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Abstract

The normal form of a vector field generated by scalar delay differential equations at non-
resonant double Hopf bifurcation points is investigated. Using the methods developed
by Faria and Magalhães [T. Faria and L.T. Magalhães. J. Diff. Eqs 122 (1995), 181–
200] we show that 1) there exists linearly independent unfolding parameters of classes
of delay differential equation for a double Hopf point which generically map to linearly
independent unfolding parameters of the normal form equations (ordinary differential
equations), 2) there are generically no restrictions on the possible flows near a double
Hopf point for both general and Z2-symmetric first order scalar equations with two de-
lays in the nonlinearity, and 3) there always are restrictions on the possible flows near
a double Hopf point for first order scalar delay differential equations with one delay in
the nonlinearity, and in nth order scalar delay differential equations (n ≥ 2) with one
delay feedback.

Keywords: Delay differential equations, double Hopf bifurcation, normal forms, center
manifold, unfolding





1 Introduction

Delay-differential equations share many (but not all) properties with ordinary differential equations.
This analogy has been made more precise and put on solid theoretical ground as the methods and
techniques of geometric dynamical systems theory have been implemented in functional differential
equations, see Hale and Verduyn Lunel [11] for numerous references and comments. In particular,
invariant manifolds for the flow associated with an equation near an equilibrium point have been
established, along with their uniqueness and smoothness properties of the manifolds. At a bifur-
cation point, the flow near the equilibrium of the delay-differential equation is essentially governed
by the vector field on the centre manifold. In this paper, we investigate the flow near double Hopf
bifurcation points in scalar first order and nth order scalar delay differential equations by studying
the flow on the centre manifold using normal form theory.

The redeeming feature of centre manifold calculations is the possibility of unfolding degenerate
flows in the neighbourhood of invariant sets, in general, and of stationary points in particular. In
unfolding the flow on the centre manifold, a number of theoretical questions arise. The unfolding
itself takes place in the framework of ordinary diffential equations, for which most lower codimension
cases have been solved [9]. For a given class of delay differential equations, it is not a priori obvious,
given the circumvoluted reduction procedure involved, that the unfolding of the reduced flow can
be obtained from an unfolding of the class of delay differential equations. Faria and Magalhães [7]
determine parameter families of scalar first order equations leading to reduced flows with appropriate
unfolding parameters for several singularities: Hopf, Bogdanov-Takens, and steady-state/Hopf. We
find such parameter families of scalar first order and nth order delay equations for the double Hopf
bifurcation, see Theorem 3.1 and Theorem 4.1.

A natural question concerns the possible restrictions on the flows that can occur on the centre
manifold after reduction. In this paper, we study this question at double Hopf bifurcation points
for the above mentioned classes of delay differential equations. This question has been answered in
part by Faria and Magalhães [6]. They show that any finite jet of an ordinary differential equation
can be realized as the centre manifold reduction from a delay-differential equation in Rn where n
is large enough and the nonlinearity depends on sufficiently many delays. Realizability can still
be achieved when the number of delays is not sufficient, and this situation is studied by Faria and
Magalhães [7] for scalar first order delay differential equations near Hopf, Bogdanov-Takens and
steady-state/Hopf bifurcation points. In particular, realizability holds for the Hopf and Bogdanov-
Takens points with one delay and generically for the steady-state/Hopf with two delay. However,
there are strong restrictions on the possible flows near a steady-state/Hopf bifurcation point if the
nonlinearity depends on a single delay. Recently, Redmond et al. [13] study the Bogdanov-Takens
bifurcation with reflectional symmetry in a scalar first order delay equation with one delay and
show that there are no restrictions on the possible phase portraits.

The determination of possible unfoldings is quite diffferent in a modeling context since it may
be leading to different conditions, as pointed out in Hale [10]. This becomes particularly significant
if our interest lies not so much in assessing all possible behaviours in a class of systems, but rather
in trying to determine the range of dynamics accessible in a specific model which depends on a
number of parameters. The form of the model then becomes a crucial factor in this determination
of possible invariant sets, for example.

For double Hopf bifurcation points, the vector field on the center manifold can be realized by
a scalar first order delay differential equation where the number of delays is 4. We study double
Hopf bifurcation in scalar first order delay differential equations with one and two delays and in
nth order scalar differential equation with delayed feedback. We show that, generically, there are no
restrictions on the possible flows near a double Hopf bifurcation point for Z2-symmetric and general
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scalar first order delay differential equations depending on two delays in the nonlinearity. If only
one delay is present in the nonlinearity, we compute the normal form to cubic order and show that
there always are restrictions on the possible phase portraits. See Theorem 3.1.

We study in more detail the equation considered by Bélair and Campbell [1]: they identify, in
the Z2 symmetric scalar equation

ẋ(t) = −A1 tanh(x(t− τ1)) − A2 tanh(x(t− τ2)) (1)

points of double Hopf bifurcation at the boundary of the region of linear stability in the space of
the parameters (A1, A2, τ1, τ2). Using centre manifold calculations, they find restrictions on the
possible phase portraits that can appear in the neighbourhood of this singularity. We show that
these restrictions are due in part to the Z2 symmetry and to the particular form of (1). We consider
equations exhibiting that symmetry in details, recovering and generalizing results from [1].

Finally, we study the normal form of the double Hopf bifurcation in nth order scalar delay
differential equations. A particular example of such equations is the harmonic oscillator with delayed
feedback studied by Campbell et al. [3]. We show that the cubic normal form on the center manifold
is given by expressions similar to the cubic normal form for the scalar first order equation with one
delay in the nonlinearity. Therefore, the same restrictions as for first order equations with one delay
apply in this case. See Theorem 4.1.

The explicit flow induced by a class of specific functional differential equations on a centre
manifold has been made accessible by recent advances in computing power: these calculations have
been implemented using symbolic (or analytic) computations, first with Macsyma [14] and more
recently with Maple [2]. In the computation of normal forms of a reduced flow on a centre manifold,
Bélair and Campbell [1] used an approach in two steps: they first computed the centre manifold, and
then projected the flow from the delay equation on the manifold, then computing the corresponding
normal form. Faria and Magalhães [5], however, used a different approach, which is the one we
employ here: they compute in a single procedure both the centre manifold and the normal form of
the flow projected on it.

Our analysis is the first complete invetigation of the double Hopf bifurcation as it occurs in
delay differential equations, and the relationship between unfolded flows on a 4-dimensional centre
manifold and the original delay-differential equation: all previous analysis of the restriction question
[5, 6, 7, 13] only address unfolding on centre manifolds of dimension three or less.

The paper is organized as follows. Our main results are summarized in Theorem 3.1 and The-
orem 4.1. The next section is a review of normal form theory for functional differential equations
and in particular of the double Hopf bifurcation. The proof of Theorem 3.1 is given in Section 3.
The proof of Theorem 4.1 is given in Section 4. We conclude with a summary and a discussion of
our results. Some more tedious normal form computations are relegated to Appendix A.

2 Normal form for delay differential equations

We first recall standard results to fix notation, see [11]. Let C = C([−r, 0],Rn), L : C × Rp → Rn

be a continuous linear map and F : Rn×Rp → Rn a smooth map. Consider the retarded functional
differential equation:

ż(t) = L(µ)zt + F (zt, µ) (2)

where zt ∈ C is defined as zt(θ) = z(t+ θ) with θ ∈ [−r, 0]. The linear map L(µ) may be expressed
in integral form as

L(µ)φ =

∫ 0

−r

[dη(θ)]φ(θ),
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where η : [−r, 0] → Rn is a function of bounded variation. Let L0 = L(0), and rewrite (2) to exhibit
the parameters in the linear map:

ż(t) = L0zt + [L(µ) − L0]zt + F (zt, µ) (3)

Let A(µ) be the infinitesimal generator for the flow of the linear system

ż = L(µ)zt.

Let σ(A(µ)) denote the spectrum of A(µ) and Λµ be the set of eigenvalues of σ(A(µ)) with zero
real part. The bilinear form

(ψ, φ) = ψ(0)φ(0) −
∫ 0

−r

∫ θ

0

ψ(ξ − θ)dη(θ)φ(ξ)dξ (4)

is used to decompose C as C = P ⊕ Q where P is the generalized eigenspace of the eigenvalues
in Λ0 and Q is an infinite dimensional complementary subspace. A basis for P is given by ΦΛ0

=
{Φλ1

, . . . ,Φλm
} and denote by B be the finite dimensional matrix of the restriction of A to ΦΛ0

:
AΦΛ0

= ΦΛ0
B. The set Ψ = col{Ψ1, . . . ,Ψm} is a basis of the dual space P ∗ in C∗ with (Ψ,Φ) = I,

the identity matrix.
Faria and Magalhães [5] show that equation (3) can be written as an ordinary differential equation

on the Banach space BC of functions from [−r, 0] to Rn bounded and continuous on [−r, 0) with a
possible jump discontinuity at 0. Elements of BC are of the form φ+X0α where φ ∈ C, α ∈ Rn and
X0(θ) = 0 for θ ∈ [−r, 0) and X0(0) = I. Let π : BC → P be a continuous projection defined by
π(φ+X0α) = Φ[(Ψ, φ) + Ψ(0)α]. We can write BC = P ⊕ kerπ with the property that Q ( kerπ.
Decompose zt = Φxt + yt where xt ∈ Rm and yt ∈ kerπ ∩D(A) ≡ Q1 where D(A) is the domain of
A. Equation (3) is equivalent to system

ẋ = Bx+ Ψ(0){[L(µ) − L0](Φx+ y) + F (Φx+ y)}
ẏ = AQ1y + (I − π)X0{[L(µ) − L0](Φx+ y) + F (Φx+ y)}. (5)

where AQ1 : Q1 → kerπ is such that AQ1φ = φ̇ + X0[L(φ) − φ̇(0)]. Let Fj be the jth Fréchet
derivative of F , we take the Taylor expansion of F which transforms (5) to

ẋ = Bx+
∑

j≥2

1

j!
f 1

j (x, y)

ẏ = AQ1y +
∑

j≥2

1

j!
f 2

j (x, y)
(6)

where
f 1

j (x, y) = Ψ(0)Fj(Φx+ y)
f 2

j (x, y) = (I − π)X0Fj(Φx+ y).

Equation (2) is said to satisfy nonresonance conditions relative to Λµ if (q, λ̃) 6= η for all η ∈
σ(A0) \ Λµ, where q is an m-tuple of nonnegative integers, |q| ≥ 2 and λ̃ = (λ1, . . . , λm). For the
remainder of the paper, we assume the following hypothesis.

H1 Card(Λµ) < Card(Λ0) for µ small.

H2 Equation (2) satisfies the nonresonance conditions relative to Λ0.
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Under hypothesis H1 and H2, Faria and Magalhães show that system (6) can be put in formal
normal form

ẋ = Bx+
∑

j≥2

1

j!
g1

j (x, y)

ẏ = AQ1y +
∑

j≥2

1

j!
g2

j (x, y)
(7)

such that the center manifold is locally given by y = 0 and the equation for the vector field on the
center manifold is

ẋ = Bx+
∑

j≥2

1

j!
g1

j (x, 0).

2.1 Double Hopf bifurcation

A nonresonant double Hopf bifurcation occurs if the linearization L0 has a pair of eigenvalues ±iω1,
±iω2 with ω1/ω2 6∈ Q. We can assume that all other eigenvalues have negative real parts. This
assumption is reasonable since in the cases of interest in this paper, Bélair and Campbell [1] and
Campbell et al. [3] show that points of double Hopf bifurcation lie at the boundary of the stability
region. The critical set of eigenvalues is Λ = {ω1,−ω1, ω2,−ω2} with eigenspace P . The restriction
of L0 to P is the matrix B defined above. In complex coordinates B is diagonal:

B =









iω1 0 0 0
0 −iω1 0 0
0 0 iω2 0
0 0 0 −iω2









(8)

which simplifies the normal form transformations.
The matrix B generates the torus group T2 = S1 × S1 whose action on C2 is given by

(θ1, θ2).(z1, z2) = (eiθ1z1, e
iθ2z2).

Elphick et al. [4] show that a possible normal form commutes with the action of T2 described above.
We use this normal form for the double Hopf bifurcation without symmetry and with Z2-symmetry.
The formal normal form is the following, see [8]:

ż1 = p1(|z1|2, |z2|2)z1

ż2 = p2(|z1|2, |z2|2)z2.

Truncating the normal form equation to degree three we obtain

ż1 = (iω1 + c11|z1|2 + c12|z2|2)z1

ż2 = (iω2 + c21|z1|2 + c22|z2|2)z2
(9)

where c11, c22, c12, c21 are complex numbers. Takens [15] shows that nonresonant double Hopf
bifurcation is determined to third order if the nondegeneracy conditions Re(cij) 6= 0, i = 1, 2 and
Re(c11)Re(c22) − Re(c12)Re(c21) 6= 0 are satisfied.

Let z1 = r1e
iρ1 and z2 = r2e

iρ2 . The phase/amplitude equations corresponding to (9) are

ṙ1 = (Re(c11)r
2
1 + Re(c12)r

2
2)r1

ṙ2 = (Re(c21)r
2
1 + Re(c22)r

2
2)r2

ρ̇1 = ω1 + Im(c11)r
2
1 + Im(c12)r

2
2

ρ̇2 = ω2 + Im(c21)r
2
1 + Im(c22)r

2
2.

(10)
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The possible phase portraits in a neighborhood of a double Hopf point are classified by the dynamics
of the planar system given by the amplitude equations (ṙ1, ṙ2).

Let the system depend on parameters (η1, η2). Then the T2 action on R2 × C2 is given by

(θ1, θ2).(η1, η2, z1, z2) = (η1, η2, e
iθ1z1, e

iθ2z2).

Then the T2-equivariant normal form with parameters is

ż1 = p1(η1, η2, |z1|2, |z2|2)z1

ż2 = p2(η1, η2, |z1|2, |z2|2)z2.

The truncation to quadratic order is

ż1 = iω1z1 + α1η1z1 + α2η2z1

ż2 = iω2z2 + β1η1z2 + β2η2z2.
(11)

Letting µ1 = α1η1 + α2η2 and µ2 = β1η1 + β2η2, the amplitude equations to cubic order is

ṙ1 = (µ1 + Re(c11)r
2
1 + Re(c12)r

2
2)r1

ṙ2 = (µ2 + Re(c21)r
2
1 + Re(c22)r

2
2)r2.

(12)

where µ1 and µ2 are unfolding parameters (generically independent).

3 First order scalar delay differential equations

We study the restriction on the normal form at a nonresonant double Hopf bifurcation point for the
following delay differential equations.

u̇ = L(ut) + f(u(t− τ1), u(t− τ2)) (13)

u̇ = L(ut) + f1(u(t− τ1)
2, u(t− τ2)

2)u(t− τ1) + f2(u(t− τ1)
2, u(t− τ2)

2)u(t− τ2) (14)

u̇ = L(ut) + f(u(t− τ)) (15)

For each equation, L(ut) = a10u(t− τ1) + a01u(t− τ2), and for (13) and(14), f(0, 0) = Df(0, 0) = 0
while for (15), f(0) = Df(0) = 0. Equation (13) is a general equation depending on two delays.
Equation (14) is a Z2-symmetric equation depending also on two delays, it is a generalization of the
system studied by Bélair and Campbell [1]. Equation (15) has a nonlinearity depending on only
one delay. The following result is proved in this section.

Theorem 3.1 Suppose that equations (13), (14), or (15) has a nonresonant double Hopf bifurcation
point at the origin. Then, generically, the two parameter family

u̇ = (a10 + ν1)u(t− τ1) + (a01 + ν2)u(t− τ2) + o(u(t− τ1), u(t− τ2)) (16)

is a universal unfolding for the double Hopf bifurcation. Moreover,

(1) for (13) and (14), generically, there are no restrictions on the possible phase portraits near
the double Hopf point, and

(2) for (15) there always are restrictions on the possible phase portraits near the double Hopf
bifurcation.

The proof of the unfolding part is given in Proposition 3.2. The proof of (1) is given in Proposi-
tion 3.3 and Proposition 3.5. Finally, the proof of (2) is given in Proposition 3.9.

5



3.1 The C = P ⊕Q decomposition

In this section, we write systems (13), (14), (15) as infinite dimensional systems. The bases of P
and P ∗ are respectively

Φ(θ) = (eiω1θ, e−iω1θ, eiω2θ, e−iω2θ)
Ψ(s) = (ψ1(0)e−iω1s, ψ2(0)eiω1s, ψ3(0)e−iω2s, ψ4(0)eiω2s)t,

where
ψ1(0) = [1 − L(−θeiω1θ)]−1 ψ2(0) = ψ1(0)

ψ3(0) = [1 − L(−θeiω2θ)]−1 ψ4(0) = ψ3(0)
.

Note that ψ1(0) and ψ3(0) are identical functions of ω1 and ω2 respectively.
Truncate (13), (14) and (15) to cubic order. Let F2 and F3 be homogeneous polynomials of

degree two and three respectively. Then the two delay equations are

u̇ = L(ν1, ν2)ut + F2(u(t− τ1), u(t− τ2)) + F3(u(t− τ1), u(t− τ2)),

where for equation (14), F2 ≡ 0. The one delay equation is

u̇ = L(ν1, ν2)ut + F2(u(t− τ)) + F3(u(t− τ)).

Let z = (z1, z1, z2, z2)
t and y ∈ Q1 = Q ∩ C1([−τ, 0],R), then system (6) up to degree three for

the three first order equations is































ż1 = iω1z1 + ψ1(0)([L(ν1, ν2) − L0](Φz + y) + F2(Φz + y) + F3(Φz + y))

ż1 = −iω1z1 + ψ2(0)([L(ν1, ν2) − L0](Φz + y) + F2(Φz + y) + F3(Φz + y))
ż2 = iω2z2 + ψ3(0)([L(ν1, ν2) − L0](Φz + y) + F2(Φz + y) + F3(Φz + y))

ż2 = −iω2z2 + ψ4(0)([L(ν1, ν2) − L0](Φz + y) + F2(Φz + y) + F3(Φz + y))
dy

dt
= AQ1y + (I − π)X0(F2(Φz + y) + F3(Φz + y)).

(17)

If we remove the dependence on the unfolding parameter, we obtain

ż1 = iω1z1 + ψ1(0)(F2(Φz + y) + F3(Φz + y))

ż1 = −iω1z1 + ψ2(0)F2(Φz + y) + F3(Φz + y))
ż2 = iω2z2 + ψ3(0)(F2(Φz + y) + F3(Φz + y))

ż2 = −iω2z2 + ψ4(0)F2(Φz + y) + F3(Φz + y))
dy

dt
= AQ1y + (I − π)X0(F2(Φz + y) + F3(Φz + y)).

3.2 Unfolding of the first order equations

The linear equation with unfolding parameters is

L(ν1, ν2)ut = (a10 + ν1)u(t− τ1) + (a01 + ν2)u(t− τ2). (18)

Let L0 = L(0, 0). The quadratic truncation of (17) in the z1 and z2 variables at y = 0 is

ż1 = iω1z1 + ψ1(0)(ν1Φ(−τ1)z + ν2Φ(−τ2)z + F2(Φ(−τ1)z,Φ(−τ2)z))
ż2 = iω1z2 + ψ3(0)(ν1Φ(−τ1)z + ν2Φ(−τ2)z + F2(Φ(−τ1)z,Φ(−τ2)z)). (19)
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Equation (11) shows that the normal form to quadratic order is given by

ż1 = iω1z1 + ψ1(0)(e−iω1τ1ν1 + e−iω1τ2ν2)z1

ż2 = iω2z2 + ψ3(0)(e−iω2τ1ν1 + e−iω2τ2ν2)z2.
(20)

In polar coordinates z1 = r1e
ρ1 and z2 = r2e

ρ2 , the amplitude equation coming from (20) is

ṙ1 = (Re(ψ1(0)e−iω1τ1)ν1 + Re(ψ1(0)e−iω1τ2)ν2)r1
ṙ2 = (Re(ψ3(0)e−iω2τ1)ν1 + Re(ψ3(0)e−iω2τ2)ν2)r2.

Let
µ1 = Re(ψ1(0)e−iω1τ1)ν1 + Re(ψ1(0)e−iω1τ2)ν2

µ2 = Re(ψ3(0)e−iω2τ1)ν1 + Re(ψ3(0)e−iω2τ2)ν2.

Proposition 3.2 Generically, the independent unfolding parameters (ν1, ν2) of (16) map to inde-
pendent unfolding parameters (µ1, µ2) of the normal form equations.

Proof: Let

Q =

[

Re(ψ1(0)e−iω1τ1) Re(ψ1(0)e−iω1τ2)
Re(ψ3(0)e−iω2τ1) Re(ψ3(0)e−iω2τ2).

]

Then
detQ = Re(ψ1(0))Re(ψ3(0))(cos(ω1τ1) cos(ω2τ2) − cos(ω1τ2) cos(ω2τ1))

+ Re(ψ1(0))Im(ψ3(0))(cos(ω1τ1) sin(ω2τ2) − cos(ω1τ2) sin(ω2τ1))
+ Im(ψ1(0))Re(ψ3(0))(sin(ω1τ1) cos(ω2τ2) − sin(ω1τ2) cos(ω2τ1))
+ Im(ψ1(0))Im(ψ3(0))(sin(ω1τ1) sin(ω2τ2) − sin(ω1τ2) sin(ω2τ1)).

Of course, if τ1 = τ2 or ω1 = ω2, then detQ = 0, but we assume that they are not equal. Since
detQ is a real analytic function of τ1 and τ2 then for an open and dense set of values of (τ1, τ2), the
determinant is nonzero.

3.3 Z2-symmetric first order scalar equation with two delays

Perform the normal form calculations to cubic order where the normal form transformation for the
quadratic terms is

(z, y) = (z̃, ỹ) + σ2(z̃).

Dropping the tilde sign on (z, y), the polynomial of degree three at y = 0 is

F̃3(z) = F3(Φz) + (dzF2(Φz))σ
2
1(z) + (dyF2(Φz))σ

2
2(z) − (dσ2(z))g2(z, 0), (21)

multiplied by the vector (ψ1(0), ψ1(0), ψ3(0), ψ3(0))t where g1
2(z, 0) ≡ 0 since all quadratic terms

vanish. Dropping the conjugate equations we obtain the system

ż1 = iω1z1 + ψ1(0)F̃3(z)

ż2 = iω2z2 + ψ3(0)F̃3(z).
(22)

After normal form transformations of the cubic terms we are left with equation (9) where

c11 =
1

2

∂3ψ1(0)F̃3(0)

∂z2
1∂z1

c12 =
∂3ψ1(0)F̃3(0)

∂z1∂z2∂z2

c22 =
1

2

∂3ψ3(0)F̃3(0)

∂z2
2∂z2

c21 =
∂3ψ3(0)F̃3(0)

∂z2∂z1∂z1

.

(23)

The genericity result for the Z2-symmetric equation is the following.
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Proposition 3.3 Suppose that the Z2-symmetric equation (14) has a nonresonant double Hopf
bifurcation at 0. Then, generically, there are no restrictions on the values that the coefficients
(Re(c11),Re(c12),Re(c22),Re(c21)) can take in (10).

Proof: Since Z2-symmetry forces even degree terms to zero then,

F̃3(z) = F3(Φ(−τ1)z,Φ(−τ2)z)
= η(ω1)z

3
1 + η(−ω1)z

3
1 + η(ω2)z

3
2 + η(−ω2)z

3
2 + ζ(ω1)z

2
1z1

+ ζ(−ω1)z
2
1z1 + ζ(ω2)z

2
2z2 + ζ(−ω2)z

2
2z2 + ξ(ω1, ω2)z

2
1z2

+ ξ(ω1,−ω2)z
2
1z2 + ξ(−ω1, ω2)z

2
1z2 + ξ(−ω1,−ω2)z

2
1z2 + ξ(ω2, ω1)z

2
2z1

+ ξ(−ω2, ω1)z
2
2z1 + ξ(−ω2,−ω1)z

2
2z1 + ξ(ω2,−ω1)z

2
1z2 + ν(ω1, ω2)z1z1z2

+ ν(ω1,−ω2)z1z1z2 + ν(ω2, ω1)z2z2z1 + ν(ω2,−ω1)z2z2z1,

(24)

where

η(u) = a30e
−3iuτ1 + a21e

−(2τ1+τ2)iu + a12e
−(τ1+2τ2)iu + a03e

3iuτ2

ζ(u) = 3a30e
−iuτ1 + a21(2e

−iuτ2 + e(−2τ1+τ2)iu) + a12(e
(−2τ2+τ1)iu + 2e−iuτ1) + 3a30e

−iuτ2

ξ(u, v) = 3a30e
−iτ1(2u+v) + a21e

−iuτ1(2e−i(vτ1+uτ2) + e−i(uτ1+vτ2))
+a12e

−iuτ2(e−i(vτ1+uτ2) + 2e−i(uτ1+vτ2)) + 3a03e
−iτ2(2u+v)

ν(u, v) = 6a30e
−ivτ1 + 2a21(e

−i(vτ1+uτ1−uτ2) + e−ivτ2 + e−i(vτ1−uτ1+uτ2))
+2a12(e

−i(vτ2+uτ1−uτ2) + e−ivτ1 + e−i(vτ2+uτ2−uτ1)) + 6a03e
−ivτ2 .

Using (23) and (24), we compute (c11, c12, c22, c21) explicitly:

c11 = ψ1(0)ζ(ω1) c12 = ψ1(0)ν(ω2, ω1)

c22 = ψ3(0)ζ(ω2) c21 = ψ3(0)ν(ω1, ω2).

We now show that generically (Re(c11),Re(c22),Re(c12),Re(c21)) can take arbitrary values. Consider
(Re(c11),Re(c22),Re(c12),Re(c21)) as a linear system in (a30, a21, a12, a03). After tedious computa-
tions, one can show that the matrix of coeffcients of (a30, a21, a12, a03) is









3αV1 3αV2 6αV1 6αV2

α(V3 + 2V1c(ω1)) α(V4 + 2V2c(ω2)) 2α(V3 + 2V1c(ω2)) 2α(V4 + 2V2c(ω1))
α(V1 + 2V3c(ω1)) α(V2 + 2V4c(ω2)) 2α(V1 + 2V3c(ω2)) 2α(V2 + 2V4c(ω1))

3αV3 3αV4 6αV3 6αV4









(25)

where V1 = cos(−β(ω1) + ω1τ1), V2 = cos(−β(ω2) + ω2τ1), V3 = cos(−β(ω1) + ω1τ2), V4 =
cos(−β(ω2)+ω2τ2), c(u) = cos(u(τ1−τ2)), α = |ψ1(0)|, β(ω1) = arg(ψ1(0)) and β(ω2) = arg(ψ3(0)).
The determinant of this matrix is

−144α4(cos(ω1(τ1 − τ2)) − cos(ω2(τ1 − τ2)))
2(V2V3 − V1V4)

2.

Suppose that τ1 6= τ2 and ω1(τ1 − τ2) 6= ω2(τ1 − τ2) + 2kπ for all k ∈ Z, then the determinant
vanishes if and only if V2V3 − V1V4 = 0.

At a nonresonant double Hopf bifurcation point, Bélair and Campbell [1] show that

a01 cos(ω1τ2) = −a10 cos(ω1τ1) a01 cos(ω2τ2) = −a10 cos(ω2τ1)
a01 sin(ω1τ2) = a10ω1 − a10 sin(ω1τ1) a01 sin(ω2τ2) = a10ω2 − a10 sin(ω2τ1).

(26)
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Hence V2V3 − V1V4 simplifies to a real analytic function of τ1

a10

a01

((sin(ω2τ1)ω1 − sin(ω1τ1)ω2) sin(β(ω1)) sin(β(ω2)) + ω1 cos(ω2τ1) sin(β(ω1)) cos(β(ω2))

−ω2 cos(ω1τ1) cos(β(ω1)) sin(β(ω2))).

Since the zeroes of nonzero analytic functions are isolated, then for an open and dense set of values
of τ1, we have that V2V3 − V1V4 6= 0. Hence, generically, there are no restrictions on the cubic
coefficients of the normal form.

Bélair and Campbell [1] compute the normal form at a double Hopf bifurcation to cubic order
for the delay differential equation

ẋ(t) = −A1 tanh(x(t− T1)) − A2 tanh(x(t− T2)). (27)

Equation (27) is Z2-symmetric with a21 = 0 and a12 = 0. They show that there are relations
between the coefficients of the cubic monomials of the normal form. Therefore, not all possible
phase portraits in a neighborhood of the origin in parameter space are realized near the double
Hopf bifurcation point. We recover their result.

Corollary 3.4 Suppose that F3(x, y) = a30x
3
3 + a03y

3
3. Then

Re(c12) = 2Re(c11) and Re(c21) = 2Re(c22)

where Re(c11) =

3Re(ψ1(0))

a01

cos(ω1τ1)(a30a01 − a03a10) +
3Im(ψ1(0))

a01

[(a30a01 − a03a10) sin(ω1τ1) + a03a10ω1]

and Re(c22) =

3Re(ψ3(0))

a01

cos(ω2τ1)(a30a01 − a03a10) +
3Im(ψ3(0))

a01

[(a30a01 − a03a10) sin(ω2τ1) + a03a10ω2]

Moreover, if Re(c11) 6= 0 and Re(c22) 6= 0, then the double Hopf bifurcation is determined to third
order.

Proof: Set a12 = a21 = 0 in (Re(c11),Re(c22),Re(c12),Re(c21)) to obtain the result. Then use
conditions (26). Now, Re(c11)Re(c22) − Re(c12)Re(c21) = −3Re(c11)Re(c22). Thus the nondegener-
acy conditions for the vector field to be determined to third order are satisfied if Re(c11) 6= 0 and
Re(c22) 6= 0.

We now discuss the possible restrictions on the phase portraits near the nonresonant double
Hopf bifurcation point. We rewrite system (12) as in Guckenheimer and Holmes [9]

ṙ1 = r1(µ1 + r2
1 + br2

2)
ṙ2 = r2(µ2 + cr2

1 + dr2
2),

(28)

where d = Re(c22)/|Re(c22)| = ±1, c = Re(c21)/|Re(c11)| and b = Re(c12)/|Re(c22)|. In Table 1,
we reproduce Table 7.5.2 of [9] which shows the twelve unfolding cases for the nonresonant double
Hopf bifurcation.

Corollary 3.4 implies that sgn d = sgn c. Table 1 shows that the unfoldings II, IVa, IVb, V, VIIa,
and VIIb are not possible in this case.

9



Table 1: The twelve unfolding cases of (28).

Case Ia Ib II III IVa IVb V VIa VIb VIIa VIIb VIII

d +1 +1 +1 +1 +1 +1 −1 −1 −1 −1 −1 −1

b + + + − − − + + + − − −
c + + − + − − + − − + + −

d− bc + − (+) (+) + − (−) + − + − (−)

3.4 First order scalar equation with two delays

For the general scalar delay equation, the calculation of the cubic normal form requires lengthy
calculations and the size of the expressions for the coefficients of the cubic terms become quickly
unmanageable. Instead, we use Proposition 3.3 to obtain a similar result for general scalar equations.

Proposition 3.5 Suppose that the scalar delay differential equation (13) has a nonresonant double
Hopf bifurcation at 0. Then, generically, there are no restrictions on the values that the coefficients
(Re(c11),Re(c12),Re(c22),Re(c21)) can take in (10).

Proof: Recall that the cubic polynomial in the normal form is given by multiplying by Ψ(0) the
following expression:

F̃3(z) = F3(Φz) + (dzF2(Φz))σ
2
1(z) + (dyF2(Φz))σ

2
2(z). (29)

The coefficients (c11, c12, c22, c21) are functions of the coefficients of (a20, a11, a02) of F2 and (a30, a21, a12, a03)
of F3. Let T be matrix (25),

C =











Re(c11)

Re(c12)

Re(c22)

Re(c21)











and C3 =











a30

a21

a12

a30











.

From (23) and (29), we see that the coefficients of the cubic terms can be written as

C = TC3 +R(a20, a11, a02), (30)

where R(a20, a11, a02) is a vector in R4. Hence, for any C ∈ R4 and coefficients (a20, a11, a02), by
Proposition 3.3, generically, we can find C3 such that equation (30) is satisfied.

3.5 First order scalar equation with one delay

The quadratic and cubic nonlinearities are

F2(u) = a2u and F3(u) = a3u.

In Faria and Magalhães [5], it is shown that the homogeneous polynomials g2
i (x, y) of (7) are given

by
g2

i (x, y) = f̃ 2
i (x, y) − [DxU

2
j (x)Bx− AQ1(U2

j (x))]
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where U2
j is the nonlinear part of the normal form transformation and f̃ 2

i denote the terms of degree
i obtained after normal form computations to degree i − 1. Thus, because of assumption H1 and
H2 the polynomial U2

j is determined by solving

DxU
2
j (x)Bx− AQ1(U2

j (x)) = f̃ 2
i (x, 0). (31)

Note that f̃ 2
2 (x, 0) = f 2

2 (x, 0).
In our case, let (σ2

1(z), σ
2
2(z)) be the nonlinear part of the normal form transformation for

quadratic polynomials where

σ2
2(z)(θ) =

∑

|q|=2

hq1,q2,q3,q4
(θ)zq1

1 zq2

1 zq3

2 zq4

2 ,

with |q| = q1 + q2 + q3 + q4 and hq1,q2,q3,q4
(θ) ∈ Q1. Then (31) becomes

− ω1

[

∂σ2
2

∂z1

z1 −
∂σ2

2

∂z1

z1

]

− ω2

[

∂σ2
2

∂z2

z2 −
∂σ2

2

∂z2

z2

]

− σ̇2
2(z) = −ΦΨ(0)a2(Φ(−τ)z)2. (32)

with boundary conditions

σ̇2
2(z)(0) − L(σ2

2(z)) = a2(Φ(−τ)z)2.

A rough expression for the normal form transformation of the quadratic polynomial of the ẏ equation
is given here.

Proposition 3.6

σ2
2(z)(θ) = a2(P1(θ, ω1, ω2)z

2
1 + P1(θ,−ω1, ω2)z

2
1 + P1(θ, ω2, ω1)z

2
2 + P1(θ,−ω2, ω1)z

2
2

+ P2(θ, ω1, ω2)z1z1 + P2(θ, ω2, ω1)z2z2 +Q1(θ, ω1, ω2)z1z2

+ Q1(θ,−ω1,−ω2)z1z2 +Q2(θ, ω1, ω2)z1z2 +Q2(θ,−ω1,−ω2)z1z2).

where P1, P2, Q1 and Q2 are smooth functions of θ, ω1 and ω2.

The proof of Proposition 3.6 is found in Appendix A. We now give expressions for the cubic
coefficients of the normal form.

Proposition 3.7 The coefficients of the cubic terms in the normal form are given below:

Re(c11) = 3a3Re(ψ1(0)eiω1τ ) + 2a2
2

[

2ω−1
1 Re(ψ1(0)eiω1τ )Im(ψ1(0)eiω1τ )

− 4ω−1
2 Re(ψ1(0)eiω1τ )Im(ψ3(0)eiω2τ )

+ (4ω2
1 − ω2

2)
−1(2ω1Re(ψ3(0)eiω2τ )Im(ψ1(0)eiω1τ ) + ω2Im(ψ3(0)eiω2τ )Re(ψ1(0)eiω1τ ))

]

+ 2a2
2Re[ψ1(0)(e−iω1τP2(−τ, ω1, ω2) + eiω1τP1(−τ, ω1, ω2))]

Re(c12) = 6a3Re(ψ1(0)eiω1τ ) + 4a2
2

[

2ω−1
1 (Re(ψ1(0)eiω1τ )Im(ψ1(0)e−iω2τ )

+ Im(ψ1(0)eiω1τ )Re(ψ3(0)eiω2τ )) + 2ω−1
2 Im(ψ3(0)eiω2τ )Re(ψ1(0)eiω1τ )

+ 2(ω2
1 − 4ω2

2)
−1(ω1Re(ψ3(0)eiω2τ )Im(ψ1(0)eiω1τ ) − 2ω2Re(ψ1(0)eiω1τ )Im(ψ3(0)eiω2τ ))

]

+ 2a2
2Re[ψ1(0)(e−iω1τP2(−τ, ω2, ω1) + e−iω2τQ2(−τ,−ω1,−ω2) + eiω2τQ1(−τ, ω1, ω2))]

Letting c11 = c11(ω1, ω2) and c12 = c12(ω1, ω2) then Re(c22) = Re(c11(ω2, ω1)) and Re(c21) =
Re(c12(ω2, ω1)).
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Proof: Recall first that ψ1(0) = ǫ(ω1) and ψ3(0) = ǫ(ω2) for some function ǫ. The quadratic and
cubic polynomials are given below:

F2(Φ(−τ)z) = a2(e
2iω1τz2

1 + e−2iω1τz2
1 + e2iω2τz2

2 + e−2iω2τz2
2 + 2z1z1 + 2eiτ(ω1+ω2)z1z2

+ 2eiτ(ω1−ω2)z1z2 + 2e−iτ(ω1−ω2)z1z2 + 2e−iτ(ω1+ω2)z1z2 + 2z2z2),

F3(Φ(−τ)z) = a3(e
3iω1τz3

1 + 3eiω1τz2
1z1 + 3eiτ(ω2+2ω1)z2

1z2 + 3e−iτ(ω2−2ω1)z2z
2
1

+ 3e−iω1τz1z
2
1 + 6eiω2τz1z1z2 + 6e−iω2τz2z1z1 + 3eiτ(2ω2+ω1)z1z

2
2

+ 6eiω1τz2z1z2 + 3e−iτ(2ω2+ω1)z2
2z1 + e−3iω1τz3

1 + 3eiτ(ω2−2ω1)z2
1z2

+ 3e−iτ(ω2+2ω1)z2z
2
1 + 3eiτ(2ω2−ω1)z1z

2
2 + 6e−iω1τz2z1z2 + 3e−iτ(2ω2+ω1)z2

2z1

+ e3iω2τz3
2 + 3eiω2τz2z

2
2 + 3e−iω2τz2

2z2 + e−3iω2τz3
2).

We perform the computations for the system in complex coordinates and then take the appro-
priate real parts. Equation (21) gives the cubic terms after normal form transformation of the
quadratic terms. The part of the coefficients cij (i, j = 1, 2) coming from

F3(Φ(−τ)z) + (dzF2(Φ(−τ)z))σ2
1(z)

are found using the result of Knobloch [12] on the computation of the cubic normal form for ODEs.
The remaining part of the coefficients is computed from

dy(F2(Φ(−τ)z + y))|y=0σ
2
2 = 2a2Φ(−τ)zσ2

2(z). (33)

Thus,

a11 = 3ψ1(0)a3e
iω1τ + 2a2

2ψ1(0)eiω1τ

[−1

iω1

(

2iIm(ψ1(0)eiω1τ ) − 2

3
ψ1(0)e−iω1τ

)

− 4

iω2

iIm(ψ3(0)eiτω2) − i

4ω2
1 − ω2

2

(

2ω1Re(ψ3(0)eiτω2) + ω2iIm(ψ3(0)eiτω2)
)

]

+ 2a2
2ψ1(0)[e−iω1τh1,1,0,0(−τ) + eiω1τh2,0,0,0(−τ)]

a12 = 6ψ1(0)a3e
iω1τ + 4a2

2ψ1(0)eiω1τ
[

2ω−1
1 (Im(ψ1(0)e−iω1τ ) − iRe(ψ3(0)eiω2τ ))

+ 2ω−1
2 Im(ψ3(0)eiω2τ ) +

ψ1(0)e−iω1τ

i(2ω1 − ω2)
+
ψ1(0)e−iω1τ

i(2ω1 + ω2)

− 2i

ω2
1 − 4ω2

2

(ω1Re(ψ3(0)eiω2τ ) + 2ω2iIm(ψ3(0)eiω2τ ))

]

+ 2a2
2ψ1(0)[e−iω1τh0,0,1,1(−τ) + e−iω2τh1,0,0,1(−τ) + eiω2τh1,0,1,0(−τ)]

It is a straightforward computation using formulae (11a) and (11b) of Knobloch [12], (33) and
Proposition 3.6 to verify that c22 = c11(ω2, ω1) and c21 = c12(ω2, ω1). Taking the real parts yields
the result.

Corollary 3.8 If a2 = 0 then Re(c12) = 2Re(c11) = 6a3Re(ψ1(0)eiω1τ ) and Re(c21) = 2Re(c22) =
6a3Re(ψ3(0)eiω2τ ). As in Corollary 3.4, the double Hopf bifurcation is determined to third order if
Re(c11) 6= 0 and Re(c22) 6= 0.
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If a2 = 0, since Re(c12) = 2Re(c11) and Re(c21) = 2Re(c22), the restrictions on the possible phase
portraits near a double Hopf point are similar to the restrictions stated after Corollary 3.4.

Now, letting a2 6= 0, a priori many more unfolding cases are possible since sgn d and sgn c need
not be equal anymore. However, we now show that there always are restrictions on the possible
flows near the double Hopf point for fixed values of ω1, ω2 and τ . Before, we state the result, we
perform some transformations on the expressions for the cubic coefficients. From Proposition 3.7
the coefficients in the normal form can be written as

Re(c11) = p1a3 + p2a
2
2, Re(c12) = q1a3 + q2a

2
2

Re(c21) = r1a3 + r2a
2
2, Re(c22) = s1a3 + s2a

2
2,

where p1, p2, q1, q2, r1, r2, s1, s2 are constants since the calculation is made for ω1, ω2 and τ fixed.
Now, if the determinant of M = [ p1 s1

p2 s2
] is nonzero, we can write

Re(c12) = γ1Re(c11) + γ2Re(c22) and Re(c22) = δ1Re(c11) + δ2Re(c22),

where (γ1, γ2)
t = M−1(q1, q2)

t and (δ1, δ2)
t = M−1(r1, r2)

t. Hence,

b =
Re(c12)

|Re(c22)|
= γ1

Re(c11)

|Re(c22)|
± γ2 and c =

Re(c21)

|Re(c11)|
= ±δ1 + δ2

Re(c22)

|Re(c11)|
. (34)

We now state the result. Note that the proof of the proposition also gives a method to determine
which restrictions occurs for a particular system.

Proposition 3.9 Assume the nondegeneracy condition detM 6= 0 is satisfied. Then there always
are restrictions on the possible flows of system (15) near a nonresonant double Hopf bifurcation
point.

Proof: We need to show that for all values of a2 and a3, there are some combinations of signs of b,
c and d which are prohibited. The equations Re(c11) = p1a3+a

2
2a

2
2 = 0 and Re(c22) = s1a3+s2a

2
2 = 0

define two parabolae passing through (0, 0) in (a2, a3) space. Then there is always at least one case
of signs of Re(c11) and Re(c22) which cannot occur simultaneously for any value of (a2, a3). Let
−p2/p1 ≥ −s2/s1, then if a2, a3 are chosen so that d = sgn (Re(c22)) = −1, this forces Re(c11) < 0.
Similarly, let −s2/s1 ≥ −p2/p1, if a2, a3 are chosen so that d = +1, this forces Re(c11) > 0.

Fix −s2/s1 ≥ −p2/p1 and d = +1, then Re(c11) > 0 and let ∆ = Re(c11)/Re(c22). Then
b = γ1∆ + γ2 and c = δ1 + δ2/∆. So b and c are defined for values of ∆ > 0 only and are monotone
functions of ∆ on (0,∞). Thus, b and c vanish for at most one value of ∆ each. Therefore, there
are at most three intervals where b and c have constant signs. Hence, there is always a choice of
signs of b and c which is restricted. A similar argument holds when −p2/p1 ≥ −s2/s1 and d = −1.
This proves the result.

4 nth order scalar equation with delayed feedback, n ≥ 2

Consider now the nth order delay differential equation (n ≥ 2)

u(n) + β1u
(n−1) + · · · + βnu = f(u(t− τ)) (35)

where f(0) = 0, βj (j = 1, . . . , n) are constants and τ is the time delay. This equation generalizes
the harmonic oscillator with delayed feedback

ü+ β1u̇+ β2u = f(u(t− τ)) (36)
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studied by Campbell et al. [3].
In this section, we prove the following unfolding result for equation (35).

Theorem 4.1 Suppose that (35) has a nonresonant double Hopf bifurcation point at the origin.
Then, generically, the two parameter family of delay differential equations

u(n) + β1u
(n−1) + · · · + (βn + ν1)u = (a1 + ν2)u(t− τ) + o(u(t− τ)) (37)

provides a universal unfolding for the double Hopf bifurcation. However, generically, there always
are restrictions on the possible flows of (35) near a double Hopf bifurcation point.

The proof of Theorem 4.1 is given by Lemma 4.2 and Proposition 4.4.

4.1 The C = P ⊕Q decomposition

Truncate f to degree three in its Taylor expansion

f(u(t− τ)) = a1u(t− τ) + a2u
2(t− τ) + a3u

3(t− τ)

and rewrite (35) as a system of n first order delay differential equations






















u̇ = v1

v̇1 = v2

...

v̇n−1 = −β1vn−1 − · · · − βnu+ a1u(t− τ) + a2u
2(t− τ) + a3u

3(t− τ).

(38)

So,

L(ut, vt) =













v1
...

vn−2

−β1vn−1 − · · · − βnv1 + a1u(t− τ)













, F (ut) =













0
...

0

a2u
2(t− τ) + a3u

3(t− τ).













At a double Hopf point, the basis of P is given by the columns of Φ = [Φ1, . . . ,Φn]t where

Φj = ((iω1)
j−1eiω1θ, (−iω1)

j−1e−iω1θ, (iω2)
j−1eiω2θ, (−iω2)

j−1e−iω2θ).

The basis of the adjoint problem is given by the rows of Ψ = [Ψ1, . . . ,Ψn] with Ψj = (Ψ1
j ,Ψ

2
j ,Ψ

3
j ,Ψ

4
j)

t

where Ψ = (Φt,Φ)−1Φt and (·, ·) is the bilinear form (4).
Let (u, v1, . . . , vn−1)

t = Φz + y where y = (y1, . . . , yn)t ∈ Q ∩ C1([−τ, 0],Rn). We rewrite (38)
as an infinite dimensional system. Note that F is only function of u = Φ1(−τ)z + y1, thus

ż = Bz + Ψ(0)F (Φ1(−τ)z + y1)

ẏ = AQ1y + (I − π)X0F (Φ1(−τ)z + y1)
(39)

where B is (8). Now,

F (Φ1(−τ)z + y1) =













0
...

0

a2(Φ1(−τ)z + y1)
2 + a3(Φ1(−τ)z + y1)

3













.
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Hence (39) becomes

ż = Bz + Ψn(0)(a2(Φ1(−τ)z + y1)
2 + a3(Φ1(−τ)z + y1)

3)

ẏ = AQ1y + (I − π)X0













0
...

0

a2(Φ1(−τ)z + y1)
2 + a3(Φ1(−τ)z + y1)

3)













.
(40)

4.2 Unfolding of the nth order equation

We choose the following unfolding for the nth order delay differential equation

L(ν1, ν2)(ut, v1, · · · , vn−1) =













v1

...

vn−2

−β1vn−1 − · · · − (β1 − ν1)v1 + (a1 + ν2)u(t− τ)













.

Thus,

(L(ν1, ν2) − L0)Φz =













0
...

0

ν1(ω1(z1 − z1) + ω2(z2 − z2)) + ν2Φ1(−τ)z













.

The quadratic terms computed from (5) are given by

Ψ(0)[L(ν1, ν2) − L0]Φz = Ψn(0)(ν1(ω1(z1 − z1) + ω2(z2 − z2)) + ν2Φ1(−τ)z).

The normal form to degree two is given by equation (11)

ż1 = iω1z1 + (Ψ1
n(0)ω1)ν1z1 + (Ψ1

n(0)eiω1τ )ω2z1

ż2 = iω2z2 + (Ψ3
n(0)ω2)ν1z2 + (Ψ3

n(0)eiω2τ )ω2z2

and after transformation to polar coordinates the radial part becomes

ṙ1 = (ω1Re(Ψ1
n(0))ν1 + Re(Ψ1

n(0)eiω1τ )ν2)r1

ṙ2 = (ω2Re(Ψ3
n(0))ν1 + Re(Ψ3

n(0)eiω2τ )ν2)r2.

Lemma 4.2 Generically, the independent unfolding parameters (ν1, ν2) of (37) map to independent
unfolding parameters (µ1, µ2) of the normal form equations.

Proof: As in Proposition 3.2, it is easy to check that if ω1 6= ω2, the determinant of
[

ω1Re(Ψ1
n(0)) Re(Ψ1

n(0)eiω1τ )

ω2Re(Ψ3
n(0)) Re(Ψ3

n(0)eiω2τ )

]

is nonzero for an open and dense set of values of τ .

In particular, note that it is necessary to have a parameter as coefficient of the u(t− τ) term while
the other unfolding parameter can be chosen in front of any other term.
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4.3 Normal form of the nth order scalar equation

In this section, we discuss the normal form of the nth order scalar delay differential equation (35).
We proceed with normal form transformations of (40). Consider the normal form transformation
for quadratic terms

(z, y) = (z̃, ỹ) + (S2(z̃), T2(z̃)) (41)

where T2(z) = [T 1
2 (z), . . . , T n

2 (z)]t. After this transformation the ż equation becomes

ż = Bz + Ψn(0)

{

a3(Φ1(−τ)z)3 + 2a2

[

∂Φ1(−τ)z
∂z1

S1
2(z) +

∂Φ1(−τ)z
∂z1

S2
2(z) (42)

+
∂Φ1(−τ)z

∂z2

S3
2(z) +

∂Φ1(−τ)z
∂z2

S4
2(z)

]

+ 2a2Φ1(−τ)(z)T 1
2 (z)

}

. (43)

This equation is very similar to the ż equation of the scalar first order equation (15) in normal
form to cubic order. Hence, modulo the computation of T 1

2 (z), the cubic coefficients cij are given
by Proposition 3.7.

We now prove (42). The cubic terms after normal form transformation (41) are given by

F̃3(z) = F3(Φz) + (dzF2(Φ1(−τ)z + y1))|y1=0S2(z) + (dyF2(Φ1(−τ)z + y1))|y1=0T2(z).

Now,

F3(Φ1(−τ)z) + (dyF2(Φ1(−τ)z + y1))|y1=0T2(z) =













0
...

0

a3(Φ1(−τ)z)3 + 2a2Φ1(−τ)(z)T 1
2 (z)













,

dzF2(Φ1(−τ)z)S2(z) = 2a2















0 0 0 0
...

...
...

...

0 0 0 0
∂Φ1(−τ)z

∂z1

∂Φ1(−τ)z
∂z1

∂Φ1(−τ)z
∂z2

∂Φ1(−τ)z
∂z2

























S1
2

S2
2

S3
2

S4
2











Thus ż is given by (42) where only T 1
2 (z) enters in the cubic terms after normal form transformation

of the quadratic terms of the dy/dt equation.

Computation of T2 In the case of the nth order equation (35), equation (31) for the quadratic
terms is

DzT2(z)Bz − AQ1(T2(z)) = (I − π)X0













0
...

0

a2(Φ1(−τ)z)2













= f̃2(z). (44)

Recall that AQ1y = ẏ+X0(L(y)− ẏ(0)) and (I−π)X0 = X0−ΦΨ(0). Thus, (44) reduces to solving
for T2(z) the system

DzT2(z)Bz − Ṫ2(z) = −ΦΨ(0)f̃2(z) (45)

with boundary conditions
−Ṫ2(z)(0) + L(T2(z)) = f̃2(z). (46)
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The n components of (45) are given by

− ω1

[

∂T j
2

∂z1

z1 −
∂T j

2

∂z1

z1

]

− ω2

[

∂T j
2

∂z2

z2 −
∂T 1

2

∂z2

z2

]

− Ṫ 1
2 (z) = −ΦjΨn(0)a2Φ1(z)

2, (47)

where j runs from 1 to n. In particular,

− ω1

[

∂T 1
2

∂z1

z1 −
∂T 1

2

∂z1

z1

]

− ω2

[

∂T 1
2

∂z2

z2 −
∂T 1

2

∂z2

z2

]

− Ṫ 1
2 (z) = −Φ1Ψn(0)a2Φ1(z)

2.

The only difference lies in solving the boundary conditions for T 1
2 (z) which involves the knowledge

of T j
2 (z) for j = 2 . . . , n. We know already that the cij coefficients in the case of the nth order

equation are identical to the cij coefficients of Proposition 3.7 up to the T 1
2 term. Consider now the

boundary conditions:























Ṫ 1
2 (z)(0) − T 2

2 (z)(0) = 0
...

Ṫ n−1
2 (z)(0) − T n

2 (z)(0) = 0

Ṫ n
2 (z)(0) + β1T

n−1
2 (z)(0) + · · · + βnT

1
2 (z)(0) − a1T

1
2 (z)(−τ) = a2(Φ1(−τ)z)2.

(48)

Since (35) has constant coefficients, equation (48) factors into subsystems























ḣ1
(q1,q2,q3,q4)(0) − h2

(q1,q2,q3,q4) = 0
...

ḣn−1
(q1,q2,q3,q4)(0) − hn

(q1,q2,q3,q4) = 0

ḣn
(q1,q2,q3,q4)(0) + · · · + βnh

1
(q1,q2,q3,q4)(0) − a1h(q1,q2,q3,q4)(−τ) = a2ξ(q1,q2,q3,q4).

(49)

where ξ(q1,q2,q3,q4) is the coefficient of z with power (q1, q2, q3, q4) in (Φ1(−τ)z)2.

Proposition 4.3 The polynomial T 1
2 (z) found by solving (47) and (49) is of the same form as σ2

2

in Proposition 3.6.

Proof: See Lemma A.1 and Lemma A.6 in the appendix.

Therefore the following result follows.

Proposition 4.4 The coefficients of the cubic terms of the normal form of (35) are given by Propo-
sition 3.7 where the polynomials P1, P2, Q1 and Q2 depend on the boundary condition (48).

Proof: The proof follows from equation (42) and Proposition 4.3.

Proposition 4.4 implies that Proposition 3.9 applies directly to nth order scalar delay equations.

5 Discussion

We have presented an analysis of the relationship between projected flows associated with ordinary
differential equations on centre manifolds and the delay-differential equation from which they orig-
inate, in the case of a double Hopf bifurcation. We have seen that the universal unfolding of the
vector field around the singular point may or may not have restrictions, moreover restrictions are
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also influenced by the modeling context in which the delay equation arises. As pointed out in [10],
there is a difference between unfolding such a singularity in general, and unfolding in the context
of modeling using a specific class of delay-differential equations.

Indeed, the restrictions introduced by the specific structure of the model put conditions on the
possible range of parameters allowed in the unfolding. The ensuing range of invariant sets is thus
limited by the framework in which the model is developed. This shifts some of the burden of
the analysis from the purely mathematical considerations to the derivation of the model itself. It
thus becomes paramount to have a properly derived systems of functional differential equations to
adequately translate the biological or mechanical systems under study.

Our analysis is the first one addressing the double Hopf bifurcations. Previous investigations [5,
6, 7, 13] have considered simpler bifurcations, all leading to centre manifolds of dimension three
or less. We have made use of symmetric bifurcation techniques, explaining in general terms the
intriguing simplifying relation, discovered in [1], relating the two cubic terms in the scalar first
order equation with two delays. The role of the symmetry of the hyperbolic tangent in that analysis
becomes transparent with the calculations presented here.

We have only studied, albeit in some details, scalar equations of arbitrary order. The only caveat
is the necessity for a double Hopf bifurcation point to exist, which is impossible in the case of a
first order equation with a single delay. The same formal analysis can be extended to systems of
functional differential equations. Our preliminary calculations indicate a fundamental increase in
algebraic difficulties, not all of which can be overcome by the use of symbolic manipulation software,
such as MAPLE. It is hard to predict how much of our analysis can thus be extended to large scale
systems.

What is clear, though, is the benefit from this investigation for the purposes of modeling biolog-
ical systems using delay differential equations, and the insight provided into the possible behaviours
around singular stationary solutions of the delay equations.

A Proof of Proposition 3.6 and Proposition 4.3

To prove Proposition 3.6 and Proposition 4.3 we need to solve equations for σ2
2 and T2. We begin by

writing equations (32) and (47) in a suitable form for easy integrating. The integration is done in the
lemmae that follow and the boundary conditions are used to determine the integrating constants.
We write the defining condition equations for σ2

2 and T 2
j for all j:

− ω1

[

∂σ2
2

∂z1

z1 −
∂σ2

2

∂z1

z1

]

− ω2

[

∂σ2
2

∂z2

z2 −
∂σ2

2

∂z2

z2

]

− σ̇2
2(x) +X0

[

σ̇2
2(0) − L(σ2

2(x))
]

(50)

= a2[X0 − ΦΨ(0)](Φ1(−τ)z)2 (51)

where Φ stands for Φ in (32) and it stands for Φj in (47). Similarly Ψ(0) stands for Ψ(0) in (32)
and for Ψn(0) in (47). Recall that Φ1 = (eiω1θ, e−iω1θ, eiω2θ, e−iω2θ).

Equation (50) is split in two linear differential equations:

−ω1

[

∂σ2
2

∂z1

z1 −
∂σ2

2

∂z1

z1

]

− ω2

[

∂σ2
2

∂z2

z2 −
∂σ2

2

∂z2

z2

]

− σ̇2
2(x) = −a2ΦΨ(0)(Φ1(−τ)z)2, (52)

and
σ̇2

2(0) − L(σ2
2(x)) = a2(Φ(−τ)z)2.

Let ḣ be differentiation with respect to θ. Equation (52) can be written in matrix form

−ḣ = Ah+ f, (53)
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where f = −a2ΦΨ(0)(Φ1(−τ)z)2,

h = (h2,0,0,0, h0,2,0,0, h0,0,2,0, h0,0,0,2, h1,1,0,0, h0,0,1,1, h1,0,1,0, h0,1,0,1, h0,1,1,0, h1,0,0,1),

and

A =















































0 0 0 0 ω1 0 0 0 0 0

0 0 0 0 −ω1 0 0 0 0 0

0 0 0 0 0 ω2 0 0 0 0

0 0 0 0 0 −ω2 0 0 0 0

−2ω1 2ω1 0 0 0 0 0 0 0 0

0 0 −2ω2 2ω2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ω1 ω2

0 0 0 0 0 0 0 0 −ω2 −ω1

0 0 0 0 0 0 −ω1 ω2 0 0

0 0 0 0 0 0 −ω2 ω1 0 0















































.

Now
ΦΨ(0) = Re(ψ1(0)eiω1θ) − Re(ψ3(0)eiω2θ),

and set Re(ψ1(0)) = ξ(ω1), Re(ψ3(0)) = ξ(ω2), Im(ψ1(0)) = ζ(ω1) and Im(ψ3(0)) = ζ(ω2) for some
ξ and ζ. Let H(a) = ξ(a) cos(aθ)− ζ(a) sin(aθ), then ΦΨ(0) = H(ω1) +H(ω2). Since ξ(a) = ξ(−a)
and ζ(−a) = −ζ(a) then H is an even function and so is ΦΨ(0). Since H(θ,−ω1) = H(θ, ω1), then

−ḣ2,0,0,0 = ω1h1,1,0,0 − (H(θ, ω1) + H(θ, ω2))a2e
2iω1τ

−ḣ0,2,0,0 = (−ω1)h1,1,0,0 − (H(θ,−ω1) + H(θ, ω2))a2e
−2iω1τ .

Therefore, h0,2,0,0(θ, ω1) = h2,0,0,0(θ,−ω1). The same relationship holds between h0,0,2,0 and h0,0,0,2

but with ω1 replaced by ω2. The system then reduces to two four dimensional systems.

−ḣ1 = A1h1 + f1 and − ḣ2 = A2h2 + f2. (54)

where
h1 = (h2,0,0,0, h0,0,2,0, h1,1,0,0, h0,0,1,1), h2 = (h1,0,1,0, h0,1,0,1, h0,1,1,0, h1,0,0,1),

f1 = −a2ΦΨ(0)(e2iω1τ , e2iτω2 , 2, 2)t

f2 = −a2ΦΨ(0)(2eiτ(ω1+ω2), 2e−iτ(ω1+ω2), 2e−iτ(ω1−ω2), 2eiτ(ω1−ω2))t

and the matrices are

A1 =













0 0 ω1 0

0 0 0 ω2

−2ω1 0 0 0

0 −2ω2 0 0













, A2 =













0 0 ω1 ω2

0 0 −ω2 −ω1

−ω1 ω2 0 0

−ω2 ω1 0 0













.

The boundary conditions are

ḣ1(0) − L(h1) = (a2e
2iω1τ , a2e

2iτω2 , 2a2, 2a2)
t

ḣ2(0) − L(h2) = (2a2e
iτ(ω1+ω2), 2a2e

−iτ(ω1+ω2), 2a2e
−iτ(ω1−ω2), 2a2e

iτ(ω1−ω2))t.
(55)

The following lemma gives h.
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Lemma A.1 The solutions to equations (54) are

−h1(θ) = eθA1K1 + eθA1

(

∫ θ

0
e−sA1f1

)

, −h2(θ) = eθA2K2 + eθA2

(

∫ θ

0
e−sA2f2

)

where

K1 = a2(Ã(ω1), Ã(ω2), B̃(ω1), B̃(ω2))
t,

K2 = a2(χ̃1(ω1, ω2), χ̃1(−ω1,−ω2), χ̃2(ω1, ω2), χ̃2(−ω1,−ω2))
t,

∫ θ

0
e−sA1f1ds = a2(A(θ, ω1, ω2),A(θ, ω2, ω1),B(θ, ω1, ω2),B(θ, ω2, ω1))

t

∫ θ

0
e−sA2f2ds = a2(χ1(θ, ω1, ω2), χ1(θ,−ω1,−ω2), χ2(θ, ω1, ω2), χ2(θ,−ω1,−ω2))

t,

exp(θA1) =















cos(
√

2ω1θ) 0
1

2

√
2 sin(

√
2ω1θ) 0

0 cos(
√

2ω2θ) 0
1

2

√
2 sin(

√
2ω2θ)

−
√

2 sin(
√

2ω1θ) 0 cos(
√

2ω1θ) 0

0 −
√

2 sin(
√

2ω2θ) 0 cos(
√

2ω2θ)















and exp(θA2) =











cos(ω1θ) cos(ω2θ) sin(ω1θ) sin(ω2θ) sin(ω1θ) cos(ω2θ) cos(ω1θ) sin(ω2θ)

sin(ω1θ) sin(ω2θ) cos(ω1θ) cos(ω2θ) − cos(ω1θ) sin(ω2θ) − sin(ω1θ) cos(ω2θ)

− sin(ω1θ) cos(ω2θ) cos(ω1θ) sin(ω2θ) cos(ω1θ) cos(ω2θ) − sin(ω1θ) sin(ω2θ)

− cos(ω1θ) sin(ω2θ) sin(ω1θ) cos(ω2θ) − sin(ω1θ) sin(ω2θ) cos(ω1θ) cos(ω2θ)











.

Proof: The proof follows from the following Lemma A.2, Lemma A.3 and Lemma A.5

Lemma A.2

∫ θ

0
e−sA1f1ds = a2(A(θ, ω1, ω2),A(θ, ω2, ω1),B(θ, ω1, ω2),B(θ, ω2, ω1))

t

∫ θ

0
e−sA2f2ds = a2(χ1(θ, ω1, ω2), χ1(θ,−ω1,−ω2), χ2(θ, ω1, ω2), χ2(θ,−ω1,−ω2))

t

Proof:
We consider first the integral

∫ θ

0
e−sA1f1ds = a2

∫ θ

0
e−sA1(−ΦΨ(0))(e2iω1τ , e2iω2τ , 2, 2)tds.

which separates into four integrals where −ΦΨ(0) = H(s, ω1) + H(s, ω2). Each integral is of the
form

∫ θ

0

(H(s, ω1) + H(s, ω2))J (s, a)ds,

for some function J where a = ω1 or a = ω2. Hence it is easy to see that if

I(ω1, ω2) =

∫ θ

0

(H(s, ω1) + H(s, ω2))J (s, ω1)ds
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then

I(ω2, ω1) =

∫ θ

0

(H(s, ω1) + H(s, ω2))J (s, ω2)ds.

It is easy to check that

e−sA2(2eiτ(ω1+ω2), 2e−iτ(ω1+ω2), 2e−iτ(ω1−ω2), 2eiτ(ω1−ω2))t =

(δ1(s, ω1, ω2), δ1(s,−ω1,−ω2), δ2(s, ω1, ω2), δ2(s,−ω1,−ω2))
t,

thus
∫ θ

0
e−sA2f2ds

=
∫ θ

0
(H(s, ω1) + H(s, ω2))(δ1(s, ω1, ω2), δ1(s,−ω1,−ω2), δ2(s, ω1, ω2), δ2(s,−ω1,−ω2))

tds

Since H(s, a) is even in a, then

H(ω1, ω2)δi(s,−ω1,−ω2) = H(−ω1,−ω2)δi(s,−ω1,−ω2) = H(a, b)δi(s, a, b).

for i = 1, 2, where a = −ω1 and b = −ω2 and the result follows.

Lemma A.3 The sets of matrices A1 and A2 respectively of the form

M1 =











a 0 b 0

0 c 0 d

−2b 0 a 0

0 −2d 0 c











and M2 =











x y z w

y x −w −z
−z w x −y
−w z −y x











,

where x 6= ±y and z 6= ±w for all nonzero matrices, are fields. Moreover,

M1(α(ω1, ω2), α(ω2, ω1), β(ω1, ω2), β(ω2, ω1))
t = (α1(ω1, ω2), α1(ω2, ω1), β1(ω1, ω2), β1(ω2, ω1))

t. (56)

Proof: The determinants are det(M1) = (a2 + 2b2)(c2 + 2d2) and det(M2) = ((z − w)2 + (x +
y)2)((y − x)2 + (z + w)2) which vanish only for the zero matrix. Commutativity and property (56)
are verified by a simple computation.

Remark A.4 Note that in Lemma A.1, exp(θA1) is an element of A1 and exp(θA2) is in A2 since
A1 ∈ A1 and A2 ∈ A2. Moreover, if M2 = Am

2 for any integer m ≥ 0 or M2 = exp(θA2), then an
easy calculation shows that

M2(χ(ω1, ω2), χ(−ω1,−ω2), ξ(ω1, ω2), ξ(−ω1,−ω2))
t =

(χ1(ω1, ω2), χ1(,−ω1,−ω2), ξ1(ω1, ω2), ξ1(−ω1,−ω2))
t.

(57)

Proof of Proposition 3.6 From Lemma A.1 and Lemma A.3 we see that the multiplication and
addition in the expressions for h yields the desired result.

Lemma A.5 The constants K1 and K2 found using the boundary conditions with L(0, 0) coming
from (18) have the form

K1 = a2(Ã(ω1), Ã(ω2), B̃(ω1), B̃(ω2))

K2 = a2(χ̃1(ω1, ω2), χ̃1(−ω1,−ω2), χ̃2(ω1, ω2), χ̃2(−ω1,−ω2))
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Proof: Writing the boundary equation using the solutions h1(θ) computed before we obtain

(A1 − a10e
−τ1A1 − a01e

−τ2A1)K1

= f1(0) + a10e
−τ1A1

∫ −τ1

0
e−sA1f1(s)ds+ a01e

−τ2A1

∫ −τ2

0
e−sA1f1(s)ds+ (e2iω1τ , e2iω2τ , 2, 2)t

= (α(ω1, ω2), α(ω2, ω1), β(ω1, ω2), β(ω2, ω1))
t,

where the last equality is easily shown using Lemma A.2. By Lemma A.3, (A1 − a10e
−τ1A1 −

a01e
−τ2A1)−1 is of the form M1 and the result follows. The vector K2 is computed in the same way

using Remark A.4.

Lemma A.6 The constants K1 and K2 found using the boundary conditions (48) have the same
form as in Lemma A.5.

Proof: Let

T j
2 (z) =

∑

|q|=2

hj
q1,q2,q3,q4

(θ)zq1

1 zq2

1 zq3

2 zq4

2 ,

where j = 1, . . . , n, |q| = q1 + q2 + q3 + q4 and hj
q1,q2,q3,q4

(θ) ∈ Q1. For j = 1, . . . , n, let

hj
1 = (hj

2,0,0,0, h
j
0,0,2,0, h

j
1,1,0,0, h

j
0,0,1,1) and hj

2 = (hj
1,0,1,0, h

j
0,1,0,1, h

j
0,1,1,0, h

j
1,0,0,1).

Then using the solutions of equation (54) for hj
i , we replace in the boundary conditions (48). By

Lemma A.1, hj
1 = eθA1(Kj

1 + f j
1 (0)) where the superscripts of K and f are indices setting K0

1 = K1

and f j
1 (0) has the same form as in Lemma A.2. Thus for hj

1 we obtain























A1K1 + f1(0) +K1
1 = 0

...

A1K
n−2
1 + fn−1

1 (0) +Kn−1
1 = 0

A1K
n−1
1 + fn−1

1 (0) + β1K
n−1
1 + βnK1 + a1e

−τA1K1 = a2(e
2iω1τ , e2iω2τ , 2, 2)t).

Solve Kj
1 in terms of K1: K

j
1 = (−1)jAj

1K1+(−1)j(Aj−1
1 f1(0)−Aj−2

1 f 1
1 (0)+· · ·±f j−1

1 (0)). Replacing
in the last equation and putting on the right hand side all the terms which do not contain K1 we
obtain

(−1)n(An
1 + β1A

n−1
1 + · · ·βnI + a1e

−τA1)K1 = a2(g1(ω1, ω2), g1(ω2, ω1), g2(ω1, ω2), g2(ω2, ω1))
t.

Using Lemma A.3 in the preceding equation yields the result. The other vectors hj
i are handled in

the same way and yield similar results.
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[5] T. Faria and L.T. Magalhães. Normal form for retarded functional differential equations and
applications to Bogdanov-Takens singularity. J. Diff. Eqs 122 (1995), 201–224.
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