01 (6−)
Direction cosines Rotation Permutation
of the rotation angle

0 1/
√

2 1/
√

2

1/
√

2 0 1/
√

2

1/
√

2 1/
√

2 0

0 1/
√

2 −1/
√

2

−1/
√

2 0 1/
√

2

1/
√

2 −1/
√

2 0

180o

180o

180o

180o

180o

180o

(14)
(24)
(34)
(23)
(31)
(12)

III - Class 02 (3+)
Direction cosines Rotation Permutation
of the rotation angle

1 0 0
0 1 0
0 0 1

180o

180o

180o

(14) (23)
(24) (31)
(34) (12)
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IV - Class 101 (8+)
Direction cosines Rotation Permutation
of the rotation angle

1/
√

3 1/
√

3 1/
√

3

1/
√

3 1/
√

3 1/
√

3

120o

240o
(123)
(321)
(234)
(314)
(124)
(324)
(134)
(214)

V - Class 0001 (6−)
Direction cosines Rotation Permutation
of the rotation angle

(1234)
(2314)
(3124)
(3214)
(1324)
(2134)

Since the considered group is equivalent to the group of permutations
of 4 objects, it has 5 irreducible representations χs (s = 1, 2, 3, 4, 5),
whose characters are given in Sec. 4.7 (f = 4). An irreducible repre-
sentation Dj (with integer j) of the complete group of spatial rotations
is also a (reducible) representation of the considered group. If ns is the
mean value of χj ·χ∗s over the elements of this group, the above-mentioned
representation can be reduced to ns representations χs. The characters
Dj are given by sin(2j + 1)ω/ sinω, where ω = α/2 is half of the rota-
tion angle (see Sec. 3.20). Then, the values of χj for the 5 classes of the
group under consideration are, respectively,

2 j + 1, (−1)j , (−1)j ;

1 − rest of
j

3
, 1 + rest of

j

2
− rest of

j

4
.

We can now evaluate the frequency ns of each irreducible representa-
tion; keeping the same order as in the table of Sec. 4.7, for f = 4, we
find

n1 =
j

12
+ 1 − 1

2

(
rest of

j

2

)
− 1

3

(
rest of

j

3

)

− 1
4

(
rest of

j

4

)
, (4.218)
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n2 =
j

4
− 1

2

(
rest of

j

2

)
+

1
4

(
rest of

j

4

)
, (4.219)

n3 =
j

6
− 1

2

(
rest of

j

2

)
+

1
3

(
rest of

j

3

)
, (4.220)

n4 =
j

4
+

(
rest of

j

2

)
− 1

4

(
rest of

j

4

)
, (4.221)

n5 =
j

12
− 1

3

(
rest of

j

3

)
+

1
4

(
rest of

j

4

)
. (4.222)

Noting that the degrees of the irreducible representations are 1,3,2,3,1,
respectively, we obviously have

n1 + 3n2 + 2n3 + 3n4 + n5 = 2 j + 1. (4.223)

We observe that, as in the normal representation, for large j the frequen-
cies of appearance of the irreducible representations are proportional to
their degrees. Moreover, if the values of ns for a given value of j are
known, we can obtain the values corresponding to j + 12q from the
following scheme:

j′ = j + 12 q

n′1 = n1 + 1·q
n′2 = n2 + 3·q
n′3 = n3 + 2·q
n′4 = n4 + 3·q
n′5 = n5 + 1·q

where the coefficients of q are exactly the degrees of the irreducible
representations. It is then sufficient to evaluate only the values of ns

from j = 0 to j = 11. We summarize the results in the following table.

j n1 n2 n3 n4 n5

0 1 0 0 0 0
1 0 0 0 1 0
2 0 1 1 0 0
3 0 1 0 1 1
4 1 1 1 1 0
5 0 1 1 2 0
6 1 2 1 1 1
7 0 2 1 2 1
8 1 2 2 2 0
9 1 2 1 3 1
10 1 3 2 2 1
11 0 3 2 1 1
12 1+1 0+3 0+2 0+3 0+1
13 0+1 0+3 0+2 1+3 0+1
. . . . . . . . . . . . . . . . . .
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15. FORMULAE

(1) Volume and surface area of an n-dimensional sphere of radius R:

Vn =
πn/2

(n/2)!
Rn,

Sn =
n

R
Vn = n

πn/2

(n/2)!
Rn−1 =

2π

R
Vn−2.

(4.224)

n Vn/Rn Vn/Vn−1 Sn/Rn−1 Sn/Sn−1

1 2 2

2 π
1

2
π 2π π

3
4

3
π

4

3
4π 2

4
1

2
π2 3

8
π 2π2 1

2
π

5
8

15
π2 16

15

8

3
π2 4

3

6
1

6
π3 5

16
π π3 3

8
π

Vn =
R

2π
Sn+2, Sn =

2π

R
Vn−2; (4.225)

Vn =
R

n
Sn, Sn =

n

R
Vn; (4.226)

Vn =
2π

n
Vn−2, Sn =

2π

n− 2
Sn−2. (4.227)

(2) Let a and b be integer or half-integer positive semi-definite numbers
and c one of the following numbers:

c = a + b, a + b − 1, . . . , |a − b|. (4.228)
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The following identity holds:

a+b−c∑

s=0

(c + a− b + s)! (2b− s)!
s! (a + b− c− s)!

=
(a + b + c + 1)! (c + a− b)! (c + b− a)!

(2c + 1)! (a + b− c)!
. (4.229)

The r.h.s. of Eq. (4.229) - as well as the l.h.s - is symmetric under
the change a → b. This can be tested by changing s → a+b−c−s.
For simplicity let us denote the r.h.s. of Eq. (4.229) by f(a, b, c)
and assume that the identity is true for a given value a (and values
lower than a); then we shall prove that it also holds for a + 1/2.
Indeed, we have

f (a + 1/2, b, c + 1/2)

=
a+b−c∑

s=0

(c + a− b + s + 1)
(c + a− b + s)! (2b− s)!

s! (a + b− c− s)!

= (c + a− b + s) f(a, b, c)

+
a+b−c−1∑

s=0

(c + a− b + 1 + s)! (2b− 1− s)!
s! (a + b− 1− 1− s)!

= (c + a− b + s) f(a, b, c) + f (a, b− 1/2, c + 1/2) . (4.230)

On substituting the l.h.s. of Eq. (4.229) into Eq. (4.230), we
immediately see that the identity is true also for f(a +1/2, b, c+
1/2). If the condition (4.228) is not satisfied by one of the terms of
its l.h.s., we can set f(a, b, c) = 0, and thus (4.230) is again true. To
complete the demonstration of the identity (4.229) it is sufficient
to prove that it holds also for a = 0 and, as a consequence, b = c.
In such a case, the sum in Eq. (4.229) reduces to (2c)!, which is
also the value of the l.h.s.

16. PLANE WAVES IN THE DIRAC THEORY

The first and second pair of components of the Dirac wavefunction ψ are
relativistic invariants. By choosing the components in such a way that
the equation (

W

c
+ ρ3 (σ·p) + ρ1 mc

)
ψ = 0 (4.231)
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is satisfied, for given values of px, py, pz we have two positive waves (i.e.,
W/c =

√
p2 + m2c2) and two negative waves (i.e., W/c = −√

p2 + m2c2).
At a given point we can set

ψ′ = 1·ψ1 + 0·ψ2 − 1
mc

(
W

c
+ pz

)
ψ3 − 1

mc
(px + ipy) ψ4,

ψ′′ =
1

mc
(px − ipy) ψ1 − 1

mc

(
W

c
+ pz

)
ψ2 + 0·ψ3 + 1·ψ4,

(4.232)
so that positive waves occur for W > 0 and negative waves for W < 0.
The waves are orthogonal to each other and, furthermore, the transi-
tion current between the positive waves or between the negative ones
vanishes.

Let us now choose the components of ψ in such a way that the original
Dirac equation holds instead of Eq. (4.231) 10:

(
W

c
+ ρ1 (σ·p) + ρ3 mc

)
ψ = 0 (4.233)

(ψ1 and ψ2 are the small components for small velocities, while ψ3 and
ψ4 are the large ones). At a given spatial point and instant of time, we
can set

ψ′ = − pz

W/c + mc
ψ1 − px + ipy

W/c + mc
ψ2 + 1·ψ3 + 0·ψ4,

ψ′′ = − px − ipy

W/c + mc
ψ1 +

pz

W/c + mc
ψ2 + 0·ψ3 + 1·ψ4;

(4.234)

and for W/c = ±√
p2 + m2c2 we have positive and negative waves, re-

spectively.
On setting

φ1 = (1 , 0 , 0 , 0), φ2 = (0 , 1 , 0 , 0),
φ3 = (0 , 0 , 1 , 0), φ4 = (0 , 0 , 0 , 1)

in the representation associated with Eq. (4.231), so that

ψ = (ψ1, ψ2, ψ3, ψ4) = ψ1 φ1 + ψ2 φ2 + ψ3 φ3 + ψ4 φ4,

and, in the same way,

ψ̃ =
(
ψ̃1, ψ̃2, ψ̃3, ψ̃4

)
= ψ̃1 φ̃1 + ψ̃2 φ̃2 + ψ̃3 φ̃3 + ψ̃4 φ̃4,

10For p = 0, the first pair of components of ψ represents the negative states, the second pair
the positive states
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in the representation of Eq. (4.233), the relations between the eigen-
functions φ and φ̃ will read (except for a phase factor) as follows:

φ̃1 =
1√
2

(φ1 + φ3), φ1 =
1√
2

(φ̃1 + φ̃3),

φ̃2 =
1√
2

(φ2 + φ4), φ2 =
1√
2

(φ̃2 + φ̃4),

φ̃3 =
1√
2

(φ1 − φ3), φ3 =
1√
2

(φ̃1 − φ̃3),

φ̃4 =
1√
2

(φ2 − φ4), φ4 =
1√
2

(φ̃2 − φ̃4).

(4.235)

We then have ψ̃ = εψ and ψ = ε−1ψ̃ = εψ̃, with

ε =




1/
√

2 0 1/
√

2 0
0 1/

√
2 0 1/

√
2

1/
√

2 0 −1/
√

2 0
0 1/

√
2 0 −1/

√
2


 = ε−1 =

1√
2

(ρ1 + ρ3) .

(4.236)

Given the values (px, py, pz) = p, let us denote with y1
p and y2

p the
positive plane waves in Eqs. (4.232) and with y3

p and y4
p the negative

ones obtained by replacing W with −W ; analogously, we denote by
z1
p and z2

p the positive plane waves in Eqs. (4.234) and by z3
p and z4

p

the corresponding negative ones. All these functions are normalized so
that ψ∗ψ = 1. At a given time, the relations between y and z are the
following:

z∗p =
∑

i

Sik yi
p, (4.237)

y∗p =
∑

i

S−1
ik zi

p, (4.238)

where
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S = S−1 =




A +
pz

mc√
2AB

px + ipy

mc√
2AB

0 0

px − ipy

mc√
2AB

−
A +

pz

mc√
2AB

0 0

0 0 −
A′ − pz

mc√
2A′B′

px + ipy

mc√
2A′B′

0 0

px − ipy

mc√
2A′B′

A′ − pz

mc√
2A′B′




,

(4.239)
with

A =
√

p2 + m2c2 + mc

mc
, A′ =

√
p2 + m2c2 −mc

mc
,

B =
√

p2 + m2c2 + pz

mc
, B′ =

√
p2 + m2c2 − pz

mc
.

(4.240)

(It follows that A + A′ = B + B′. For p = 0 we have A = 2, A′ = 0,
B = 1, B′ = 1.)

In the following, R1 and R2 will denote the representations in which
Eqs. (4.231) and (4.233) respectively hold. Note that the matrices σx,
σy, σz obviously describe the same operators Sx, Sy, Sz both in R1 and
in R2, due to the property

σ
ρ1 + ρ3√

2
=

ρ1 + ρ3√
2

σ. (4.241)

By contrast, let us consider an operator γ, which is described by ρ3 in
R1 and by ρ1 in R2, and another operator γ1 which is instead described
by ρ1 in R1 and by ρ3 in R2. Then the Dirac equation can be written
as follows in both representations:

(
W

c
+ γ (ξ·p) + γ1 mc

)
ψ = 0. (4.242)

The operators ξ and γ transform any combination of 4 plane waves corre-
sponding to a given value of p into another such combination. Obviously,
the representation of the matrices describing these operators depends on
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whether we choose as orthogonal unitary vectors the normalized plane
waves in Eq. (4.232) (i.e., the yi

p) or those in Eq. (4.234) (i.e., the
zi
p). The matrices corresponding to the second case can be obtained

from those corresponding to the first case by means of a transformation
involving S [note that this is the matrix in (4.239) and not the spin
S = (Sx, Sy, Sz)].

In the first case (plane waves yi
p) we have

(i) Sz =




sa
z sb

z

sb †
z sc

z


, Sx =




sa
x sb

x

sb †
x sc

x


, Sy =




sa
y sb

y

sb †
y sc

y


,

(4.243)
where the sub-matrices are given by [(aij)† = (aji)∗]

sa
z =




2 + B2 −BB′

B(B + B′)
2

px − ipy

mc
B(B + B′)

2

px + ipy

mc
B(B + B′)

2 + B2 −BB′

B(B + B′)




,

sb
z =




−2
BB′ − 1

(B + B′)
√

BB′ 2

px − ipy

mc
(B + B′)

√
BB′

2

px + ipy

mc
(B + B′)

√
BB′ 2

BB′ − 1
(B + B′)

√
BB′




,

sc
z =




2 + B′2 −BB′

B′(B + B′)
2

px − ipy

mc
B′(B + B′)

2

px + ipy

mc
B′(B + B′)

2 + B′2 −BB′

B′(B + B′)




;

sa
x =




2

px

mc
B + B′ − 2

B + B′

− 2
B + B′ −2

px

mc
B + B′




,
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sb
x =




2
pzpx

m2c2

(B + B′)
√

BB′ +
i
py

mc√
BB′ −

2
pz

mc
(B + B′)

√
BB′

−
2

pz

mc
(B + B′)

√
BB′

2
pzpx

m2c2

(B + B′)
√

BB′ +
i
py

mc√
BB′




,

sc
x =




−2

px

mc
B + B′

2
B + B′

2
B + B′ 2

px

mc
B + B′




;

sa
y =




2

py

mc
B + B′ i

2
B + B′

−i
2

B + B′ −2

py

mc
B + B′




,

sb
y =




2
pzpy

m2c2

(B + B′)
√

BB′ −
i
px

mc√
BB′ i

2
pz

mc
(B + B′)

√
BB′

−i
2

pz

mc
(B + B′)

√
BB′ −

2
pzpy

m2c2

(B + B′)
√

BB′ −
i
px

mc√
BB′




,

sc
y =




−2

py

mc
B + B′ −i

2
B + B′

i
2

B + B′ 2

py

mc
B + B′




;

(ii) γ =




γa γb

γb † γc


 , γ1 =




γa
1 γb

1

γb †
1 γc

1


 , (4.244)

with
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γa =




2
B(B + B′)

− 1 2

px − ipy

mc
B(B + B′)

2

px + ipy

mc
B(B + B′)

1 − 2
B(B + B′)




,

γb =




2
(B + B′)

√
BB′ 2

px − ipy

mc
(B + B′)

√
BB′

2

px + ipy

mc
(B + B′)

√
BB′ − 2

(B + B′)
√

BB′




,

γc =




2
B′(B + B′)

− 1 2

px − ipy

mc
B′(B + B′)

2

px + ipy

mc
B(B + B′)

1 − 2
B′(B + B′)




;

γa
1 =




− 2
B + B′ 0

0 − 2
B + B′


 ,

γb
1 =




−
2

pz

mc
(B + B′)

√
BB′ −

px − ipy

mc√
BB′

px + ipy

mc√
BB′

−
2

pz

mc
(B + B′)

√
BB′




,

γc
1 =




2
B + B′ 0

0
2

B + B′


 ;
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(iii) γ Sz =




γa
z γb

z

γb †
z γc

z


 , γ Sx =




γa
x γb

x

γb †
x γc

x


 ,

γ Sy =




γa
y γb

y

γb †
y γc

y


 ,

(4.245)

with

γa
z =




−
pz

mc
B + B′ 0

0 −
pz

mc
B + B′




,

γb
z =




2
√

BB′

B + B′ 0

0
2
√

BB′

B + B′




,

γc
z =




pz

mc
B + B′ 0

0

pz

mc
B + B′




;

γa
x =




−
px

mc
B + B′ 0

0 −
px

mc
B + B′




,

γb
x =




−
2

pzpx

m2c2

(B + B′)
√

BB′ −
i
py

mc√
BB′

1√
BB′

− 1√
BB′ −

2
pzpx

m2c2

(B + B′)
√

BB′ +
i
py

mc√
BB′




,
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γc
x =




px

mc
B + B′ 0

0

px

mc
B + B′




;

γa
y =




−
py

mc
B + B′ 0

0 −
py

mc
B + B′




,

γb
y =




−
2

pzpy

m2c2

(B + B′)
√

BB′ +
i
px

mc√
BB′ − i√

BB′

− i√
BB′ −

2
pzpy

m2c2

(B + B′)
√

BB′ −
i
px

mc√
BB′




,

γc
y =




py

mc
B + B′ 0

0

py

mc
B + B′




.

On the other hand, adopting the plane waves in Eq. (4.233) (normalized
to ψ∗ψ = 1) as the unitary vectors, the matrices representing the oper-
ators Sz, Sx, Sy, γ, γ1, γSz, γSx, γSy can be obtained from those listed
in the previous pages by transforming them with S given in Eq. (4.239).
However, it is simpler to calculate them directly; if we use the following
notations [the velocity of the positive electron is (vx, vy, vz) that of the
negative electron (−vx,−vy,−vz); the speed is v in both cases]:

β =
v

c
=

p√
p2 + m2c2

,

βx =
vx

c
=

px√
p2 + m2c2

,

βy =
vy

c
=

py√
p2 + m2c2

,

βz =
vz

c
=

pz√
p2 + m2c2

,
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then they are

Sz =




sa
z sb

z

sb †
z sc

z


 , Sx =




sa
x sb

x

sb †
x sc

x


 , Sy =




sa
y sb

y

sb †
y sc

y


 ;

(4.246)
with

sa
z =




1 − β2
x + β2

y

1 +
√

1− β2

βz(βx − iβy)
1 +

√
1− β2

,

βz(βx + iβy)
1 +

√
1− β2

−1 +
β2

x + β2
y

1 +
√

1− β2




,

sb
z =




β2
x + β2

y

β
−βz(βx − iβy)

β

−βz(βx + iβy)
β

−β2
x + β2

y

β




,

sc
z =




1 − β2
x + β2

y

1−√
1− β2

βz(βx − iβy)
1−√

1− β2

βz(βx + iβy)
1−√

1− β2
−1 +

β2
x + β2

y

1−√
1− β2




,

sa
x =




βzβx

1 +
√

1− β2
1 − β2 − βx(βx − iβy)

1 +
√

1− β2

1 − β2 − βx(βx + iβy)
1 +

√
1− β2

−1
βzβx

1 +
√

1− β2




,

sb
x =




−βzβx

β

β2 − βx(βx − iβy)
β

β2 − βx(βx + iβy)
β

−βzβx

β




,

sc
x =




βzβx

1−√
1− β2

1 − β2 − βx(βx − iβy)
1−√

1− β2

1 − β2 − βx(βx + iβy)
1−√

1− β2
− βzβx

1−√
1− β2




;
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and so on.
Let us now write the Dirac equation with no (interacting) field:

(
W

c
+ (α·p) + β mc

)
ψ = 0. (4.247)

The spin functions associated with a plane wave of momentum (px, py, pz)
can be obtained from those associated with a wave of vanishing momen-
tum by means of a relativistic transformation (a rotation in the plane
t− p). From the known transformation laws for spinors, we find

up =




√√√√1 +
√

1 + (p/mc)2

2
∓ α·p/mc√

2
(

1 +
√

1 + (p/mc)2
)




u0,

(4.248)
where the upper sign applies to positive waves and the lower sign to
negative ones. The spin functions thus obtained are normalized in the
“invariant sense”:

(
u†pup

)2 −
(
u†pαxup

)2 −
(
u†pαyup

)2 −
(
u†pαzup

)2
= 1. (4.249)

The spin functions normalized in the ordinary sense (u′†p u′p = 1) are
instead given by

u′p =
up

4

√
1 + (p/mc)2

(4.250)

=




√√√√√
1 +

√
1 + (p/mc)2

2
√

1 + (p/mc)2
∓

√√√√√
−1 +

√
1 + (p/mc)2

2
√

1 + (p/mc)2
α·p
p


 u0.

(4.251)

17. IMPROPER OPERATORS

Let u(x, y, z) be an arbitrary function of x, y, z that can be expanded in
harmonic components:

u(x, y, z) =
∫

α(x, y, z) e2πi (γ1x + γ2y + γ3z) dγ1 dγ2 dγ3, (4.252)
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where

α(x, y, z) =
∫

u(x, y, z) e−2πi (γ1x + γ2y + γ3z) dxdy dz. (4.253)

Let F r be the operator that transforms u into the function

v(x, y, z) = F r u(x, y, z) (4.254)

defined by the Fourier integral expansion

v(x, y, z) =
∫

λr α(x, y, z) e2πi (γ1x + γ2y + γ3z) dγ1 dγ2 dγ3,

(4.255)
where

λ =
1
γ

=
1√

γ2
1 + γ2

2 + γ2
3

(4.256)

is the wavelength of the (γ1, γ2, γ3) harmonic component. The following
properties evidently hold:

F r F s = F s F r = F r+s, F 0 = 1. (4.257)

Disregarding possible convergence problems, we can set

v(x, y, z) =
∫

Kr(x, y, z; x′, y′, z′) u(x′, y′, z′) dx′ dy′ dz′. (4.258)

Substituting Eq. (4.253) into Eq. (4.255), we find

v(x, y, z) =
∫ ∫

λr e2πi
[
γ1(x− x′) + γ2(y − y′) + γ3(z − z′)

]

× u(x′, y′, z′) dγ1 dγ2 dγ3 dx′ dy′ dz′, (4.259)

from which we deduce

Kr(x, y, z, x′, y′, z′) =
∫

λr e2πi (γ1ξ + γ2η + γ3ζ) dγ1 dγ2 dγ3,

(4.260)
where

ξ = x − x′, η = y − y′, ζ = z − z′. (4.261)

Performing the integration in (4.260) on a sphere of radius D = 1/λ =√
γ2
1 + γ2

2 + γ2
3 and setting

R =
√

ξ2 + η2 + ζ2 =
√

(x− x′)2 + (y − y′)2 + (z − z′)2, (4.262)
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we get

Kr(x, y, z, x′, y′, z′) = Kr(R)

=
∫ ∞

0

2 sin 2πsR

R sr−1
ds =

(2πR)r−1

πR2

∫ ∞

0

sin t

tr−1
dt. (4.263)

This formula can be used for 1 ≤ r < 3; the expression corresponding
to the case r = 1 can be obtained from that corresponding to r = 1 + ε
by taking the limit ε → 0 or, in an equivalent way, by taking the mean
value of the integral with arbitrary upper limit. We, thus, find

K1 = 1/πR2, (4.264)
K2 = π/R, (4.265)

and

F 1 u(x, y, z) =
∫

(1/πR2) u(x′, y′, z′) dx′ dy′ dz′, (4.266)

F 2 u(x, y, z) =
∫

(π/R) u(x′, y′, z′) dx′ dy′ dz′. (4.267)

On applying the Laplace operator on the two sides of Eq. (4.267), we
get

∇2 F 2 = − 4π2 (4.268)

from which, being F 2 invertible,

∇2 = − 4π2 F−2; (4.269)

this relation immediately follows from Eq. (4.255). We can define the
operator

√
∇2 by setting

√
∇2 = 2πi F−1, (4.270)

which can be written, using Eqs. (4.269) and (4.259), as
√

∇2 = 2πi F 1 F−2 =
1

2πi
F 1 ∇2 . (4.271)

Then, from Eq. (4.266), it follows that
√

∇2 u(x, y, z) =
∫ 1

2π2R2i
∇2 u(x′, y′, z′) dx′ dy′ dz′. (4.272)

Moreover, from Eq. (4.270), we deduce

1√
∇2

=
1

2πi
F 1, (4.273)
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from which we infer

1√
∇2

u(x, y, z) =
∫ 1

2π2R2i
u(x′, y′, z′) dx′ dy′ dz′. (4.274)

18. INTEGRAL REPRESENTATION OF
HYDROGEN EIGENFUNCTIONS

In the following, we will use electronic units, in which e = m = h̄ = 1
and the energy unit is 2Ry. We denote by χ(r) the radial part of the
hydrogen eigenfunctions multiplied by r and by ` the azimuthal quantum
number. The basic equation is

χ′′ +
(

2E +
2
r
− `(` + 1)

r2

)
χ = 0. (4.275)

Let us set
χ = rl+1 u; (4.276)

then, the differential equation for u becomes

u′′ + 2
` + 1

r
u′ +

(
2E +

2
r

)
u = 0. (4.277)

This equation has the form of the Laplace equation (see Sec. 4.11) with
the following values for the constants:

δ0 = 0, δ1 = 2 (` + 1), ε0 = 2E, ε1 = 2. (4.278)

The values of the constants appearing in Eq. (4.188) needed for the
integral representation of u then are, in the considered case (assume
E > 0),

c1 = i
√

2E, c2 = −i
√

2E, (4.279)

α1 = ` + 1 − i/
√

2E, α2 = ` + 1 + i/
√

2E. (4.280)

Substituting into Eq. (4.188), we get, except for a constant factor,

u ∼
∫

C
et r

(
t− i

√
2E

)`− i/
√

2E (
t + i

√
2E

)` + i/
√

2E
dt,

(4.281)
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2 Ei - 2 Ei I

2 Ei-2 Ei -- II

Fig. 4.2. The paths in the complex plane to define log(t− i
√

2E) and log(t+ i
√

2E)
(see text).

where the condition

∫

C

d
dt

[
et r

(
t− i

√
2E

)` + 1− i/
√

2E (
t + i

√
2E

)` + 1 + i/
√

2E
]

dt

= 0 (4.282)

must be satisfied. For real and positive r, this happens if the limits of
the integration domain lie at infinity along the negative real axis. This
fixes the domain C.

Now, we still have to give a univocal definition of log(t − i
√

2e) and
log(t+i

√
2e) for the integrand function to be determined. Let us assume

that the imaginary part of such logarithms is less than or equal to π. In
this case, we have that the discontinuity lines are the half-lines starting
from ±i

√
2E and extending parallel to the negative real semi-axis. Let

us denote by u1 the integral in Eq. (4.281) performed along path I (see
Fig. 4.2) and by χ1 the corresponding solution of Eq. (4.275); similarly,
u2 and χ2 correspond to path II. It is more convenient to introduce
another integration variable by setting t = i

√
2et1. Then, changing t1

in t, we have

u = k

∫
ei
√

2Etr (t− 1)l − i/
√

2E (t + 1)l + i/
√

2E dt. (4.283)

The integration paths I and II are shown in Fig. 4.3 . The logarithm
of t − 1 and t + 1 is understood to be real for t − 1 > 0 and t + 1 > 0,
respectively, the discontinuity lines being the half-lines 1+ai and 1− ai
(a > 0), respectively.
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-1 + i

II

-1

1 + i

I

+1

Fig. 4.3. The paths in the complex plane to define the function u in (4.283) (see
text).

19. DEFLECTION OF AN ALPHA RAY
INDUCED BY A HEAVY NUCLEUS
(CLASSICAL MECHANICS) 11

Substituting Eq. (4.139) into Eq. (4.134), we find

1
ρ

= − k

v2δ2
− k

v2δ2
cos θ +

1
δ

sin θ. (4.284)

The envelope of the hyperbolas defined in (4.284) satisfies Eq. (4.284) as
well as the equation obtained from this by differentiating with respect
to δ. Introducing the minimum distance l from the nucleus [see Eq.
(4.145)], and noting that here W = Mv2/2, from Eq. (4.125), we have
the following expression for k:

k

v2
=

l

2
,

so that Eq. (4.284) becomes

1
ρ

= − l

2δ2
− l

2δ2
cos θ +

1
δ

sin θ. (4.285)

Differentiating with respect to δ and equating to zero the resulting ex-
pression, we find

l

δ
+

l

δ
cos θ − sin θ = 0, (4.286)

11See Sec. 4.9.
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from which we get
δ

l
=

1 + cos θ

sin θ
. (4.287)

20. SCATTERING FROM A POTENTIAL OF
THE FORM a/r − b/r2

Let us consider a particle of mass 1 and speed k, travelling through a
region in which a field is present. Its potential is

1
r

(
1 − r0

r

)
, (4.288)

which is repulsive for r > 2r0 and attractive for r < 2r0. The problem
is to find the cross section for the scattering of the particle at an angle
θ. In classical mechanics, the equations of motion in polar coordinates
are

r2 θ̇ = c (4.289)

r̈ − r θ̇2 =
1
r2

− 2r0

r3
=

1
r2

(
1 − 2r0

r

)
. (4.290)

We have

r̈ = − c2

r2

d2

dθ2

1
r
, (4.291)

r θ̇2 = c2/r3, (4.292)

which leads to

d2

dθ2

1
r

+
1
r

+
1
c2

(
1 − 2r0

r

)
= 0, (4.293)

or
d2

dθ2

1
r

+
(

1 − 2r0

c2

)
1
r

+
1
c2

= 0. (4.294)

It follows that, if |c| > √
2r0,

1
r

= − 1
c2γ2

+ A cos γθ + B sin γθ, (4.295)

with

γ =
√

1 − 2r0

c2
. (4.296)
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Instead, if |c| < √
2r0, we have

1
r

=
1

c2ε2
+ C eεθ + D e−εθ, (4.297)

with

ε =
√

2r0

c2
− 1. (4.298)

Finally, for |c| = √
2r0, we have

1
r

= − 1
4r0

θ2 + F θ + G. (4.299)

Let us set z = r cos θ , ξ = r sin θ and assume that the particles of
speed k are incident from −∞ along the z axis, at a distance δ from this
axis. Assume also that (for positive δ) the line ξ = δ is an asymptote for
the trajectory; then, evidently, c = −kδ. Moreover, for θ = π, we have
r = ∞ and

ṙ =
dr

dθ
θ̇ = − r2 θ̇

d
dθ

1
r

= − c
d
dθ

1
r

= − k, (4.300)

that is,
d
dθ

1
r

= − 1
δ
, θ = π. (4.301)

Depending on the value of δ, it then follows that

(1) δ >

√
2r0

k
:

1
r

=
−1

k2δ2 − 2r0
+

cos γ(π − θ)
k2δ2 − 2r0

+
sin γ(π − θ)

δ γ
, (4.302)

γ =
√

1 − 2r0

k2δ2
. (4.303)

(2) δ =
√

2r0

k
:

1
r

= − 1
4r0

(π − θ)2 +
1
δ

(π − θ) . (4.304)

(3) δ <

√
2r0

k
:

1
r

=
−1

2r0 − k2δ2
− cosh ε(π − θ)

2r0 − k2δ2
+

sinh ε(π − θ)
δ ε

, (4.305)

ε =
√

2r0

k2δ2
− 1. (4.306)
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The particle will be scattered in the direction θ of the second asymptote:

(1) θ = π − 2
γ

arctan γk2δ =
2
γ

arctan
1

γk2δ
− π

(
1
γ
− 1

)
.

(2) θ = π − 2k2δ = π − 4r0

δ
.

21. THE SET OF ORTHOGONAL
FUNCTIONS DEFINED BY THE
EQUATION y00a = (x − a)ya

On setting ξ = x − a, so that y′′(ξ) = ξy, the secular solutions of the
equation

y′′a = (x − a) ya (4.307)

can be cast in the form

ya(x) = y(x− a) = y(ξ) (4.308)

or
ya(ξ + a) = y(ξ), (4.309)

and the determination of the complete set of regular solutions of Eq.
(4.307), corresponding to the complete set of eigenvalues of a, reduces
to the determination of the unique regular solution of

y′′(ξ) = ξ y(ξ). (4.310)

Requiring that ya be normalized with respect to da, we have
∫ ∞

−∞
y∗a(x) dx

∫ a+∆

a−∆
ya(x) da = 1, (4.311)

and, using Eq. (4.308),
∫ +∞

−∞
y∗(ξ) dξ

∫ ∆

−∆
y(ξ + ε) dε = 1. (4.312)

Since y vanishes exponentially for ξ →∞, the main contribution to the
integral for ∆ → 0 comes from large negative values of ξ. The asymptotic
expression of y for ξ →∞ will read

ξ → −∞ : y ∼ A
4
√−ξ

sin
(

2
3

(−ξ)3/2 + α

)
. (4.313)
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For ξ → −∞ (and small values of ε), we have

(− ξ − ε)3/2 ∼ (− ξ )3/2 − 3
2

ε (− ε)1/2 + . . . , (4.314)

so that

ξ → −∞ : y ∼ A
4
√−ξ

sin
(

2
3

(−ξ)3/2 − ε (− ε)1/2 + α

)
(4.315)

and thus
∫ ∆

−∆
y(ξ + ε) dε ∼ (− ξ)−3/4

[
cos

(
2
3

(−ξ)3/2 − ∆ (− ξ)1/2 + α

)

− cos
(

2
3

(−ξ)3/2 + ∆ (− ξ)1/2 + α

)]
. (4.316)

Let us set
− ξ = ζ2, dξ = − 2 ζ dζ. (4.317)

For ξ → −∞, we have

y ∼ A√
ζ

sin
(

2
3
ζ3 + α

)
, (4.318)

∫ ∆

−∆
y(ξ + ε) dε ∼ 1

ζ3/2

[
cos

(
2
3

ζ3 − ∆ ζ + α

)

− cos
(

2
3

ζ3 + ∆ ζ + α

)]
. (4.319)

For ∆ → 0, it easily follows that
∫ ∞

−∞
y∗(ξ) dξ

∫ ∆

−∆
y(ξ + ε) dε = π A∗A. (4.320)

In order to obtain the normalized solution according to Eq. (4.311), we
can then assume that

A = 1/
√

π. (4.321)

Taking the Laplace transform of Eq. (4.310), we can easily get the
integral representation

y =
i

2π

∫ ∞ eiφ2

∞ eiφ1
e−t3/3 etξ dt, (4.322)

with
π

2
< φ1 <

5
6

π,
7
6

π < φ2 <
3
2

π. (4.323)
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By choosing appropriately the integration path in Eq. (4.322), we find
different representations for y and y′ that are suitable for evaluating
these functions in ξ = 0 (I) or for the asymptotic expansion when ξ →∞
(II) or for the asymptotic expansion for ξ → −∞ (III) 12:

(I) y =
1
π

∫ ∞

0
e−p3/3 − pξ/2

(√
3

2
cos

√
3

2
pξ − 1

2
sin

√
3

2
pξ

)
dp.

(II) y =
√

ξ

2π
e−2ξ3/2/3

∫ ∞

−∞
e−p2ξ3/2

cos
(

1
3

p3 ξ3/2
)

dp.

(III) y =
−2ξ

π

∫ ∞

−1
e
−

(
2p2 + 2p3/3

)
(−ξ)3/2

× sin
[(

2
3

+
2
3

p3
)

(− ξ)3/2 +
π

4

]
dp.

22. FOURIER INTEGRAL EXPANSIONS

(1) We have
1
r

=
∫ 1

πγ2
e2πi γ·r dγ, (4.324)

where dγ = dγ1dγ2dγ3.

(2) We have

eikr

r
=

∫ [
π

(
γ2 −

(
k + εi

2π

)2
)]−1

e2πi γ·r dγ, (4.325)

e−ikr

r
=

∫ [
π

(
γ2 −

(
k − εi

2π

)2
)]−1

e2πi γ·r dγ (4.326)

(for ε > 0, ε → 0). It follows that

sin kr

r
=

∫ 8π k ε

(4π2γ2 − k2 + ε2)2 + 4k2ε2
e2πi γ·r dγ (4.327)

(for ε > 0, ε → 0), or

sin kr

r
=

∫ 1
2γ

δ

(
|γ| − k

2π

)
e2πi γ·r dγ

12@ In the original manuscript, this section is incomplete. It ends with the following sentence:
“For ξ close to 0, we can expand the integrand function in I in power series of ξ; we have ...”
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=
∫

k

4πγ
δ

(
|γ| − k

2π

)
e2πi γ·r dγ. (4.328)

(3) We have
1
r2

=
∫

π

γ
e2πiγ·r dγ (4.329)

(which follows from (4.324) by taking the inverse of the Fourier
integral).

(4) The mean value of the function

F =
{

0, for r < R,
1/r, for r > R,

(4.330)

is

< F > =
∫ cos 2πγR

πγ2
e2πi γ·r dγ. (4.331)

(5) The mean value of the function

F =
{

1, for r < R,
0, for r > R,

(4.332)

is

< F > =
∫

(1/2π2γ3)(sin 2πγR − 2πγR cos 2πγR) e2πi γ·r dγ.

(4.333)

(6) We have

e−αr2
=

∫ (
π

α

)3/2

e−π2γ2/α e2πi γ·r dγ. (4.334)

(7) We have

e−kr =
∫ 8πk

(k2 + 4π2γ2)
e2πi γ·r dγ. (4.335)

(8) Given

f(q) =
∫

φ(γ) e2πi γ·q dγ, (4.336)

f ′(q) =
∫
U(|γ|) φ(γ) e2πi γ·q dγ, (4.337)
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with q = (q1, q2.q3), γ = (γ1, γ2.γ3), Q =
√

q2
1 + q2

2 + q2
3, Γ =√

γ2
1 + γ2

2 + γ2
3 , then we have

f ′(q) =
∫
U(Γ)φ(γ) e2πi γ·r dγ

=
∫ ∫

U(Γ) e2πi γ·q f(q′) e−2πiγ·q′ dγ dq′

=
∫

f(q′) dq′
∫
U(Γ) e−2πiγ·(q′−q) dγ. (4.338)

Using

U(Γ) =
∫

Y (q) e2πiq·γ dq, (4.339)

Y (q) =
∫
U(Γ) e−2πiγ·q dγ, (4.340)

we get

f ′(q) =
∫

Y (q′ − q) f(q′) dq′. (4.341)

On setting, as we can do, Y (q′ − q) = y(|q′ − q|), we finally have

f ′(q) =
∫

y(|q− q′|) f(q′) dq′. (4.342)

23. CIRCULAR INTEGRALS

∫ 2π

0

dφ

a + b cosφ
=

2π√
a2 − b2

, [a > |b| > 0] , (4.343)
∫ 2π

0

dφ

a2 − b2 cos2 φ
=

2π

a
√

a2 − b2
, [a > b > 0] , (4.344)

∫ 2π

0

dφ

a2 cos2 φ + b2 sin2 φ
=

2π

ab
, [a , b > 0] , (4.345)

∫ 2π

0

dφ

(a + b cosφ)n
=

2π

(a2 − b2)n/2

×
n−1∑

r=0

(
n− 1

r

) ( −n
r

) (
−a +

√
a2 − b2

2
√

a2 − b2

)r

, (4.346)
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with a > |b| > 0.
Examples:

∫ 2π

0

dφ

a + b cosφ
=

2π√
a2 − b2

,

∫ 2π

0

dφ

(a + b cosφ)2
=

2π

a2 − b2

(
1 +

−a +
√

a2 − b2

√
a2 − b2

)

=
2πa

(a2 − b2)3/2
. (4.347)

24. OSCILLATION FREQUENCIES OF
AMMONIA

The H atoms in the NH3 molecule lie at the vertices of an equilateral
triangle, while the N atom lies on the perpendicular axis outside the
plane of the triangle. There are six linearly independent displacements
giving rise to attractive elastic forces; these are obtained from the twelve
shifts of each atom towards the other three atoms, with the constraint
that the sum of the forces acting on each equilibrium position Pi is zero.

Let q1 = 1, q2 = q3 = . . . = q6 = 0 be the shift such that the first H
atom, H1, moves in the direction NH1 by MN/(MN + MH) and the N
atom moves in the opposite direction by an amount MH/(MN + MH).
In the same way, we define the shifts qi = δi2 and qi = δi3. Instead, let
qi = δi4 be the shift such that the H3 atom moves by 1/2 in the direction
H2H3 and the H2 atom moves by 1/2 in the opposite direction; with a
circular permutation, we finally define the shifts qi = δi5 and qi = δi6.

Let us denote by α the angle (in the equilibrium position) ̂NH1H2

and by β the angle ̂H1NH2. If D and d are the equilibrium distances
NH and H1H2, respectively, we then have

cosα =
d

2D
, cosβ = 1 − d2

2D2

(
implying sin

1
2
β =

d

2D

)
.

(4.348)
The kinetic energy is given by

T =
1
2

[
M2

HMN

(MN + MH)2
(
q̇2
1 + q̇2

2 + q̇2
3 + 2q̇1q̇2 cosβ + 2q̇2q̇3 cosβ

+ 2q̇3q̇1 cosβ) +
M2

NMH

(MN + MH)2
(
q̇2
1 + q̇2

2 + q̇2
3

)
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+
MNMH

MN + MH
cosα (q̇1q̇5 + q̇1q̇6 + q̇2q̇6 + q̇2q̇4 + q̇3q̇4 + q̇3q̇5)

+
1
2
MH

(
q̇4 + q̇5 + q̇6 +

1
2
q̇4q̇5 +

1
2
q̇5q̇6 +

1
2
q̇6q̇4

)]
. (4.349)

For simplicity, we assume MH = 1 and MN = 14; then, setting

T =
1
2

∑

i,k

bik q̇1q̇k, bik = bki, (4.350)

we get

b11 = b22 = b33 = 14/15, (4.351)
b44 = b55 = b66 = 1/2, (4.352)
b12 = b23 = b31 = b21 = b32 = b23 = 14/225 cos β, (4.353)
b45 = b56 = b64 = b54 = b65 = b46 = 1/8, (4.354)
b14 = b25 = b36 = b41 = b52 = b63 = 0, (4.355)
b15 = b26 = b34 = b16 = b24 = b35 = b51

= b62 = b43 = b61 = b42 = b53 = 7/15 cosα. (4.356)

The fact that many elements are actually equal is due to obvious sym-
metry feature; thus we need to know only six typical elements:

b11 = B1 = 14/15, b44 = B2 = 1/2, b12 = B3 = 14/225 cosβ,

b45 = B4 = 1/8, b14 = B5 = 0, b15 = B6 = 7/15 cosα.

Analogously, the matrix defining the potential energy

V =
1
2

∑

ik

aik q1qk (4.357)

depends on the following six typical elements:

a11 = A1, a44 = A2, a12 = A3,

a45 = A4, a14 = A5, a15 = A6. (4.358)

Let us perform the following transformation:

q1 =
√

1
3

Q1 +
√

2
3

Q3, (4.359)

q2 =
√

1
3

Q1 −
√

1
6

Q3 +
√

1
2

Q′
3, (4.360)

q3 =
√

1
3

Q1 −
√

1
6

Q3 −
√

1
2

Q′
3, (4.361)
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q4 =
√

1
3

Q2 +
√

2
3

Q4, (4.362)

q5 =
√

1
3

Q2 −
√

1
6

Q4 +
√

1
2

Q′
4, (4.363)

q6 =
√

1
3

Q2 −
√

1
6

Q4 −
√

1
2

Q′
4. (4.364)

Then, we find

q2
1 + q2

2 + q2
3 = Q2

1 + Q2
3 + Q′2

3 , (4.365)
q2
4 + q2

5 + q2
6 = Q2

2 + Q2
4 + Q′2

4 , (4.366)

q1q2 + q2q3 + q3q1 = Q2
1 −

1
2
Q2

3 −
1
2
Q′2

3 , (4.367)

q4q5 + q5q6 + q6q4 = Q2
2 −

1
2
Q2

4 −
1
2
Q′2

4 , (4.368)

q1q4 + q2q5 + q3q6 = Q1Q2 + Q3Q4 + Q′
3Q

′
4, (4.369)

q1q5 + q2q6 + q3q4 + q1q6 + q2q4 + q3q5

= 2Q1Q2 − Q3Q4 − Q′
3Q

′
4. (4.370)

Thus double the kinetic energy takes the following form in the new
coordinates:

2T = B1

(
Q̇2

1 + Q̇2
3 + Q̇′2

3

)
+ B2

(
Q̇2

1 + Q̇2
4 + Q̇′2

4

)

+ 2B3

(
Q2

1 −
1
2
Q2

3 −
1
2
Q′2

3

)
+ 2B4

(
Q2

2 −
1
2
Q2

4 −
1
2
Q′2

4

)

+ 2B5
(
Q1Q2 + Q3Q4 + Q′

3Q
′
4

)
+ 2B6

(
2Q1Q2 − Q3Q4 − Q′

3Q
′
4

)

= (B1 + 2B3) Q̇2
1 + 2 (B5 + 2B6) Q̇1Q̇2 + (B2 + 2B4) Q̇2

2

+ (B1 −B3) Q̇2
3 + 2 (B5 −B6) Q̇3Q̇4 + (B2 −B4) Q̇2

4

+ (B1 −B3) Q̇′2
3 + 2 (B5 −B6) Q̇′

3Q̇
′
4 + (B2 −B4) Q̇′2

4 . (4.371)

In the same way we calculate

2V = (A1 + 2A3) Q2
1 + 2 (A5 + 2A6) Q1Q2 + (A2 + 2A4) Q2

2

+ (A1 −A3) Q2
3 + 2 (A5 −A6) Q3Q4 + (A2 −A4) Q2

4

+ (A1 −A3) Q′2
3 + 2 (A5 −A6) Q′

3Q
′
4 + (A2 −A4) Q′2

4 . (4.372)

We then find two simple oscillations related to the coordinates Q1,Q2

and two double ones related to the coordinates Q3,Q4 or Q′
3,Q

′
4. The

squared angular velocities

λ = 4π2 ν2 (4.373)
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of the simple oscillations are obtained from the following secular equa-
tion:

det
(

A1 + 2A3 − λ(B1 + 2B3) A5 + 2A6 − λ(B5 + 2B6)
A5 + 2A6 − λ(B5 + 2B6) A2 + 2A4 − λ(B2 + 2B4)

)
= 0,

(4.374)
while those corresponding to degenerate oscillations are obtained from

det
(

A1 −A3 − λ(B1 −B3) A5 −A6 − λ(B5 −B6)
A5 −A6 − λ(B5 −B6) A2 −A4 − λ(B2 −B4)

)
= 0. (4.375)

25. SPHERICAL FUNCTIONS WITH SPIN
ONE

They are three-component functions of θ and φ following the transfor-
mation rules of D1. They correspond to particular values of j, l, m, the
total angular momentum j and the orbital momentum taking the values
0, 1, 2, . . . and j − 1, j, j + 1, respectively; for the case j = 0, we instead
only have the value l = 1 for the orbital momentum.

We can set

ϕm
j,j−1 =

(√
(j + m)(j + m− 1)

2j(2j − 1)
ϕm−1

j−1 ,

√
(j + m)(j −m)

j(2j − 1)
ϕm

j−1,

√
(j −m)(j −m− 1)

2j(2j − 1)
ϕm+1

j−1

)
,

ϕm
j,j =

(√
(j + m)(j −m + 1)

2j(2j + 1)
ϕm−1

j ,

− m√
j(j + 1)

ϕm
j , (4.376)

−
√

(j + m + 1)(j −m)
2j(2j + 1)

ϕm+1
j

)
,

ϕm
j,j+1 =

(√
(j −m + 1)(j −m + 2)

2(j + 1)(2j + 3)
ϕm−1

j+1 ,

−
√

(j + m + 1)(j −m + 1)
(j + 1)(2j + 3)

ϕm
j+1,
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√
(j + m + 1)(j + m + 2)

2(j + 1)(2j + 3)
ϕm+1

j+1

)
.

The functions obtained are normalized and give rise to the ordinary
representations of the angular momentum. Here ϕm

l are the usual nor-
malized harmonics

ϕm
l =

1
2l l!

√
(2l + 1)(l + m)!

4π(l −m)!
(sin θ)−m dl−m

(
cos2 θ − 1

)l

(d cos θ)l−m
eimφ.

(4.377)
There are some frequently used relations between the spherical func-

tions with spin ϕm
j,l for given values of j and m with l = j − 1, j.j + 1.

Let us consider, for example, the following operator:

sr =
x

r
sx +

y

r
sy +

z

r
sz

=
1
2

x− iy

r
(sx + isy) +

1
2

x + iy

r
(sx − isy) +

z

r
sz, (4.378)

where, as usual,

sx =




0 1/
√

2 0
1/
√

2 0 1/
√

2
0 1/

√
2 0


 , sy =




0 −i/
√

2 0
i/
√

2 0 −i/
√

2
0 i/

√
2 0


 ,

sz =




1 0 0
0 0 0
0 0 −1


 .

(4.379)
Evidently, this operator is a scalar one, so that its commutator with j
and m is zero. The following relations hold:

sr ϕm
j,j−1 =

√
j + 1
2j + 1

ϕm
j,j ,

sr ϕm
j,j =

√
j + 1
2j + 1

ϕm
j,j−1 +

√
j

2j + 1
ϕm

j,j+1, (4.380)

sr ϕm
j,j+1 =

√
j

2j + 1
ϕm

j,j .
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The eigenvalues of sr, i.e, the eigenvalues of matrices of the form



0

√
j + 1
2j + 1

0
√

j + 1
2j + 1

0

√
j

2j + 1

0

√
j

2j + 1
0




, (4.381)

obviously are±1, 0, as for a component of the spin along a fixed direction.
For j = 0, the only allowed rotational state corresponds to sr = 0.

Let us now consider three-valued functions depending on θ, φ and r
and introduce the operator

1
i
s·∇ =

1
2i

(sx + isy)
(

∂

∂x
− i

∂

∂y

)
+

1
2i

(sx − isy)
(

∂

∂x
+ i

∂

∂y

)

+
1
i

sz
∂

∂z
. (4.382)

Setting, for brevity

px =
1
i

∂

∂x
, py =

1
i

∂

∂y
, pz =

1
i

∂

∂z
,

we find (1/i)s·∇ = s·p. Noting that
(

x

r
px +

y

r
py +

z

r
pz

)
ϕm

j,l = 0, (4.383)

we get

(s·p) ϕm
j,l =

[
x2 + y2 + z2

r2
(s·p) − 1

r

(
x

r
px +

y

r
py +

z

r
pz

)
sr

]
ϕm

j,l

=
1
r

[(
x

r
sy − y

r
sx

)
(xpy − ypx) +

(
y

r
sz − x

r
sy

)
(ypz − zpy)

+
(

z

r
sx − x

r
sz

)
(zpx − xpz)

]
ϕm

j,l,

or

(s·p) ϕm
j,l =

1
r

[(
x

r
sy − y

r
sx

)
lz +

(
y

r
sz − x

r
sy

)
lx

+
(

z

r
sx − x

r
sz

)
ly

]
ϕm

j,l. (4.384)
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This can also be cast in the more convenient form

(s·p) ϕm
j,l =

1
ir

{
sz

[
1
2

x + iy

r
(lx − ily) − 1

2
x− iy

r
(lx + ily)

]

+
1
2

(sx + isy)
[
x− iy

r
lz − z

r
(lx − ily)

]
(4.385)

+
1
2

(sx − isy)
[
z

r
(lx + ily) − x + iy

r
lz

]}
ϕm

j,l.

Note that lx, ly, lz are the components of the orbital angular momentum
measured in units of h/2π. We thus find:

1
i

(s·∇ ) ϕm
j,j−1 =

i

r
(j − 1)

√
j + i

2j + 1
ϕm

j,j ,

1
i

(s·∇ ) ϕm
j,j = − i

r
(j + 1)

√
j + i

2j + 1
ϕm

j,j−1

+
i

r
j

√
j

2j + 1
ϕm

j,j+1,

1
i

(s·∇ ) ϕm
j,j+1 = − i

r
(j + 2)

√
j

2j + 1
ϕm

j,j .

(4.386)

Equations (4.380) and (4.386) can be generalized by applying the opera-
tors sr and (1/i)s·∇ to functions of the type f(r)ϕm

j,l, since we evidently
have

sr f(r)ϕm
j,l = f(r) sr ϕm

j,l,

1
i

(s·∇ ) f(r)ϕm
j,l = f(r)

1
i

(s·∇ ) ϕm
j,l +

1
i

f ′(r) sr ϕm
j,l.

(4.387)

Let us now turn to an application of the spherical functions with spin.
The problem is to find the eigenfunctions defined by the differential
equation

1
i

(s·∇ ) ψ + k ψ = 0. (4.388)

On setting

ψ1 =
−ψx + iψy√

2
, ψx =

ψ3 − ψ1√
2

,

ψ2 = ψz, ψy =
ψ1 + ψ3√

2
,

ψ3 =
ψx + iψy√

2
, ψz = ψ2,

(4.389)
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and regarding ψx, ψy, ψz as components of ψ, we get

1
i

(s·∇ ) ≡ ∇× , (4.390)

and Eq. (4.388) simply reads

∇×ψ + k ψ = 0. (4.391)

There are two kinds of solutions of Eq.(4.391): For k 6= 0, we have
∇ ·ψ = 0, while for k = 0 we have ∇×ψ = 0 and then ψ = ∇Φ, where
Φ is completely arbitrary. In the first case, noting that

∇×∇× = ∇ (∇ ·) − ∇2 , (4.392)

we get
∇2 ψ + k2 ψ = 0, (4.393)

with the further condition ∇ ·ψ = 0. The solutions of Eq. (4.393),
which are orthogonal to the ones with ∇ ·ψ = 0, can be cast in the form
ψk = ∇Φk, with

∇2 Φk + k2 Φk = 0, (4.394)

and all these solutions satisfy Eq. (4.391) with only one eigenvalue
k = 0. (Indeed, considering the solutions of Eq. (4.393) for a given
eigenvalue k 6= 0, we have (∇ (∇ ·))2 = k2∇ (∇ ·), so that the eigenval-
ues of ∇ (∇ ·) are k2 or 0. In the second case, (∇×)2 = k2 and then
∇× = ±k, so that we have solutions of Eq. (4.391) with k 6= 0 and
thus ∇ ·ψ = 0. In the first case we have instead (∇×)2 = 0 and then
∇×ψk = 0, so that ψk = ∇Φk.)

Let us now return to the first considered representation of the com-
ponents of ψ and consider Eq. (4.388), assuming k 6= 0. From the above
digression, it follows that we must have ∇ ·ψ = 0 or, in the considered
representation,

− 1√
2

(
∂

∂x
+ i

∂

∂y

)
ψ1 +

∂

∂z
ψ2 +

1√
2

(
∂

∂x
− i

∂

∂y

)
ψ3 = 0.

(4.395)
A solution of Eq. (4.388) corresponding to given values of j and m can
be cast in the form

ψ =
u

r
ϕm

j,j−1 + i
v

r
ϕm

j,j +
w

r
ϕm

j,j+1. (4.396)

Due to Eq. (4.393), we can expect that, apart from the common factor√
r and constant factors, u, v, w are Bessel or Hankel functions of order

j − 1/2, j + 1/2, j + 3/2, respectively. In fact, substituting Eq. (4.396)
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in Eq. (4.388) and using Eqs. (4.387), (4.386), and (4.380), we find 13

k u +

√
j + 1
2j + 1

(
v′ +

j

r
v

)
= 0,

k v −
√

j + 1
2j + 1

(
u′ − j

r
u

)
−

√
j

2j + 1

(
w′ +

j + 1
r

w

)
= 0, (4.397)

k w +

√
j

2j + 1

(
v′ − j + 1

r
v

)
= 0.

For k 6= 0, combining the first and the third equations (4.397) and their
derivatives, it follows that

√
j

(
u′ − j

r
u

)
− √

j + 1
(

w′ +
j + 1

r
w

)
= 0, (4.398)

which equation is analogous to Eq. (4.395). Given the initial values of
u and v, for example, from Eqs. (4.397), and (4.398) w, u′, v′, w′ are
algebraically determined, so that the set of equations (4.397) has only
two independent solutions. We can eliminate the term w′ + (w/r)(j+1)
using Eq. (4.398), thus obtaining

k u +

√
j + 1
2j + 1

(
v′ +

j

r
v

)
= 0,

k v −
√

2j + 1
j + 1

(
u′ +

j

r
u

)
= 0.

(4.399)

Finally, eliminating u, we get

v′′ +
(

k2 − j(j + 1)
r2

)
v = 0. (4.400)

The only regular solution of Eq. (4.400) is
√

r Jj+1/2(|k|r); substituting
in the first and in the last one of Eqs. (4.397), we immediately obtain u
and w. It is useful to remember the following relations:

I ′n(x) +
n

x
In(x) = In−1(x),

I ′n(x) − n

x
In(x) = − In+1(x),

(4.401)

13For j = 0, u and v do not exist, and we simply have kw = 0 or, for k 6= 0, w = 0.



VOLUMETTO IV 391

or, setting F =
√

x I,

F ′
n(x) +

(
n− 1

2

)
Fn(x)

x
= Fn−1(x),

F ′
n(x) −

(
n +

1
2

)
Fn(x)

x
= −Fn+1(x).

(4.402)

It follows that the only solution of Eqs. (4.397) that is regular for r = 0
is given, except for a constant factor, by

u = −
√

j + 1
2j + 1

√
r Ij−1/2(|k|r) ·

k

|k| ,

v =
√

r Ij+1/2(|k|r), (4.403)

w =

√
j

2j + 1
√

r Ij+3/2(|k|r) ·
k

|k| .

Two independent singular solutions of Eqs. (4.397) are obviously ob-
tained on replacing the Bessel functions with the Hankel functions of
the first or second kind:

u1,2 = −
√

j + 1
2j + 1

√
r H1,2

j−1/2(|k|r) ·
k

|k| ,

v1,2 =
√

r H1,2
j+1/2(|k|r), (4.404)

w1,2 =

√
j

2j + 1
√

r H1,2
j+3/2(|k|r) ·

k

|k| .

Let us consider the simplest case in which j = 1 (for j = 0 there are
no solutions of Eq. (4.388) with k 6= 0). The functions ϕm

1,0, ϕ
m
1,1, ϕ

m
1,2,

the Bessel and Hankel functions of order 1/2, 3/2, 5/2, enter into the
expression (4.396) for ψ. Here we explicitly list these functions:

ϕ1
1,0 =

√
1
4π

(1 , 0 , 0) , (4.405)

ϕ0
1,0 =

√
1
4π

(0 , 1 , 0) , (4.406)

ϕ−1
1,0 =

√
1
4π

(0 , 0 , 1) ; (4.407)

ϕ1
1,1 =

√
1
4π

(√
3
2

cos θ ,

√
3
4

sin θ eiφ , 0

)
, (4.408)
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ϕ0
1,1 =

√
1
4π

(√
3
4

sin θ e−iφ , 0 ,

√
3
4

sin θ eiφ

)
, (4.409)

ϕ−1
1,1 =

√
1
4π

(
0 ,

√
3
4

sin θ e−iφ , −
√

3
2

cos θ

)
; (4.410)

ϕ1
1,2 =

√
1
4π

(√
9
8

cos2 θ −
√

1
8

,
3
2

sin θ cos θ eiφ ,

√
9
8

sin2 θ e2iφ

)
, (4.411)

ϕ0
1,2 =

√
1
4π

(
3
2

sin θ cos θ e−iφ , −
√

9
2

cos2 θ +
√

1
2

,

− 3
2

sin θ cos θ eiφ
)

, (4.412)

ϕ−1
1,2 =

√
1
4π

(√
9
8

sin2 θ e−2iφ , − 3
2

sin θ cos θ e−iφ ,

√
9
8

cos2 θ −
√

1
8

)
; (4.413)

I1/2(x) =
√

2
πx

sinx, (4.414)

I3/2(x) =
√

2
πx

(
− cosx +

sinx

x

)
, (4.415)

I5/2(x) =
√

2
πx

(
− sinx − 3

cosx

x
+ 3

sinx

x2

)
; (4.416)

H1
1/2(x) = − i

√
2

πx
eix, (4.417)

H1
3/2(x) =

√
2

πx
eix

(
− 1 − i

x

)
, (4.418)

H1
5/2(x) =

√
2

πx
eix

(
i− 3

x
− 3i

x2

)
; (4.419)

H2
1/2(x) = i

√
2

πx
e−ix, (4.420)

H2
3/2(x) =

√
2

πx
e−ix

(
− 1 +

i

x

)
, (4.421)

H2
5/2(x) =

√
2

πx
e−ix

(
− i− 3

x
+

3i

x2

)
. (4.422)
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Substituting these expressions into Eq. (4.396) and neglecting a constant
factor, for the solution that is regular at 0 we have (ξ = |kr|; the upper
sign refers to k > 0 and the lower one to k < 0):

(a) m = 1:

ψ1 =
sin ξ

r

[
∓

√
3
8

(
1 + cos2 θ

)
+

i

ξ

√
3
2

cos θ

± 1
ξ2

√
3
2

(
3
2

cos2 θ − 1
2

)]
+

cos ξ

r

[
−i

√
3
2

cos θ

∓ 1
ξ

√
3
2

(
3
2

cos2 θ − 1
2

)]
, (4.423)

ψ2 =
sin ξ

r

[
∓

√
3
4

sin θ cos θ eiφ +
i

ξ

√
3
4

sin θ eiφ

± 1
ξ2

√
27
4

sin θ cos θ eiφ

]
+

cos ξ

r

[
−i

√
3
4

sin θ eiφ

∓ 1
ξ

√
27
4

sin θ cos θ eiφ

]
, (4.424)

ψ3 =
sin ξ

r

[
∓

√
3
8

sin2 θ e2iφ± 1
ξ2

√
27
8

sin2 θ e2iφ

]

+
cos ξ

r

[
∓1

ξ

√
27
8

sin2 θ e2iφ

]
. (4.425)

(b) m = 0:

ψ1 =
sin ξ

r

[
∓

√
3
4

sin θ cos θ e−iφ +
i

ξ

√
3
4

sin θ e−iφ

± 1
ξ2

√
27
4

sin θ cos θe−iφ

]
+

cos ξ

r

[
−i

√
3
4

sin θ e−iφ

∓ 1
ξ

√
27
4

sin θ cos θ e−iφ

]
, (4.426)

ψ2 =
sin ξ

r

[
∓

√
3
2

(
1− cos2 θ

)
∓ 1

ξ2

√
6

(√
3
2

cos2 θ − 1
2

)]

+
cos ξ

r

[
1
ξ

√
6

(
3
2

cos2 θ − 1
2

)]
, (4.427)

ψ3 =
sin ξ

r

[
±

√
3
4

sin θ cos θ eiφ +
i

ξ

√
3
4

sin θ eiφ
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∓ 1
ξ2

√
27
4

sin θ cos θeiφ

]
+

cos ξ

r

[
−i

√
3
4

sin θ eiφ

± 1
ξ

√
27
4

sin θ cos θ eiφ

]
. (4.428)

(c) m = − 1:

ψ1 =
sin ξ

r

[
∓

√
3
8

sin2 θ e−2iφ± 1
ξ2

√
27
8

sin2 θ e−2iφ

]

+
cos ξ

r

[
∓1

ξ

√
27
8

sin2 θ e−2iφ

]
, (4.429)

ψ2 =
sin ξ

r

[
±

√
3
4

sin θ cos θ e−iφ +
i

ξ

√
3
4

sin θ e−iφ

∓ 1
ξ2

√
27
4

sin θ cos θe−iφ

]
+

cos ξ

r

[
−i

√
3
4

sin θ eiφ

± 1
ξ

√
27
4

sin θ cos θ e−iφ

]
, (4.430)

ψ3 =
sin ξ

r

[
∓

√
3
8

(
1 + cos2 θ

)
− i

ξ

√
3
2

cos θ

± 1
ξ2

√
3
2

(
3
2

cos2 θ − 1
2

)]
+

cos ξ

r

[
i

√
3
2

cos θ

∓ 1
ξ

√
3
2

(
3
2

cos2 θ − 1
2

)]
. (4.431)

The wavefunction ψ defines two real vector fields in ordinary space.
Indeed, using Eqs. (4.389), we can consider the components of ψ along
the Cartesian axes x, y, z by setting

ψ = A + iB, (4.432)

where A and B are real vectors. In other words,

ψx = Ax + i Bx, (4.433)
ψy = Ay + i By, (4.434)
ψz = Az + i Bz. (4.435)
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Substituting these expressions in Eq. (4.389), we get, apart from a
constant (±√

3/4) factor (ξ = |kr|; the upper sign refers to k > 0 the
lower one to k < 0):

(a) m = 1:

Ax =
sin ξ

r

[
1− sin2 θ cos2 φ− 1

ξ2

(
1− 3 sin2 θ cos2 φ

)]

+
cos ξ

ξr

(
1− 3 sin2 θ cos2 φ

)
,

Ay =
sin ξ

r

(
− sin2 θ sinφ cosφ±1

ξ
cos θ

+
3
ξ2
· sin2 θ sinφ cosφ

)
+

cos ξ

r

(
∓ cos θ − 3

ξ
· sin2 θ sinφ cosφ

)
,

Az =
sin ξ

r

(
− sin θ cos θ cosφ∓ 1

ξ
sin θ sinφ

+
3
ξ2
· sin θ cos θ cosφ

)
+

cos ξ

r

(
± sin θ sinφ− 3

ξ
· sin θ cos θ cosφ

)
;

Bx =
sin ξ

r

(
− sin2 θ sinφ cosφ∓ 1

ξ
cos θ

+
3
ξ2
· sin2 θ sinφ cosφ

)
+

cos ξ

r

(
± cos θ − 3

ξ
· sin2 θ sinφ cosφ

)
,

By =
sin ξ

r

[
1− sin2 θ sin2 φ− 1

ξ2

(
1− 3 sin2 θ sin2 φ

)]

+
cos ξ

ξr

(
1− 3 sin2 θ sin2 φ

)
,

Bz =
sin ξ

r

(
− sin θ cos θ sinφ±1

ξ
sin θ cosφ

+
3
ξ2
· sin θ cos θ sinφ

)
+

cos ξ

r

(
∓ sin θ cosφ− 3

ξ
· sin θ cos θ sinφ

)
.

Similar relations hold for the other two cases m = 0, m = −1.
The following are useful formulae involving the ordinary spherical

functions:
(

∂

∂x
− i

∂

∂y

)
f(r) ϕm

l

= −
(

f ′(r) +
l + 1

r
f(r)

) √
(l + m)(l + m− 1)

(2l + 1)(2l − 1)
ϕm−1

l−1

+
(

f ′(r)− l

r
f(r)

) √
(l −m + 1)(l −m + 2)

(2l + 1)(2l + 3)
ϕm−1

l+1 ,
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(
∂

∂x
+ i

∂

∂y

)
f(r) ϕm

l

=
(

f ′(r) +
l + 1

r
f(r)

) √
(l −m)(l −m− 1)

(2l + 1)(2l − 1)
ϕm+1

l−1 , (4.436)

−
(

f ′(r)− l

r
f(r)

) √
(l + m + 1)(l + m + 2)

(2l + 1)(2l + 3)
ϕm+1

l+1 ,

∂

∂z
f(r) ϕm

l

=
(

f ′(r) +
l + 1

r
f(r)

) √
(l + m)(l −m)
(2l + 1)(2l − 1)

ϕm
l−1

+
(

f ′(r)− l

r
f(r)

) √
(l + m + 1)(l −m + 1)

(2l + 1)(2l + 3)
ϕm

l+1.

Given a single-valued function u, we can set ψ = (ψ1, ψ2, ψ3) = ∇u,
with

ψ1 = − 1√
2

(
∂u

∂x
− i

∂u

∂y

)
,

ψ2 =
∂u

∂z
, (4.437)

ψ3 =
1√
2

(
∂u

∂x
+ i

∂u

∂y

)
.

Then, from the previous formulae and from Eqs. (4.376), it follows that

∇ f(r) ϕm
l =

√
l

2l + 1

(
f ′(r) +

l + 1
r

f(r)
)

ϕm
l,l−1

−
√

l + 1
2l + 1

(
f ′(r)

l

r
f(r)

)
ϕm

l,l+1 (4.438)

(this discussion continues in Sec. 4.29).

26. SCATTERING OF FAST ELECTIONS:
RELATIVISTIC BORN METHOD

Let us consider the field-free Dirac equation
(

W

c
+ ρ1 σ·p + ρ3 mc

)
ψ = 0. (4.439)



VOLUMETTO IV 397

First of all, given a 4-valued function P (q), we want to solve the problem
of finding the solutions of the differential equation

(
W

c
+ ρ1 σ·p + ρ3 mc

)
ψ = P (4.440)

for constant W with the limiting condition that ψ is a diverging wave
at infinity. Let us apply the operator W

c − ρ1 σ·p− ρ3 mc on both sides
of Eq. (4.440); we find

(
W 2

c2
− m2c2 − p2

)
ψ =

(
W

c
− ρ1 σ·p − ρ3 mc

)
P. (4.441)

Writing down the operator p and introducing the constant

k =
1
h̄

√
W 2/c2 − m2c2 =

1
h̄
|p|, (4.442)

we get

∇2 ψ + k2 ψ =
[

1
h̄2

(
W

c
− ρ3 mc

)
+

i

h̄
ρ1 σ·∇

]
P. (4.443)

As is known, it follows from this that the solution obeying the constraints
defined above has the form

ψ(q) = − 1
4π

∫ eik|q−q′|

|q− q′|
[

1
h̄2

(
W

c
− ρ3 mc

)
+

i

h̄
ρ1 σ·∇

]
P (q′) dq′,

(4.444)
which can be simplified by integrating by parts. Using the relation (∇
acts on the independent variable q′)

∇ eik|q−q′|

|q− q′| = − q− q′

|q− q′|
(

ik − 1
|q− q′|

)
eik|q−q′|

|q− q′| , (4.445)

we thus find the desired solution

ψ(q) = − 1
4π

∫ eikr

r

[
1
h̄2

(
W

c
− ρ3 mc

)

− 1
h̄

k + i/r

r
ρ1 σ·(q− q′)

]
P (q′) dq′. (4.446)

Note that, by changing the sign of k, we get the solution of Eq. (4.440)
representing a converging wave at infinity.

Let us now assume that an electron plane wave interacts with a field
whose potential is V (if this field is described by a scalar potential we
have V = −eφ). The Dirac equation can be written as

(
W

c
+ ρ1 σ·p + ρ3 mc

)
ψ =

V

c
ψ. (4.447)
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This equation can be solved, by means of re-iterated approximations
using the Born method, by setting

ψ = ψ0 + ψ1 + ψ2 + . . . , (4.448)

where ψ0 is the unperturbed wave and ψ1, ψ2, . . . are calculated itera-
tively by solving the differential equation

(
W

c
+ ρ1 σ·p + ρ3 mc

)
ψn =

V

c
ψn−1 (4.449)

in the mentioned way.
Let us study the first approximation taking ψ0 to be a plane wave

along the direction of the z axis:

ψ0 = u eikz, k =
p

h̄
, (4.450)

where u is a spin function assumed to be normalized. If the scattering
center is 0, we want to determine ψ1 at a large distance R from the
center in the direction specified by θ, φ. Let us denote with t and t1 unit
vectors in the directions of z and θ, φ, respectively. We have ψ0(q′) =
u exp{ikq′·t} and, for large R,

|q − q′| = R − q′·t1, R →∞. (4.451)

Substituting into Eq. (4.446), with ψ replaced by ψ1 and P by (V/c) ψ0,
for R →∞ we find

ψ1(R; θ, φ) = − eikR

4πR

∫
e−iq′·(kt1−kt)

[
1
h̄2

(
W

c
− ρ3 mc

)

− 1
h̄

k ρ1 σ·t1

]
V (q′)

c
udq′. (4.452)

Let us assume, for simplicity, that in the scattering field only the scalar
potential is different from zero. In this case, we have V = −eφ, and the
potential does not depend on the spin variables. Thus, we can replace
V (q′)u with uV (q′) and take the constant part outside the integral. We
then deduce

ψ1(R; θ, φ) = − eikR

4πR

∫
e−iq′·(kt1−kt) V (q′) dq′

×
[

1
h̄2

(
W

c2
− ρ3 m

)
− 1

h̄

k

c
ρ1 σ·t1

]
u. (4.453)

We now have to remember that u is a spin function of a plane wave with
momentum px = py = 0, pz = h̄k, so that

(
W

c
+ h̄k ρ1 σz + ρ3 mc

)
u = 0. (4.454)
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Let us set u = (a, b), a and b being the first and the second pair of values
of u, respectively. In this case, Eq. (4.454) becomes

(
W

c
+ mc

)
a + h̄k σz b = 0,

(
W

c
− mc

)
b + h̄k σz a. = 0.

(4.455)

We then infer that

a = − h̄
k σz

W/c + mc
b, b = − h̄

k σz

W/c−mc
a. (4.456)

Furthermore,
[

1
h̄2

(
W

c2
− ρ3 m

)
− 1

h̄

k

c
ρ1 σ·t1

]
u

=

(
1
h̄2

W −mc2

c2
a − 1

h̄

k σ·t1

c
b,

1
h̄2

W + mc2

c2
b − 1

h̄

k σ·t1

c
a

)

=
1
h̄2

(
W −mc2 + (W + mc2)σ·t1 σz

c2
a,

W + mc2 + (W −mc2)σ·t1 σz

c2
b

)
; (4.457)

and, on setting, for simplicity, σ·t1 = σR and

a′ =
W −mc2 + (W + mc2)σR σz

h̄2 c2
a,

b′ =
W + mc2 + (W −mc2)σR σz

h̄2 c2
b,

(4.458)

we get
[

1
h̄2

(
W

c2
− ρ3 m

)
− 1

h̄

k

c
ρ1 σR

]
u =

(
a′, b′

)
. (4.459)

Noting that σRσz + σzσR = 2 cos θ, we also have

a′†a′ =
1
h̄4




(
W −mc2

c2

)2

+

(
W + mc2

c2

)2

+2
W 2 −m2c4

c4
cos θ

]
a†a

=
2m2

h̄4

[
W 2

m2c4
(1 + cos θ) + (1 − cos θ)

]
a†a. (4.460)
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Analogously,

b′†b′ =
2m2

h̄4

[
W 2

m2c4
(1 + cos θ) + (1 − cos θ)

]
b†b. (4.461)

The cross section for scattering along the direction θ, φ per unit solid
angle is given by

S(θ, φ) = R2 |ψ1|2
|ψ0|2 , R →∞. (4.462)

On substituting from Eq. (4.453) we find

S(θ, φ) =
m2

8π2h̄4

[
W 2

m2c4
(1 + cos θ) + (1 − cos θ)

]

·
∣∣∣∣
∫

e−iq·(kt1−kt V (q) dq

∣∣∣∣
2

. (4.463)

In the non-relativistic case, this formula takes the well-known simple
form

S(θ, φ) =
m2

4π2h̄4

∣∣∣∣
∫

e−iq·(kt1−kt V (q) dq

∣∣∣∣
2

, k =
p

h̄
. (4.464)

Let us now turn to Eq. (4.463) and consider the Coulomb field

V = − Ze2

r
. (4.465)

It is known that:
∫

e−ikq·(t1−t V (q) dq = − 4π Ze2

k2|t1 − t|2 = − 4π Ze2

k2 · 4 sin2 θ/2

=
−π Ze2

k2 sin2 (θ/2)
. (4.466)

Introducing the free-electron momentum p = h̄k and the speed given by

v =
c2

W
p, with W 2 =

m2c4

1− v2/c2
, (4.467)

we finally conclude that

S(θ) =
Z2e4

4p2v2 sin4 (θ/2)

(
2c2 − v2

2c2
+

v2

2c2
cos θ

)
. (4.468)
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This expression has to be compared with the corresponding classical
analog

Scl(θ) =
Z2e4

4p2v2 sin4 θ/2
. (4.469)

We observe that, for small angles, the relativistic scattering coincides
with the scattering for a classical electron with the same value of pv.
On the contrary, for large angles the relativistic scattering is signifi-
cantly lower than the classical scattering. We can more easily compare
the classical and relativistic scattering (the last one studied using only
the first approximation of the Born method) for an electron with given
energy. Denoting with E the total energy minus the rest energy,

E = W − mc2 =
mc2

√
1− v2/c2

− mc2, (4.470)

and setting, for brevity,

s =
√

1 − v2/c2 =
mc2

mc2 + E
, (4.471)

we find
p v = E (1 + s) ; (4.472)

and, substituting in Eq. (4.468), we get

S(θ) =
Z2e4

16E2 sin4 θ/2

(
2 + 2s2

(1 + s)2
+

2− 2s2

(1 + s)2
cos θ

)
. (4.473)

The classical expression (s = 1) instead is

Scl(θ) =
Z2e4

16E2 sin4 (θ/2)
. (4.474)

For given energy, the relativistic scattering is thus greater than the clas-
sical value for small scattering angles but smaller than it for large angles.
Since

S

Scl
=

2 + 2s2

(1 + s)2
+

2− 2s2

(1 + s)2
cos θ, (4.475)

the scattering angle θ for which the classical and relativistic formula
agree is given by

cos θ0 = − 1− s

2(1 + s)
, (4.476)

so that θ0 = 90o for s → 1 and θ0 = 120o for s → 0.
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Table 4.2. The ratio between the relativistic and the classical electron scattering
cross sections for several values of the scattering angle θ and of the relativistic factor
s (see text).

s = 1 s = 1/2 s = 1/3 s = 0

θ = 0o 1 1.78 2.25 4.00
θ = 30o 1 1.69 2.12 3.73
θ = 60o 1 1.44 1.75 3.00
θ = 90o 1 1.11 1.25 2.00
θ = 120o 1 0.78 0.75 1.00
θ = 150o 1 0.53 0.38 0.27
θ = 180o 1 0.44 0.25 0.00

In Table 4.2 we list the ratio between the relativistic and the classi-
cal scattering cross sections S(θ)/Scl(θ) for several values of s and for
particular values of θ.

27. FREQUENTLY USED ATOMIC
QUANTITIES

(1) Harmonic oscillator. Denoting with ν the oscillation frequency in
cm−1 and with A/N the mass of the oscillating particle (N being
the Avogadro number), the largest classical elongation a in an orbit
characterized by the quantum number n is given by

a =
√

n

A

√
N h̄

π c ν
=

√
n

A

6.7
ν
· 10−8 cm. (4.477)

For example, for the hydrogen molecule, with reduced mass A =
1/2 and ν ∼ 4400, we have a ∼ 0.175

√
n·10−8; this result is valid

only for very small values of n.

(2) Energy-wavelength relationship.14 Energy of an α particle with
wavelength λ0 = 10−12cm:

E0 =
300·Nπ2h̄2

2λ2
0·e

V = 2.09·106 V. (4.478)

14@ The numerical values of the energies reported in the following differ slightly from those
found in the original manuscript (2.05·106, 150, and 2.08·106, respectively).
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Energy of an electron with wavelength λ0 = 10−8cm:

E0 =
2π2h̄2·300

mλ2
0·e

V = 153 V. (4.479)

(3) Energy-velocity relationship. Energy of an α particle with speed
v = 109cm/s:

E0 =
3.3·10−6

1.59·10−12
= 2.108·106 V. (4.480)

28. QUASI-STATIONARY STATES

Let us consider an unperturbed system for which a discrete state ψ0

with energy E0 exists together with a continuum spectrum ψW of energy
E0+W . Now introduce a perturbation linking the discrete state ψ0 with
the continuum states defined by

IW =
∫

ψ0 Hp ψW dτ. (4.481)

Due to this perturbation, the discrete state ψ0 will be absorbed by the
continuum spectrum. The problem is to find the perturbed eigenfunction
ψ′W . Denoting by H the total Hamiltonian, we have

H ψ0 = E0 ψ0 +
∫

IW ψW dW,

H ψW = (E0 + W ) ψW + IW ψ0,

(4.482)

H ψ′W = (E0 + W ) ψ′W . (4.483)

The problem can be solved exactly; the perturbed eigenfunctions ψ′W ,
which are normalized with respect to dW as assumed for ψW , are as
follows:

ψ′W =
1√|a|2 + |b|2 ψ0 +

a√|a|2 + |b|2 ψW

− 1√|a|2 + |b|2
∫

IW ′
ψW ′

W ′ −W
dW ′, (4.484)

where the integral takes its principal value and

a = I−1
W

(
W +

∫
|IW ′ |2 dW ′

W ′ −W

)
; b = π IW (4.485)
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(the integral again taking its principal value). On setting

Nw =
√
|a|2 + |b|2, (4.486)

Eq. (4.484) becomes

ψ′W =
1

NW

(
ψ0 −

∫
IW ′

ψW ′

W ′ −W
dW ′ + aψW

)
, (4.487)

We can expand the discrete state ψ0 in the states ψ′W ; getting

ψ0 =
∫ 1

NW
ψ′W dW. (4.488)

Let us now consider some approximations by neglecting third-order
terms in IW . Since the interesting values of W , that is, the values
entering Eq. (4.488) in a relevant way, are of the same order as I2

W , we
can treat the quantities in the above formulae

IW = I,

∫
|IW ′ |2 dW ′

W ′ −W
= k, (4.489)

as constants. Also setting

W = ε − k, ε = W + k, (4.490)

we have, in our approximation

a =
ε

I
, b = π I, N =

√
ε2/|I|2 + π2|I|2,

ψ′W =
1√

ε2/|I|2 + π2|I|2
(

ψ0 − I

∫
ψW ′

W ′ −W
dW ′ +

ε

I
ψW

)
,

ψ0 =
∫

ψ′W√
ε2/|I|2 + π2|I|2 dW.

(4.491)
Obviously, we obtain an identity on substituting the second equation of
(4.491) into the third one.

Let us next consider the time dependence of the eigenfunctions, noting
that the above relations hold for t = 0. We then take the following
expression as the factor defining the time dependence of ψ′W :

e−iEt/h̄ = e−i(E0−k)t/h̄ e−iεt/h̄ (4.492)

and assume that at t = 0 the system is in the state ψ0. Using the last
equation in (4.491) and (4.492) and factoring out the time-dependent
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factor in ψ′W ,we have at an arbitrary time,

ψ = e−i(E0−k)t/h̄
∫ e−iεt/h̄

√
ε2/|I|2 + π2|I|2 ψ′W dε, (4.493)

so that, on substitution of the second equation into (4.491),

ψ = e−i(E0−k)t/h̄
[
e−t/2T ψ0

+
∫

I

ε + iπ|I|2
(
e−iεt/h̄ − e−t/2T

)
ψW dε

]
, (4.494)

where 1/T = (2π/h̄)|I|2. It is natural to wonder whether Eq. (4.494)
can be directly deduced from Eq. (4.482) without using the stationary
states ψ′W and by setting IW = I = constant right from the start. In
such an approach, the quantity k is undetermined (see Eq. (4.489)),
so that one could obtain Eq. (4.494) except for an indeterminacy 15.
Equation (4.494) can be written as (ε = W + k) 16

ψ = e−iE0t/h̄ eikt/h̄e−t/2T ψ0

+
∫

IψW

(W + k) + iπ|I|2 e−iEt/h̄
(
1 − ei(W+k)t/h̄ e−t/2T

)
dW ; (4.495)

and, on setting

ψ = c ψ0 e−iE0t/h̄
∫

cW ψW e−iEt/h̄ dW (4.496)

and replacing in Eq. (4.482) IW with I, we get

ċ = − i

h̄
I

∫
e−iWt/h̄ cW dW, ċW = − i

h̄
I e−iWt/h̄ c. (4.497)

We can find solutions of these equations in the form

c = eixt/h̄ e−t/2T ,

cW =
I

W + x + iπ|I|2
(
1 − ei(W+x)t/h̄ e−t/2T

)
,

(4.498)

with an arbitrary x, although the initial conditions are determined (c =
1, cW = 0). This indeterminacy depends on the fact that the integral

15@ In other words, using the “direct” method, the (perturbed) energy eigenvalues remain
undetermined.
16@ In the original manuscript, the integration differential dε appears in the following equa-
tion; however, it is evident that it must rather be dW .
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in the first equation (4.497) does not converge. Equations (4.498) give
an expression for the time-dependent ψ that coincides with the one in
Eq. (4.495), except for the substitution of the arbitrary quantity x by
the determined quantity k.

Let us now assume that for the unperturbed system there exist a
discrete state ψ0 of energy E0 and two continuum spectra ψW and φW

with energy E0 +W . Consider then a perturbation connecting the state
ψ0 with both set of states ψW and φW :

IW =
∫

ψ0 Hp ψW dτ, LW =
∫

ψ0 Hp φW dτ. (4.499)

Instead of Eqs. (4.482), we now have

H ψ0 = E0 ψ0 +
∫

IW ψW dW +
∫

LW φW dW,

H ψW = (E0 + W ) ψW + IW ψ0,

H φW = (E0 + W ) φW + LW ψ0.

(4.500)

Due to the induced perturbation, the discrete state ψ0 will be absorbed
in the continuum spectrum, but now, for each value of W , we have two
stationary states Z1

W and Z2
W :

H Z1
W = (E0 + W ) Z1

W , H Z2
W = (E0 + W ) Z2

W . (4.501)

We can choose Z1
W and Z2

W to be orthogonal and normalized as follows:

Z1
W =

1
N ′

W

(
ψ0 + aψW + A φW −

∫
IW ′ψW ′

W ′ −W
dW ′

−
∫

LW ′φW ′

W ′ −W
dW ′

)
,

Z2
W =

LW ψW√|IW |2 + |LW |2
− IW φW√|IW |2 + |LW |2

,

(4.502)

where, as usual, the integrals take their principal values and

a =
IW

|IW |2 + |LW |2
(

W +
∫
|IW ′ |2 dW ′

W ′ −W

+
∫
|LW ′ |2 dW ′

W ′ −W

)
, (4.503)
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A =
LW

|IW |2 + |LW |2
(

W +
∫
|IW ′ |2 dW ′

W ′ −W

+
∫
|LW ′ |2 dW ′

W ′ −W

)
, (4.504)

N ′
W =

√
|a|2 + |A|2 + π2|IW |2 + π2|LW |2. (4.505)

The states Z2
W are orthogonal to ψ0, so that ψ0 can be expanded in the

same way we did in Eq. (4.488), using only the states Z1
W :

ψ0 =
∫

Z1
W /N ′

W dW. (4.506)

Let us now use some approximations analogous to those in Eqs. (4.489),
(4.490), and (4.491) by setting

IW = I, LW = L,

∫
|IW ′ |2 dW ′

W ′ −W
+

∫
|LW ′ |2 dW ′

W ′ −W
= k,

(4.507)

W = ε − k, ε = W + k, (4.508)

from which

a =
Iε

|I|2 + |L|2 , A =
Lε

|I|2 + |L|2 ,

N ′
W =

√
ε2

|I|2 + |L|2 + π2(|I|2 + |L|2),
(4.509)

Z1
W =

1
N ′

W

(
ψ0 +

ε I

|I|2 + |L|2 ψW − I

∫
ψW ′

W ′ −W
dW ′

+
ε L

|I|2 + |L|2 φW − L

∫
φW ′

W ′ −W
dW ′

)
,

Z2
W =

LψW − I φW√|I|2 + |L|2 ,

(4.510)

ψ0 =
∫ 1√

ε2/(|I|2 + |L|2) + π2(|I|2 + |L|2) Z1
W dε. (4.511)

Equations (4.510) and (4.511) are in strict analogy with Eqs. (4.491);
we can immediately deduce that, if the system is initially in the state
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ψ0, its eigenfunction at time t will be expressed, in a way analogous to
that in Eq.(4.495), by

ψ = e−i(E0−k)t/h̄ e−t/2T ψ0

+ I

∫
ψW e−iEt/h̄

W + k + iπ(|I|2 + |L|2)
(
1 − ei(W+k)t/h̄ e−t/2T

)
dW (4.512)

+ L

∫
φW e−iEt/h̄

W + k + iπ(|I|2 + |L|2)
(
1 − ei(W+k)t/h̄ e−t/2T

)
dW,

where now
1
T

=
2π

h̄

(
|I|2 + |L|2

)
. (4.513)

The probability per unit time for the transition between the state ψ0 and
the states ψW is then 2π|I|2/h̄, while that for the transition between the
state ψ0 and the states φW is 2π|I|2/h̄, as expected.

We now consider another problem. Let us assume that the system
is initially in the continuum state ψW and let us calculate the relative
probability for the system to be at time t in the state ψ0 or in the states
φW ′ or ψW ′ , with W ′ different from W , We may use the usual interpre-
tation, that is, the probability for the system to be in the arbitrary state
Y is unity if ∣∣∣∣

∫
Y ψ dτ

∣∣∣∣
2

= 1,

so that |ψ|2 is the probability density in the configuration space τ . How-
ever, we prefer to use the concept of “number of systems” in a considered
state rather than that of the relative probability for the system to be
in that state. Now, although the continuum state ψW is not strictly
stationary and represents an infinite number of systems, only a finite
number of these has an energy that differs from E0 + W by a finite
quantity. Thus we can expect that only transitions to states next to
ψW and φW will increase in number with time (and we can presume
this increase to be linear). We face the problem by using the stationary
states Z1

W , Z2
W and the approximations in Eqs. (4.507) and (4.509).

Expanding ψW in the states Z1
W and Z2

W , we have

ψW =
1

N ′
W

ε I

|I|2 + |L|2 Z1
W + I

∫
Z1

W ′

N ′
W ′(W ′ −W )

dW ′

+
L

|I|2 + |L|2 Z2
W . (4.514)

As usual, the integral takes its principal value. If at time t = 0 we have
ψ = ψW , we can immediately calculate ψ at time t using the expansion
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in Eq.(4.514):

ψ =
1

N ′
W

ε I

|I|2 + |L|2 e−iEt/h̄ Z1
W + I

∫
e−iE′t/h̄ Z1

W ′

N ′
W ′(W ′ −W )

dW ′

+
L

|I|2 + |L|2 e−iEt/h̄ Z2
W , (4.515)

where E = E0 +W , E′ = E0 +W ′. Substituting (4.510) into (4.515), we
can obtain the expression for ψ in terms of the unperturbed states ψ0,
ψW , φW . Note that, to avoid some difficulties stemming from the singu-
larities in the above integrals, it is useful to replace there the expression
(1/W ′ − W ) by

W ′ − W

(W ′ − W )2 + α2

and then to take the limit α → 0. For t > 0 it is also useful to express
ψ as the sum of two particular solutions, ψ = ψ1 + ψ2, such that ψ1 +
ψ2 = ψW for t = 0 and that the state ψ1 substantially describes the
phenomenon for sufficiently large values of time, while ψ2 is one of the
discrete states of the form given in (4.512). In this way we have

t > 0, ψ = ψ1 + ψ2,

ψ1 = e−iEt/h̄ ψW +
I

ε + iπQ2
e−iEt/h̄ ψ0

− I

ε + iπQ2

∫
IψW ′ + LφW ′

ε′ − ε
e−iEt/h̄

(
1 − ei(E−E′)t/h̄

)
dE′,

ψ2 =
I

ε + iπQ2

[
ei(E0−k)t/h̄ e−t/2T ψ0 (4.516)

+
∫

IψW ′ + LφW ′

ε′ + iπQ2
e−iE′t/h̄

(
1 − ei(E′−E0+k)t/h̄ e−t/2T

)
dE′

]
,

with

Q =
√
|I|2 + |L|2, 1

T
=

2π

h̄
Q2,

ε = E − E0 + k, ε′ = E′ − E0 + k.

The number of transitions per unit time from the state ψW to the states
ψW ′ and φW ′ with energy close to E depends on the resonance denom-
inator 1/(ε′ − ε) in the expression for ψ1 for sufficiently large values of
the time. Denoting with A the number of transitions per unit time to
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states ψW ′ (W ′ 6= W ) and with B the same number for the states φW ′ ,
we find

A =
2π

h̄
|I|2 |I|2

ε2 + π2Q4
, B =

2π

h̄
|L|2 |I|2

ε2 + π2Q4
. (4.517)

Let us now turn to the exact equations (4.502) and introduce some
simplifying notations. We set

εW = W +
∫
|IW ′ |2 dW ′

W ′ −W
+

∫
|LW ′ |2 dW ′

W ′ −W
= W + kW , (4.518)

QW =
√
|IW |2 + |LW |2, (4.519)

so that Eqs. (4.503), (4.504), and (4.505) become

a = εW
IW

Q2
W

, A = εW
LW

Q2
W

, N ′
W =

√
ε2W
Q2

W

+ π2Q2
W , (4.520)

while Eqs. (4.502) become

Z1
W =

1
N ′

W

(
ψ0 + εW

IW

Q2
W

ψW + εW
LW

Q2
W

φW

−
∫

IW ′
ψW ′

W ′ −W
dW ′ −

∫
LW ′

φW ′

W ′ −W
dW ′

)
,

Z2
W =

LW

QW
ψW − IW

QW
φW .

(4.521)
It is useful to introduce some particular combinations of the states ψW

and φW that in several applications have a precise physical meaning. We
thus set

ψW = u1
W + u2

W , φW = v1
W + v2

W , (4.522)

where

u1
W =

1
2

ψW − i

2π

∫
IW ′

IW

ψW ′

W ′ −W
dW ′,

u2
W =

1
2

ψW +
i

2π

∫
IW ′

IW

ψW ′

W ′ −W
dW ′;

(4.523)
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v1
W =

1
2

φW − i

2π

∫
LW ′

LW

φW ′

W ′ −W
dW ′,

v2
W =

1
2

φW +
i

2π

∫
LW ′

LW

φW ′

W ′ −W
dW ′.

(4.524)

Along with Eqs. (4.522), the following relations also hold:
∫

IW ′
ψW ′

W ′ −W
dW ′ = iπ IW

(
u1

W − u2
W

)
,

∫
LW ′

φW ′

W ′ −W
dW ′ = iπ LW

(
v1
W − v2

W

)
.

(4.525)

On substituting these relations and Eqs. (4.522), Eqs. (4.521) become

Z1
W =

1
N ′

W

ψ0 +
IW

N ′
W

(
εW

Q2
W

− iπ

)
u1

W +
IW

N ′
W

(
εW

Q2
W

+ iπ

)
u2

W

+
LW

N ′
W

(
εW

Q2
W

− iπ

)
v1
W +

LW

N ′
W

(
εW

Q2
W

+ iπ

)
v2
W , (4.526)

Z2
W =

LW

QW
u1

W +
LW

QW
u2

W − IW

QW
v1
W − IW

QW
v2
W .

The most general stationary state corresponding to the energy E0 + W
is a combination of Z1

W and Z2
W :

ZW = λZ1
W + µZ2

W . (4.527)

We can then set

ZW = c ψ0 + c1 u1
W + c2 u2

W + C1 v1
W + C2 v2

W , (4.528)

where

c =
λ

N ′
W

,

c1 = λ
IW

N ′
W

(
εW

Q2
W

− iπ

)
+ µ

LW

QW
,

c2 = λ
IW

N ′
W

(
εW

Q2
W

+ iπ

)
+ µ

LW

QW
, (4.529)

C1 = λ
LW

N ′
W

(
εW

Q2
W

− iπ

)
− µ

IW

QW
,

C2 = λ
LW

N ′
W

(
εW

Q2
W

+ iπ

)
− µ

IW

QW
.
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Note that the following identity holds:

|c1|2 + |C1|2 = |c2|2 + |C2|2 = |λ|2 + |µ|2. (4.530)

Let us now consider stationary states of the form (4.528) with C2 = 0.
It is sufficient to set

λ =
IW

QW
, µ =

LW

N ′
W

(
εW

Q2
W

+ iπ

)
(4.531)

in Eq. (4.529). In order to apply Eqs. (4.530), we observe that, since

∣∣∣∣∣
εW

Q2
W

+ iπ

∣∣∣∣∣ =
N ′

W

QW
,

from Eqs. (4.531), we have

|λ| =
|IW |
QW

, |µ| =
|LW |
QW

, |λ|2 + |µ|2 = 1, (4.532)

so that (4.530) becomes (given C2 = 0)

|c1|2 + |C1|2 = 1, |c2|2 = 1. (4.533)

The expression for the considered state will be of the form

ZW = c ψ0 + c1 u1
W + c2 u2

W + C1 v1
W , (4.534)

in which the values of the constants are obtained by substituting Eqs.
(4.531) into (4.529):

c =
IW

N ′
W QW

,

c1 =
1

N ′
W QW

[
εW − iπ

(
|IW |2 − |LW |2

)]
,

C1 = − 2iπ
IW LW

N ′
W QW

,

c2 =
1

N ′
W QW

(
εW + iπ Q2

W

)
.

(4.535)
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Table 4.3. The maximum value of the ratio |C1|2/|c2|2 as given by Eq. (4.539).

k p0

1 1
2 ; 1/2 0.889
3 ; 1/3 0.750
6 ; 1/6 0.490

10 ; 1/10 0.331
100 ; 1/100 0.039

It follows that

|c1|2 =
ε2W + π2(|IW |2 − |LW |2)2

ε2W + π2Q4
W

,

|C1|2 =
4π2|IW |2|LW |2
ε2W + π2Q4

W

,

|c2|2 = 1, |c1|2 + |C1|2 = 1.

(4.536)

In the approximation for which we can assume the terms IW = I and
LW = L to be constant, the ratio |C1|2/|c2|2 takes its maximum value
for εW = 0. This value is given by

(
|C1|2
|c2|2

)

0

=
4|I|2|L|2

Q4
=

4|I|2|L|2
(|I|2 + |L|2)2 = 1 −

(
|I|2 − |L|2
|I|2 + |L|2

)2

(4.537)
and always is less than 1 except if |I|2 = |L|2, when it equals 1. Let us
set

p0 =

(
|C1|2
|c2|2

)

0

, k =
|I|2
|L|2 . (4.538)

We then have

p0 =
4k

(k + 1)2
=

4
(1 + k)(1 + 1/k)

=
4

k + 2 + 1/k
, (4.539)

so that p0(k) = p0(1/k).
We can view |C1|2/|c2|2 as a function of ε and put

p = p(ε) =
|C1|2
|c2|2 . (4.540)

In the approximation for which IW = I, LW = L, we have

p =
4π2|I|2|L|2
ε2 + π2Q4

. (4.541)
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The integral
∫

p(ε)dε plays a special role in some applications. We im-
mediately find

∫
p(ε) dε =

4π2|I|2|L|2
Q2

= 4π2 |I|2|L|2
Q4

Q2. (4.542)

Introducing the annihilation probability

1
T

=
2π

h̄
Q2

for the unstable state ψ0 and the partial annihilation probabilities

1
T1

=
2π

h̄
|I|2, 1

T2
=

2π

h̄
|L|2

for transitions to the states ψW and φW , respectively, we get

1
T

=
1
T1

+
1
T2

,
1
T1

=
k

k + 1
1
T

,
1
T2

=
1

k + 1
1
T

, (4.543)

and Eq. (4.542) can be written as
∫

p(ε) dε =
2πh̄

T

p0

4
=

2πh̄

T

k

(k + 1)2

=
2πh̄

T1

1
k + 1

=
2πh̄

T2

k

k + 1
. (4.544)

Let us now turn to an application of the previous formulae to the
problem of disintegration of light nuclei resonances by α-particle cap-
ture with proton emission 17. Let us then consider the simplest case of
an unstable state ψ0 of the system “nucleus + α-particle” that spon-
taneously emits an α-particle or a proton. We assume, for simplicity,
that the particle coming from the disintegration of ψ0 is emitted as an
s-wave and that the daughter nucleus is always in its ground state. For
the problem to be mathematically well-posed, besides the state ψ0, we
also have to consider some states ψW representing the parent nucleus
and the α-particle in a hyperbolic s orbit, and some other states φW

that describe the daughter nucleus and the free proton in a s orbit. The
state ψ0 is thus coupled to both ψW and φW states by a perturbation
Hp defined by Eq. (4.499). Assuming ψW to be normalized with respect
to dW (and disregarding the peculiarities of the nucleus), it is simple to
see that it represents a converging or diverging flux of α-particles equal

17@ In modern language this means an (α, p) reaction: N + α → p + N ′.
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to 1/2πh̄ (number of particles per unit time 18) and, in the same way,
φW represents an ingoing or outgoing flux of protons equal to 1/2πh̄. By
contrast, the non-stationary states u1

W and u2
W defined in Eq. (4.523)

represent at large distances only outgoing or ingoing flux of α-particles,
respectively, whose intensity is again 1/2πh̄. Analogously, v1

W and v2
W

defined in Eq. (4.524) represent an outgoing or ingoing flux of protons.
Let us now assume that a plane wave of α-particles with definite energy,
representing a unitary flux per unit area, interacts with the parent nu-
cleus; the problem is to study the scattering of the α-particles and to
determine for what number of α-particles the nucleus disintegrates. To
this end, we have to consider a stationary state representing the incident
plane wave plus a diverging spherical wave of α-particles plus a diverging
spherical wave of protons. Such a state can be obtained as a sum of par-
ticular solutions. The particular solutions corresponding to the parent
nucleus plus α-particles with azimuthal quantum number different from
zero represent the usual scattering processes, which have the well-known
form given by the theory of scattering from a Coulomb field. However,
the considered state must be composed also of particular solutions rep-
resenting incident α-particles with l = 0 as well as of a diverging wave
of α-particles with l = 0. Moreover, due to the coupling with ψ0 and
with the states φW , this state must also be composed of an excited ψ0

state (at a certain degree of excitation) as well as of a diverging wave
of protons. Such a particular solution will have the same form as Eq.
(4.534), with the constants taking the values as in Eq. (4.535) except for
a proportionality factor. Now, c2 can be determined from the condition
that the incoming flux of α-particles is due to the incident plane wave.
This incoming flux equals |c2|2/2πh̄. On the other hand, the number of
α-particles with l = 0 impinging on the nucleus per unit time is equal
to the flux through a circular cross section, normal to the propagation
direction of the wave, with radius λ/2π (λ being the wavelength of the
α-particles). Since the incident wave represents a unit flux per unit area,
we have

|c2|2
2πh̄

= π

(
λ

2π

)2

=
λ2

4π
=

πh̄2

M2v2
, (4.545)

from which, apart for a phase constant,

c2 =
√

2π2h̄
λ

2π
. (4.546)

We can then obtain c, c1 and C1 from Eqs. (4.535) by multiplying the
values given there by the value of c2 in Eqs. (4.546) and dividing by the

18@ This point is quite obscure in the original manuscript.
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value of c2 corresponding to (4.535). However, we are interested in the
moduli of c1 and C1, since we only study the frequency of disintegration
processes, while we disregard scattering anomalies that also depend on
the phase of c1. From Eqs. (4.536) and (4.546), it follows that

|c1|2 =
h̄λ2

2
ε2 + π2(|IW |2 − |LW |2)2

ε2 + π2Q4
W

,

|C1|2 =
h̄λ2

2
4π2|IW |2|LW |2

ε2 + π2Q4
W

, (4.547)

|c2|2 =
h̄λ2

2
, λ = 2πh̄/Mv. (4.548)

The outgoing proton flux is given by |C1|2/2πh̄, and it represents the
cross section S(ε) for the disintegration process:

S(ε) =
λ2

4π

4π2|I|2|L|2
ε2 + π2Q4

, (4.549)

or, introducing p(ε) from (4.541),

S(ε) =
λ2

4π
p(ε). (4.550)

Since λ2/4π gives the cross section for α-particles with vanishing azimu-
thal quantum number, p(ε) is the probability that one of such particles
will induce a disintegration. For ε = 0, that is, the most favorable
value for the energy, this probability reaches a maximum; the expression
for p(0) is given in Eq. (4.539). It is interesting to note that p(0)
can take the value 1 for k = 1. In other words, if the state ψ0 has
the same probability to emit a proton or an α-particle and the energy
of the incident α-particles takes its most favorable value, then all the
incident particles with vanishing azimuthal quantum number will induce
disintegration.

It is often impossible to measure the cross section S(ε) for particles
with definite energy E0+k+ε. In these cases, only the quantity

∫
S(ε)dε

is measurable. Using Eq. (4.544), we get

∫
S(ε) dε =

h̄λ2

2T

p(0)
4

=
h̄λ2

2T

k

(k + 1)2
=

λ2

4π

πh̄

2T
p(0). (4.551)
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29. SPHERICAL FUNCTIONS WITH SPIN
(II)

Given a three-valued function obeying the transformation rule of D1,
Eqs. (4.389) allow us to turn to Cartesian coordinates. Sometimes it is
also useful to know the same function in spherical coordinates (r, θ, φ).
Evidently, from Eqs. (4.389), we have

ψr =
x

r
ψx +

y

r
ψy +

z

r
ψz

= − 1√
2

x + iy

r
ψ1 +

z

r
ψ2 +

1√
2

x− iy

r
ψ3,

ψθ = cos θ cosφψx + cos θ sinφψy − sin θψz

= − 1√
2

x

r

x + iy√
x2 + y2

ψ1 −
√

x2 + y2

r
ψ2 +

1√
2

z

r

x− iy√
x2 + y2

ψ3,

ψφ = − sinφψx + cosφψy

= − i√
2

x + iy√
x2 + y2

ψ1 − i√
2

x− iy√
x2 + y2

ψ3.

(4.552)
The (r, θ, φ) components of the spherical harmonics (4.376) can be ob-
tained from Eqs. (5.163); it is then useful to cast Eqs. (4.552) in the
form

ψr = − 1√
2

x + iy

r
ψ1 +

z

r
ψ2 +

1√
2

x− iy

r
ψ3,

ψθ =
1

sin θ

(
− 1√

2
x

r

x + iy

r
ψ1 − x2 + y2

r2
ψ2 +

1√
2

z

r

x− iy

r
ψ3

)
,

ψφ =
1

sin θ

(
− i√

2
x + iy

r
ψ1 − i√

2
x− iy

r
ψ3

)
.

(4.553)
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VOLUMETTO V

1. REPRESENTATIONS OF THE LORENTZ
GROUP

The group of the real Lorentz transformations acting on the variables
ct, x, y, z can be constructed from the infinitesimal transformations

Sx =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


 , Sy =




0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0


 ,

Sz =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 ,

Tx =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , Ty =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 ,

Tz =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 ,

which obey the following commutation relations:

Sx Sy − Sy Sx = Sz,

Tx Ty − Ty Tx = −Sz,

Sx Tx − Tx Sx = 0, (5.1)
Sx Ty − Ty Sx = Tz,

Sx Tz − Tz Sx = −Ty,

etc.

419
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There exist two inequivalent irreducible representations of the Lorentz
group that make use of rank-2 matrices with unit determinant. We
shall refer to these as D1/2 and D′1/2, respectively. An irreducible rep-
resentation Dj of the matrices belonging to D1/2 is still an irreducible
representation of the Lorentz group. In the same way, the irreducible
representations D′1/2 can also be constructed. Probably the most general
irreducible representation of the Lorentz group is given by

Djj′ = Dj×D′j′ , j, j′ = 0,
1
2
, 1,

3
2
, . . . . (5.2)

(Note that if j + j′ is an integer then we have univocal representations,
otherwise we have double-valued representations.)

Let us now see how D1/2 and D′1/2 can be constructed explicitly. Con-
sider a vector p = (p0, px, py, pz) whose components transform in the
same way as ct, x, y, z, and let us associate with it a rank-2 matrix,
which, we shall again denote by p:

p = p0 + pxσx + pyσy + pzσz =
(

p0 + pz px − i py

px + i py p0 − pz

)
. (5.3)

It is also clear that, conversely, there is a well-determined 4-vector p that
we can associate with every rank-2 matrix. We shall have

det p = p2
0 − p2

x − p2
y − p2

z. (5.4)

Now, let S and T be two rank-2 matrices with unit determinant1:

S = S0 + Sxσx + Syσy + Szσz, S2
0 − S2

x − S2
y − S2

z = 1,

T = T0 + Txσx + Tyσy + Tzσz, T 2
0 − T 2

x − T 2
y − T 2

z = 1.
(5.5)

The p → p′ transformation is a Lorentz transformation if the following
relation holds for the corresponding matrices:

p′ = S p T. (5.6)

In fact, we have

det p′ = detS det p detT = det p, (5.7)

i.e.,
p′20 − p′2x − p′2y − p′2z = p2

0 − p2
x − p2

y − p2
z. (5.8)

1@ In the original manuscript, there is a note here: “Instead of S and T , it is more convenient
to use two different symbols, for example, P and Q.” However, although such a notation
may be quite confusing, we prefer to use the original notation since the matrices considered
here are 2x2, while those considered at the beginning are 4x4.
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One can show that the most general Lorentz transformation can be
derived from Eq. (5.6) and that each transformation is obtained twice,
by simultaneous sign change of S and T . Transformations (5.6) are all
the proper transformations that satisfy Eq. (5.8), so that they are all
the real or imaginary Lorentz transformations. If we want to restrict
ourselves to study only real transformations, we have to impose some
relations between S and T . The most general rank-2 Hermitian matrix
corresponds to the most general real 4-vector p; thus, if we want Eq. (5.6)
to define a real transformation, p′ must be Hermitian if p is Hermitian
as well. Then, for an arbitrary Hermitian matrix p, we have

S p T = (S p T )† = T † p† S† = T † pS†, (5.9)

i.e., (
T †

)−1
S p = pS† T−1, (5.10)

and, on setting R = S† T−1, R† =
(
T †

)−1
S:

R† p = pR. (5.11)

On setting p = 1, we find R = R†, i.e, R is Hermitian as well. Then,
it follows that Rp = pR for an arbitrary Hermitian p matrix, so that
R must be proportional to the identity matrix. Moreover, we also have
that detR = detS/det T = 1, so that we finally get R = ±1. We shall
then have real Lorentz transformations in the two cases:

T = S†, (5.12)
T = −S†. (5.13)

However, the second case has no physical relevance, since the related
transformations reverse the time axis. The most general physically in-
teresting transformation is then

p′ = S p S†, (5.14)

with the only constraint on S being detS = 1.
The sub-group of the real or imaginary spatial rotations is obtained

for T = S−1 since then we have identically p′0 = p0. For real rotations,
since T = S†, S must be the most general unitary matrix with unit
determinant.

A real Lorentz transformation then determines (apart from its sign) a
matrix S of the group SU(2) 2. The S matrices clearly form a (double-
valued) irreducible representation of the Lorentz group, which we shall

2@ In the original manuscript, this group is denoted by u2; however we use the modern
notation of SU(2).
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denote by D′1/2. A second inequivalent irreducible representation of di-
mension two is given by the matrices (S†)−1; we shall call this D1/2.
Since the matrices S are unitary, so that S = (S†)−1, the two represen-
tations coincide. It is easy to derive the expressions for the infinitesimal
transformations in D1/2 and D′1/2. We find:

(a) Representations of D1/2:

Sx =
1
2i

(
0 1
1 0

)
, Sy =

1
2i

(
0 −i
i 0

)
,

Sz =
1
2i

(
1 0
0 −1

)
,

Tx = − 1
2

(
0 1
1 0

)
, Ty = − 1

2

(
0 −i
i 0

)
,

Tz = − 1
2

(
1 0
0 −1

)
.

(5.15)

(b) Representations of D′1/2:

Sx =
1
2i

(
0 1
1 0

)
, Sy =

1
2i

(
0 −i
i 0

)
,

Sz =
1
2i

(
1 0
0 −1

)
,

Tx = +
1
2

(
0 1
1 0

)
, Ty = +

1
2

(
0 −i
i 0

)
,

Tz = +
1
2

(
1 0
0 −1

)
.

(5.16)

The relations between the infinitesimal spatial rotations and the in-
finitesimal space-time rotations are as follows:

D1/2 : (Tx, Ty, Tz) = −i (Sx, Sy, Sz) ,

D′1/2 : (Tx, Ty, Tz) = +i (Sx, Sy, Sz) .
(5.17)
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Let ψ = (ψ1, ψ2) be a vector that transforms according to D1/2, that
is ψ′ = (S†)−1ψ. Let us set

φ = σy ψ∗, ψ∗ = σy φ. (5.18)

Then
φ′ = σy (ST )−1 ψ∗ = σy (ST )−1 σy φ (5.19)

obtains; and, since detS = 1 and from

S = S0 + Sxσx + Syσy + Szσz, (5.20)

we get

S−1 = S0 − Sxσx − Syσy − Szσz, (5.21)

(ST )−1 = S0 − Sxσx + Syσy − Szσz, (5.22)

so that
σy (ST )−1 σy = S (5.23)

and thus
φ′ = S φ, (5.24)

i.e., φ transforms according to D′1/2. Conversely, if φ transforms as D′1/2,
then σyφ

∗ transforms as D1/2.
Let us set

p = φφ† =
1
2

(
φ†φ + φ†σxφσx + φ†σyφσy + φ†σzφσz

)
, (5.25)

so that
p′ = Sφ φ†S† = SpS†. (5.26)

From Eq. (5.14), it follows that the 4-vectors associated with p and p′ are
connected by Lorentz transformations. If φ†φ=ψ†ψ, φ†σxφ=−ψ†σxψ,
φ†σyφ=−ψ†σyψ, φ†σzφ=−ψ†σzψ, we shall have the table

ψ†ψ, −ψ†σxψ, −ψ†σyψ, −ψ†σzψ,

φ†ψ, φ†σxφ, φ†σyφ, φ†σzφ,
ct, x, y, z,

(5.27)

where it is useful to recall that ψ is an arbitrary vector that transforms
according to D1/2 (ψ′ = (S†)−1ψ) and φ is a vector that transforms
according to D′1/2 (φ′ = Sφ).

Now, let ψ transform according toD1/2, and let us furthermore assume
it to be a function of ct, x, y, z. We shall then have that

φ =
(

1
c

∂

∂t
− ∂

∂x
σx − ∂

∂y
σy − ∂

∂z
σz

)
ψ (5.28)
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transforms according to D′1/2. In fact, let us consider a constant vector
χ of the D1/2 kind. If we left-multiply both sides of Eq. (5.28) by χ†,
we find

χ†φ =
1
c

∂

∂t

(
χ†φ

)
+

∂

∂x

(
−χ†σxψ

)
(5.29)

+
∂

∂y

(
−χ†σyψ

)
+

∂

∂z

(
−χ†σzψ

)
. (5.30)

From the first row in (5.27) (which clearly hold for any vector trans-
forming like ψ† and φ†), we can see that the r.h.s. of Eq. (5.30) is the
divergence of a vector and thus an invariant. It then follows that also
χ†φ is an invariant, that is,

χ† S−1 φ′ = χ† φ (5.31)

for any χ, so that
φ′ = S φ, (5.32)

which is what we wanted to show.
Analogously, if φ transforms according to D′1/2, then

ψ =
(

1
c

∂

∂t
+

∂

∂x
σx +

∂

∂y
σy +

∂

∂z
σz

)
φ (5.33)

transforms according to D1/2.
In the Dirac equations

(
W

c
+

e

c
A0

)
ψ + σ·

(
p +

e

c
A

)
ψ + mcφ = 0,

(
W

c
+

e

c
A0

)
φ − σ·

(
p +

e

c
A

)
φ + mc ψ = 0,

(5.34)

the first couple of functions ψ transforms as D1/2, while the second
couple φ transforms as D′1/2. Equations (5.34) can be written in short
as

(
W

c
+

e

c
A0

)
ψ + ρ3 σ·

(
p +

e

c
A

)
ψ + ρ1 mcψ = 0. (5.35)

(This discussion continues in Sec. 5.6.)
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2. PROTON−NEUTRON SCATTERING

Let us consider the relative motion between a neutron and a proton
and assume that it is possible to neglect the spin of the proton and, if
it exists, the spin of the neutron. Let m be the reduced mass of the
system (m ∼ 1/2MN ), and assume that the interaction between these
two particles can be described by a potential V (r) that depends on the
distance r between the particles. The radial Schrödinger equation for
the azimuthal quantum number ` reads 3

u′′ +
2
r

u′ +
(

2m

h̄2 (E − V ) − `(` + 1)
r2

)
u = 0. (5.36)

Let us make the following oversimplified assumption for V :

V = −A, for r < R,
V = 0, for r > R.

(5.37)

For r < R, a solution of Eq. (5.36) that is regular at the origin is then

r < R, u =
1√
r
I`+1/2




√
2m

h̄2 (E + A) r


 , (5.38)

while, for r > R, we have to find the solution among the linear combi-
nations of

1√
r
I`+1/2




√
2m

h̄2 E r


 ,

1√
r
N`+1/2




√
2m

h̄2 E r


 ,

(5.39)

with the constraint that the solution reduces to Eq. (5.38) at R. If we
set, for brevity,

k2 =
2m

h̄2 E, k2
0 =

2m

h̄2 (E + A) (5.40)

3@ In the original manuscript, the old notation h/2π is used for h̄.
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and introduce an arbitrary constant factor, we find the following solution
of Eq. (5.36), which is regular at the origin:

u` =
C`√

r
I`+1/2(k0r), r < R,

u` =
C`√

r

(
a I`+1/2(kr) + bN`+1/2(kr)

)
, r > R,

(5.41)

the constants a and b having the values

a =
πx

2

(
I`+1/2(k0r)N ′

`+1/2(kr) − k0

k
I ′`+1/2(k0r)N`+1/2(kr)

)
,

b =
πx

2

(
k

k0
I`+1/2(kr) I ′`+1/2(k0r) − I ′`+1/2(kr) I`+1/2(k0r)

)
.

(5.42)
We shall determine the constants C` in such a way that, far from the
origin, the quantity

u =
∞∑

`=0

u` P`(cos θ) (5.43)

describes a plane wave (I) eikz = eikr cos θ plus a diverging wave (S). As
is known,

I =
∞∑

`=0

i` (2` + 1)
√

π

2kr
I`+1/2(kr) P`(cos θ), (5.44)

and S = u− I, for r > R, must have the form

S =
∞∑

`=0

ε`√
r

H1
`+1/2(kr) P`(cos θ), (5.45)

with H1
`+1/2 = I`+1/2 + iN`+1/2. We thus infer

C` =
i`

a + ib
(2` + 1)

√
π

2k
,

ε` = − 2ibi`

a + ib

2` + 1
2

√
π

2k
.

(5.46)

The effect of the scattering center on the `-th order spherical wave is
completely determined by the angle θ` describing the relative phase be-
tween u` and I`+1/2 at large distances:

tan θ` = − b`/a`, (5.47)
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since the last of Eqs. (5.46) can be written as

ε` =
(
e2iθ` − 1

)
i`

2` + 1
2

√
π

2k
. (5.48)

For convenience, we here list the first half-order Bessel and Neumann
functions :

I1/2(x) =
√

2
πx

sinx,

I3/2(x) =
√

2
πx

(
− cosx +

sinx

x

)
, (5.49)

I5/2(x) =
√

2
πx

(
− sinx − 3

cosx

x
+ 3

sinx

x2

)
;

N1/2(x) = −
√

2
πx

cosx,

N3/2(x) =
√

2
πx

(
− sinx − cosx

x

)
, (5.50)

N5/2(x) =
√

2
πx

(
cosx − 3

sinx

x
− 3

cosx

x2

)
;

H1,2
1/2 = ∓ i

√
2

πx
e±ix,

H1,2
3/2 =

√
2

πx
e±ix

(
−1 ∓ i

x

)
, (5.51)

H1,2
5/2 =

√
2

πx
e±ix

(
±i − 3

x
∓ 3i

x2

)
,

where the upper sign applies to the Hankel functions of the first kind,
and the lower sign to those of the second kind.

3. ZEROS OF HALF-ORDER BESSEL
FUNCTIONS

Here are the numerical values of xi that are solutions of I`+1/2(πxi) = 0,
apart from xi = 0:
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I1/2 : 1.000, 2.000, 3.000, 4.000;

I3/2 :
4.494

π
,

7.726
π

,
10.904

π
,

14.066
π

;

I5/2 :
5.763

π
,

9.095
π

,
12.324

π
;

I7/2 :
6.985

π
,

10.416
π

.

4. STATISTICS AND THERMODYNAMICS

4.1 Entropy of a System in Equilibrium

Let E0, E1, E2, · · · be the energies of the stationary states, and denote
by E the mean energy. We will then have

E = Σ′/Σ, (5.52)

with

Σ =
∑

i

e−Ei/kT , (5.53)

Σ′ =
∑

i

Ei e−Ei/kT , (5.54)

where k is Boltzmann’s constant. The probability to find the system in
the state i will be

Pi = A e−Ei/kT = P (Ei), (5.55)

where, clearly,
A = 1/Σ. (5.56)

Let us now define the entropy S as

S =
∫ T

0

1
T

dE

dT
dT. (5.57)

Knowing that

Σ′ = kT 2 dΣ
dT

, (5.58)
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the integration can readily be performed; we find

S =
∫ 1

T

dE

dT
dT =

E

T
+

∫ 1
T 2

E dT =
E

T
+

∫ 1
T 2

Σ′

Σ
dT

=
E

T
+ k

∫ dΣ
Σ

= k log Σ +
E

T
. (5.59)

Since this expression is zero for T = 0, as one can easily check, we simply
obtain

S = k log Σ +
E

T
= k log

1
A

eE/kT

= k log
1

P (E)
. (5.60)

We have thus found that S/k corresponds to the number of different
quantum states that alternate during the life of the system in thermal
equilibrium.

4.2 Perfect Gases

The number of particles in a quantum state of energy Es obeys the Fermi
or the Bose statistics, respectively:

ns

1− ns
= A e−Es/kT , ns =

1
1
A

e−Es/kT + 1
(Fermi), (5.61)

ns

1 + ns
= A e−Es/kT , ns =

1
1
A

e−Es/kT − 1
(Bose). (5.62)

The entropy of the gas then becomes

S = k
∑
s

(
log

1
1− ns

− ns log
ns

1− ns

)
(Fermi), (5.63)

S = k
∑
s

(
log

1 + ns

1
+ ns log

1 + ns

ns

)
(Bose). (5.64)

At high temperatures and low densities (ns → 0), on considering one
mole (N particles, R = Nk, U =

∑
s nsEs is the energy of the gas),

both statistics yield

S = R (1 − log A) +
U

T
. (5.65)
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In this limit, the particles can be considered as independent, and thus
the entropy of the gas simply is the sum of the single particle entropies
minus the quantity k log N !, which takes into account the decrease in
the number of quantum states due to the identity of the particles. From
Eq. (5.60), the single particle entropy is

S′ = − k log
A

N
e−U/NkT = k (log N − log A) +

U

NT
, (5.66)

so that the entropy of the gas becomes, retaining only quantities of the
order of N , which are relevant for the entropy itself:

S = N S′ − k log N ! = R (log N − log A) +
U

T
− R log N + R

= R (1 − log A) +
U

T
, (5.67)

which is the same as the result (5.65).

4.3 Monoatomic Gas

Let us assume that the ground state is far away from the other energy
levels, and let g be its degeneracy [g = (2j + 1) or g = (2j + 1)(2i + 1) if
we have a weakly coupled nuclear spin]. It is well known that, at high
temperatures and sufficiently low densities,

A =
N h3

g v (2π mkT )3/2
(5.68)

and
U =

3
2

R T. (5.69)

From Eq. (5.67), it follows that

S = R

(
3
2

log T + log v + log g +
5
2

+
3
2

log (2π m k) − log N − 3 log h

)
. (5.70)

4.4 Diatomic Gas

Let us assume that the electric moment vanishes, while there could be
a non-vanishing nuclear spin contribution. In this case, at sufficiently
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high temperatures or sufficiently low densities (ns → 0), we have

A =
N h3

v (2π m kT )3/2 (g0Σ0 + g1Σ1)
(5.71)

U =
g0Σ0U

R
0 + g1Σ1U

R
1

g0Σ0 + g1Σ1
+

3
2

R T = UR +
3
2

R T. (5.72)

In the previous relations, Σ0 and Σ1 are the state sums relative to the
even and the odd rotational states, respectively; UR

0 and UR
1 are the

rotational energies that would result if there existed only even or odd
energy levels, respectively; and, finally, g0 and g1 are the statistical
weights of the even or odd energy levels (depending on the nuclear spin),
respectively. For nuclei of different kinds, we then have

g0 = g1 = (2i + 1)(2i′ + 1), (5.73)

while, for identical nuclei, one of the following two cases applies:
{

g0 = i(2i + 1),
g1 = (i + 1)(2i + 1), or

{
g0 = (i + 1)(2i + 1),
g1 = i(2i + 1), (5.74)

depending on the statistics followed by the two nuclei and on the parity
of the electronic term. Both Σ0 and Σ1, as well as UR

0 /RT and UR
1 /RT ,

are functions of
ε = T0/T, (5.75)

with T0 being defined by

k T0 = h2/8π2I, (5.76)

i.e., it is the temperature corresponding to the second half-difference
between the rotational energy levels. In Table 5.1 we give approximate
values for the quantities mentioned above, from which we can get an
idea of their behavior at high ε (low temperatures).
For high temperatures (ε → 0), it is easy to derive the asymptotic ex-
pressions of such quantities. Considering only the first terms, we find

Σ0 =
1
2ε

+
1
6

+ . . . ,

Σ1 =
1
2ε

+
1
6

+ . . . ,

Σ = Σ0 + Σ1 =
1
ε

+
1
3

+ . . . ,

(5.77)
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Table 5.1. Some thermodynamic quantities for a diatomic gas (see text).

ε =
T0

T
Σ0 Σ1 Σ0 + Σ1

UR
0

RT

UR
1

RT

Σ0U
R
0 + Σ1U

R
1

(Σ0 + Σ1)RT
∞ 1 0 1 0 ∞ 0
1 1.01 0.41 1.42 0.08 2.00 0.63

0.8 1.04 0.61 1.65 0.19 1.60 0.71
0.6 1.14 0.91 2.05 0.44 1.23 0.79
0.4 1.46 1.41 3.87 0.77 0.96 0.86
0.2 2.68 2.67 5.35 0.93 0.94 0.93

UR
0 = RT

(
1 − ε

3
− . . .

)
,

UR
1 = RT

(
1 − ε

3
+ . . .

)
.

(5.78)

Thus, neglecting infinitesimal quantities in the limit T →∞, we obtain:

UR = RT − 1
3

RT0, (5.79)

while the total energy is

U = RT

(
5
2
− ε

3

)
+ . . . . (5.80)

The entropy may be computed from Eq. (5.65), neglecting terms that
vanish faster than T0/T :

S = R

(
3
2

log T + log
T

T0
log v + log g

+
7
2

+
3
2

log (2π mK) − log N − 3 log h

)
, (5.81)

where

g = (2i + 1)(2i′ + 1), for different nuclei,

g =
1
2

(2i + 1)2, for identical nuclei.
(5.82)
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4.5 Numerical Expressions for the Entropy of a
Gas

The entropy (5.70) of a mole of a monoatomic gas can be cast in the
form

S = R

(
3
2

log T + log v + B

)
. (5.83)

The constant R is 1.97 calmol−1 K−1, 4 while the numerical constant B
depends on g and on the atomic weight P = Nm. On substituting the
numerical values, we get 5

B = − 5.575 + log g +
3
2

log P. (5.84)

For atomic hydrogen, for example, we have

g = 4, P = 1, B = −4.189. (5.85)

For helium:
g = 1, P = 4, B = −3.496. (5.86)

For atomic sodium, contributions arising from nuclear spin are

g = 2, P = 23, B = −0.179. (5.87)

The entropy of a diatomic gas at high temperatures (5.81) can also be
written as

S = R

(
5
2

log T + log v + B

)
. (5.88)

Now, the constant B depends on g (see Eq. (5.82)), on the molecular
weight P = NM = M/MH , and on the temperature T0 at which the
rotational degrees of freedom unfreeze:

B = − 4.575 − log T0 + log g +
3
2

log P. (5.89)

For the hydrogen molecule, for example, we have

g = 2, P = 2, T0 ' 85 K, B = −7.28. (5.90)

4@ In the original manuscript, the units of R are generically stated as cal/degree.
5@ Note that the numerical value −5.575 in Eq. (5.84) is obtained by using R =
8.31·107 erg mol−1 K−1, N = 6.022·1023, and h = 6.626·10−27 erg s.
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The constant A appearing in the distribution function us = Ae−Es/KT

gives, in our normalization scheme for the energy, the occupation num-
ber for the (individual) states of minimum energy. Since the previous
formulae are based on classical statistics, they only hold for A << 1.

On substituting numerical values into Eq. (5.68), for the monoatomic
gas we find

A =
3212

g P 3/2 v T 3/2
, (5.91)

where P is the atomic weight. For diatomic gases the same expression
applies with g0 replacing g at the very low temperatures at which A can
become of order unity since the rotational degrees of freedom are frozen.
More precisely, note that for diatomic molecules with identical nuclei for
g0 = 0, the occupation number of the deepest levels is not given by A
but rather by

A exp
(
−2h2/8π2IkT

)
, (5.92)

and still is of the form of Eq. (5.91) with g1 replacing g. Also note that,
at very low temperatures, the nuclear momentum can be coupled to the
electric momentum.

If p′ is the pressure expressed in atmospheres (1 atm = 1.013 dyne/cm2),
on eliminating v in Eq. (5.91) from the law for perfect gases, we find

A =
39.5

g P 3/2

p′

T 5/2
. (5.93)

4.6 Free Energy of Diatomic Gases

It is given by

u − T s =
∂

∂N
(U − T S) =

1
N

(U − T S + P V )

= − kT

(
5
2

log
T

T0
+ ε log

T

T1
− log P

)
. (5.94)

Here P is the pressure expressed in atmospheres, T0 = 4.31·M−3/5K (M
being the molecular weight); ε = 0, 1, or 3/2 for monoatomic or diatomic
and poli-atomic molecules, respectively. For diatomic molecules, we have

kT1 =
h2

8π2 I . (5.95)

When we consider many molecules, even at ordinary temperatures Eq.
(5.91) should be corrected by including terms depending on the oscilla-
tions.
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5. FREQUENTLY USED POLYNOMIALS

5.1 Legendre Polynomials

Pn(x) =
1

2nn!
dn(x2 − 1)n

dxn
, (5.96)

P0(x) = 1, (5.97)
P1(x) = x, (5.98)

P2(x) =
3
2
x2 − 1

2
, (5.99)

P3(x) =
5
2
x3 − 3

2
x, (5.100)

P4(x) =
35
8

x4 − 15
4

x2 +
3
8
, (5.101)

P5(x) =
63
8

x5 − 35
4

x3 +
15
8

x, (5.102)

P6(x) =
231
16

x6 − 315
16

x4 +
105
16

x2 − 5
16

, (5.103)

P7(x) =
429
16

x7 − 693
16

x5 +
315
16

x3 − 35
16

x, (5.104)

P8(x) =
6425
128

x8 − 3003
32

x6 +
3465
64

x4 − 315
32

x2 +
35
128

. (5.105)

6. SPINOR TRANSFORMATIONS

Let us consider again the formulae of Sec. 5.1 to complete the discussion.
Let the 4-vector

p = (p0, px, py, pz) (5.106)

be associated with the rank-2 matrix

p = p0 + px σx + py σy + pz σz. (5.107)

The most general real Lorentz transformation can be obtained by as-
sociating the vector p′ with the vector p such that the corresponding
matrices satisfies

p′ = S pS†, detS = 1. (5.108)
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We will consider p as a contravariant 4-vector

(p0, px, py, pz) ∼ (ct, x, y, z) . (5.109)

If q is a covariant 4-vector

(q0, qx, qy, qz) ∼ (ct,−x,−y,−z) , (5.110)

we can set

q0 = p0, qx = − px, qy = − py, qz = − pz, (5.111)

and for the corresponding matrices:

q = q0 + qx σx + qy σy + qz σz = p−1/det p ∼ p−1, (5.112)

since det p is an invariant. On performing a Lorentz transformation,
from Eq. (5.108), we have

p′−1 = S−1† p−1 S−1, (5.113)

and, from Eq. (5.112):

q′ = S−1† q S−1, det S = 1. (5.114)

The S−1† matrices form the D1/2 representation, while the S matrices
form the D′1/2 representation. If ψ is a quantity of the kind D1/2 and φ

a quantity of the kind D′1/2 then

ψ′ = S†−1 ψ, φ′ = S φ, (5.115)

and we have (see Sec. 5.1)

σy ψ∗ ∼ φ, σy φ∗ ∼ ψ, (5.116)

that is,
φ1, φ2 ∼ ψ∗2, −ψ∗1,

ψ1, ψ2 ∼ φ∗2, −φ∗1.
(5.117)

Let a = (a1, a2) and b = (b1, b2) be two-component quantities. We have

a b∗ =
1
2

(b∗a + b∗σxa σx + b∗σya σy + b∗σza σz) , (5.118)

so that the following 4-vector is associated with the matrix ab∗:

1
2

(b∗a, b∗σxa, b∗σya, b∗σza) . (5.119)
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Let us denote by ψ,Ψ, . . . some quantities of the kind D1/2 and with
φ, Φ, . . . some quantities of the kind D′1/2. We then get

ψ′Ψ′† = S−1† ψ Ψ† S−1,

φ′Φ′† = S φΦ† S†,
(5.120)

so that, from Eqs. (5.108), (5.114), (5.118), and (5.116):

Ψ†ψ, −Ψ†σxψ, −Ψ†σyψ, −Ψ†σzψ;

∼ Φ†φ, Φ†σxφ, Φ†σyφ, Φ†σzφ;

∼ ct, x, y, z;

∼ i ψ∗σyφ, ψ∗σzφ, iψ∗φ, −ψ∗σxφ.

(5.121)

It follows that the 4-vectors transform according toD1/2×D′1/2 = D1/2,1/2

(apart from a change in the coordinates). There are also some special
cases in which higher-order tensors have particular symmetry properties,
and then their components do not transform according to irreducible rep-
resentations. Thus, one of the ten components of the rank-2 symmetric
tensor is an invariant, while the other nine components transform as
D1,1. Similarly, three of the six components of the emisymmetric rank-2
tensor transform as D1,0 ≡ D1, and the other three components as
D0,1 ≡ D′1.

The formulae in Eqs. (5.121) show how the product of the components
of a quantity ψ times the components of a quantity φ transforms in
some typical cases. This produces the irreducible representationD1/2,1/2.
We will now consider the transformation law for products of quantities
of the same kind ψ or φ. In this case, we will have non-irreducible
representations, which are equivalent to

D1/2×D1/2 = D0 +D1 or D′1/2×D′1/2 = D0 +D′1,
so that, by using combinations of such products, we can construct an
invariant and three quantities transforming as some three components
(or the other three components) of the rank-2 emisymmetric tensor. The
invariants in the typical cases discussed above are immediately found.
In fact, from

ψ′ = S−1† ψ and φ′ = S φ,

it follows that
ψ′†φ′ = ψ† S−1S φ = ψ†φ.
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On using, as usual, Eq. (5.116), we find that the following quantities:

ψ†φ =
(
φ†ψ

)†
= ψ†1φ1 + ψ†2φ2,

i Ψ∗σyψ = Ψ1ψ2 − Ψ2ψ1, (5.122)
iΦ∗σyφ = Φ1φ2 − Φ2φ1.

are invariants. From this we have

ψiΨk ∼ ψiΨk (φ1Φ2 − φ2Φ1) . (5.123)

Noting that the last of Eqs. (5.121) can be written as

ψ1φ1, ψ1φ2, ψ2φ1, ψ2φ2,

∼ x− iy, ct− z, −ct− z, −x− iy,
(5.124)

substituting into the l.h.s. of Eq. (5.123), where we find products of the
kind (ψiφ`)(ΨkΦm), and eliminating the invariant quantity ψ1Ψ2−ψ2Ψ1

(this quantity is, in fact, invariant since it transforms as c2tt1 − xx1 −
yy1 − zz1, which is an invariant), we find

ψ1Ψ1 ∼ −c(tx1 − xt1) + i(yz1 − zy1) + ic(ty1 − yt1)
+(zx1 − xz1),

1
2

(ψ1Ψ2 + ψ2Ψ1) ∼ c(tz1 − zt1)− i(xy1 − yx1), (5.125)

ψ2Ψ2 ∼ c(tx1 − xt1)− i(yz1 − zy1) + ic(ty1 − yt1)
+(zx1 − xz1).

The terms on the left transform as the components of the electromagnetic
field; more precisely,

Ex, Ey, Ez ∼ c(tx1 − xt1), c(ty1 − yt1), c(tz1 − zt1);

Hx, Hy, Hz ∼ yz1 − zy1, zx1 − xz1, xy1 − yx1,
(5.126)

so that Eqs. (5.125) can be written as

ψ1Ψ1 ∼ −(Ex − iHx) + i(Ey − iHy),
1
2

(ψ1Ψ2 + ψ2Ψ1) ∼ Ez − iHz, (5.127)

ψ2Ψ2 ∼ (Ex − iHx) + i(Ey − iHy).

Using Eq. (5.116), we can derive the analogous formulae

φ1Φ1 ∼ −(Ex + iHx) + i(Ey + iHy),
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1
2

(φ1Φ2 + φ2Φ1) ∼ Ez + iHz, (5.128)

φ2Φ2 ∼ (Ex + iHx) + i(Ey + iHy);

φ†σxψ ∼ Ex − iHx,

φ†σyψ ∼ Ey − iHy, (5.129)

φ†σzψ ∼ Ez − iHz;

ψ†σxφ ∼ Ex + iHx,

ψ†σyφ ∼ Ey + iHy, (5.130)

ψ†σzφ ∼ Ez + iHz.

If we now set Ψ = (ψ, φ), from Eqs. (5.129) and (5.130) it follows:

Ψ†ρ1σxΨ ∼ Ex ∼ −Hx,
Ψ†ρ1σyΨ ∼ Ey ∼ −Hy,
Ψ†ρ1σzΨ ∼ Ez ∼ −Hz,
Ψ†ρ2σxΨ ∼ Hx ∼ Ex,
Ψ†ρ2σyΨ ∼ Hy ∼ Ey,
Ψ†ρ2σzΨ ∼ Hz ∼ Ez.

(5.131)

In our representation we have

α = ρ3 σ, β = ρ1. (5.132)

In order to obtain a generic representation corresponding to the equa-
tions

(
W

c
+ α·p + β mc

)
Ψ = 0, (5.133)

we need to make the following substitutions in the previous formulae:

ρ1 → β, σx → − i αy αz,

ρ2 → β αx αy αz, σy → − i αz αx,

ρ3 → − i αx αy αz, σz → − i αx αy.

(5.134)
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We thus obtain the following transformation rules for all the possible
combinations of the products Ψ∗

rΨs:

Ψ†Ψ ∼ −iΨ†αxαyαzΨ ∼ ct,

−Ψ†αxΨ ∼ iΨ†αyαzΨ ∼ x,

−Ψ†αyΨ ∼ iΨ†αzαxΨ ∼ y,

−Ψ†αzΨ ∼ iΨ†αxαyΨ ∼ z.

(5.135)

iΨ†βαxΨ ∼ Ex, iΨ†βαyΨ ∼ Ey, iΨ†βαzΨ ∼ Ez,

iΨ†βαyαzΨ ∼ Hx, iΨ†βαzαxΨ ∼ Hy, iΨ†βαxαyΨ ∼ Hz,
(5.136)

Ψ†βΨ ∼ Ψ†βαxαyαzΨ ∼ 1. (5.137)

Let us set

F 1 = Ψ†Ψ, F 5 = −iΨ†αxαyαzΨ,

F 2 = −Ψ†αxΨ, F 6 = −iΨ†αyαzΨ,

F 3 = −Ψ†αyΨ, F 7 = −iΨ†αzαxΨ,

F 4 = −Ψ†αzΨ, F 8 = −iΨ†αxαyΨ,

F 9 = iΨ†βαxΨ, F 12 = +iΨ†βαyαzΨ,

F 10 = iΨ†βαyΨ, F 13 = +iΨ†βαzαxΨ,

F 11 = iΨ†βαzΨ, F 14 = +iΨ†βαxαyΨ,

F 15 = Ψ†βΨ, F 16 = Ψ†βαxαyαzΨ.

If we set, in general,
F p =

∑
r,s

F p
rs Ψ∗

r Ψs, (5.138)

the Hermitian matrices Frs will be unitary. Moreover, from the proper-
ties of the group of the 32 different matrices of the form

±βn0 αn1
x αn2

y αn3

z , (5.139)
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the orthogonality relations

16∑

p=1

F p∗
rs F p

r′s′ = 4 δrr′ δss′ (5.140)

follow, from which we get

Ψ∗
r Ψs =

1
4

16∑

p=1

F p
rs F p. (5.141)

7. SPHERICAL FUNCTIONS WITH SPIN 1/2

Let ϕm
` be the ordinary spherical functions normalized in such a way

that the phase constants yield the usual representation of the angular
momentum with respect to the x, y, z axes, e.g.,

ϕm
` = (−1)m

√
2` + 1

4π

(`−m)!
(` + m)!

Pm
` (cos θ) eimφ, (5.142)

with Pm
` being the Legendre polynomials

Pm
` (t) =

1
2` `!

(
1− t2

)m/2 d`+m(t2 − 1)`

dt`+m
. (5.143)

We have
ϕm

` = (−1)m ϕ−m∗
` , (5.144)

and, instead of Eq. (5.142), we can write

ϕm
` =

√
2` + 1

4π

(` + m)!
(`−m)!

P−m
` (cos θ) eimφ. (5.145)

The two-valued spherical functions with spin s = 1/2 that transform
according to Dj (j = 1/2, 3/2, 5/2, . . .) of given signature (thus belonging
to given values of j and ` = j ∓ 1/2) are defined by

Sm
k =




√
k + m− 1/2

2k − 1
ϕ

m−1/2
` , (−1)k+`+1

√
k −m− 1/2

2k − 1
ϕ

m+1/2
`


 .

(5.146)
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The integer number k (k = ±1,±2,±3, . . .) defines both j and ` through
the relation

k = j(j + 1) − `(` + 1) +
1
4

=





` + 1, for j = ` + 1/2,

− `, for j = `− 1/2.
(5.147)

(a) Relations between `, j, k:

σ·L = k − 1,

`(` + 1) = (k − 1)k,

(j + m)(j −m + 1) = (k + m− 1/2) (k −m + 1/2) , (5.148)
(` + m + 1/2) (`−m + 1/2) = (k + m− 1/2) (k −m− 1/2) ,

(`− a)(` + 1 + a) = (k − 1− a)(k + a).

(b) Angular momentum matrices:

(Jx − i Jy) Sm
k =

√
(k + m− 1/2) (k −m + 1/2) Sm−1

k ,

(Jx + i Jy) Sm
k =

√
(k + m + 1/2) (k −m− 1/2) Sm+1

k , (5.149)

Jz Sm
k = mSm

k .

(c) Relations between Sm
k , Sm

−k, and S−m
k :

Sm
−k = σz Sm

k , (5.150)

S−m
k = i σy (−1)k+`+m−1/2 Sm ∗

k . (5.151)

(d) Properties of the operator σ·p 6:

σ·p f(r) Sm
k =

h̄

i

(
d

dr
− k − 1

r

)
f(r) Sm

−k,

σ·p f(r) Sm
−k =

h̄

i

(
d

dr
+

k + 1
r

)
f(r) Sm

k .

(5.152)

(e) Lowest order spherical functions with spin:

k = 1; j =
1
2
, ` = 0.

6@ In the original manuscript, the old notation h/2π is used instead of h̄.
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S
1/2
1 =

(
ϕ0

0, 0
)

=
(

1√
4π

, 0
)

,

S
−1/2
1 =

(
0, ϕ0

0

)
=

(
0,

1√
4π

)
.

k = −1; j =
1
2
, ` = 1.

S
1/2
−1 =

(√
1
3

ϕ0
1, −

√
2
3

ϕ1
1

)
=

(
1√
4π

cos θ,
1√
4π

sin θ eiφ
)

,

S
−1/2
−1 =

(√
2
3

ϕ−1
1 , −

√
1
3

ϕ0
1

)
=

(
1√
4π

sin θ e−iφ, − 1√
4π

cos θ

)
.

k = 2; j =
3
2
, ` = 1.

S
3/2
2 =

(
ϕ1

1, 0
)

=

(
−

√
3
8π

sin θ eiφ, 0

)
,

S
1/2
2 =

(√
2
3

ϕ0
1,

√
1
3

ϕ1
1

)
=

(
1√
2π

cos θ, − 1√
8π

sin θ eiφ
)

,

S
−1/2
2 =

(√
1
3

ϕ−1
1 ,

√
2
3

ϕ0
1

)
=

(
1√
8π

sin θ e−iφ,
1√
2π

cos θ

)
,

S
−3/2
2 =

(
0, ϕ−1

1

)
=

(
0,

√
3
8π

sin θ e−iφ

)
.

k = −2; j =
3
2
, ` = 2.

S
3/2
−2 =

(√
1
5

ϕ1
2, −

√
4
5

ϕ2
2

)

=

(
−

√
3
8π

sin θ cos θ eiφ, −
√

3
8π

sin2 θ e2iφ

)
,

S
1/2
−2 =

(√
2
5

ϕ0
2, −

√
3
5

ϕ1
2

)
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=

(√
1
2π

(
3
2

cos2 θ − 1
2

)
, −

√
9
8π

sin θ cos θ eiφ

)
,

S
−1/2
−2 =

(√
3
5

ϕ−1
2 , −

√
2
5

ϕ0
2

)

=

(√
9
8π

sin θ cos θ e−iφ, −
√

1
2π

(
3
2

cos2 θ − 1
2

))
,

S
−3/2
−2 =

(√
4
5

ϕ−2
2 , −

√
1
5

ϕ−1
2

)

=

(√
3
8π

sin2 θ e−2iφ, −
√

3
8π

sin θ cos θ e−iφ

)
.

(f) Matrices of the operators x/r, y/r, z/r in the basis of the ordinary
spherical functions:

x− iy

r
ϕm

` = sin θ e−iφ ϕm
` = −

√
(` + m)(` + m− 1)

(2` + 1)(2`− 1)
ϕm−1

`−1

+

√
(`−m + 1)(`−m + 2)

(2` + 1)(2` + 3)
ϕm−1

`+1 ,

x + iy

r
ϕm

` = sin θ eiφ ϕm
` =

√
(`−m)(`−m− 1)

(2`− 1)(2` + 1)
ϕm+1

`−1

−
√

(` + m + 1)(` + m + 2)
(2` + 1)(2` + 3)

ϕm+1
`+1 ,

z

r
ϕm

` = cos θ ϕm
` =

√
(`−m)(` + m)
(2`− 1)(2` + 1)

ϕm
`−1

+

√
(`−m + 1)(` + m + 1)

(2` + 1)(2` + 3)
ϕm

`+1.

(g) Matrices of the operators x/r, y/r, z/r in the basis of the spherical
functions with spin:

x− iy

r
Sm

k = − 1
2k − 1

√(
k + m− 1

2

) (
k + m− 3

2

)
Sm−1

k−1

+
1

2k + 1

√(
k −m +

1
2

) (
k −m +

3
2

)
Sm−1

k+1

+
2

(2k − 1)(2k + 1)

√(
k −m +

1
2

) (
k + m− 1

2

)
Sm−1
−k ,
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x + iy

r
Sm

k =
1

2k − 1

√(
k −m− 1

2

) (
k −m− 3

2

)
Sm+1

k−1

− 1
2k + 1

√(
k + m +

1
2

) (
k + m +

3
2

)
Sm+1

k+1

+
2

(2k − 1)(2k + 1)

√(
k −m− 1

2

) (
k + m +

1
2

)
Sm+1
−k ,

z

r
Sm

k =
(−1)k+`+1

2k − 1

√(
k + m− 1

2

) (
k −m− 1

2

)
Sm

k−1

+
(−1)k+`+1

2k + 1

√(
k + m +

1
2

) (
k −m +

1
2

)
Sm

k+1

+
2

(2k − 1)(2k + 1)
mSm

−k.

(h) Matrices of the operators Lx, Ly, Lz (note that |2k− 1| = 2` + 1):

(Lx − iLy) Sm
k =

2k − 2
2k − 1

√(
k + m− 1

2

) (
k −m +

1
2

)
Sm−1

k

+
1

|2k − 1|

√(
k + m− 1

2

) (
k + m− 3

2

)
Sm−1
−k+1,

(Lx + iLy) Sm
k =

2k − 2
2k − 1

√(
k + m +

1
2

) (
k −m− 1

2

)
Sm+1

k

− 1
|2k − 1|

√(
k −m− 1

2

) (
k −m− 3

2

)
Sm+1
−k+1,

Lz Sm
k =

2k − 2
2k − 1

mSm
k

− 1
|2k − 1|

√(
k + m− 1

2

) (
k −m− 1

2

)
Sm
−k+1.

(i) Matrices of the operators σx, σy, σz:

(σx − iσy) Sm
k =

2
2k − 1

√(
k + m− 1

2

) (
k −m +

1
2

)
Sm−1

k

− 2
|2k − 1|

√(
k + m− 1

2

) (
k + m− 3

2

)
Sm−1
−k+1,

(σx + iσy) Sm
k =

2
2k − 1

√(
k + m +

1
2

) (
k −m− 1

2

)
Sm+1

k
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+
1

|2k − 1|

√(
k −m− 1

2

) (
k −m− 3

2

)
Sm+1
−k+1,

σz Sm
k =

2
2k − 1

mSm
k

− 1
|2k − 1|

√(
k + m− 1

2

) (
k −m− 1

2

)
Sm
−k+1.

8. INFINITE-DIMENSIONAL UNITARY
REPRESENTATIONS OF THE LORENTZ
GROUP

The representations of the Lorentz group considered in Sec. 5.1 are,
except for the identity representation, essentially not unitary, i.e., they
cannot be converted into unitary representations by some transforma-
tion. The reason for this is that the Lorentz group is an open group.
However, in contrast to what happens for closed groups, open groups
may have irreducible representations (even unitary) in infinite dimen-
sions. In what follows, we shall give two classes of such representations
for the Lorentz group, each of them composed of a continuous infinity
of unitary representations.

A given representation may be defined in terms of the infinitesimal
transformations that satisfy the commutation relations in (5.1). Instead
of Sx, Sy, Sz, Tx, Ty, Tz we can introduce the matrices

ax = i Sx, bx = −i Tx, . . . . (5.153)

These will be Hermitian matrices in a unitary representation, and vice-
versa, and also obey the commutation relations 7

[ax, ay] = i az,

[bx, by] = −i az,

[ax, bx] = 0, (5.154)
[ax, by] = i bz,

7@ In the original manuscript the commutator is denoted with round brackets: (a, b). How-
ever we prefer to use the modern notation [a, b]. In the margin of the paper, the trans-
formation properties of the matrices a, b (related to the transformation properties of the
electromagnetic field) are also given: (ax, ay , az , bx, by , bz) ∼ (Ex, Ey , Ez , Hx, Hy , Hz) ∼
(−Hx,−Hy,−Hz , Ex, Ey , Ez).
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[bx, ay] = i bz,

etc.

Every representation considered here acts on an infinite-dimensional
space whose unitary vectors are identified by two numbers, j and m
(for the representations of the first class we have j = 1/2, 3/2, 5/2, . . .,
m = j, j − 1, . . . ,−j, whereas for the second class j = 0, 1, 2, . . ., m =
j, j−1, . . . ,−j). Moreover, every representation is also labeled by a real
number Z0 that can take any value, both positive and negative, whose
meaning will be clear in what follows. For the simplest representation
Z0 = axbx +ayby +azbz = 0; the non-zero elements of ax− iay, ax + iay,
az, bx − iby, bx + iby, bz can be deduced as follows8:

< j,m | ax − iay | j, m + 1 > =
√

(j + m + 1)(j −m),

< j,m | ax + iay | j, m− 1 > =
√

(j + m)(j −m + 1),

< j, m | az | j, m > = m,

< j,m | bx − iby | j + 1,m + 1 > = − 1
2

√
(j + m + 1)(j + m + 2),

< j,m | bx − iby | j − 1,m + 1 > =
1
2

√
(j −m)(j −m− 1), (5.155)

< j,m | bx + iby | j + 1,m− 1 > =
1
2

√
(j −m + 1)(j −m + 2),

< j,m | bx + iby | j − 1,m− 1 > = − 1
2

√
(j + m)(j + m− 1),

< j, m | bz | j + 1,m > =
1
2

√
(j + m + 1)(j −m + 1),

< j, m | bz | j − 1,m > =
1
2

√
(j + m)(j −m).

Note the relations

a2
x + a2

y + a2
z = j (j + 1) ,

b2
x + b2

y + b2
z = j (j + 1) + 3/4;

(5.156)

ax bx + ay by + az bz = 0,

b2
x + b2

y + b2
z − a2

x − a2
y − a2

z = 3/4.
(5.157)

8@ In the original manuscript, the following scalar products are denoted by round brackets:
(. . . | . . . | . . .). However, we prefer to use here the Dirac notation < . . . | . . . | . . . >.
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We now want to determine the matrices α0, αx, αy, αz in such a way
that the equations

[
α0

(
W0

c
+

e

c
φ

)
+ α·

(
p +

e

c
C

)
− m

]
ψ = 0 (5.158)

are invariant. To this end, it is thus necessary that the operators α0,
αx, αy, αz or the corresponding Hermitian forms (we’re talking about
unitary transformations!), transform as the components of a covariant
vector (α0, αx, αy, αz ∼ ct, −x, −y, −z). In order to observe this re-
quirement, it is necessary and sufficient that the following commutation
relations be satisfied:

[α0, ax] = 0,

[α0, bx] = i αx,

[αx, ax] = 0,

[αx, ay] = i αz,

[αx, az] = −i αy,

[αx, bx] = i α0,

[αx, by] = 0,

[αx, bz] = 0,

etc.

(5.159)

From the first of these it follows that α0 depends on j:

α0 = cj , (5.160)

while, from the second and the sixth,

[[α0, bx] , bx] = −α0, etc., (5.161)

that is,
−α0 = b2

x α0 − 2 bx α0 bx + α0 b2
x. (5.162)

Therefore, by considering bz, for example, it follows that

cj − 2cj+1 + cj+2 = 0,

cj =
1
2

(
j2 − m2 + 2j + 1

)
(cj+1 − cj) − 1

2

(
j2 − m2

)
(cj − cj−1) ,
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from which, apart from a constant factor, we get

cj = j + 1/2. (5.163)

Thus from Eq. (5.160), the second of Eqs. (5.159), and (5.155) we can
univocally derive the matrices α0, αx, αy, αz, apart from a constant
factor:

α0 = j +
1
2
,

< j, m |αx − iαy | j + 1,m + 1 > = − i

2

√
(j + m + 1)(j + m + 2),

< j, m |αx − iαy | j − 1,m + 1 > = − i

2

√
(j −m)(j −m− 1),

< j, m |αx + iαy | j + 1,m− 1 > =
i

2

√
(j −m + 1)(j −m + 2),

< j, m |αx + iαy | j − 1,m− 1 > =
i

2

√
(j + m)(j + m− 1),

< j, m |αz | j + 1,m > =
i

2

√
(j + m + 1)(j −m + 1),

< j, m |αz | j − 1,m > = − i

2

√
(j + m)(j −m),

where the elements that do not explicitly appear are zero.
For the representations with arbitrary real Z0 = axbx + ayby + azbz

the matrices ax, ay, az still are expressed by Eq. (5.155) as in the Z0 = 0
case. In the general case, the non-zero elements of bx, by, bz are given by:

< j, m | bx − iby | j + 1,m + 1 > = −
√

4Z2
0 + (j + 1)2

2(j + 1)

×
√

(j + m + 1)(j + m + 2),

< j, m | bx − iby | j, m + 1 > =
Z0

j(j + 1)

√
(j + m + 1)(j −m),

< j, m | bx − iby | j − 1,m + 1 > =

√
4Z2

0 + j2

2j

√
(j −m)(j −m− 1),

< j, m | bx + iby | j + 1,m− 1 > =

√
4Z2

0 + (j + 1)2

2(j + 1)

×
√

(j −m + 1)(j −m + 2),

< j, m | bx + iby | j, m− 1 > =
Z0

j(j + 1)

√
(j + m)(j −m + 1),
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< j,m | bx + iby | j − 1,m− 1 > = −
√

4Z2
0 + j2

2j

√
(j + m)(j + m− 1),

< j, m | bz | j + 1,m > =

√
4Z2

0 + (j + 1)2

2(j + 1)

×
√

(j + m + 1)(j −m + 1),

< j, m | bz | j, m > =
Z0

j(j + 1)
m,

< j, m | bz | j − 1,m > =

√
4Z2

0 + j2

2j

√
(j + m)(j −m).

9. THE EQUATION (2H + λ)A = p

Let us define the symbol 2 as

2 ≡ 1
c2

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
(5.164)

and assume that λ is a positive constant (with dimensions [L]−2), while
p = p(x, y, z, t) is an arbitrary function of space. The general solution
of the equation

(2 H + λ) A = p(x, y, z, t) (5.165)

is obtained by adding a particular solution to the general solution of the
associated homogenous equation that results when one sets p = 0. A
particular solution can be cast in the form

A(q, t) =
∫

F (q, t; q′, t′) p(q′, t′) dq′ dt′, (5.166)

and one can require that, for symmetry,

F (q, t; q′, t′) = F (R, T ), (5.167)

where R =
√

X2 + Y 2 + Z2 and X = x − x′, Y = y − y′, Z = z − z′,
T = t− t′. Moreover, we can also assume that F (R, T ) is different from
zero only for T ≥ R/c.

The function F must satisfy the homogeneous equation associated
with Eq. (5.165) (in respect to the variables q, t or q′, t′) except that
for T = 0 and thus for R = 0, where it should have an appropriate



VOLUMETTO V 451

singular behavior. The function that satisfies the desired conditions also
has a singular behavior at the boundary of the integration field, i.e,
for T = R/c, so that the integral in Eq. (5.166) has to be evaluated
as the sum of an integral over the negative optical cone and a four-
dimensional integral on the interior of the same optical semi-cone. We
find the following formula, which we shall verify later on:

A(q, t) =
1
4π

∫ 1
R

p

(
q′, t− R

c

)
dq′− cλ

4π

∫

T>R/c

I1(ω)
ω

p(q′, t′) dq′ dt′,

(5.168)
with I1 denoting the Bessel function of order 1 and

ω =
√

λ (c2T 2 − R2). (5.169)

For λ = 0 only the first integral in Eq. (5.168) is non-vanishing, and
this gives rise to the usual expression for the retarded potentials.

In order to verify Eq. (5.168), let us set, for fixed q and t,

A(q, t) =
∫ t

−∞
u(t′) dt′, (5.170)

with u(t′)dt′ being the contribution to the two integrals on the r.h.s.
of Eq. (5.168) coming from all points in the t′ integration region lying
between t′ and t′ + dt′. We now want to show that u(t′) can be cast in
the form

u(t′) =
dv(t′)
dt′

, (5.171)

the function v(t′) being such that it can be expressed as the sum of two
integrals computed in the region t′ = constant, one over the spherical
surface |q− q′| = R = cT = c(t− t′) and the other over the region inside
the same sphere. More precisely, we can set

v(t′) =
1
4π

∫ 4πc2T 2

0

[
1

cR

∂A(q′, t′)
∂t′

+
1
R

∂A(q′, t′)
∂R

+
(

1
R2

− λ

2

)
A(q′, t′)

]
dσ − λ

4π

∫ 4
3
πc3T 3

0

[
1
c

∂A(q′, t′)
∂t′

I1(ω)
ω

− λ cT A(q′, t′)
I1(ω)− ωI ′1(ω)

ω3

]
dq′; (5.172)

note that ∂/∂R is the derivative performed along the outward normal.
In order to prove this formula it is necessary to prove that u(t′) obtained
from the derivative of v(t′) from Eq. (5.171) is the same as that com-
puted using its definition (5.170). For the direct computation of u(t′)
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we need to replace the quantity p(q′, t′) in Eq. (5.168) by its expression
(2 + λ)A(q′, t′) derived from the differential equation (5.165).

On substituting Eq. (5.172) into Eq. (5.171), we find that even
in this case u(t′) is expressed as a sum of an integral over the sphere
|q − q′| = R = cT and an integral over the region inside the sphere:

u(t′) =
1
4π

∫ 4πc2T 2

0

[
1

cR

∂2A(q′, t′)
∂t′2

− c

R

∂2A(q′, t′)
∂R2

− 2c

R2

∂A(q′, t′)
∂R

+
(

1
R
− λR

8

)
c λA(q′, t′) +

cλ

2
∂A(q′, t′)

∂R

]
dσ

− cλ

4π

∫ 4
3
πc3T 3

0

[I1(ω)
ω

(2 + λ) A(q′, t′)

+
∑

(x,y,z)

∂

∂x′

(I1(ω)
ω

∂A(q′, t′)
∂x′

+ λ×A(q′, t′)
I1(ω)− ωI ′1(ω)

ω3

)]
dq′

=
1

4πT

∫ 4πc2T 2

0
(2 + λ) A(q′, t′) dσ

− cλ

4π

∫ 4
3
πc3T 3

0

I1(ω)
ω

(2 + λ) A(q′, t′) dq′. (5.173)

In deriving this relation we have used the differential equation for I1(ω),

I ′′1 (ω) +
1
ω
I ′1(ω) +

(
1 − 1

ω2

)
I1(ω) = 0, (5.174)

as well as Eq. (5.169) and the relations

lim
ω→0

I1(ω)
ω

=
1
2
, lim

ω→0

I1(ω)− ωI ′1(ω)
ω3

=
1
8
. (5.175)

We immediately verify that u(t′) is precisely the function that we have
introduced above in order to deduce Eq. (5.170) from Eq. (5.168).
In fact, it is enough to replace p into Eq. (5.168) with (2 + λ)A, in
accordance with the differential equation (5.165). We have thus proven
that the r.h.s. of Eq. (5.168) is

A′(q, t) = lim
t′→t

v(t′) − lim
t′→−∞

v(t′). (5.176)

From Eq. (5.172) it follows that

lim
t′→t

v(t′) = A(q, t), (5.177)

while, assuming that A(q, t) goes to zero rapidly when t → −∞,

lim
t′→−∞

v(t′) = 0. (5.178)
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It follows that
A′(q, t) = A(q, t), (5.179)

so that we have proven Eq. (5.168), since a posteriori we can verify that
the assumption above is realized when A(q, t) is defined by Eq. (5.168)
and p(q, t) vanishes for sufficiently small values of t. However, we note
that, even if the latter were not the case, A(q, t) in Eq. (5.168) would
again have the same form as Eq. (5.170), provided that we encounter
no convergence problems.

Instead of Eq. (5.168) another particular solution of Eq. (5.165) can
also be used. This is easily obtained by inverting the time axis:

B(q, t) =
1
4π

∫ 1
R

p

(
q′, t +

R

c

)
dq′− cλ

4π

∫

T<R/c

I1(ω)
ω

p(q′, t′) dq′ dt′.

(5.180)
In general, we obviously have that B 6= A, and the difference B − A
obeys the homogeneous differential equation (5.165) with p = 0.

The solutions (5.168) and (5.180) can also be used to determine the
general integral of the homogeneous equation

(2 + λ) A = 0. (5.181)

The most general solution of Eq. (5.181) is determined by arbitrarily
fixing at t = 0 the values of the function and of its time derivative:

A(q, 0), Ȧ(q, 0). (5.182)

Let us consider a singular function A1(q, t):

A1(q, t) =
{

A(q, t), for t > 0,
0, for t < 0,

(5.183)

such that, knowing A1, one can determine A for t > 0. If we now set

(2 + λ) A1 = p(q, t), (5.184)

p is going to be singular for t = 0 and will vanish for t > 0 and t < 0.
The function A1 is precisely the particular solution of Eq. (5.184) that
can be cast in the form (5.168). As far as the singular function p(q, t) is
concerned, it consists of a single layer at t = 0 having the density

s0 =
1
c2

Ȧ(q, 0) (5.185)

and a double layer in the same space at t = 0 with density

s1 = − 1
c2

A(q, 0). (5.186)
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On substituting these densities into Eq. (5.168) and using Eq. (5.183),
for t > 0, we get

A(q, t) =
1

4πt

∫ 4πc2t2

0
s0(q′) dσ − cλ

4π

∫ 4
3
πc3t3

0

I1(ε)
ε

s0(q′) dq′

− ∂

∂t

[
1

4πt

∫ 4πc2t2

0
s1(q′) dσ − cλ

4π

∫ 4
3
πc3t3

0

I1(ε)
ε

s1(q′) dq′
]

, (5.187)

where
ε =

√
λ(c2t2 − R2), (5.188)

while the integrals are evaluated over the spherical surface or in the
region inside the sphere of radius ct and center at q.

On substituting the expressions (5.185) and (5.186) for s0(q) and
s1(q), after some further transformation, we find

A(q, t) =
1

4πc2t2

∫ 4πc2t2

0

[
t Ȧ(q′, 0) +

(
1 − λR2

2

)
A(q′, 0)

+ R
∂A(q′, 0)

∂R

]
dσ +

λ2ct

4π

∫ 4
3
πc3t3

0

[
[I]∞(ε)− εI ′∞(ε)

ε3
A(q′, 0)

− 1
λc2t

I1(ε)
ε

Ȧ(q′, 0)
]

dq′ (t > 0). (5.189)

In this expression ∂/∂R denotes the derivative along the outward normal
to the sphere of radius ct.

In a similar way, we can obtain A for t < 0 by making use of the
particular solutions (5.180) of Eq. (5.165). The result can be easily
foreseen from the invariance of Eq. (5.181) with respect to time reversal.
We shall obtain the same expression (5.189) but the integrals will now
be evaluated over the surface of the sphere of radius ct and center q or
inside it; moreover, we have to change the sign of the integrand terms
that contain the factor Ȧ(q′, 0).

10. RELEVANT FORMULAS FOR THE
ATOMIC EIGENFUNCTIONS

(1) Dirac equations for a particle in a central field:
[
W − V

c
+ ρ1 σ·p + ρ3 mc

]
ψ = 0; (5.190)
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k = (2j + 1)(j − `) =
{

` + 1, for j = ` + 1/2,
−`, for j = `− 1/2; (5.191)

(ψ3, ψ4) =
u(r)

r
Sm

k , (5.192)

(ψ1, ψ2) = i
v(r)
r

Sm
−k, (5.193)

(see Sec. 5.7); we have 9

∫ (
u2 + v2

)
dr = 1, (5.194)

(
d
dr

− k

r

)
u =

1
h̄c

(
W − V + mc2

)
v, (5.195)

(
d
dr

+
k

r

)
u = − 1

h̄c

(
W − V − mc2

)
u. (5.196)

(2) The solution of

y′′ +
(

2Z

x
− `(` + 1)

x2

)
y = 0. (5.197)

under the conditions

y(0) = 0, lim
x→0

y

x`+1
= 1, (5.198)

is

y =
(2` + 1)!
(2Z)`+1

√
2Zx I2`+1

(
2
√

2Zx
)

. (5.199)

(3) Fine-structure formula:

E = mc2

(
1 +

Z2α2

(S +
√

k2 − Z2α2)2

)−1/2

− mc2, (5.200)

with
S = 0, 1, 2, . . . , for k > 0,
S = 1, 2, 3, . . . , for k < 0.

(5.201)

9@ In the original manuscript, the old notation h/2π instead of h̄ is used.
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First approximation:

E = −Z2

n2
Rh − Z4

n3

(
1
|k| −

3
4n

)
α2 Rh (5.202)

(α2Rh = 5.82cm−1).

Doublet shift:

∆E =
Z4

n3`(` + 1)
α2 Rh = Z a3

0

(
` +

1
2

)
r−3 α2 Rh, (5.203)

with

r−3 =
Z3

a3
0

1
n3`(` + 1/2)(` + 1)

. (5.204)

11. CLASSICAL THEORY OF MULTIPOLE
RADIATION

Let us consider an oscillating electrical system of frequency ν, i.e., the
charge and current densities can be expressed in the form

ρ = ρ0 e−2πνit + ρ∗0 e2πνit,

I = I0 e−2πνit + I∗0 e2πνit.
(5.205)

We use the convention of expressing all quantities in electromagnetic
units. From the continuity equation it follows that

ρ0 =
c

2πνi
∇ · I0, (5.206)

and thus the system is completely determined by the arbitrary vector
function I0. The radiation emitted by this system can be computed by
finding a solution of the equations

2 φ = 4π ρ,

2A = 4π I,
(5.207)

with the “continuity condition” 10

1
c

∂φ

∂t
+ ∇ ·A = 0, (5.208)

10@ In modern terminology one speaks of a gauge condition; in particular, the author is
considering the Lorenz gauge.
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such that it can be cast in a form similar to Eq. (5.205) and satisfies the
constraint that at large distances it describes a diverging wave (method
of stationary waves). Alternatively, we can also compute the radiation
emitted by the system by supposing that at the initial time the region
of interest is free of any radiation and then determining the frequency
distribution of the radiation after a time t (method of variation of pa-
rameters).

In either case, knowing the currents is sufficient to define the radiating
system, while in order to evaluate how much energy has been radiated
one must know the vector potential. We will then consider only the
relations between I and A which, being vectorial quantities, transform
according to a representation equivalent to D1. By choosing suitable
linear combinations of the ordinary vector components, it is convenient
to introduce the quantities I = (I1, I2, I3) and A = (A1, A2, A3), which
transform exactly according to D1:

I1 =
(
1/
√

2
)

(−Ix + iIy) , A1 =
(
1/
√

2
)

(−Ax + iAy) ,

I2 = Iz, A2 = Az,

I3 =
(
1/
√

2
)

(Ix + iIy) , A3 =
(
1/
√

2
)

(Ax + iAy) .

(5.209)

Let us now define a suitable complete set of orthogonal functions
in terms of which it is possible to expand any vector function V =
(V1, V2, V3). We choose the regular solutions of

∇2 V + k2 V = 0, k > 0, (5.210)

and label them with the continuous index k and with the discrete indices
j and m having the usual meaning. It is easy to see that, for every value
of k and for fixed (integer) j and m, there exist three regular independent
solutions of Eq. (5.210) except when j = 0, in which case there is only
one solution. In fact, if we introduce the “orbital” momentum ` (in units
of h̄), for every value of k we clearly find 3·(2`+1) independent solutions
of Eq. (5.210), which are regular at the origin. These are obtained by
setting one of the components of V equal to

Vi =
1√
r
I`+1/2(kr) ϕm`

` , i = 1, 2, 3; m` = `, `− 1, . . . ,−`, (5.211)

and the other two equal to zero:

Vi′ = 0, i′ 6= i. (5.212)
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These 3·(2`+1) vector functions transform according to D`×D1 and can
therefore be expressed as combinations of three systems of independent
functions transforming according to

D`−1, D`, D`+1 (5.213)

except for the case ` = 0 when only the D`+1 system survives. Every
irreducible representation Dj appears, then, three times and yields regu-
lar solutions of Eq. (5.210) for a given value of k. Such a representation
can, in fact, be obtained from ` = j + 1, j, j − 1, except for the solution
with j = 0, in which case it appears only once and derives from ` = 1.
Thus, in the general case, for any k, j, and m we have three solutions
of Eq. (5.210), but we now need to establish a criterion to discrimi-
nate among them, which is necessary in order to list all the possible
independent solutions of Eq. (5.210). The simplest way to achieve this
stems from the previous considerations and consists in introducing an
“orbital” momentum ` that can only take the values j + 1, j, j − 1 (only
` = 1 for j = 0). Actually, this is not really the most convenient choice,
since it does not make any distinction between longitudinal and trans-
verse waves, which, in contrast, is a rather significant feature especially
in practical applications. In fact, as is well known, the regular solutions
of Eq. (5.210) may be expressed as combinations of two particular sets
of solutions. The first set consists of longitudinal waves satisfying the
additional condition

∇×V = 0, (5.214)

from which it follows that

V = ∇ v, (5.215)

while the second set consists of transverse waves satisfying the condition

∇ ·V = 0. (5.216)

Waves belonging to the two sets are orthogonal. Now, it is easy to
see that for every value of k, j, and m (even for j = 0) we have only
one longitudinal wave, which is obtained from Eq. (5.215) by setting,
modulo a constant factor,

v =
1√
kr
Ij+1/2(kr) ϕm

j . (5.217)

Because of its symmetry properties under parity transformations, it fol-
lows that the longitudinal wave is a combination of the solutions of Eq.
(5.210) corresponding to ` = j + 1 and ` = j − 1. The other combina-
tion of the same solutions that is orthogonal to the longitudinal wave
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(it exists for j > 0) is a transverse wave which, for a reason that will
be explained later, we will call an “electric multipole wave of order j”.
Finally, the solution for ` = j (which also exists only for j > 0) is again a
transverse wave that will be called a “magnetic multipole wave of order
j”. By performing explicitly the computations underlying the previous
proofs, we find the following expressions for waves of the three different
kinds:

(a) longitudinal waves:

VL
k,j,m =

√
k

r

[√
j

2j + 1
Ij−1/2(kr) ϕm

j,j−1

+

√
j + 1
2j + 1

Ij+3/2(kr) ϕm
j,j+1

]
; (5.218)

(b) electric multipole wave:

VE
k,j,m =

√
k

r

[√
j + 1
2j + 1

Ij−1/2(kr) ϕm
j,j−1

−
√

j

2j + 1
Ij+3/2(kr) ϕm

j,j+1

]
; (5.219)

(c) magnetic multipole wave:

VM
k,j,m =

√
k

r
Ij+1/2(kr)ϕm

j,j . (5.220)

As stressed before and as it also clearly results from the expressions
above, the transverse waves can exist only for j > 0. The set of ortho-
gonal vector functions defined by Eqs. (5.218), (5.219), and (5.220) is
complete and normalized with respect to dk. The latter property comes
from the asymptotic form of the Bessel functions.

Let us expand I0 in Eq. (5.205) according to such set of orthogonal
functions:

I0 =
∑

j,m

∫ ∞

0

[
IL
k,j,m VL

k,j,m + IE
k,j,m VE

k,j,m + IM
k,j,m VM

k,j,m

]
dk,

(5.221)
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with Ik,j,m being constants. In a similar fashion, we set, at any time
instant,

A =
∑

j,m

∫ ∞

0

∑

χ=L,E,M

(
Aχ

k,j,m e−ikct + A′χk,j,m eikct
)

Vχ
k,j,m dk,

(5.222)

Ȧ =
∑

j,m

∫ ∞

0

∑

χ=L,E,M

ikc
(
A′χk,j,m eikct − Aχ

k,j,m e−ikct
)

Vχ
k,j,m dk.

(5.223)

The constraint requiring the (Cartesian) components of A to be real
gives

A′χk,j,m = ± (−1)m Aχ∗
k,j,−m, + for χ = L, E, − for χ = M.

(5.224)
With the same prescription, we can obtain the expansion for I∗0 from
Eq. (5.221).

Let us set
VL

k,j,m = ∇ vk,j,m. (5.225)

The scalar function v is given in Eq. (5.217). However, the functions
vk,j,m are not normalized with respect to dk, whereas the same functions
multiplied by k, pk,j,m = kvk,j,m, are. Let us expand the scalar potential
and its time derivative in terms of vk,j,m and put

φ =
∑

j,m

∫ ∞

0

(
φk,j,m e−ikct + φ′k,j,m eikct

)
vχ
k,j,m dk, (5.226)

φ̇ =
∑

j,m

∫ ∞

0
ikc

(
φ′k,j,m eikct − φk,j,m e−ikct

)
vχ
k,j,m dk. (5.227)

The reality condition gives

φ′k,j,m = (−1)m φ∗k,j,m. (5.228)

From the gauge condition 11 φ̇ = −c∇ ·A, and the fact that the trans-
verse waves have zero divergence and noting that ∇ ·∇ vk,j,m = ∇2 vk,j,m

= −k2vk,j,m, we get

φk,j,m e−ikct − φ′k,j,meikct = ik
(
AL

k,j,m e−ikct + A′Lk,j,m eikct
)

. (5.229)

11@ For the sake of clarity, here and in the following we shall call Eq. (5.208) the gauge
condition rather than the continuity equation (for the potentials) as it was labeled in the
original manuscript.
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We also set
ρ =

∑

j,m

∫ ∞

0
ρk,j,m vk,j,m dk. (5.230)

Since, due to the gauge condition, the first of Eqs. (5.207) can be cast
in the form

2φ ≡ − 1
c

∇ ·A − ∇2 φ = 4π ρ, (5.231)

on expanding in terms of the scalar solutions of (5.210), we find

φk,j,m e−ikct + φ′k,j,m eikct

= ik
(
AL

k,j,m e−ikct − A′Lk,j,m eikct
)

+
4π

k2
ρk,j,m. (5.232)

By combining Eqs. (5.229) and (5.232), we infer

φk,j,m = ik AL
k,j,m +

2π

k2
eikct ρk,j,m. (5.233)

We now want to find an expression for the total energy of the electro-
magnetic field when both the expansion (5.222) for the vector potential
and the expansion for the scalar potential through Eq. (5.233) is known.
We then set

E =
∑
χ

∑

j,m

∫ ∞

0
Eχ

k,j,m Vχ
k,j,m dk (5.234)

H =
∑
χ

∑

j,m

∫ ∞

0
Hχ

k,j,m Vχ
k,j,m dk. (5.235)

From Eq. (5.232) and using

∇×VL
k,j,m = 0,

∇×VE
k,j,m = + i k VM

k,j,m, (5.236)

∇×VM
k,j,m = − i k VE

k,j,m,

we easily find

EL
k,j,m = − 4π

k2
ρk,j,m,

EE
k,j,m = i k

(
AE

k,j,m e−ikct − A′Ek,j,m eikct
)

, (5.237)

EM
k,j,m = i k

(
AM

k,j,m e−ikct − A′Mk,j,m eikct
)

;

HL
k,j,m = 0,

HE
k,j,m = − i k

(
AM

k,j,m e−ikct + A′Mk,j,m eikct
)

, (5.238)

HM
k,j,m = i k

(
AE

k,j,m e−ikct + A′Ek,j,m eikct
)

.
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The total energy can thus be split into two parts:

W = Wels + WR, (5.239)

where the electrostatic energy is given by

Wels =
∑

j,m

∫ ∞

0

2π

k4
|ρk,h,m|2 dk

=
1
2

∫ 1
|q − q′| ρ(q) ρ(q′) dq dq′, (5.240)

and the radiated energy by

WR =
1
2π

∑

j,m

∫ ∞

0
k2

(∣∣∣AE
k,j,m

∣∣∣
2

+
∣∣∣AM

k,j,m

∣∣∣
2
)

dk. (5.241)

Let us now go back to our oscillating system (5.205) in order to evalu-
ate the radiated energy by using the method of variation of parameters.
The electrostatic energy periodically oscillates between finite values with
frequency ν, and we thus neglect it. Considering the radiated energy,
let us assume that it is zero at the initial time, so that initially we have
AE

k,j,m = AM
k,j,m for all values of k, j, m. From the second of Eqs. (5.207)

and from Eqs. (5.222) and (5.223), it follows that

ȦY
k,j,m e−ikct − Ȧ′Yk,j,m eikct

= (4π ic/k)
(
IY
k,j,m e−2πνit + I ′Yk,j,m e2πνit

)
,

ȦY
k,j,m e−ikct + Ȧ′Yk,j,m eikct = 0, Y=E,M,

(5.242)

where, in analogy to Eq. (5.224),

I ′Yk,j,m = ± (−1)m IY ∗
k,j,−m; + for Y = E, − for Y = M. (5.243)

We thus derive

ȦY
k,j,m =

2π ic

k

(
IY
k,j,m ei(kc−2πν)t + I ′Yk,j,m ei(kc+2πν)t

)
, (5.244)

AY
k,j,m =

2π c

k

(
IY
k,j,m

ei(kc−2πν)t − 1
kc− 2πν

+ I ′Yk,j,m

ei(kc+2πν)t − 1
kc + 2πν

)
.(5.245)

For t → ∞ the main contributions to the integral in Eq. (5.241) come
from values of k close to k0 = 2πv/c, apart from quantities that do
not exceed finite constant values. For k close to k0 it follows from Eq.
(5.245) that

∣∣∣AY
k,j,m

∣∣∣ =
4π

k0

sin(k − k0)ct/2
k − k0

∣∣∣IY
k0,j,m

∣∣∣ , (5.246)
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from which, by substituting into Eq. (5.241) and integrating between
−∞ and +∞, instead of between 0 and∞, as we can do in the considered
limit:

WR = 4π2 c t
∑

j,m

(∣∣∣IE
k0,j,m

∣∣∣ +
∣∣∣IM

k0,j,m

∣∣∣
)

. (5.247)

It follows that the energy radiated in the unit time is

wR =
WR

t
= 4π2 c

∑

j,m

(∣∣∣IE
k0,j,m

∣∣∣ +
∣∣∣IM

k0,j,m

∣∣∣
)

. (5.248)

The radiated energy can thus be computed by decomposing the oscillat-
ing system into transverse electric and magnetic multipoles of different
orders and assuming that they radiate without interfering with each
other. Naturally, the longitudinal multipoles do not radiate any energy.
Every multipole corresponds to a given spherical wave with definite in-
tensity distribution and polarization state along certain directions. In
the quantum interpretation the numbers j and m represent the total an-
gular momentum and its component along the z direction of the emitted
quantum (in units of h̄). The knowledge of these numbers does not deter-
mine completely the emitted wave, since this can be an electric multipole
wave or a magnetic multipole wave. This ambiguity is due to the fact
that different kinds of coupling between orbital momenta and intrinsic
momenta of the emitted quantum are possible. As is well known, the
intrinsic momentum is ±h̄ along the direction of motion and cannot be
zero.

From Eq. (5.248), the intensity of a definite multipole is given by

wY
j,m = 4π2 c

∣∣∣IY
k0,j,m

∣∣∣
2
, Y = E, M, (5.249)

or, computing the coefficient IY
k0,j,m with the usual rule for the coeffi-

cients of expansion in terms of a set of orthogonal functions

wY
j,m = 4π2 c

∣∣∣∣
∫

VY †
k0,j,m · I0 dq

∣∣∣∣
2

. (5.250)

The case in which the system has atomic dimensions very small com-
pared with the wavelength of the emitted radiation (2π/k0) is of par-
ticular practical relevance. It is then possible to evaluate wY

j,m in first
approximation by substituting (into the integral appearing in the ex-
pression for wY

j,m) every Bessel function entering in the expressions of
V Y

k0,j,m by the first term of its series expansion. Of course, it is assumed
that the radiating system is placed near the origin of the coordinate sys-
tem. In the case of electric multipoles we have Bessel functions of order
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j + 3/2 as well as j − 1/2; we can then neglect, inside the integral, the
former functions and retain only the first term in the expansion of the
latter ones. We are only interested in Bessel functions of order n + 1/2
with integer n; and for these, in first approximation, we have

In+1/2 =
√

2
π

2n·n!
(2n + 1)!

xn+1/2 + . . .

=
√

2
π

(
1 · 1

3
· 1
5
· · · 1

2n + 1

)
xn+1/2 + . . . . (5.251)

We thus derive, in first approximation,

wE
j,m = 1 · 1

32
· 1
52
· · · 1

(2j − 1)2
j + 1
2j + 1

· 8π c

×
(

2πν

c

)2j ∣∣∣∣
∫

rj−1 ϕm†
j,j−1 · I0 dq

∣∣∣∣
2

, (5.252)

wM
j,m = 1 · 1

32
· 1
52
· · · 1

(2j + 1)2
· 8π c

×
(

2πν

c

)2j+2 ∣∣∣∣
∫

rj ϕm†
j,j · I0 dq

∣∣∣∣
2

. (5.253)

Equation (5.252) can be cast in a different form that is more convenient
for calculations and contains only the charge density ρ0 instead of the
current density. In fact, by using Cartesian coordinates, the integrand
function in Eq. (5.252) can be written as

rj−1 ϕm†
j,j−1 · I0 = rj−1 ϕm∗

j,j−1 · I0. (5.254)

Since, quite generally,

∇ rj ϕm
j =

√
j(2j + 1) rj−1 ϕm

j,j−1, (5.255)

on taking Eq. (5.206) into account, we get
∫

rj−1 ϕm†
j,j−1 · I0 dq =

∫
rj−1 ϕm∗

j,j−1 · I0 dq

=
1√

j(2j + 1)

∫
∇ rj ϕm∗

j · I0 dq

= − 1√
j(2j + 1)

∫
rj ϕm∗

j ∇ · I0 dq

= − 1√
j(2j + 1)

2π ν i

c

∫
rj ϕm∗

j ρ0 dq. (5.256)
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On substituting this in Eq. (5.252), we finally find

wE
j,m = 1 · 1

32
· 1
52
· · · 1

(2j + 1)2
j + 1

j
· 8π c

×
(

2πν

c

)2j+2 ∣∣∣∣
∫

rj ϕm∗
j ρ0 dq

∣∣∣∣
2

. (5.257)

We now want to study the radiation emitted by our oscillating system,
using the method of stationary waves or, better, the method of periodic
solutions. We thus look for a solution of Eq. (5.207) that, in analogy
with Eqs. (5.205), can be cast in the form

φ = φ0 e−2πνit + φ∗0 e2πνit,

A = A0 e−2πνit + A∗
0 e2πνit,

(5.258)

with the additional constraint that the scalar and vector potential de-
scribe a diverging wave at infinity. We set

A0 =
∑
χ

∑

j,m

Aχ
j,m(r)Uχ

k0,j,m, (5.259)

φ0 =
∑

j,m

φj,m(r)uk0,j,m, χ = L,E, M. (5.260)

The functions Uχ
k0,j,m and uk0,j,m are obtained from Vχ

k0,j,m (given in
Eqs.(5.218), (5.219), and (5.220)) and vk0,j,m (given in Eq. (5.225)) by
replacing the Bessel functions with the Hankel functions of the first kind.
The condition that at infinity there exists only a diverging wave implies
that the following limits exist:

Aχ
j,m(∞) = Bχ

j,m, (5.261)
φj,m(∞) = Φj,m. (5.262)

From the gauge condition (5.208), we derive, in analogy with Eq. (5.206),

φ0 =
c

2π ν i
∇ ·A0. (5.263)

12. HYDROGEN EIGENFUNCTIONS

In electronic units we have

∇2 ψ +
(

2E +
2
r

)
ψ = 0, (5.264)
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1
n

1
n

C

O

Fig. 5.1. The contour line for the integral defining the hydrogen eigenfunctions.

and, by setting ψ = (y/r) ϕm
` , we get

y′′ +
(

2E +
2
r
− `(` + 1)

r2

)
y = 0. (5.265)

For the discrete energy spectrum we have

E = − 1
2

1
n2

, n = ` + 1, ` + 2, . . . , (5.266)

N y = Ar`+1
∫

C

(
t +

1
n

)`−n (
t − 1

n

)`+n

etr dt, (5.267)

where

A = −
(

n

2

)2`+1 /
2πi

(
n + `
2` + 1

)
. (5.268)

Integration using the method of residues leads to

N y =
n−`−1∑

p=0

(−1)p (n− `− 1)(n− `− 2)· · ·(n− `− p)
(2` + 2)(2` + 3)· · ·(2` + 1 + p)

(
2
n

)p

× r`+1+p

p!
e−r/n. (5.269)

The normalization constant is given by

N2 =
(

(2` + 1)!
2`+1

)
(n− `− 1)! n2`+4

(n + `)!
. (5.270)

For example, for ` = 0, 1, 2 we have, respectively,

N2 =
1
4

n3, (5.271)

N2 =
9
4

n5

n2 − 1
, (5.272)



VOLUMETTO V 467

N2 = 225
n7

(n2 − 1)(n2 − 4)
. (5.273)

Below we list the first eigenfunctions

1s : N y = r e−r
(

N =
1
2

)
.

2s : N y =
(

r − 1
2

r2
)

e−r/2
(
N =

√
2
)

.

3s : N y =
(

r − 2
3

r2 +
2
27

r3
)

e−r/3

(
N =

√
27
2

)
.

2p : N y = r2 e−r/2
(
N =

√
24

)
.

3p : N y =
(

r2 − 1
6

r3
)

e−r/3

(
N =

√
2187
32

)
.

3d : N y = r3 e−r/3

(
N = 81

√
15
8

)
.

The asymptotic expression for r →∞ is

y ∼ (−1)n−`−1 2n

nn+1
√

(n + `)!(n− `− 1)!
rn e−r/n. (5.274)
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zeros, 427

integral representation, 352
Binomial coefficients, 55, 150, 195–197
Blackbody, 120
Bohr

magneton, 249
radius, 249

Boltzmann
constant, 50, 249
law, 57, 144

Born method, 345
relativistic limit, 396

Bose-Einstein statistics, 429
Capacitance, 15, 31

gravitational, 61, 64
Capacitor

oscillating discharge, 31
Center of mass, 12
Central field

selection rules, 301
Centrifugal force, 128
Charge

circular distribution, 28
energy of, 33

density, 19, 33, 456
Circular integrals, 381
Clairaut

equation, 216
problem, 212

Clapeyron equation, 49
Classical mechanics, 51

Coil, 32
electromagnetic energy, 32
finite length, 36, 41
self-induction, 32

Commutation relations, 419
Commutators, 243, 265
Conductor

electric, 6, 18
energy of, 11
self-induction, 43

Conformal transformations, 74
Conjugate momenta

for the relativistic electron, 99
Continuity equation, 456
Coulomb’s law, 155
Crickets’ simile, 53
Curl theorem, 14
Current density, 6, 456

linear, 18
surface, 18

Current intensity, 7, 15, 18, 29
Current line, 7, 30
Current

alternate, 6, 15, 18
circular distribution, 29
elementary, 19

D’Alembert operator, 450
De Broglie waves, 154
Definite integrals, 69
Density

of mass, 18, 55
Depopulation rate

for atoms in an e.m. field, 132
Differential equations, 156

complete set of, 311
Differential operators

formulae involving, 14
Dirac equation, 287, 439

central field, 454
plane wave solution, 359

Dirac equations, 424
Dirac matrices

and the Lorentz group, 279
Disintegration of light nuclei resonances, 414
Displacement current, 20
Divergence theorem, 14, 211
Earth

angular velocity, 129
flattening factor, 128
moment of inertia, 127, 130, 220
rotation of its axis, 130

Eccentricity, 65, 67
Electric charge, 155
Electric dipole moment

for an atom in its ground state, 319
Electric energy of a radiation, 122

481
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Electric field, 19
Electric lines, 15
Electric moment, 430
Electric resistivity, 7
Electromagnetic field

energy of, 461
radiated energy, 462
spin of, 463

Electromagnetic oscillators, 122
Electromotive force, 7, 10, 30
Electron distribution in heavy atoms, 105
Electron gas, 252
Electron scattering by radiation, 150
Electron

charge, 249
electromagnetic mass, 78
mass, 249
origin of its mass, 78
relativistic equations of motion, 98
self-energy, 79
spinning, 287

Electrostatic energy, 11, 462
Electrostatic stress, 25
Ellipsoid

fluid, 66
gravitational attraction by, 58
gravitational attraction, 63
gravitational capacitance, 61, 64
prolate, 63

Energy conservation, 10
Entropy, 10

for a system in equilibrium, 428
Equatorial quantum number, 245
Equilibrium

of a rotating fluid, 66
Equipotential surfaces, 13, 58, 214, 252
Error function

series expansion, 150
Euler constant, 333
Factorial, 47
Faraday constant, 249
Fermi-Dirac statistics, 429
Fine structure formula, 455
Fine-structure formula, 294
Formulae

involving differential operators, 14
Fourier integral expansion, 379
Free energy

of a diatomic gas, 434
Frequency cutoff, 125
Function determination

from its moments, 226
Gas

diatomic, 430
monoatomic, 430
perfect, 429

Gauge

condition, 456
Lorenz, 160, 456
transformations, 160

Gravitating masses, 12
Gravitational potential, 127
Green function, 330
Green theorems, 14
Group velocity, 154
Group

O(3), 271, 298
SU(2), 298, 421
continuous, 265
infinitesimal transformations, 265
Lorentz, 276, 419, 446
of rotations, 271, 355, 421
permutations, 335, 355

Hamiltonian
for the electromagnetic field, 122
for the relativistic motion of the electron,

97, 123
Hankel functions, 353, 389

half order, 427
Harmonic function, 76

polynomial expansion, 85
Harmonic functions, 76
Harmonic group, 28
Harmonic oscillator, 402

energy levels, 90
quantization, 87
selection rules, 88
zero point energy E0, 88, 90

Heat well, 53
Heat, 8, 10

displacement, 55, 71
one-dimensional propagation, 71
propagation along a bar, 53
propagation along a finite bar, 72
propagation in an isotropic and

homogeneous medium, 71
propagation, 20, 71
specific, 71
transmission coefficient, 55, 71

Homography, 14
Homothetic, 62, 66
Homothety, 2, 33
Huygens principle, 210
Hydrogen atom

eigenfunctions, 372
in an electric field, 322
polarization forces, 350
spontaneous ionization, 161

Hydrogen eigenfunctions, 465
Hysteresis

in the limit skin effect, 26
Impedance, 17
Inertia

moment of, 219
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Infinite products, 241
Infinitesimal transformations, 422
Integral logarithm

series expansion, 333
Integrals, 146

definite, 69
Interaction energy, 5
Interatomic potential, 105
Joule effect, 7, 21, 27
Keplerian motion

kinematics, 137
perturbed (adiabatic approximation), 141
perturbed, 137
revolution period, 138

Laplace transformation, 348, 378
Laplace’s equation, 60, 348, 353, 372
Laplacian

in cylindrical coordinates, 85
in parabolic coordinates, 322
in spherical coordinates, 83

Larmor
frequency, 249, 309
wave number, 249

Legendre polynomials, 82, 329, 339, 435, 441
multiplication rules, 329

Lines of force, 60
Longitude, 129
Longitudinal multipoles, 463
Lorentz

contraction, 78
group, 276, 279
transformations, 419, 435

Lorenz
gauge, 160, 456

Magnetic energy of a radiation, 122
Magnetic field, 18

influence on the melting point, 48
Magnetic permeability, 7, 26, 30, 49
Magnetization, 18

magnitude of, 19
Matrices, 76
Matrix

associative product, 92
diagonalization of a, 90

Mean distances
of line elements, 38
of surface elements, 38
of volume elements, 38

Melting temperature, 49
Method

of periodic solutions, 465
of residues, 466
of sources, 71
of stationary waves, 457, 465
of variation of parameters, 457, 462

Molecular weight, 433
Molecule

potential in a, 252
Moment of inertia, 13, 56, 127, 219
Moments of a function, 226
Multipole radiation

classical theory, 456
Neumann functions, 354

half order, 427
Neutron, 425
Newton’s

gravitational constant, 127
law, 18, 59, 212
potential, 12, 18, 213

Observables and matrices, 133
Occupation number, 434
Operators

improper, 369
Orthogonal functions, 377
Orthogonal transformations, 276
Oscillator

specific heat, 50
Parabolic coordinates, 322
Paschen-Back effect, 311
Pauli’s principle, 105
Perfect gas, 429

constant R, 433
Permutations, 335
Perpetual motion, 49
Phase velocity, 154
Photon spin, 463
Planck law, 308
Planck relation, 121
Plane wave, 154

expansion in spherical harmonics, 339
in the Dirac theory, 359

Poisson brackets, 243, 314
Poisson equation, 214

for the local potential in an atom, 116
Polarizability

atomic, 117
Potential scattering, 375
Potential

advanced, 5
electric, 6, 11, 15

mean, 35
in a molecule, 252
Newtonian, 12, 18, 213
retarded, 4, 188, 451

Poynting theorem, 27
Pressure

hydrostatic, 49
Probability, 55

curves, 235
mean error, 45

Proton, 425
Quantization rules, 87
Quasi-stationary states, 403
Quaternions, 256, 272
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Radiation theory, 121, 131, 135, 144, 150
Einstein coefficients, 144

Random variables, 193
Resistance, 9, 15, 21, 31, 44
Resistivity, 20–21
Retarded potential, 4, 188, 451
Ritz method, 351
Rotating fluid

equilibrium, 66
Rotator, 56

specific heat, 57
Rutherford formula

and Born Method, 345
and Classical Mechanics, 342, 374

Rydberg energy, 249
Rydberg frequency, 249
Rydberg wave number, 249
Scattering

between protons and neutrons, 425
Schrödinger equation, 77, 289, 425
Schwartz theorem, 75
Schwarz formula, 192
Selection rules, 301
Self-inductance, 15
Self-induction

coefficient of, 31
in a coil with finite length, 36, 41
of a circular coil, 32
variation due to the skin effect, 43

Series expansions, 39, 148, 205
Similitude, 76
Skin effect, 6, 43

limit, 18, 23
hysteresis, 26
in conductors with elliptic cross

sections, 23
in conductors with irregular cross

sections, 24
weak - in conductors with elliptic cross

sections, 30
Sommerfeld

conditions, 94
constraints, 56

Sources
method of, 71

Specific heat, 55, 71
of an oscillator, 50

Speed of light, 249
Spherical functions, 328

with spin, 385, 417, 441

Spherical harmonics, 339
Spheroid, 66
Spin functions, 369
Spin, 287

nuclear, 430
photon, 463

Spinors
transformation of, 435

Stark effect, 320, 326
Static equations for a perfect charged fluid,

109
Statistical weight, 431
Stirling’s formula, 147
String

tension, 80
Strings, 80
Surface density, 58
Susceptibility (electric)

for an atom in its ground state, 319
T−network method, 18
Thermodynamics

statistical theory, 428
Thermoelectric cell, 10
Thomas-Fermi function, 101

application to heavy atoms, 108
Majorana approach, 105
second approximation for the potential

inside an atom, 116
Thomson effect, 10
Three-phase system

unbalance, 46
Transformations

conformal, 74
Transverse multipoles, 463
Uncertainty principle, 176
Unitary representations

and the Lorentz group, 446
Unitary transformations

in two variables, 255
Vector potential, 121, 123
Wallis formula, 241
Wave mechanics

in a conservative field, 77
variational approach, 77

Wavefront, 154
Wavepacket, 154
Waves

damped, 20
longitudinal, 458
transverse, 458

Zeeman effect, 311
anomalous, 307




