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2.6 The Chebyshev-Grübler-Kutzbach-Hervé Formula . . . . . . . . . . . . . . 53

2.6.1 Trivial Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

i



2.6.2 Exceptional Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6.3 Paradoxical Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7 Applications to the Qualitative Synthesis of Robotic Architectures . . . . . 59

2.7.1 The Synthesis of Robotic Architectures . . . . . . . . . . . . . . . . 59

3 Function Generation 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Input-Output Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Planar Four-Bar Linkages . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.2 The Denavit-Hartenberg Notation . . . . . . . . . . . . . . . . . . . 69

3.2.3 Spherical Four-Bar-Linkages . . . . . . . . . . . . . . . . . . . . . . 70

3.2.4 Spatial Four-Bar-Linkages . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Exact Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.1 Planar Linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.2 Spherical Linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.3 Spatial Linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Analysis of the Synthesized Linkage . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1 Planar Linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.2 Spherical Four-Bar Linkages . . . . . . . . . . . . . . . . . . . . . . 95

3.4.3 Spatial Four-Bar Linkages . . . . . . . . . . . . . . . . . . . . . . . 96

3.5 Approximate Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6 Linkage Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 113

3.6.1 Planar Linkages: Transmission Angle and Transmission Quality . . 113

3.6.2 Spherical Linkages: Transmission Angle and Transmission Quality . 118

3.6.3 Spatial Linkages: Transmission Angle and Transmission Quality . . 118

3.7 Design Error vs. Structural Error . . . . . . . . . . . . . . . . . . . . . . . 118

3.7.1 Minimizing the Structural Error . . . . . . . . . . . . . . . . . . . . 120

3.7.2 Introducing a Massive Number of Data Points . . . . . . . . . . . . 123

3.8 Synthesis Under Mobility Constraints . . . . . . . . . . . . . . . . . . . . . 123

3.8.1 Constrained Least Squares . . . . . . . . . . . . . . . . . . . . . . . 123

3.8.2 Introducing a Massive Number of Data Points . . . . . . . . . . . . 123

3.9 Synthesis of Complex Linkages . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.9.1 Synthesis of Stephenson Linkages . . . . . . . . . . . . . . . . . . . 123

4 Motion Generation 125

5 Path Generation 127

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Planar Path Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 Planar Path Generation With Prescribed Timing . . . . . . . . . . . . . . 130

ii



5.4 Coupler Curves of Planar Four-Bar Linkages . . . . . . . . . . . . . . . . . 134

5.5 The Theorem of Roberts-Chebyshev . . . . . . . . . . . . . . . . . . . . . . 138

A A Summary of Dual Algebra 139

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.3 Fundamentals of Rigid-Body Kinematics . . . . . . . . . . . . . . . . . . . 144

A.3.1 Finite Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.3.2 Velocity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.3.3 The Linear Invariants of the Dual Rotation Matrix . . . . . . . . . 155

A.3.4 The Dual Euler-Rodrigues Parameters of a Rigid-Body Motion . . . 160

A.4 The Dual Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Bibliography 173

Index 181

iii



iv



Chapter 1

Introduction to Kinematic Synthesis

1.1 The Role of Kinematic Synthesis in Mechanical

Design

When designing a mechanical system, whether a structure or a machine, the first step is

to produce a conceptual design that will meet the design specifications. Broadly speaking,

the main function of a structure is to be capable of withstanding the anticipated loads

without exhibiting major deformations that would hamper the integrity of the structure

or the safety of its occupants. Likewise, the main function of a machine is to be able

to perform the intended task, usually involving finite displacements of its parts, without

major deformations that would hamper the integrity of the machine or the safety of its

users.

In the above preamble we have introduced concepts of engineering design as pertaining

to mechanical systems at large. Of these, we have focused on structures and machines. In

fact, design, together with manufacturing, is the raison d’être of engineers, all disciplines

known as engineering science, namely, mechanics, thermofluids and numerics, to name

but just the major branches, playing a supporting role in the production process. For this

reason it is necessary to dwell on this concept. Because of its importance, the engineering

design process has been the subject of study over the centuries, starting with Marcus

Vitruvius Polio (ca. 75 BCE–ca. 15 CE) and his 10-volume work under the title De

Architectura (Vitruvius, 28 B.C.E.). Modern engineering design theory owes its origins,

to a great extent, to Franz Reuleaux (1829–1905), who first proposed a grammar to

describe the kinematic chain of a machine (Moon, 2003). A modern model of the design

process, due to French (1992), is depicted in Fig. 1.1. In this model, four stages are

distinguished: a) analysis of the problem; b) conceptual design; c) embodiment design;

and d) detailing, or detailed design.

In the first stage, analysis of the problem, the functions required from the object under

design, in our case, a machine, are clearly defined, in general, but precise terms. At this
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stage, the task of the design engineer is to produce a) design requirements, in terms as

general as possible, in order to avoid biasing the design team towards a specific layout of

the solution, and b) design specifications, so as to satisfy the rather vaguely spelled-out

needs of the client.

In the second stage, the design team produces a set of design variants, as rich as

possible, after several sessions, structured or unstructured, which are part of the creative

aspect of the design process.

Figure 1.1: French’s model of the design process

In the third stage, the design team focuses on a reduced set of design variants, those

having the highest likelihood of succeeding in satisfying the client’s demands within the

resources—budget, deadlines, technology—set at the disposal of the design team. In this

stage, the task of the team is to produce a preliminary model of the design solution, with

a clear identification of the main parameters defining a specific design variant. At this

stage, then, a parametric model of each of the short-listed candidate variants is produced,

which is then subject to optimization with the aim of finding the specific fundamental

dimensions that either maximize a profit or minimize a cost of the design solution, or

even do both at the same time, in a process that is known as multiobjective optimization.

Design optimization is thus a key activity in the embodiment stage, which makes this stage

iterative, as optimization requires several rounds of assignment of numerical values to the
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parameters of the mathematical model; evaluating the performance of the design solution

thus resulting; improving this performance, when there is still room for improvement; and

stopping when no more improvement is possible.

The final stage involves materials selection, manufacturing issues, and production-cost

analysis. As a result of this stage, a set of manufacturing drawings is produced that is

then sent out for prototype manufacturing, when the design job so requires, or directly

to production.

Kinematic synthesis plays a key role in the first three stages of the foregoing design

process, as pertaining to machine design. In fact, in the first stage, analysis of the prob-

lem, more than kinematic synthesis, what is required is kinematics knowledge, as design

functions and specifications are to be understood by any engineer trained in the discipline.

It is in the second and third stages where kinematic synthesis plays a fundamental role,

as explained below.

As pertaining to machine design or, more specifically, to mechanism design, Denavit

and Hartenberg (1964) proposed three phases of kinematic synthesis: a) type synthesis; b)

number synthesis; and c) dimensional synthesis. Both type and number syntheses pertain

to the conceptual design phase, as the former refers to choosing the type of mechanism to

perform the required function, namely, a linkage, a cam-follower mechanism, a belt-pulley

transmission, or a gear train, for example. Number synthesis refers to the numbers of

links and joints in a linkage, along with the type of joints to be used—kinematic joints,

or lower kinematic pairs, are studied in Ch. 2.

The conceptual phase of the design process is fundamental. Moreover, this phase is

the one that has posed the major challenges to those attempting to automate the design

process. In the realm of kinematic synthesis, we introduce a methodology, termed quali-

tative synthesis, in Ch. 2, in an attempt to provide a structure to the rather unstructured

stage of conceptual mechanism design. Qualitative synthesis focuses on the synthesis of

linkages.

Chapters 3–5 are devoted to what Denavit and Hartenberg call dimensional synthesis,

as the main objective here is to find the dimensions defining the geometry of the various

links and joints of the kinematic chain underlying the mechanism under design. In these

chapters, we assume that a preliminary layout of the conceptual design—obtained as a

result of the type and number syntheses of the kinematic chain at hand—is available, our

main job being to contribute to the production of the embodiment of this design. The

design embodiment is the realization of a kinematic chain as a table of what is known as

the Denavit-Hartenberg parameters—to be introduced in Ch. 3—that define uniquely the

kinematic chain at hand.

Going back to the more general machine-design process, dimensioning involves two

phases: functional dimensioning and mechanical dimensioning. The former is previous to

the latter, and includes the determination of the fundamental dimensions of the machine,
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prior to the shaping of all its parts. It is the functional dimensioning where kinematic

synthesis plays a major role. Mechanical dimensioning pertains to the dimensioning of the

machine elements for stress, strength, heat capacity, and dynamic-response requirements.

Before we embark on the details of the course, a review of the glossary is in order.

1.2 Glossary

Some general definitions are first recalled:

• Kinematics: The branch of mechanics that studies motion, independent of its rela-

tion with forces.

• Statics: The branch of mechanics that studies the equilibrium of forces and moments

acting on particles, rigid bodies, and flexible bodies.

• Kinematic constraint: The physical prevention of relative motion—rotation and

translation—between two bodies in one or more directions. The term also denotes

the algebraic or differential relations representing the physical constraint.

• Kinetostatics: The branch of mechanics that studies the interplay of forces and

moments with motion variables under static, conservative conditions.

The concepts of machine and mechanism are frequently interchanged as if they were

equivalent, but they are not. We give below some definitions from various sources, with

added comments:

Machine

• Here is an account of the definitions of machine, taken from (Dudiţă et al., 1987).

Different definitions of machine have been given by scholars for more than two

millennia, starting with Vitruvius in 28 BCE, namely,

– A machine is a combination (system, assemblage) of moving material bodies

(Vitruvius, 28 B.C.E.; Hachette, 1811; Borgnis, 1818; Beck, 1859; Reuleaux,

1875; Koenigs, 1901).

– A machine is generally composed of three parts: a motor part, a transmission

part, and an execution part (Euler, 1753; Bogolyubov, 1976).

– A machine produces mechanical work, or performs productive operations, ac-

tions, or effects (Vitruvius, 28 B.C.; Poncelet, 1824; Reuleaux, 1900; Koenigs,

1901; Bogolyubov, 1976).

– A machine transforms or transmits forces (Vitruvius, 28 B.C.; Leupold, 1724;

Euler, 1753; Bogolyubov,1976; Reuleaux, 1900; Koenigs, 1901).
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– A machine is characterized by deterministic motions (Hachette, 1811; Leupold,

1724; Reuleaux, 1875; Borgnis, 1818; Reuleaux, 1900).

– A machine is an artifact (Leupold, 1724).

• Some dictionary definitions:

– Webster’s Collegiate Dictionary (2003, on-line):

(archaic): a constructed thing whether material or immaterial;

an assemblage of parts that transmit forces, motion, and energy one to another

in a predetermined manner;

an instrument (as a lever) designed to transmit or modify the application of

power, force, or motion;

a mechanically, electrically, or electronically operated device for performing a

task (a calculating machine, a card-sorting machine.)

Comment: comprehensive definitions when considered as a whole

– The Concise Oxford Dictionary (1995):

An apparatus for applying mechanical power, having several parts, each with

a definite function

Comment: leaves computers out

– The Random House College Dictionary (1979):

An apparatus consisting of interrelated parts with separate functions, used in

the performance of some kind of work.

Comment: ditto

– Le Petit Robert (Robert, 1994):

Any system in which a specific correspondence exists between an input form

of energy or information and the corresponding ones at the output (loosely

translated).

Comment: a comprehensive definition, that includes computers

• An apparatus for transformation of power, materials, and information to substitute

or simplify physical or intellectual work (Frolov, 1987).

Comment: a comprehensive definition, that includes computers.

• Mechanical system that performs a specific task, such as the forming of material,

and the transference and transformation of motion and force (IFToMM PC SoT,

2003).

Comment: leaves computers out
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Mechanism

• A piece of machinery (Merriam Webster’s Collegiate Dictionary, 2003, on-line).

Comment: too vague

• Definitions in (IFToMM PC SoT, 2003):

– System of bodies designed to convert motions of, and forces on, one or several

bodies into constrained motions of, and forces on, other bodies.

Comment: Could be much terser and more informative.

– Kinematic chain with one of its components (link or joint) connected to the

frame.

Comment: confuses mechanism with its kinematic chain

• Structure, adaptation of parts of machine; system of mutually adapted parts working

together (as) in machine (The Concise Oxford Dictionary, 1995).

• An assembly of moving parts performing a complete functional motion (Stein, 1979).

• A combination layout of pieces or elements, assembled with the goal of (producing)

an operation as a unit (Loosely translated from (Robert, 1994).

Comment: In all above definitions, the concept of goal or task is present

Linkage

• Definitions in Merriam Webster’s Collegiate Dictionary (2003, on-line):

– A system of links.

Comment: concise and comprehensive

– a system of links or bars which are jointed together and more or less constrained

by having a link or links fixed and by means of which straight or nearly straight

lines or other point paths may be traced.

Comment: unnecessarily cumbersome and limited to path-generating linkages

• Kinematic chain whose joints are equivalent to lower pairs only (IFToMM PC on

SoT, 2003).

Comment: confuses linkage with its kinematic chain.

Rigid Body

A continuum whose points remain equidistant under any possible motion.

Rigid-Body Pose

The position of one landmark point of the body and the orientation of a coordinate

frame fixed to the body with respect to a reference frame.

Rigid-Body Twist

The velocity of one landmark point of the body and the angular velocity of the body.
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1.3 Kinematic Analysis vs. Kinematic Synthesis

The fundamental problems in mechanism kinematics can be broadly classified into:

(a) Analysis: Given a linkage, find the motion of its links, for a prescribed motion of

its input joint(s).

(b) Synthesis: Given a task to be produced by a linkage, find the linkage that best

performs the task.

The task at hand can be one of three, in this context:

(a) Function generation: the motion of the output joint(s) is prescribed as a function

of the motion variable(s) of the input joint(s);

(b) Motion generation (a.k.a. rigid-body guidance): the motion of the output link(s)

is prescribed in terms of the motion variable(s) of the input link(s) or joint(s);

(c) Path generation: the path traced by a point on a floating link—a link not anchored

to the mechanism frame—is prescribed as a curve, possibly timed with the motion

of the input joint(s).

Kinematic synthesis being a quite broad concept, it involves various aspects (Denavit

and Hartenberg, 1964):

• Type synthesis: Given a task to be produced by a mechanism, find the type that will

best perform it, e.g., a linkage, a cam mechanism, a gear train, or a combination

thereof.

• Number synthesis: Given a task to be produced by a mechanism of a given type,

find the number of links and joints that will best execute the task.

• Dimensional synthesis: Given a task to be produced by a mechanism, find its rele-

vant geometric parameters.

We have, further, two types of dimensional synthesis:

1. Exact synthesis: Number of linkage parameters available is sufficient to pro-

duce exactly the prescribed motion. Problem leads to—linear or, most frequently,

nonlinear—equation solving .

2. Approximate synthesis: Number of linkage parameters available is not sufficient

to produce exactly the prescribed motion. Optimum dimensions are sought that

approximate the prescribed motion with the minimum error. Problem leads to

mathematical programming (optimization)
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Furthermore, kinematic synthesis can be achieved, with a variable degree of success,

via one of two classes of methods:

• Graphical: Once the problem is formulated as one of dimensional synthesis, the

geometric relations of the task at hand are manipulated, by means of drafting in-

struments alone, including CAD software, to produce the desired linkage parameters

as intersections of circles, of lines, or of circles and lines.

• Algebraic: Once the problem is formulated as one of dimensional synthesis, the geo-

metric relations of the task at hand are manipulated, by algebraic means, supported

with computer hardware and software, to produce the desired linkage parameters

as the solutions to the underlying synthesis equations.

• Semigraphical: Purely algebraic methods entail some drawbacks, like algebraic sin-

gularities, which are conditions under which some solutions cannot be found for

reasons other than kinematic. Semigraphical methods reduce the system of alge-

braic equations to a subsystem of bivariate equations, i.e., equations involving only

two variables. The bivariate equations defining a set of contours in the plane of those

two variables, the solutions to the problem at hand are found as the intersections

of all those contours.

The merits of graphical methods as educational tools cannot be overstated. However,

as practical means of solving engineering problems, their scope is rather limited. On

the one hand, only lines and circles can be traced with standard drafting instruments—

paper, pencil, ruler, square, and compass—the tracing of other geometric shapes requiring

specialized instruments, for example, templates or CAD software. On the other hand,

kinematic synthesis problems, as pertaining to lower-pair linkages, usually lead to alge-

braic systems of equations1, i.e., to systems of multivariable polynomial equations. Each

equation is a linear combination of products of integer powers of several unknowns, e.g.,

xp11 x
p2
2 · · ·xpn

n . The sum of the exponents of each product,
∑n

1 pk, is known as the degree

of the product; the highest product-degree of the ith equation is termed the degree di of

the equation. Using a suitable elimination procedure, it is conceptually possible, although

not really possible all the time, to reduce the system of n equations in n unknowns to one

single monovariate polynomial equation. According to a result due to Bezout (Salmon,

1964), the degree of the resulting monovariate polynomial, the resolvent or eliminant of

the algebraic system at hand, cannot be greater than the product P = d1d2 · · · dn. The

number of possible solutions, thus, can be as high as P . Now, with ruler, square and com-

pass one cannot find but the intersection of circles and lines, and hence, one cannot solve

graphically but linear and quadratic equations. While some simple kinematic synthesis

1The exception here occurs when a linkage involves at least one screw pair, to be introduced in

Chapter 2, where transcendental equations occur.
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problems lead to either linear or quadratic equations, some not so complicated problems

can lead to resolvent polynomials of a degree of the order of 10. Some synthesis problems

of planar four-bar linkages lead to resolvent polynomials of a degree lying in the billions!

(Chen and Angeles, 2008).

Because of the above reasons, we stress in this course semigraphical methods of kine-

matic synthesis.

1.4 Algebraic and Computational Tools

In deriving the kinematic relations that lead to the various synthesis equations, we shall

resort to the two-dimensional representation of the cross product. To do this, we introduce

below a 2× 2 orthogonal matrix E that will prove to be extremely useful. An alternative

to the use of this matrix for the same purpose is the use of complex numbers. The problem

with complex numbers is that they are quite useful to represent two-dimensional vectors,

their application to three and higher dimensions being still unknown. On the contrary,

the two-dimensional representation of the cross product is just a particular case of three-

dimensional vector algebra.

We will also need some quick computations with 2× 2 matrices, which will be revised

in this section. Methods for the numerical solution of linear systems of equations are also

included.

1.4.1 The Two-Dimensional Representation of the Cross

Product

The cross product occurs frequently in planar kinematics and statics, and hence, in pla-

nar kinetostatics. However, planar problems involve only two-dimensional vectors and

2 × 2 matrices, while the cross product is limited to three-dimensional spaces. Here we

describe how to represent in two dimensions the cross product, without resorting to three-

dimensional vectors. Let: r be the position vector of a point of a rigid body under planar

motion; ω be the angular-velocity vector of the rigid body and assumed normal to the

plane of motion.

Without loss of generality, assume that r lies entirely in the plane of motion, which is

normal to ω. Below we compute ω × r using only two-dimensional vectors.

Let E be an orthogonal matrix that rotates vectors in the plane through an angle of

90◦ counterclockwise (ccw):

E ≡
[

0 −1

1 0

]

(1.1a)

Note that

ETE = EET = 1, 1 =

[
1 0

0 1

]

(1.1b)
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with 1 denoting the 2× 2 identity matrix. Also note that E is skew-symmetric:

E = −ET ⇒ E2 = −1, E−1 = −E (1.1c)

Therefore, E rotates vectors r in the plane through an angle of 90◦ ccw, as depicted in

Fig. 1.2, i.e.,

r =

[
x

y

]

⇒ Er =

[−y
x

]

(1.1d)

Figure 1.2: Vector r and its image under E

Now, for the purpose at hand, we start with the usual three-dimensional vectors r

and ω and assume an orthonormal basis for the three-dimensional space, {i, j, k}, with

k defined normal to the plane of motion and pointing toward the viewer. Thus,

ω = ωk =





0

0

ω



 , r =





x

y

0



 (1.2)

where ω > 0 if the angular velocity is ccw; if cw, then ω < 0. Therefore,

ω × r = det





i j k

0 0 ω

x y 0



 = −ωyi + ωxj

Then, the two-dimensional form of the foregoing product is

[ω × r]2D = ω

[−y
x

]

≡ ωEr (1.3)

As a second use of matrix E, we derive the two-dimensional form of the cross product

r× f yielding the moment of force f about the origin. We assume that r and f both lie in

a plane normal to the unit vector k.

First, we start with the usual three-dimensional representation of vectors r and f, and

hence,

r× f = det





i j k

x y 0

fx fy 0



 = (xfy − yfx)k
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Now, let

xfy − yfx ≡ n (1.4)

which can be readily recognized as the dot product of the two-dimensional vectors Er and

f , i.e.,

n = fTEr ≡ (Er)T f = −rTEf (1.5)

If n > 0, then the moment is ccw; otherwise, cw. We have thus shown that the cross

product of two two-dimensional vectors reduces to a scalar, i.e., n.

Matrix E also appears in the representation of the rotation of a rigid body in planar

motion through an angle θ. This rotation is represented algebraically by means of a proper

orthogonal matrix Q. This matrix is proper orthogonal because it is orthogonal and its

determinant is +1. Matrix Q is given by

Q =

[
cos θ − sin θ

sin θ cos θ

]

≡ (cos θ)1 + (sin θ)E (1.6)

Thus, if a vector r0 is “fixed” to a rigid body rotating about the origin through an angle

θ, after the rotation, r0 becomes r, which is given by

r = Qr0 = (cos θ)r0 + (sin θ)Er0 (1.7)

1.4.2 Algebra of 2× 2 Matrices

A 2× 2 matrix A can be partitioned either columnwise or rowwise:

A ≡ [ a b ] ≡
[

cT

dT

]

where a, b, c, and d are all two-dimensional column vectors. We have
Fact 1.4.1

det(A) = −aTEb = bTEa = −cTEd = dTEc

and
Fact 1.4.2

A−1 =
1

det(A)

[
bT

−aT

]

E =
1

det(A)
E [−d c ]

Componentwise, if aij denotes the ith entry of the jth column of A,

A−1 =
1

det(A)

[
a22 −a21

−a12 a11

]

(1.8)

That is, the inverse of a 2× 2 nonsingular matrix is obtained upon:

(a) exchanging the diagonal entries of the given matrix;

(b) reversing the sign of its off-diagonal entries; and

(c) dividing the matrix thus resulting by the determinant of the given matrix.
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1.4.3 Algebra of 3× 3 Matrices

A 3×3 matrix A can be partitioned columnwise into three columns, each having as entries

the components of a three-dimensional vector, namely,

A = [ a1 a2 a3 ]

its determinant being readily computed as the mixed vector-scalar product of its column

vectors:

det(A) = a1 × a2 · a3

The inverse of A can also be readily computed symbolically if we resort to the concept

of reciprocal bases:

A−1 =
1

∆





(a2 × a3)
T

(a3 × a1)
T

(a1 × a2)
T



 (1.9a)

where

∆ ≡ a1 × a2 · a3 (1.9b)

The reader can verify the validity of the foregoing formula by straightforward com-

putation of the product AA−1 or, equivalently, of A−1A, which should yield the 3 × 3

identity matrix.

1.4.4 Linear-Equation Solving: Determined Systems

Consider solving for x the system below:

Ax = b (1.10)

where A is a n × n matrix of known coefficients; b is the n-dimensional right-hand side

known vector; and x is the n-dimensional vector of unknowns.

Definition: A is said to be singular if

det(A) = 0 (1.11)

Otherwise, A is nonsingular

Fact 1.4.3 If A is nonsingular, then eq.(1.10) has a unique solution, namely,

x = A−1b (1.12)

Caveat: Never compute—unless instructed to do so!—A−1 explicitly. A matrix inverse

is seldom needed and incurs a waste of precious CPU time! Instead, find a good numerical

approximation to the solution, while taking into account that A and b are usually known

only up to a certain roundoff error.

In computing the solution of system (1.10) for x, we must take into account the

unavoidable roundoff error of the data, A and b. Let:
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• δA be the matrix roundoff error in A

• δb be the vector roundoff-error in b

• δx be the vector roundoff-error incurred when solving eq.(1.10) for x, by virtue of

δA and δb

The relative roundoff errors in the data, ǫA and ǫb, and in the computed solution, ǫx, are

defined as

ǫx ≡
‖δx‖
‖x‖ , ǫA ≡

‖δA‖
‖A‖ , ǫb ≡

‖δb‖
‖b‖ (1.13)

where ‖ · ‖ denotes any vector or matrix norm2.

The relative roundoff error in the computed solution is known to be related to the

relative roundoff error in the data via the relation (Golub and Van Loan, 1983)

ǫx ≤ κ(A)(ǫA + ǫb) (1.14)

where κ(A) is the condition number of matrix A of eq.(1.10):

κ(A) ≡ ‖A‖‖A−1‖ (1.15)

Various matrix norms are at our disposal, such as the Euclidean norm, a.k.a. the 2-

norm, the Frobenius norm and the infinity norm, a.k.a. the Chebyshev norm, denoted,

respectively, by ‖A‖2, ‖A‖F and ‖A‖∞. The definitions of these norms are given below:

‖A‖2 ≡ max
i
{ |λi| }n1 (1.16a)

‖A‖F ≡
√

tr(AWAT ) (1.16b)

‖A‖∞ ≡ max
i

n∑

j=1

|aij| (1.16c)

where { λi }n1 denotes the set of eigenvalues of A, and W is a weighting positive-definite

matrix, that is defined according to the user’s needs. For example, if W = (1/n)1, with

1 defined as the n× n identity matrix, then the Frobenius norm of the identity matrix is

unity, regardles of the value of n, which is convenient. Not only this; with the foregoing

value of W, ‖A‖F is the rms value of the singular values3 of A. Moreover, tr(·) denotes the

trace of its n× n matrix argument (·), i.e., the sum of the diagonal entries of the matrix.

Also notice that the eigenvalues of A can be real or complex, and hence, | · | denotes the

module of its complex argument (·). Computing the eigenvalues of arbitrary matrices is

2The matrix norm is a generalization of the vector norm, the latter being, in turn, a generalization of

the module of complex numbers or the absolute value of real numbers.
3The singular values of a m×n matrix A, with m ≤ n are the (nonnegative) eigenvalues of the product

AAT
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cumbersome because of the complex nature of the eigenvalues, in general. Computing the

eigenvalues of symmetric matrices, on the contrary, is much simpler, because these are

known to be real. In fact, the set { |λi| }n1 is most conveniently computed as the square

roots of the eigenvalues of AAT , which is not only symmetric, but also positive-definite,

and hence, its eigenvalues {µi }n1 are all positive. In fact, if A is singular, then AAT

is only positive-semidefinite, meaning that some of its eignevalues vanish, but none is

negative. We thus have

|λi| =
√
µi, µi ≥ 0, i = 1, . . . , n (1.17)

Whenever we have chosen one specific norm to define the condition number, we indicate

the condition number as κ2, κF or κ∞. In particular,

κ2 =

√
µl√
µs
≡ |λl||λs|

(1.18)

where µs and µl denote the smallest and the largest eigenvalues of AAT , while λl and λs

denote the eigenvalues of A with the largest and the smallest modules, respectively. In

fact, {√µi }n1 is known as the set of singular values of matrix A. Moreover,

κF =

√

1

n
tr(AAT )

√

1

n
tr(A−1A−T ) (1.19)

where A−T denotes the inverse of the transpose of A or, equivalently, the transpose of

the inverse of the same matrix.

It is now apparent that κ, regardless of the matrix norm used to compute it, is bounded

from below but unbounded from above:

1 ≤ κ <∞ (1.20)

Remark 1.4.1 The condition number of a singular matrix is infinitely large.

Remark 1.4.2 If a matrix AAT has all its eigenvalues identical, then A is said to be

isotropic. Isotropic matrices have a κ = 1, regardless of the matrix norm used to compute

κ. They are optimally conditioned.

Methods for computing a good numerical approximation to the solution (1.12):

• Gaussian elimination, a.k.a. LU-decomposition: Based on the observation that a

triangular system is readily solved by either backward or forward substituion. A is

decomposed into a lower- and an upper-triangular factors, L and U, respectively.

• Iteratively: Various types of methods, by the names Gauss-Jordan, Gauss-Seidel,

successive-overrelaxation (SOR), etc. Used mainly for “large” systems (hundreds or

thousands of unknowns) that we will not be handling
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• Symbolically: Only possible for certain classes of A matrices, like tridiagonal, and

for arbitrary matrices of modest size (n is below 5 or so)

We focus here on Gaussian elimination, or LU-decomposition. We start by decompos-

ing the n× n matrix A in the form

A = LU (1.21)

where L and U take the forms

L =








1 0 · · · 0

l21 1 · · · 0
...

...
. . .

...

ln1 ln2 · · · 1







, U =








u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...

0 0 · · · unn








(1.22)

Now eq.(1.10) is rewritten as

LUx = b ⇒
{

Ly = b

Ux = y
(1.23)

and hence, x is computed in two stages: First, y is computed from a lower-triangular

system; then, x is computed from an upper-triangular system. The lower-triangular

system is solved for y by forward substitution; the upper-triangular system is solved for

x by backward substitution.

Note that

det(A) = det(L)det(U) (1.24a)

But, apparently,

det(L) = 1, det(U) = Πn
1uii (1.24b)

Hence,

det(A) = det(U) = Πn
1uii (1.24c)

Therefore, A is singular iff any of the diagonal entries of U vanishes.

The Case of a Positive-Definite Matrix

If A is symmetric and positive-definite, then it admits the Cholesky decomposition:

A = CTC (1.25a)

where C is a real, lower-triangular matrix, namely,

C =








c11 0 · · · 0

c21 c22 · · · 0
...

...
. . .

...

cn1 cn2 · · · cnn








(1.25b)

The solution of system (1.10) proceeds as in the general case, in two steps:

CTy = b (1.26)

Cx = y (1.27)
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1.4.5 Linear-Equation Solving: Overdetermined Systems

We are now confronted with solving a system of linear equations formally identical to

that given in eq.(1.10). The difference now is that matrix A is no longer square, but

rectangular, with n columns of dimension m, namely,

Ax = b, A : m× n, m > n (1.28)

where b is, obviously, m-dimensional. Now, given that we have a surplus of equations

over the number of unknowns, it is not possible, in general, to find a vector x that will

verify all m equations, and hence, an error will be incurred, the purpose here being to

find the vector x that renders the error of minimum norm. That is, we cannot actually

solve system (1.28); all we can do is find an acceptable approximation x to the system.

The error vector e in this approximation is defined as

e ≡ Ax− b (1.29)

Again, we have various norms at our disposal that we can choose to minimize. All

norms of e can be expressed as

‖e‖p ≡
(

m∑

1

|ek|p
)1/p

(1.30)

with ek being understood as the kth component of the m-dimensional vector e. When

p = 2, the foregoing norm is known as the Euclidean norm, which is used most frequently

in mechanics. When p → ∞, the infinity norm, also known as the Chebyshev norm, is

obtained. This norm is, in fact, nothing but the largest absolute value of the components

of the vector at hand; finding this norm, thus, incurs no computational cost. It turns

out that upon seeking the value of x that minimizes a norm of e, the simplest is the

Euclidean norm, for the minimization of its square leads to a linear system of equations

whose solution can be obtained directly, as opposed to iteratively. Indeed, let us set up

the minimization problem below:

z(x) ≡ 1

2
‖e‖22 → min

x
(1.31)

The normality condition of the minimization problem at hand is derived upon setting the

gradient of z with respect to x equal to zero, i.e.,

dz

dx
= 0 (1.32)

Now, the chain rule allows us to write

dz

dx
≡
(
de

dx

)T
dz

de
≡ ATe (1.33)
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whence, the error vector of minimum Euclidean norm, or least-square error for brevity,

represented henceforth by e0, satisfies the normality condition

ATe0 = 0n (1.34)

with 0n denoting the n-dimensional zero vector. Now we have the first result:

Theorem 1.4.1 The least-square error e0 of the overdetermined system of linear equa-

tions (1.10) lies in the null space of the transpose of the full-rank m× n matrix A, with

m > n.

In order to gain insight into the above result, let { ai }n1 represent the n m-dimensional

columns of matrix A. Hence, AT can be expressed as a column array of vectors aTi , for

i = 1, . . . , n, eq.(1.34) thus leading to

aTi e0 = 0n (1.35)

Furthermore, if eq.(1.29) is substituted into eq.(1.33), and the product thus resulting

is substituted, in turn, into the normality condition (1.32), we obtain

ATAx = ATb (1.36)

which is known as the normal equations of the minimization problem at hand. By virtue

of the assumption on the rank of A, the product ATA is positive-definite and hence,

invertible. As a consequence, the value x0 of x that minimizes the Euclidean norm of the

approximation error of the given system is

x0 = (ATA)−1ATb (1.37)

the matrix coefficient of b being known as a generalized inverse of A; we shall refer to

this generalized inverse here as AI , i.e.,

AI ≡ (ATA)−1AT (1.38)

More specifically, AI is known as the left Moore-Penrose generalized inverse of A, because,

when A is multiplied by AI from the left, the product becomes

AIA = 1n (1.39)

in which 1n denotes the n × n identity matrix. The error obtained with this value is

known as the least-square error of the approximation, i.e.,

e0 ≡ b−Ax0 (1.40)

Now we have one more result:
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Theorem 1.4.2 (Projection Theorem) The least-square error is orthogonal to Ax0,

i.e.,

eT0 Ax0 ≡ xT0 ATe0 = 0 (1.41)

Proof : Readily follows from Theorem 1.4.1.

The Projection Theorem is illustrated in Fig. 1.3.

O Ax0

L

e0

B

b

Π

Figure 1.3: The Projection Theorem

While the formula yielding the foregoing generalized inverse is quite simple to imple-

ment, the number of floating-point operations (flops) it takes to evaluate, along with

the ever-present roundoff errors in both the data and the results, renders it not only in-

efficient, but also unreliable, if applied verbatim. What is at stake here is the concept

of condition number, introduced in Subsection 1.4.4 for square matrices. The same con-

cept can be applied to rectangular matrices, if the matrix inverse is replaced by its left

Moore-Penrose generalized inverse. In fact, the singular values of rectangular A are the

non-negative square roots of the non-negative eigenvalues of the n×n positive-semidefinite

matrix ATA, exactly as in the case of square matrices. If A is of full rank, i.e., if its n

m-dimensional columns are lineraly independent, then ATA is positive-definite. However,

note that AAT is singular, regardless of whether A is of full rank or not. The foregoing

statement is a result of Sylvester’s Theorem (Strang, 1988):

Theorem 1.4.3 (Sylvester’s Theorem) Let p × q A and q × r B be two arbitrary

matrices, which are thus compatible under multiplication. Then,

rank(AB) ≤ min{rank(A), rank(B)} (1.42)
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Therefore, if A is of full rank, then rank(A) = n, and hence, rank(AAT ) ≤ n < m,

which means that the product AAT is rank-deficient, i.e., singular in this case.

Remark 1.4.3 If the working condition number is either κ2 or κF , then the condition

number of ATA is exactly the square of the condition number of A.

As a consequence, then, even if A is only slightly ill-conditioned, the product ATA

can be catastrophically ill-conditioned, the moral being that the normal equations (1.36)

are much more sensitive to data roundoff error than the original equations (1.28). There-

fore, the normal equations should be avoided. Below we outline two procedures to

calculate efficiently the least-square approximation of the overdetermined system (1.10)

that do not resort to the normal equations, and hence, preserve the condition number of

A and do this with a low number of flops.

In figuring out a numerical method suitable to finding the least-square approximation

of the overdetermined system of linear equations (1.28) it is convenient to resort to the

geometric interpretation of the problem at hand: Let us assume that A is of full rank, and

hence, its n m-dimensional columns { ai }n1 , introduced in eq.(1.35), are linearly indepen-

dent. However, notice that this set cannot constitute a basis of the m-dimensional space

of these vectors, or of vector b for that matter, because of a deficit of m − n vectors in

the set. Hence, there is no guarantee that, given an arbitrary m-dimensional vector b, we

can find n real numbers { xk }n1 that will produce b as a linear combination of the given

set of vectors—the columns of A. Now, let us regard b as the position vector of a point

B in m-dimensional space, with l denoting the vector spanned by the linear combination

l ≡ a1x1 + a2x2 + · · ·+ anxn (1.43)

We can also regard l as the position vector of a point L in the same space, the purpose

of the numerical method sought being to find the set { xi }n1 that yields a vector l corre-

sponding to a point L lying a minimum distance from B. If vector ai were represented

in a basis in which only its first i components were nonzero, then the task at hand would

be straightforward: it would be obvious then that we would be able to match the first

n components of b with a suitable choice of numbers { xi }n1—these numbers could be

found by backward substitution! However the last m− n components of b would remain

unmatched, and hence, would contain the error in the approximation.

Now, in general, the columns of A most likely will be full. Nevertheless, it is always

possible to find a suitable coordinate system, i.e., a suitable basis, under which the columns

of A will have the special structure described above.

In seeking the new coordinate system, we aim at a transformation of both all columns

of A and b that will render A in upper-triangular form, similar to the effect of the

LU-decomposition applied to the solution of system (1.10). However, in seeking the

suitable transformation in the case at hand, we should preserve the distances between
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points in m-dimensional space; else, the Euclidean norm will not be preserved and the

approximation obtained will not yield the minimum distance between points B and L.

A safe numerical procedure should thus preserve the Euclidean norm of the columns of

A and, hence, the inner product between any two columns of this matrix. Therefore,

a triangularization procedure like LU-decomposition would not work, because this does

not preserve inner products. Obviously, the transformations that do preserve these inner

products are orthogonal, either rotations or reflections. Examples of these methods are

(a) the Gram-Schmidt orthogonalization procedure and (b) Householder reflections, which

are outlined below4.

The Gram-Schmidt Orthogonalization Procedure

This procedure consists in regarding the columns of A as a set of n m-dimensional vectors

{ ak }n1 . From this set, a new set { ek }n1 is obtained that is orthonormal. The procedure

is quite simple and works as follows: Define e1 as

e1 =
a1

‖a1‖
(1.44)

Further, we define e2 as the normal component of a2 onto e2, namely,

b2 ≡ (1− e1e
T
1 )a2 (1.45a)

e2 ≡
b2

‖b2‖
(1.45b)

In the next step, we define e3 as the unit vector normal to the plane defined by e1 and e2

and in the direction in which the inner product eT3 a3 is positive, which is possible because

all vectors of the set { ak }m1 have been assumed to be linearly independent—remember

that A has been assumed to be of full rank. To this end, we subtract from a3 its projection

onto the plane mentioned above, i.e.,

b3 = (1− e1e
T
1 − e2e

T
2 )a3 (1.46a)

e3 ≡
b3

‖b3‖
(1.46b)

and so on, until we obtain en−1, the last unit vector of the orthogonal set, en, being

obtained as

bn = (1− e1e
T
1 − e2e

T
2 − · · · − en−1e

T
n−1)an (1.47a)

Finally,

en ≡
bn
‖bn‖

(1.47b)

4These methods are implemented in Maple, a language for computer algebra, under the command

LeastSquares(A, B, . . .).
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In the next stage, we represent all vectors of the set { ak }n1 in orthogonal coordinates, i.e.,

in the base O = { ek }n1 , which are then arranged in an m× n array Ao. By virtue of the

form in which the set { ek }n1 was defined, the last m− k components of vector ak vanish.

We thus have, in the said orthonormal basis,

[ak]O =















α1k

α2k
...

αkk

0
...

0















, [b]O =








β1

β2
...

βm








Therefore, eq.(1.28), when expressed in O, becomes















α11 α12 · · · α1n

0 α22 · · · α2n
...

...
. . .

...

0 0 · · · αnn

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0






















x1

x2
...

xn








=















β1

β2
...

βn

βn+1
...

βm















(1.48)

whence x can be computed by back-substitution. It is apparent, then, that the last m−n
equations of the foregoing system are incompatible: their left-hand sides are zero, while

their right-hand sides are not necessarily so. What the right-hand sides of these equations

represent, then, is the approximation error in orthogonal coordinates. Its Euclidean norm

is, then,

‖e0‖ ≡
√

β2
n+1 + . . .+ β2

m (1.49)

Householder Reflections

The second method discussed here is based on the application of a chain of n transforma-

tions {Hk }n1 , known as Householder reflections, to both sides of eq.(1.10). The purpose

of these reflections is, again, to obtain a representation of matrix A in upper-triangular

form (Golub and Van Loan, 1989). The algorithm proceeds as follows: We assume that

we have applied reflections H1, H2, . . ., Hk−1, in this order, to A that have rendered it

in upper-trapezoidal form, i.e.,

Ai−1 ≡ Hi−1 . . .H2H1A
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=


















a∗11 a∗12 · · · a∗1,i−1 a∗1i · · · a∗1n
0 a∗22 · · · a∗2,i−1 a∗2i · · · a∗2n
0 0 · · · a∗3,i−1 a∗3i · · · a∗3n
...

...
. . .

...
...

. . .
...

0 0 · · · a∗i−1,i−1 a∗i−1,i · · · a∗i−1,n

0 0 · · · 0 a∗i,i · · · a∗i,n
...

...
. . .

...
...

. . .
...

0 0 · · · 0 a∗m,i · · · a∗mn


















(1.50)

The next Householder reflection, Hi, is determined so as to render the last m − i com-

ponents of the ith column of HiAi−1 equal to zero, while leaving its first i − 1 columns

unchanged. We do this by setting

αi = sgn(a∗ii)
√

(a∗ii)
2 + (a∗i+1,i)

2 + · · ·+ (a∗mi)
2 (1.51a)

ui = [ 0 0 · · · 0 a∗ii + αi a∗i+1,i · · · a∗mi ]
T (1.51b)

Hi = 1− uiu
T
i

‖ui‖2/2
(1.51c)

where sgn(x), the signum function of x, is defined as +1 if x > 0, as −1 if x < 0, and is

left undefined when x = 0. As the reader can readily verify,

1

2
‖ui‖2 = αi(ui)i = αi(a

∗
ii + αi) ≡ γi (1.52)

and hence, the denominator appearing in the expression for Hi is calculated with one single

addition and a single multiplication. Notice that Hi reflects vectors in m-dimensional

space onto a hyperplane of unit normal ui/‖ui‖.
It is important to realize that

(a) αi is defined with the sign of a∗ii because the denominator γi appearing in eq.(1.52) is

proportional to the sum of a∗ii and αi, thereby guaranteeing that the absolute value

of this sum will always be greater than the absolute value of each of its terms. If

this provision were not made, then the resulting sum could be of a negligibly small

absolute value, which would thus render γi a small positive number. Such a small

number would thus introduce unnecessarily an inadmissibly large roundoff-error

amplification upon dividing the product uiu
T
i by γi;

(b) an arbitrary vector v is transformed by Hi with unusually few flops, namely,

Hiv = v − 1

γi
(vTui)ui

Upon application of the n Householder reflections thus defined, the system at hand

becomes

HAx = Hb (1.53)
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with H defined as

H ≡ Hn . . .H2H1 (1.54)

Similar to that in equation (1.48), the matrix coefficient of x in eq.(1.53), i.e., HA, is in

upper-triangular form. That is, we have

HA =

[
U

Om′n

]

, Hb =

[
bU

bL

]

(1.55)

with U a n × n upper-triangular matrix identical to that appearing in eq.(1.22), Om′n

denoting the (m − n) × n zero matrix, m′ ≡ m − n, and bU and bL being n- and

m′-dimensional vectors. The unknown x can thus be calculated from eq.(1.53) by back-

substitution.

Note that the last m′ components of the left-hand side of eq.(1.53) are zero, while the

corresponding components of the right-hand side of the same equation are not necessarily

so. This apparent contradiction can be resolved by recalling that the overdetermined

system at hand, in general, has no solution. The lower part of b, bL, is then nothing but

an m′-dimensional array containing the nonzero components of the approximation error

in the new coordinates. That is, the least-square error, e0, in these coordinates takes the

form

e0 =

[
0n

bL

]

(1.56a)

Therefore,

‖e0‖ = ‖bL‖ (1.56b)

1.5 Nonlinear-equation Solving: the Determined Case

Definition 1.5.1 A system of algebraic equations containing some that are not linear is

termed nonlinear. If the number of equations is identical to the number of unknowns, the

system is determined.

Example: Find the intersection of the circle and the hyperbola depicted in Fig. 1.4.

Solution: The equations of the circle and the hyperbola are

φ1(x, y) ≡ x2 + y2 − 4 = 0

φ2(x, y) ≡ x2 − y2 − 1 = 0

The solution to a nonlinear system of equations, when one exists at all, is usually multiple:

The circle and the hyperbola of Fig. 1.4 intersect at four points {Pi}41, of coordinates

(xi, yi), as displayed in Table 1.1. The problem may have no real solution, e.g., the

circle and the hyperbola of Fig. 1.5 do not intersect. The system of equations from which
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Figure 1.4: Intersection of a circle and a hyperbola

Pi xi yi

1
√

5/2
√

3/2

2
√

5/2 −
√

3/2

3 −
√

5/2
√

3/2

4 −
√

5/2 −
√

3/2

Table 1.1: The four intersection points of the circle and the hyperbola of Fig. 1.4

the coordinates of the intersection points are to be computed is given below:

φ1(x, y) ≡ x2 + y2 − 1 = 0

φ2(x, y) ≡ x2 − y2 − 16 = 0

This system of equations admits no real solution!

In general, a determined nonlinear system of equations takes the form

φ(x) = 0 (1.57)

where x and φ are both n-dimensional vectors:

x ≡








x1

x2
...

xn







, φ ≡








φ1(x1, x2, . . . , xn)

φ2(x1, x2, . . . , xn)
...

φn(x1, x2, . . . , xn)








(1.58)

1.5.1 The Newton-Raphson Method

We outline below the method of solution of determined nonlinear systems using the

Newton-Raphson method. This is an iterative method, whereby a sequence of approx-
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Figure 1.5: A circle and a hyperbola that do not intersect

imations is obtained that, if converging, it approaches the solution in a finite number of

iterations within a prescribed tolerance.

A value x0 of x is given as an initial guess:

x0 ≡ [ p1 p2 . . . pn ]T

and φ is evaluated at x0:

φ0 ≡ φ(x0)

If the value x0 was chosen randomly, most likely it will not verify the given system of

equations, i.e.,

φ0 6= 0

Next, we look for a “small” increment ∆x of x (the increment is small if its norm—any

norm—is small):

∆x ≡ [∆x1 ∆x2 . . . ∆xn ]T

Now, φ(x0 + ∆x) is evaluated up to its linear approximation (all quadratic and higher-

order terms are dropped from its series expansion):

φ(x0 + ∆x) ≈ φ(x0) +
∂φ

∂x

∣
∣
∣
x=x0

∆x (1.59)

The Jacobian matrix of φ with respect to x is defined as the matrix of partial derivatives

of the components of φ with respect to all the components of x:

Φ ≡ ∂φ

∂x
=








∂φ1/∂x1 ∂φ1/∂x2 · · · ∂φ1/∂xn

∂φ2/∂x1 ∂φ2/∂x2 · · · ∂φ2/∂xn
...

...
. . .

...

∂φn/∂x1 ∂φn/∂x2 · · · ∂φn/∂xn








(1.60)

In the next step, we find ∆x that renders zero the linear approximation of φ(x0+∆x):

φ0 + Φ(x0)∆x = 0
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or

Φ(x0)∆x = −φ0 (1.61)

whence ∆x can be found using Gaussian elimination:

∆x = −Φ−1
0 φ

0, Φ0 ≡ Φ(x0) (1.62)

Next, x is updated:

x ← x0 + ∆x (1.63)

the procedure stopping when

‖∆x‖ ≤ ǫx (1.64)

for a prescribed tolerance ǫx.

Remarks:

• Use the maximum norm to test convergence in eq.(1.64), for it costs virtually noth-

ing;

• no guarantee that the Newton-Raphson method will converge at all;

• whether the Newton-Raphson method converges is dependent upon the initial guess,

x0;

• the boundary between regions of convergence and divergence is a fractal (Mandel-

brot, 1983; Gleick, 1988);

• when the Newton-Raphson method converges, it does so quadratically : At every

iteration, two decimal places of accuracy are gained (Dahlquist and Björck, 1974).

1.6 Overdetermined Nonlinear Systems of Equations

A system of nonlinear equations of the form

φ(x) = 0 (1.65)

where x is a n-dimensional vector and φ is a q-dimensional vector, is overdetermined

if q > n. Just as in the linear case, in general, no vector x can be found that verifies

all the q scalar equations of the system. However, approximations can be found that

minimize the least-square error of the approximation, as described in the balance of this

Section. The method of solution adopted here is the overdetermined counterpart of the

Newton-Raphson method.
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1.6.1 The Newton-Gauss Method

Problem: Find an approximate solution to system (1.65) that verifies those equations

with the least-square error :

f(x) =
1

2
φTWφ → min

x
(1.66)

where W is a q × q positive-definite weighting matrix.

Solution: We follow a procedure similar to Newton-Raphson’s, which is known as the

Newton-Gauss method, as described below:

First, an initial guess x0 of x is given; then, we produce the sequence

x1, x2, . . . , (1.67)

such that

xk+1 = xk + ∆xk (1.68)

Calculation of ∆xk:

• Factor W into its two Cholesky factors:

W = VTV (1.69)

which is possible because W is assumed positive-definite.

• Compute ∆xk as the least-square solution of the unconstrained overdetermined lin-

ear system

VΦ(xk)∆xk = −Vφ(∆xk) (1.70)

with Φ(x) defined as the q × n Jacobian matrix of the vector function φ(x), i.e.,

Φ(x) =
∂φ(x)

∂x
(1.71)

Drop superscripts for the sake of notation-simplicity and recall eq.(1.37):

∆x = −(ΦTWΦ)−1ΦTWφ (1.72)

This procedure is iterative, stopping when a convergence criterion is met.

The Damping Factor

When implementing the Newton-Gauss method, the objective function f may increase

upon correcting xk according to eq.(1.68), i.e.

f(xk+1) > f(xk) (1.73)

This increase gives rise to oscillations and sometimes even leads to divergence. One way to

cope with this situation is by introducing damping. Instead of using the whole increment

∆xk, we use a fraction of it, i.e.

xk+1 = xk + α∆xk, 0 < α < 1 (1.74)

where α is known as the damping factor.
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1.6.2 Convergence Criterion

Calculate first ∇f(x):

∇f(x) ≡ ∂f

∂x
=

(
∂φ

∂x

)T
∂f

∂φ
(1.75)

∂φ

∂x
≡ Φ,

∂f

∂φ
= Wφ (1.76)

Hence, the condition for a stationary point is

ΦTWφ = 0 (1.77)

which is the normality condition of eq.(1.66).

It is thus apparent that, at a stationary point of f , φ(x) need not vanish, as is

the case of unconstrained optimization; however, φ(x) must lie in the null space

of ΦTW. Moreover, from eqs.(1.72) and (1.77) follows that, at a stationary point, ∆x

vanishes. Hence, the convergence criterion is

‖∆x‖ < ǫ (1.78)

where ǫ is a prescribed tolerance.

Remarks:

• The normality condition (1.77) alone does not guarantee a minimum, but only a

stationary point.

• However, as it turns out, if the procedure converges, then it does so, to a second-

order approximation, to a minimum, and neither to a maximum nor a to saddle

point, as we prove below.

The sequence f(x0), f(x1), . . . , f(xk), f(xk+1), . . . , obtained from the sequence of x

values, evolves, to a first order, as ∆f(x), given by

∆f =

(
∂f

∂x

)T

∆x (1.79)

i.e.,

∆f = φTWΦ∆x (1.80)

Upon plugging expression (1.72) of ∆x into eq. (1.80), we obtain

∆f = −φT WΦ(ΦTWΦ)−1ΦTW
︸ ︷︷ ︸

M

φ = −φTMφ (1.81)

where, apparently, M is a q×q positive-definite matrix. As a consequence, φTMφ becomes

a positive-definite quadratic expression of φ; hence, ∆f is negative definite. Thus, the
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second-order approximation of f(x) is negative-definite, and hence, the sequence of f

values decreases monotonically. That is, in the neighbourhood of a stationary point the

first-order approximation of φ(x) is good enough, and hence, if the procedure converges,

it does so to a minimum.

The reader may wonder whether the Newton-Raphson method can be used to solve

nonlinear least-square problems. Although the answer is yes, the Newton-Raphson method

is not advisable in this case, as made apparent below.

Recall ∇f from eqs.(1.66) and (1.67):

∇f(x) =
∂f

∂x
= ΦT (x)
︸ ︷︷ ︸

n×q

W
︸︷︷︸

q×q

φ(x)
︸ ︷︷ ︸

q−dim

∇f(x) = 0 ⇒ ΦT (x)Wφ(x)
︸ ︷︷ ︸

≡ψ(x)∈IRn

= 0 (NC)

thereby obtaining a determined system of n equations in n unknowns. This system can

be solved using Newton-Raphson method, which requires ∇ψ(x):

∇ψ(x) =
∂ψ

∂x
=

∂

∂x
[ ΦT (x)
︸ ︷︷ ︸

(∂φ/∂x)T

Wφ(x)]

That is, ∇ψ(x) involves second-order derivatives of ψ with respect to x:

∂2φi

∂xj∂xi
, i = 1, . . . , n

In summary, the Newton-Raphson method is too cumbersome and prone to ill-conditioning,

for it is based on the normality conditions of the least-square problem at hand.

1.7 Computer Implementation Using ODA—C-Librar-

y of Routines for Optimum Design

ODA is a C library of subroutines for optimization problems, that implements the Orthog-

onal-Decomposition Algorithm (Teng and Angeles, 2001). The source file of this package,

implemented in C, consists of a number of subroutines designed and classified based on

their application. At the beginning of each subroutine a detailed description of the purpose

and usage of the subroutine is included. Moreover, data validation has been considered

in the software. In order to solve a problem, the user simply calls one corresponding C

subroutine.

Since the solutions for linear problems are direct—as opposed to iterative—the use

of ODA to solve linear problems requires only information on the problem parameters,

such as matrices A, C, and W, as well as vectors b and d, as applicable. For nonlinear
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problems, the solution is iterative, and hence, the user is required to provide functions

describing φ(x), h(x), Φ(x), J(x), as needed. These functions are provided via subrou-

tines in forms that can be called by the package. In addition to this information, the user

is also required to provide an initial guess x0 of x, so that the iterative procedure can be

started.

1. Unconstrained linear problems: Subroutine MNSLS is used to find the minimum-

norm solution of an underdetermined linear system, while subroutine LSSLS is used

to find the least-square approximation of an overdetermined linear system. LSSLS

can also handle determined systems, i.e., systems of as many equations as unknowns.

2. Unconstrained nonlinear problems: Subroutine LSSNLS is used to solve this

type of problems. Since the nonlinear functions and their associated gradient ma-

trices are problem-dependent, the user is required to provide two subroutines that

are used to evaluate the foregoing items, namely,

• FUNPHI: This subroutine is used to evaluate the q-dimensional vector function

φ(x) in terms of the given n-dimensional vector x.

• DPHIDX: This subroutine is used to evaluate the q×n gradient matrix Φ of the

vector-function φ(x) with respect to x, at the current value of x.

Moreover, an initial guess of x is required when calling this subroutine.

3. Constrained linear problems: Subroutine LSSCLS is used to solve this type of

problems.

4. Constrained nonlinear problems: Subroutine LSSCNL is used for solving this

type of problems. Before calling LSSCNL, the user is required to provide four

problem-dependent subroutines: Two of these are FUNPHI and DPHIDX, already der-

scribed in item 2 above. The other two are used to evaluate the left-hand sides of

the constraint equations and their gradient matrix, as listed below:

• FUNH: This subroutine is used to evaluate the l-dimensional constraint function

h in terms of the given n-dimensional vector x.

• DHDX: This subroutine is used to evaluate the l × n gradient matrix J of the

vector-function h(x) in terms of the given n-dimensional vector x. Moreover,

an initial guess of x is required when calling LSSCNL.

5. Constrained problems with arbitrary objective function: Subroutine ARBITRARY

is used for solving this type of problems. Before calling ARBITRARY, the user is re-

quired to provide four problem-dependent subroutines: Two of these are FUNPHI

and DPHIDX, as described in item 2 above. The other two subroutines are used to
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evaluate the left-hand sides of the constraint equations and their gradient matrix,

as listed below:

• phi: Subroutine used to evaluate the objective function φ(x) in terms of the

given n-dimensional vector x.

• h: Subroutine used to evaluate the l-dimensional constraint function h in terms

of the given n-dimensional vector x.

• J: Subroutine used to evaluate the l×n gradient matrix J of the vector-function

h(x) at the current value of x.

• gradient: Subroutine used to evaluate the n-dimensional gradient ∇f of the

objective function f(x) at the current value of vector x.

• Hessian: Subroutine used to evaluate the n × n Hessian matrix ∇∇f of the

objective function f(x) at the current value of vector x. Moreover, an initial

guess of x is required when calling ARBITRARY.

1.7.1 Computational Tools: Software Packages Relevant to Link-

age Synthesis

Several software packages of interest to kinematic synthesis are currently available, either

commercially or semi-commercially. A list, with some features, follows:

• LINCAGES: Commercially available from MINNT (Minnesotta Technology Trans-

fer, a spinoff of the U. of Minnesotta.) Handles only exact synthesis of planar four

and six-bar linkages. Runs on Windows.

• SAM: More general than LINCAGES, SAM provides static analysis. Runs only

on Windows and is commercially available from Artas Engineering Software, of RJ

Neuen, The Netherlands:

www.artas.nl

• WORKING MODEL: Commercially available from MSC.Software (USA). Most-

ly for kinematic and dynamic analyses of two-dimensional and three-dimensional

mechanisms. Runs only on Windows.

• PRO/ENGINEER: Comprehensive package for mechanical design and analysis at

large. Its PRO/MECHANICA module provides motion analysis, simulation, and

animation of fairly complex mechanisms. Runs on Windows and Unix. Vendor:

Parametric Technology, Inc. (USA):
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http://www.ptc.com/

• UNIGRAPHICS: High-end, comprehensive package with modules for finite-element

analysis, CAD/CAM, and CAE (Computer-Aided Engineering). Vendor: Siemens

PLM Software

http://www.plm/automation.siemens.com

• CATIA: The most widespread CAE package, in CAD, CAE, CAM. Vendor: Dassault

SystÈmes

http://www.3ds.com/contact/

• ADAMS, a general tool for mechanism and multibody-system analysis, produced

by MSC.ADAMS Software. No synthesis features are supported.

• AUTOCAD: Comprehensive package for mechanical design and geometric analysis.

To be used as a CAD support for linkage synthesis. No special features for linkage

synthesis available. Runs mostly on Windows. Old versions run also on Unix.

Vendor: Autodesk, Inc. with

www.autodesk.com

• MATLAB: General-purpopse numerical analysis package with excellent routines for

equation-solving and optimization. To be used as a support for linkage synthesis. A

few Matlab routines are specifically geared to linkage analysis. Package is produced

by The MathWorks with

www.mathworks.com

• MACSYMA, MAPLE, and MATHEMATICA: commercial packages for symbolic

computations. MAPLE

www.maplesoft.com

and MATHEMATICA

www.wolfram.com/mathematica4/isp

provide for numerical computations
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• M ❛ ❛

❛ ❛

BILE : Excellent object-oriented modeller and simulator of mechanical sys-

tems composed mostly of rigid bodies. No synthesis capabilities. Semicommercial.

Available from the University of Duisburg-Essen. For information, contact: Martin

Tändl: m.taendl@uni-duisburg.de

• HERON: A software package still in its beta-phase, intended for analysis and syn-

thesis of linkages. It features both kinematics and dynamics analyses. Information

is available at URL:

http://www.heron-technologies.com/
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Chapter 2

The Qualitative Synthesis of

Kinematic Chains

li·ai·son 1: a binding or thickening agent used in cooking

2 a) a close bond or connection : interrelationship

b): an illicit sexual relationship : affair

Merriam Webster’s Collegiate Dictionary,Tenth Edition (C)1997,

1996 Zane Publishing, Inc.

Qui pourrait ne pas frémir en songeant aux malheurs

que peut causer une seule liaison dangereuse!

Lettre CLXXV. Madame de Volanges

à Madame de Rosemonde (de Laclos, 1782).

The fundamental concepts of motion representation and groups of displacements, as

pertaining to rigid bodies, are recalled. These concepts are then applied to: a) the

classification of kinematic chains according to their mobility; b) the determination of the

degree of freedom of kinematic chains; and c) the qualitative synthesis of multiloop chains

occurring in various types of machines, including parallel robots.

2.1 Notation

In following the notation introduced in Ch. 1, we will denote with lower-case boldfaces all

vectors; with upper-case boldfaces all matrices. Additionally, sets will be denoted with

calligraphic fonts, e.g., A, B, etc., while lower kinematic pairs (LKP), to be introduced

in Section 2.3, are denoted with sans-serif upper cases: R, P, H, C, E, and S.
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2.2 Background

The notion of rigid body is fundamental in the study of kinematic chains. A rigid body is

a geometric concept that stems from the more general concept of continuum: A rigid body

B is an unbounded continuum of points such that, under any possible transformation, two

arbitrary points of B remain equidistant.

A rigid body B is thus a set of points that fills continuously the three-dimensional

Euclidean space E . That is, between any two distinct points of B we can always find an

infinite, nondenumerable set of points of B. A rigid body, as any set of points, is capable

of undergoing transformations. In the case at hand, these transformations preserve the

distance between any two points of B; as a consequence, the same transformation pre-

serves the angle between any two lines of the body. Any such transformation is called

an isometry—from Greek isos for “equal” and metron for “measure.” We must, however,

distinguish between two kinds of isometries, as described below: Choose any four points

O, A, B, and C of the body, not lying in a plane. If, when the last three points, as

viewed from O, lie in the ccw order A, B, C, the trihedron defined by segments OA,

OB and OC is said to be right-handed; otherwise, it is left-handed. If a “hand” can be

attributed to a set, we refer to this feature as the chirality—Greek: chéir = hand. It

is apparent that under any physically possible motion of B, a right-handed (left-handed)

trihedron remains right-handed (left-handed). Isometries that do not preserve the hand

of the trihedron are reflections, examples of which are the two shoes, or the two gloves,

or the two eyes, etc., of the same individual. One is a reflection, or a mirror-image, of the

other. A hand-preserving isometry of B is implicit in a displacement of B from a reference

pose—both position and orientation— to its current pose. To simplify matters, we will

denote body and pose with the same calligraphic letter, while distinguishing among vari-

ous poses of the same body by subscripts, whenever needed. Thus, B0 denotes a reference

pose of B, while its current pose can be represented by B, as long as no confusion arises.

Chirality-preserving isometries are involved in rigid-body motions.

Rigid-body pose and displacement are thus two abstract concepts. To quantify the

pose we resort to coordinate frames. A coordinate frame is attached to a rigid body B.

The orientation of B with respect to a reference frame is thus given by the orientation of

the body-frame with respect to that of the reference frame. The position of B, in turn,

is given by that of the origin of the body-frame in the reference frame. The body-pose

thus comprises both body-position and body-orientation. Body-position is thus defined

by the position vector oB of the origin OB of the body-frame, while body-orientation by

the rotation matrix Q carrying the reference frame into an attitude coincident with that

of the body-frame.

According to Euler’s Theorem (Angeles, 2007), the displacement of a rigid body about

a fixed point O, called a pure rotation, is fully characterized by an axis passing through
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O and parallel to the unit vector e and an angle φ, as depicted in Fig. 2.1.

Figure 2.1: Rotation of a rigid body about a line

The foregoing motion is represented algebraically by a rotation matrix, i.e., a 3 × 3

proper orthogonal matrix Q—a matrix is said to be proper-orthogonal if and only if its

inverse equals its transpose and its determinant is +1; if the said determinant is −1, the

matrix is said to be improper-orthogonal—that adopts any of the equivalent forms given

below:

Q = eφE (2.1a)

Q = eeT + cos φ(1− eeT ) + sin φE (2.1b)

Q = 1 + sinφE + (1− cos φ)E2 (2.1c)

In the above expressions we have resorted to the matrix exponential in the first rep-

resentation of Q. Moreover, we introduced matrices 1, eeT , and E, that will be described

presently. Matrix 1 denotes the 3× 3 identity matrix, while eeT is a symmetric, rank-one

matrix; finally, E denotes the cross-product matrix (CPM) of the unit vector e, the CPM

being defined as: Given any three-dimensional vector a, the cross-product matrix A of a

is given by

A ≡ ∂(a× v)

∂v
(2.1d)

for any three-dimensional vector v. More concretely, if e has components [e1 e2 e3]
T in a

given coordinate frame, then, in the same frame,

eeT =





e21 e1e2 e1e3

e1e2 e22 e2e3

e1e3 e2e3 e23



 , E =





0 −e3 e2

e3 0 −e1
−e2 e1 0



 (2.2a)
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Now, given a rigid body in two poses, B1 and B2, characterized by the position vectors

o1 and o2, and the rotation matrices Q1 and Q2, the displacement of the body from B1

to B2 is represented by a) the vector difference u = o2 − o1 and b) the matrix product

Q = QT
1 Q2. Special cases of displacements are the pure rotation, as introduced above,

for which u = 0, and the pure translation, for which Q = 1.

The concepts, and to a great extent the notation and nomenclature that follow, are

taken from (Hervé, 1978; 1999).

2.3 Kinematic Pairs

The kinematics of machines is studied via their underlying kinematic chains. A kinematic

chain is the result of the coupling of rigid bodies, called links. Upon coupling two links,

a kinematic pair is obtained. When the coupling takes place in such a way that the two

links share a common surface, a lower kinematic pair results; when the coupling takes

place along a common line or a common point of the two links, an upper kinematic pair

is obtained.

If every link of a chain is coupled to at most two other links, then the chain is said to

be simple. If all the links of a simple kinematic chain are coupled to two other links, then

a closed kinematic chain is obtained. Moreover, this chain constitutes a single loop. If a

simple chain has a link coupled to only one other link, then it has necessarily a second

link coupled to only one other link, an open chain thus resulting. A multiloop chain

can have open subchains. Single-loop kinematic chains are present in single-degree-of-

freedom mechanisms, but a single-loop chain may have a degree of freedom (dof) greater

than or less than unity. Simple kinematic chains of the open type are present in robotic

manipulators of the serial type. Multiloop kinematic chains occur in both single-degree-of-

freedom machines, e.g., in automobile suspensions, and in multi-dof robotic manipulators

of the parallel type, paradigms of which are flight simulators. We shall elaborate on these

concepts in this course.

Lower kinematic pairs deserve special attention for various reasons: One is that they

model fairly well the mechanical couplings in a variety of machines; one more is that they

are known to occur in exactly six types, to be described presently. Higher kinematic pairs

occur in cam-follower mechanisms and in gears, in which contact occurs along common

lines or common points of the coupled bodies.

The six lower kinematic pairs, displayed in Fig. 2.2, are listed below:

(i) The revolute pair R allows a relative rotation through an angle φ about one axis A
passing through a point A of position vector a and parallel to the unit vector e;

(ii) The prismatic pair P allows a relative translation u in the direction of a unit vector

e;
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: The six lower kinematic pairs: (a) revolute (R); (b) prismatic (P); (c) screw

(H); (d) cylindrical (C); (e) spherical (S); and (f) planar (E)

(iii) The screw pair H allows both a relative rotation through an angle φ about an axis

A passing through a point A of position vector a and parallel to the unit vector

e, and a relative translation u in the direction of e. However, the rotation and

the translation are not independent, for they are related by the pitch p of the pair:

u = pφ;

(iv) The cylindrical pair C allows both a relative rotation through an angle φ about an

axis A passing through a point A of position vector a and parallel to the unit vector

e, and a relative translation in the direction of e, rotation and translation being

independent;

(v) The planar pair E allows two independent translations tu and tv in the directions

of the distinct unit vectors u and v, respectively, and a rotation φ about an axis

normal to the plane of these two vectors; and

(vi) The spherical pair S, allowing one independent rotation about each of three non-

coplanar axes concurrent at a point O. The relative motion allowed by S is thus

characterized by point O, and is associated with an axis parallel to the unit vector

e and with the angle of rotation φ about this axis, as per Euler’s Theorem.

Remark 2.3.1 While the R, H, and C pairs are characterized by an axis, the P pair is

characterized by a direction alone; not by an axis!
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The Π Kinematic Pair

Besides the six LKPs, the Π-joint will be introduced in this chapter. This joint is a

parallelogram four-bar linkage, which couples two links, one of the four that is considered

arbitrarily fixed and its opposite counterpart. The latter moves under pure translation,

all its points describing circles of variable location and radius identical to the length of

the two other links of the parallelogram.

In the standard terminology, the linkage is composed of: a) one fixed link, labelled

1; b) one input link, labelled 2; c) one coupler link, labelled 3; and d) one output link,

labelled 4. In a parallelogram, the opposite links move with a relative pure translation,

each point of one link describing a circular trajectory onto the other link. The linkage

thus provides a kinematic pair of the coupler link with respect to the fixed link. Hervé

and Sparacino (1992) termed this coupling a Π kinematic pair, a.k.a. a Π-joint. At about

the same time, Wohlhart (1991, 1992) and Dietmaier (1992) reported work on the use of

the same type of joints in mechanisms.

Note that the Π pair does not belong to the class of lower kinematic pairs. It couples

two links while allowing a relative translation along a circular trajectory. The interest of

this pair lies in its ability to generate pure translations when combined with other Π-joints

or with lower kinematic pairs, as discussed below.

2.4 Groups of Displacements

In the sequel, we shall resort to the algebraic concept of group. A group is a set G of

elements related by a binary operation ⋆ with four properties:

P1 if a and b ∈ G, then a ⋆ b ∈ G;

P2 if a, b, and c ∈ G, then a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c;

P3 G contains an element ι1 called the identity of G under ⋆, such that a ⋆ ι = ι ⋆ a = a;

and

P4 for every a ∈ G, there exists an element a−1, called the inverse of a under ⋆ such

that a ⋆ a−1 = a−1 ⋆ a = ι.

If the elements of a set D are the displacements undergone by a rigid body, then we

can define a binary operation ⊙—read “o-dot”—of displacements as the composition of

displacements: As the body undergoes first a displacement da and then a displacement

db, taking the body, successively, from pose B0 to pose Ba, and then to pose Bb, it is

intuitively apparent that the composition of the two displacements, da ⊙ db, is in turn a

rigid-body displacement. Hence,

1
ι is the Greek letter iota.
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(a) da ⊙ db ∈ D;

(b) given da and db as introduced above, we define a third displacement dc carrying B
from pose Bb to pose Bc. Then, da ⊙ (db ⊙ dc) = (da ⊙ db)⊙ dc;

(c) under no motion, any pose B of a rigid body is preserved, the motion undergone

by the body then being represented by a displacement ι that can be defined as the

identity element of D, such that, for any displacement d, d⊙ ι = ι⊙ d = d; and

(d) for any displacement d carrying the body from pose B0 to pose B, the inverse

displacement d−1 is defined as that bringing back the body from B to B0, and hence,

d⊙ d−1 = d−1 ⊙ d = ι.

From the foregoing discussion it is apparent that the set of rigid-body displacements D
has the algebraic structure of a group. Henceforth, we refer to the set of displacements of

a rigid body as group D. The interest in studying rigid-body displacements as algebraic

groups lies in that, on the one hand, D includes interesting and practical subgroups

that find relevant applications in the design of production-automation and prosthetic

devices. On the other hand, the same subgroups can be combined to produce novel

mechanical layouts that would be insurmountably difficult to produce by sheer intuition.

The combination of subgroups, in general, can take place via the standard set operations

of union and intersection. As we shall see, however, the set defined as that comprising

the elements of two displacement subgroups is not necessarily a subgroup, and hence, one

cannot speak of the union of displacement subgroups. On the contrary, the intersection

of two displacement subgroups is always a subgroup itself, and hence, the intersection of

displacement subgroups is a valid group operation.

Rather than the union of groups, what we have is the product of groups. Let G1 and

G2 be two groups defined over the same binary operation ⋆; if g1 ∈ G1 and g2 ∈ G2, then

the product of these two groups, represented by G1 • G2, is the set of elements of the form

g1 ⋆ g2, where the order is important, for commutativity is not to be taken for granted in

group theory.

The intersection of the two foregoing groups, represented by the usual set-theoretic

symbol ∩, i.e., G1∩G2, is the group of elements g belonging to both G1 and G2, and hence,

the order is not important.

2.4.1 Displacement Subgroups

A subgroup Gs of a given group G is a set of objects such that: (a) they all belong to G,
although some objects, or elements, of G may not belong to Gs, and (b) Gs has the algebraic

structure of a group. Therefore, a subgroup Ds of the group of rigid-body displacements

D is itself a group of displacements, but may lack some rigid-body displacements. If D
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includes elements not included in Ds, then the latter is said to be a proper subset of the

former.

The six lower kinematic pairs can be regarded as generators of displacement subgroups.

We thus have:

(i) The revolute pair R of axis A generates the subgroup R(A) of rotations about A.

Each element of this subgroup is characterized by the angle φ of the corresponding

rotation;

(ii) the prismatic pair in the direction e generates the subgroup P(e) of translations

along e. Each element of P(e) is characterized by the translation u along e;

(iii) the screw pair of axis A and pitch p generates the subgroup H(A, p) of rotations φ

about A and translations u along the direction of the same axis, translations and

rotations being related by the pitch p in the form u = pφ, as described when the

screw pair was introduced. Each element ofH(A, p) can thus be characterized either

by u or by φ;

(iv) the cylindrical pair of axis A generates the subgroup C(A) of independent rotations

about and translations along A. Each element of C(A) is thus characterized by both

the displacement u and the rotation φ;

(v) the planar pair generates the subgroup F(u,v) of two independent translations in

the directions of the distinct unit vectors u and v, and one rotation about an axis

normal to both u and v. Each element of F(u,v) is thus characterized by the two

translations tu, tv and the rotation φ;

(vi) the spherical pair generates the subgroup S(O) of rotations about point O. Each

element of S(O), a rotation about O, is characterized by the axis of rotation passing

through O in the direction of a unit vector e and through an angle φ. Alternatively,

each rotation about O can be characterized by the independent rotations about

three designated axes, e.g., the well-known Euler angles.

Besides the six foregoing subgroups, we can define six more, namely,

(vii) The identity subgroup I, whose single element is the identity displacement ι intro-

duced above;

(viii) the planar-translation subgroup T2(u,v) of translations in the directions of the two

distinct unit vectors u and v. Each element of this group is thus characterized by

two translations, tu and tv;

(ix) the translation subgroup T3 of translations in E , each element of which is character-

ized by three independent translations tu, tv, and tw;
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(x) the subgroup Y(e, p) of motions allowed by a screw of pitch p and axis parallel to e

undergoing arbitrary translations in a direction normal to e. Each element of this

subgroup is thus characterized by the two independent translations tu, tv of the axis,

and either the rotation φ about this axis or the translation tw = pφ along the axis.

Faute-de-mieux, we shall call this subgroup the translating-screw group;

(xi) the subgroup X (e) = F(e) • P(e), resulting of the product of the planar subgroup

of plane normal to e and the prismatic subgroup of direction e. Each element of this

subgroup is thus characterized by the two translations tu, tv and the angle φ of the

planar subgroup plus the translation tw in the direction of e. Moreover, note that

F(e)•P(e) = P(e)•F(e). This subgroup, named after the German mathematician

and minerologist Arthur Moritz Schönflies (1853–1928), is known as the Schönflies

subgroup, and is generated most commonly by what is known as SCARA systems,

for Selective-Compliance Assembly Robot Arm;

(xii) the group D itself. Each element of this subgroup is characterized by three inde-

pendent translations and three independent rotations.

It is thus apparent that each subgroup includes a set of displacements with a specific

degree of freedom. We shall need below an extension of the concept of dof, for which

reason we term the dof of each subgroup its dimension, and denote the dimension of any

subgroup Gs by dim[Gs]. Thus,

dim[I] = 0 (2.3a)

dim[R(A)] = dim[P(e)] = dim[H(A, p)] = 1 (2.3b)

dim[T2(u,v)] = dim[C(A)] = 2 (2.3c)

dim[T3] = dim[F(e)] = dim[S(O)] = dim[Y(e, p)] = 3 (2.3d)

dim[X (e)] = 4 (2.3e)

dim[D] = 6 (2.3f)

The foregoing list of twelve displacement subgroups is exhaustive, none of which is of

dimension five. The reader may wonder whether displacement products are missing from

the list that might be subgroups. However, any displacement product not appearing in

the above list is not a subgroup. As a matter of fact, any set of displacements including

rotations about two axes, and no more than two, fails to have a group structure. Consider,

for example, the set of rotations W produced by a (two-dof) pitch-roll wrist (PRW), as

depicted in Fig. 2.3. With reference to this figure, frame F0, serving as the reference

frame, is defined with X0 along the roll axis, passing through the operation point P , while

Z0 is defined along the pitch axis.

Now we introduce a first rotation Q1 (not a coordinate transformation!): Define F1

with X1 along the displaced roll axis, passing through P in the displaced pose of the end-
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Figure 2.3: A pitch-roll wrist producing a first rotation

effector (EE), and making an angle of 30◦ with X0, Z1 coinciding with Z0. Matrix Q1,

rotating F0 into F1 as depicted in Fig. 2.3, is obtained, in F0-coordinates, upon assigning

to its first column the F0-components of the unit vector i1, parallel to X1, its second

column being given by the F0-components of the unit vector j1, parallel to Y1; its third

column follows the same patern2. The rotation Q1 carrying F0 into F1 as depicted in

Fig. 2.3 is, hence, a simple rotation through an angle of 30◦ about Z0. Hence,

Q1 =





√
3/2 −1/2 0

1/2
√

3/2 0

0 0 1



 (2.4)

Next, we introduce a second rotation Q2: Define a new frame F2 with X2 along the

displaced roll axis, passing through P in the displaced pose of the EE, and making an

angle of 60◦ with X0, Z2 lying in the X0-Y0 plane, and making an angle of −30◦ with X0.

Hence, in F0-coordinates as well,

Q2 =





1/2 0
√

3/2√
3/2 0 −1/2

0 1 0



 (2.5a)

Moreover, let Q3 = Q2Q1, a third rotation obtained as the product of the first two,

namely,

Q3 =





√
3/4 −1/4

√
3/2

3/4 −
√

3/4 −1/2

1/2
√

3/2 0



 (2.5b)

which yields a third attitude of the EE, as depicted in Fig. 2.5.

2The matrix transforming F0-coordinates into F1-coordinates is QT

1
.
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Figure 2.4: A pitch-roll wrist producing a second rotation

We note that, in an arbitrary configuration, the roll axis remains normal to Z0. Hence,

any rotation produced by the PRW takes the EE to a pose in which the roll axis is normal

to Z0, i.e., the set of possible displaced configurations of the roll axis is a pencil of lines

passing through the origin and normal to Z0. The roll axis in the displaced pose of the

EE thus lies in the X0-Y0 plane. Any EE pose whereby the roll axis lies outside of the

X0-Y0 plane is attained by a rotation outside of W.

As it turns out, the roll axis is carried by Q3 into a configuration parallel to i3, the

image of i0 under Q3, as depicted in Fig. 2.5, i.e.,

P

Figure 2.5: The EE of a pitch-roll wrist undergoing a third, unfeasible, rotation

i3 = Q3i0 = [
√

3/4 3/4 1/2 ]T (2.6)
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which, apparently, is not normal to Z0 and, hence, Q3 lies outside of the setW of feasible

rotations produced by the PRW. Hence, the set of rotations produced by a PRW does

not have the algebraic structure of a group.

2.5 Kinematic Bonds

Displacement subgroups can be combined to produce new sets of displacements that may

or may not be displacement subgroups themselves. To combine subgroups, we resort to

the group operations of product (•) and intersection (∩).

Now we introduce the concept of kinematic bond, which is a generalization of kinematic

pair, as first proposed by Hervé (1978), who called this concept liaison cinématique in

French. This concept has been termed kinematic liaison (Angeles, 1982) or mechanical

connection (Hervé, 1999) in English. Since “liaison” in English is usually applied to

human relations, the term “bond” seems more appropriate, and is thus adopted here.

We illustrate the concept with an example: Let us assume three links, numbered from

1 to 3, and coupled by two kinematic pairs generating the two subgroups G1 and G2, where

these two subgroups are instanced by specific displacement subgroups below. We then

have

G1 • G2 = R(A) • P(e) = C(A), for e ‖ A (2.7a)

G1 • G2 = R(A) • T2(u,v) = F(e), for e, A ⊥ u, v (2.7b)

G1 • G2 = R(A) • R(B) = L(1, 3) (2.7c)

G1 ∩ G2 = R(A) ∩ C(A) = R(A) (2.7d)

G1 ∩ G2 = R(A) ∩ S(O) = R(A), for O ∈ A (2.7e)

G1 ∩ G2 = R(A) ∩ P(e) = I, for any A, e (2.7f)

All of the above examples, except for the third one, amount to a displacement sub-

group. This is why no subgroup symbol is attached to that set. Instead, we have used

the symbol L(1, 3) to denote the kinematic bond between the first and third links of the

chain. In general, a kinematic bond between links i and n of a kinematic chain, when

no ambiguity is possible, is denoted by L(i, n). When the chain connecting these two

links is not unique, such as in a closed chain, where these two links can be regarded as

connected by two possible paths, a subscript will be used, e.g., LI(i, j), LII(i, j), etc. A

kinematic bond is, thus, a set of displacements, as stemming from a binary operation of

displacement subgroups, although the bond itself need not be a subgroup. Obviously, the

12 subgroups described above are themselves special cases of kinematic bonds.

The kinematic bond between links i and n can be conceptualized as the product of

the various subgroups associated with the kinematic pairs between the ith and the nth

links. To keep the discussion general enough, we shall denote the subgroup associated
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with the kinematic pair coupling links i and i + 1 as L(i, i+ 1), with a similar notation

for all other kinematic-pair subgroups. Thus,

L(i, n) = L(i, i+ 1) • L(i+ 1, i+ 2) • · · · • L(n− 1, n) (2.8)

For example, in a six-axis serial manipulator, we can set i = 1, n = 7, all six kinematic

pairs in-between being revolutes of skew axes R(A1), R(A2), . . ., R(A6). Then,

L(1, 7) = D

That is, the manipulator is a generator of the general six-dimensional group of rigid-body

displacements D.

As an example of group-intersection, let us consider the Sarrus mechanism, depicted

in Fig. 2.6.

Figure 2.6: The Sarrus mechanism

A less common realization of the Sarrus mechanism is depicted in Fig. 2.5. This

is a ΠΠΠΠ closed kinematic chain, modelled as a compliant mechanism, which bears a
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Figure 2.7: An alternative realization of the Sarrus mechanism

monolithic structure, made of a polymer. The R joints of the mechanism are realized by

removing material at the joint locations, so as to render these areas much more compliant

than the other areas. The mechanism is designed so as to serve as a uniaxial accelerometer.

In the Sarrus mechanism, we have six links, coupled by six revolute pairs. Moreover,

the revolute pairs occur in two triplets, each on one leg of the mechanism. The axes of the

three revolute pairs of each leg are parallel to each other. The bond L(1, 4), apparently,

is not unique, for it can be defined by traversing any of the two legs. Let the leg of links

1, 2, 3 and 4, coupled by revolutes of axes parallel to the unit vector u, be labelled I; the

other leg, of links 4, 5, 6 and 1, coupled by revolutes of axes parallel to the unit vector v,

is labelled II. It is apparent that, upon traversing leg I, we obtain

LI(1, 4) = F(u)

Moreover, upon traversing leg II,

LII(1, 4) = F(v)

That is, leg I is a generator of the planar subgroup F of plane normal to vector u, while

leg II is that of the subgroup F of plane normal to vector v. Therefore, the intersection

LI(1, 4) ∩ LII(1, 4) is the set of displacements common to the two F -subgroups, namely,

the prismatic subgroup of translations in the direction w = v × u, i.e.,

LI(1, 4) ∩ LII(1, 4) = P(w)

The Sarrus mechanism is thus a revolute realization of the prismatic joint.
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2.6 The Chebyshev-Grübler-Kutzbach-Hervé Formu-

la

Finding the degree of freedom (dof) f of a given kinematic chain has been an elusive task

for over a century. Here we adopt the methodology proposed by Hervé (1978), based on

the concept of groups of displacements.

Essentially, Hervé considers whether the topology of a kinematic chain suffices to pre-

dict its dof or not. The topology of a kinematic chain pertains to the numbers of links

and joints as well as their layouts, regardless of the values of the geometric parameters

of the chain, such as distances and angles between pair axes and the like. According to

Hervé (1978), kinematic chains can be classified, with regard to their mobility, as:

(a) Trivial, when all the possible kinematic bonds between any pair of links is a subset

of a particular subgroup of D, including D itself, but excluding I. If the common

subgroup of interest is D itself, the chain is trivial if the product of the subgroups of

all the foregoing kinematic pairs yields D. The dof of a trivial kinematic chain can

be determined with the aid of the formula derived below, which takes into account

only the topology of the chain;

(b) exceptional, when a kinematic bond can be identified in the chain that is a subgroup

Ds of D, and this subset is the intersection of a number of bonds of D. The dof of

the chain is, then, the dimension of the intersection.

(c) paradoxical, when the topology of the kinematic chain alone does not suffice to

determine the chain dof. In this case, special relations among the various geometric

parameters of the chain yield a mobility that would be absent under general values

of those parameters, for the same topology.

2.6.1 Trivial Chains

Regarding trivial chains, let Gm be the subgroup of the least dimension dm, containing

all possible bonds between any pair of links of the chain. Gm can thus be thought of as a

kind of least common multiple of all possible bonds of the chain. Moreover, let di be the

dimension of the subgroup associated with the ith kinematic pair, and ri ≡ dm− di be its

degree of constraint, termed its restriction for brevity. In determining the dof of a chain,

we are interested in the relative motion capability of the chain, and hence, we consider

arbitrarily one link fixed. It is immaterial which specific link is the designated fixed one.

If the chain is composed of l links and p kinematic pairs, then its dof f is given by the

difference between its total dof before coupling and the sum of its restrictions, i.e.,

f = dm(l − 1)−
p
∑

i=1

ri (2.9)
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Figure 2.8: The well-known vise mechanism

The above relation can be termed a generalized Chebyshev-Grübler-Kutzbach (CGK) for-

mula in that it generalizes the concept involved in parameter dm above. Conventional

CGK formulas usually consider that dm can attain one of two possible values, 3 for planar

and spherical chains and 6 for spatial chains. In the generalized formula, dm can attain

any of the values 2, 3, 4, or 6. Moreover, rather than considering only three subgroups of

displacements, we consider all 12 described above, none of which is of dimension five.

As an example of the application of the above formula, we consider the vise mechanism,

displayed in Fig. 2.6.1. In that figure, we distinguish three links and three LKPs. The

links are the frame 1, the crank 2 and the slider 3, which define three bonds, namely,

L(1, 2) = R(A), L(2, 3) = H(A), L(3, 1) = P(a)

in which A is the common axis of the R and the H pairs, while a is the unit vector parallel

to A. In this case, it is apparent that all three bonds lie in the C subgroup, and hence,

dm = 2. Moreover, if we number the three joints in the order R, H, P, and notice that the

dimension di associated with each of the three joints is unity, then ri = 1, for i = 1, 2, 3.

Application of the generalized CGK formula (2.9) yields

f = 2(3− 1)− 3× 1 = 4− 3 = 1

which is indeed the correct value of the vise dof.
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Figure 2.9: The slider-crank mechanism as a key component of an internal combustion en-

gine: a power-generation system with six cylinders in line (courtesy of MMM International

Motores, Campinas, Brazil)

2.6.2 Exceptional Chains

The Sarrus mechanism of Figs. 2.6 and 2.5 is an example of an exceptional chain. Indeed,

all its links undergo motions of either one of two planar subgroups, F(u) and F(v).

Moreover, the product of these two subgroups does not yield the group D—notice that

the linkage has two sets of R pairs, each parallel to a distinct unit vector, u or v. The

dof of this mechanism can still be found, but not with the aid of the CGK formula of

eq.(2.9), for all its kinematic bonds do not belong to the same subgroup of D. This dof

is found, rather, as the dimension of the intersection of the two foregoing subgroups, i.e.,

f = dim[F(u) ∩ F(v)] = dim[P(u× v)] = 1

Another example of exceptional chain is the familiar slider-crank mechanism of internal

combustion engines and compressors, as shown in Fig. 2.6.2. It is customary to represent

this mechanism as a planar RRRP mechanism. However, a close look at the coupling of

the piston with its chamber reveals that this coupling is not via a prismatic, but rather via

a cylindrical pair. It is thus apparent that the displacements of all the links lie not in one

single subgroup of D, but rather in a subset that can be decomposed into two kinematic

bonds, which happen to be subgroups of D, the F(e) subgroup of motions generated by

the RRR subchain and the C(A) subgroup of the piston-chamber coupling C. Here, A is

the axis of the cylindrical chamber and e is the unit vector parallel to the axes of the

three R pairs. Apparently, the product of these two subgroups does not generate all of D,

for it is short of rotations about an axis normal to both e and A. Nevertheless, the dof of

this chain can be determined as the dimension of the intersection of the two subgroups,

i.e.,

f = dim[F(e) ∩ C(A)] = dim[P(u)] = 1, u ‖ A
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Now, why would such a simple planar mechanism—the slider-crank—as portrayed in

elementary books on mechanisms, be built with a spatial structure? The answer to this

question lies in the assemblability of the mechanism: a planar RRRP mechanism requires

a highly accurate machining of the crankshaft, connecting rod, piston and chamber, in

order to guarantee that the axes of the three R pairs are indeed parallel and that the axis

of the cylindrical chamber is normal to the three R axes, which is by no means a simple

task!

One more example of exceptional chain is the parallel robot of Fig. 2.10, consisting of

four identical limbs that couple a base AIAIIAIIIAIV with a moving plate DIDIIDIIIDIV .

Each limb, moreover, is a PRΠRR chain (Altuzarra et al., 2009).

AI ≡ AII

AIII ≡ AIV

BI BII

BIIIBIV

CI CII

CIIICIV

DI DII

DIIIDIV

Figure 2.10: The Schönflies-motion generator developed at the University of the Basque

Country, in Bilbao, Spain

The kinematic chain thus contains five joints per limb and 18 links: the base plate,

the mobile plate and four intermediate links per limb. If the CGK formula is applied for

the general kinematic chain, with dm = 6, l = 18, ri = 5, for i = 1, . . . , 18, the dof f thus

resulting turns out to be

f = 6(18− 1)− 20× 5 = 102− 100 = 2

which is not what the authors claim, namely, four. In order to elucidate the apparent

contradiction, we conduct below a group-theoretic analysis of the chain mobility: first,
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let R(P, e) denote the subgroup generated by a R joint of axis passing through point P

and parallel to the unit vector e; then, let LJ denote the kinematic bond of the Jth limb,

which is the product of five simple bonds, each with a dimension equal to one, namely,

1. Either the prismatic subgroup P(i) of displacements parallel to i, for J = I, III, or

its counterpart P(j) of displacements parallel to j, for J = II, IV ;

2. the rotation subgroup R(BJ , j), of axis of rotation passing through point BJ and

parallel either to j, for J = I, III, or its counterpart R(BJ , i), for J = II, IV ;

3. the subset of displacements DΠ(nJ) associated with the Π-joint, characterized by

translations along circles of radius BJCJ lying in the plane of the Jth parallelogram,

of normal nJ ;

4. the rotation subgroup R(CJ , j), of axis of rotation passing through point CJ and

parallel either to j, for J = I, III, or its counterpart R(BJ , i), for J = II, IV ;

5. the rotation subgroup R(DJ ,k) of axis of rotation passing through DJ and parallel

to k.

Therefore,

LJ = P(i) • R(BJ , j) • DΠ(J) • R(CJ , j)
︸ ︷︷ ︸

X (j)

•R(DJ ,k) = X (j) • R(DJ ,k), J = I, III

Likewise,

LJ = X (i) • R(DJ ,k), J = II, IV

Notice that none of the four bonds derived above is a subgroup of D, which disqualifies

the multiloop kinematic chain from being trivial. However, notice also that

X (j) • R(DJ ,k) = X (k) • R(CJ , j), J = I, III

and

X (i) • R(DJ ,k) = X (k) • R(CJ , i), J = II, IV

Therefore,

LJ ∩ LK = X (k), J, K = I, . . . IV, J 6= K

thereby proving that, indeed, the intersection of all limb bonds is a subgroup of D, namely,

the Schönflies subgroup X (k). The dof f of the robot at hand is, thus,

f = dim[X (k)] = 4

and, according to Hervé’s classification, the multiloop chain can be considered exceptional.
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Figure 2.11: The HHHRRH mechanism

While the generalized CGK formula is more broadly applicable and less error-prone

than its conventional counterpart, it is not error-free. Indeed, let us consider the HHHRRH

closed chain of Fig. 2.11, first proposed by Hervé (1978). The four H pairs of this figure

have distinct pitches.

It is apparent that all links move in parallel planes, and that these planes also trans-

late along their common normal direction. The displacement subgroup containing all

possible kinematic bonds of the mechanism under study, of minimum dimension, is thus

the Schönflies subgroup X (u), and hence, dm = 4. Since we have six links and six joints,

each of restriction ri = dm − fi, for fi = 1 and i = 1, . . . , 6, the dof of the mechanism is

obtained from the CGK formula as

f = 4(6− 1)− 6× 3 = 2

However, the above result is wrong, for it predicts a too large dof. Indeed, the mech-

anism has one idle dof, as can be readily shown by means of a bond analysis: Let us

compute dim[L(1, 5)]:

L(1, 5) = L(1, 2) • L(2, 3)
︸ ︷︷ ︸

C(A1)

•L(3, 4) • L(4, 5)
︸ ︷︷ ︸

C(A2)

where A1 and A2 are axes parallel to vector u and pass through points A and B, respec-

tively, of Fig. 2.11. Now we find the above-mentioned idle dof. To this end, we compute

dim[L(1, 5)], which may appear to be the sum of the dimensions of the two subgroups,

C(A1) and C(A2). However, notice that these two subgroups include a common transla-

tion along u, and hence, in computing the said dimension, care should be taken in not
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counting this translation twice. What this means is that the dimension of the intersection

of the above two factors must be subtracted from the sum of their dimensions, i.e.,

dim[L(1, 5)] = dim[C(A1)] + dim[C(A2)]− dim[C(A1) ∩ dim[C(A2)] = 2 + 2− 1 = 3

We have thus shown that the chain entails one idle dof. In order to obtain the correct

dof of the chain from the generalized CGK formula, then, the total number m of idle dof

must be subtracted from the dof predicted by that formula, i.e.,

f = dm(n− 1)−
p
∑

i=1

ri −m (2.10)

which can be fairly called the Chebyshev-Grübler-Kutzbach-Hervé formula. In the case at

hand, m = 1, and hence, the dof of the chain of Fig. 2.11 is unity.

2.6.3 Paradoxical Chains

Examples of paradoxical chains are well documented in the literature (Bricard, 1927;

Angeles, 1982). These include the Bennett mechanism and the Bricard mechanism, among

others.

2.7 Applications to the Qualitative Synthesis of Robotic

Architectures

The foregoing concepts are now applied to the qualitative synthesis of parallel robotic

architectures. By qualitative we mean the determination of the topology of the kinematic

chain, not including the corresponding dimensions. These dimensions are found at a

later stage, by means of methods of quantitative synthesis, which Denavit and Hartenberg

(1964) term dimensional synthesis, the subject of Chs. 3–5. The full determination of the

kinematic chain, including dimensions, yields what is known as the architecture of the

robotic system at hand.

2.7.1 The Synthesis of Robotic Architectures

The first robotic architecture with Π-joints was proposed by Clavel in what he called the

Delta Robot (Clavel, 1988). The kinematic chain of this robot is displayed in Fig. 2.12.

Delta is a generator of the T3(u) displacement subgroup; it is thus capable of three-dof

translations.

The kinematic chain of the Delta robot is composed of two triangular plates, the top

(A) and the bottom (B) plates. The top plate supports the three (direct-drive) motors,

the bottom plate the gripper, and hence, constitutes the moving-platform (MP) of the
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Figure 2.12: Kinematic chain of the Clavel Delta robot

robot. The MP is capable of translating in 3D space with respect to the upper plate,

which is considered fixed. The two plates are coupled by means of three legs, each with

a RRΠR chain.

To be true, the Π-joints of the actual Delta are not composed of R joints, but rather

of orientable pin joints, equivalent to S joints. The reason is that providing parallelism

between any pair of R axes is physically impossible. To allow for assemblability, then, a

margin of manoeuvre must be provided.

While Clavel did not cite any group-theoretical reasoning behind his ingenious design,

an analysis in this framework will readily explain the principle of operation of the robot.

This analysis is conducted on the ideal kinematic chain displayed in Fig. 2.12.

The ith leg is a generator of the Schönflies X (ei) subgroup, with ei denoting the unit

vector parallel to the axis of the ith motor. That is, the ith leg generates a Schönflies

subgroup of displacements comprising translations in 3D space and one rotation about an

axis parallel to ei. The subset of EE displacements is thus the intersection of the three

subgroups X (ei), for i = 1, 2, 3, i.e., the subgroup T3. Therefore, the EE is capable of

pure translations in 3D space. This kinematic chain is, thus, of the exceptional type.

One second applications example is the microfinger of Japan’s Mechanical Engineering

Laboratory (MEL) at Tsukuba (Arai et al., 1996), as displayed in Fig. 2.13. In the MEL

design, the authors use a structure consisting of two plates that translate with respect to

each other by means of three legs coupling the plates. The ith leg entails a RΠΠR chain,

shown in Fig. 2.14, that generates the Schönflies subgroup in the direction of a unit vector

ei, for i = 1, 2, 3. The three unit vectors, moreover, are coplanar and make angles of 120◦

pairwise. The motion of the moving plate is thus the result of the intersection of these
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Figure 2.13: The MEL microfinger

three subgroups, which is, in turn, the T3 subgroup. Moreover, the kinematic chain of

each leg is made of an elastic material in one single piece, in order to allow for micrometric

displacements.

Another example is the Y-Tristar robot, developed at Ecole Centrale de Paris by

Hervé and Sparacino (1992). One more application of the same concepts is the four-dof

SCARA-motion generator proposed by Angeles et al., (2000), and displayed in Fig. 2.15.

This robot entails a kinematic chain of the RΠRΠ type with two vertical revolutes and two

Π-pairs lying in distinct, vertical planes. The Schönflies subgroup generated by this device

is of vertical axis. While Delta and Y-Tristar are made up of Schönflies motion generators,

the product of all these is the translation subgroup T3. A Schönflies motion generator

with parallel architecture is possible, as shown in Fig. 2.16. This architecture is the result

of coupling two identical Schönflies motion generators of the type displayed in Fig. 2.15,

each generating the same Schönflies subgroup. As a result, the two-legged parallel robot

generates the intersection of two identical subgroups, which is the same subgroup. Yet

another application of the Π pair is found in the four-degree-of-freedom parallel robot

patented by Company et al. (2001), and now marketed by Adept Technology, Inc. under

the trade mark Quattro s650. A photograph of this robot is displayed in Fig. 2.17.
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Figure 2.14: The ith leg of the MEL microfinger

Figure 2.15: A serial-parallel Schönflies-motion generator with a RΠRΠ architecture
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Figure 2.16: A parallel Schönflies–motion generator composed of two RΠRΠ legs

Figure 2.17: Adept Technology’s Quattro robot, a parallel Schönflies–motion generator
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Chapter 3

Function Generation

3.1 Introduction

Linkages are the most common means of producing a large variety of motions of a rigid

body, termed the output link, about an axis fixed to the machine frame. In the best

known applications, motion is produced by a motor, usually running at a constant rpm,

and coupled by means of a speed reducer—gear train, harmonic drive, or similar—to

the input link. Under these conditions, the input link moves at a constant speed as well.

Other applications of linkages involve alternative forms of actuation, such as motors under

computer control, whose motion is all but uniform, and dictated by unpredictable changes

in the environment, that are detected by means of sensors sending their signals to the

computer generating the signals fed into the motor. Such applications fall in the realm of

mechatronic systems.

In one more class of applications, the linkage is driven by a human actuator. Examples

of this class are numerous, and sometimes taken for granted, e.g., when cutting a paper

sheet with scissors, when pedalling a bicycle, etc. In the case of scissors, the two links

of this instrument form what is known as a dyad, with the two links coupled by a R

pair. This dyad is coupled to a second one, formed by the two proximal phalanges of the

thumb and the index finger, thereby forming a four-bar linkage. Likewise, in the case of

a bicycle, the frame and one of the two pedals form a dyad, which couples with a second

dyad, that formed by the calf and the thigh of a human user, thereby forming, again, a

four-bar linkage.

One more application of the concepts studied in this chapter involves parameter iden-

tification, whereby a linkage exists but is not accessible for measurements, and we want

to know its dimensions. Take the case of the subtalar and ankle-joint complex, which

is known to entail a closed kinematic chain, i.e., a linkage, but its joints are not readily

accessible for measurement. We can cite here a case in which a series of experiments

was conducted, measuring input and output angles, from which linkage dimensions were
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estimated by fitting the measurements to a linkage kinematic model (Wright et al, 1964).

3.2 Input-Output Functions

3.2.1 Planar Four-Bar Linkages

The classical problem of function generation was first formulated algebraically by Freuden-

stein in a seminal paper that has been recognized as the origin of modern kinematics

(Freudenstein, 1955). In that paper, Freudenstein set to finding the link lengths { ai }41
of the planar four-bar linkage displayed in Fig. 3.1 so as to obtain a prescribed relation

between the angles ψ and φ.

A

B

C

D
a1

a2

a3 a4

φ
ψ

θ

µ

Figure 3.1: A four-bar linkage for function generation

In Fig. 3.1, ψ denotes the input angle of the linkage; φ the output angle; θ the coupler

angle; and µ the transmission angle, which will be studied in Section 3.6. We state below

the function-generation problem associated with the linkage of Fig. 3.1:

Find {ak}41 so that the linkage will produce the set of input-output pairs

{ψk, φk}m1 .

Implicit in the foregoing statement is an algebraic relation between the two angles, ψ

and φ, known as the input-output equation (IOE), which is assumed to be available in the

form of an implicit function, namely,

F (ψ, φ) = 0 (3.1)

In formulating the input-output equation, we introduce four two-dimensional vectors:

r1 ≡ −→AB = a2

[
cosψ

sinψ

]

, r2 ≡ −−→BC = a3

[
cos θ

sin θ

]

, (3.2a)

r3 ≡ −−→AD = a1

[
1

0

]

, r4 ≡ −−→DC = a4

[
cosφ

sin φ

]

(3.2b)
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From Fig. 3.1 follows that

r1 + r2 = r3 + r4 (3.3)

Obviously, we need a scalar relation between the input and output angles, but we have

derived above a vector equation. Note, however, that the angles of interest appear in r1

and r4; r3 remains constant throughout the linkage motion; and r2 contains an unwanted

unknown, θ. This is eliminated below: From eq.(3.3),

r2 = r3 + r4 − r1 (3.4)

Now, the right-hand side of the above equation is independent of this angle. If we take the

Euclidean norm, a.k.a. the magnitude, of both sides of eq.(3.4), then angle θ is eliminated,

for the magnitude of r2 is independent of this angle; in fact, this magnitude is nothing

but the link length a3. We thus have

‖r2‖2 = ‖r3 + r4 − r1‖2 (3.5)

Upon expansion,

‖r2‖2 = ‖r3‖2 + ‖r4‖2 + ‖r1‖2 + 2rT3 r4 − 2rT3 r1 − 2rT4 r1 (3.6)

where

‖r1‖2 = a2
2, ‖r2‖2 = a2

3, ‖r3‖2 = a2
1, ‖r4‖2 = a2

4

rT3 r4 = a1a4 cosφ, rT3 r1 = a1a2 cosψ, rT4 r1 = a2a4 cos(φ− ψ)

Plugging the foregoing expressions into eq.(3.6) yields

a2
3 = a2

1 + a2
4 + a2

2 + 2a1a4 cosφ− 2a1a2 cosψ − 2a2a4 cos(φ− ψ) (3.7)

which is already a scalar relation between the input and the output angles, with the link

lengths as parameters. However, this relation is not yet in the most suitable form for

our purposes. Indeed, it is apparent that a scaling of the link lengths by the same factor

does not change the input-output relation, and hence, the above equation cannot yield

all four link lengths. This means that we can only obtain the relative values of the link

lengths for a set of prescribed input-output angles. One more remark is in order: the link

lengths appear as unknowns when a pair of input-output angles is given; moreover, these

unknowns appear quadratically in that equation. Thus, simply dividing the two sides of

the equation by any link length will still yield a quadratic equation in the link-length

ratios. What Freudenstein cleverly realized was that by means of a suitable nonlinear

mapping from link lengths into nondimensional parameters, a linear equation in these

parameters can be produced. To this end, both sides of eq.(3.7) are divided by 2a2a4.

Once this is done, the definitions below are introduced:

k1 ≡
a2

1 + a2
2 − a2

3 + a2
4

2a2a4
, k2 ≡

a1

a2
, k3 ≡

a1

a4
(3.8)
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which are the Freudenstein parameters of the linkage at hand. The inverse relations are

readily derived, if in terms of one of the link lengths, say a1:

a2 =
1

k2
a1, a4 =

1

k3
a1, a3 =

√

a2
1 + a2

2 + a2
4 − 2k1a2a4 (3.9)

The IOE (3.7) then becomes

k1 + k2 cosφ− k3 cosψ = cos(φ− ψ) (3.10)

thereby obtaining the Freudenstein equation. Notice that, upon writing this equation in

homogeneous form, we obtain F (ψ, φ) of eq.(3.1), namely,

F (ψ, φ) ≡ k1 + k2 cosφ− k3 cosψ − cos(φ− ψ) = 0 (3.11)

If we now write eq.(3.10) for {ψk, φk}m1 , we obtain m linear equations in the three

Freudenstein parameters, arrayed in vector k, namely,

Sk = b (3.12)

where S is the m×3 synthesis matrix; k is the 3-dimensional vector of unknown Freuden-

stein parameters; and b is an m-dimensional vector of known components, i.e.,

S ≡








1 cosφ1 − cosψ1

1 cosφ2 − cosψ2
...

...
...

1 cosφm − cosψm







, k ≡





k1

k2

k3



 , b ≡








cos(φ1 − ψ1)

cos(φ2 − ψ2)
...

cos(φm − ψm)








(3.13)

Three cases arise:

m < 3: Case m = 1 reduces to the synthesis of a quadrilateron with two given angles, which

admits infinitely many solutions. Case m = 2 seldom occurs in practice without

additional conditions, that render the problem more complex, e.g., in the synthesis

of quick-return mechanisms;

m = 3: The number of equations coincides with the number of unknowns, and hence, the

problem admits one unique solution—unless the synthesis matrix is singular. We

are in the case of exact synthesis;

m > 3: The number of equations exceeds the number of unknowns, which leads to an overde-

termined system of equations. Hence, no solution is possible, in general, but an

optimum solution can be found that best approximates the synthesis equations in

the least-square sense. Problem falls in the category of approximate synthesis.
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Figure 3.2: Definition of Xi when Zi−1 and Zi: (a) are skew; (b) intersect; and (c) are

parallel.

3.2.2 The Denavit-Hartenberg Notation

Prior to deriving the I/O equations of spherical and spatial linkages, we introduce the

Denavit-Hartenberg (DH) notation, which is extremely useful in the analysis of kinematic

chains in three dimensions.

In order to uniquely describe the architecture of a kinematic chain, i.e., the relative

location and orientation of its neighbouring-pair axes, the Denavit-Hartenberg notation

(Denavit and Hartenberg, 1964) is introduced. To this end, we assume a simple kinematic

chain, open or closed, with links numbered 1, . . . , n, the ith pair being defined as that

coupling the (i− 1)st link with the ith link. Next, a coordinate frame Fi is defined with

origin Oi and axes Xi, Yi, Zi. This frame is attached to the (i− 1)st link—not to the ith

link!—for i = 1, . . . , n. This is done by following the rules given below:

1. Zi is the axis of the ith pair. Notice that there are two possibilities of defining

the positive direction of this axis, since each pair axis is only a line, not a directed

segment. Moreover, the Zi axis of a prismatic pair can be located arbitrarily, since

only its direction is defined by the axis of this pair.

2. Xi is defined as the common perpendicular to Zi−1 and Zi, directed from the former

to the latter, as shown in Fig. 3.2a. Notice that if these two axes intersect, the

positive direction of Xi is undefined and hence, can be freely assigned. Henceforth,

we will follow the right-hand rule in this case. This means that if unit vectors

ii, ki−1, and ki are attached to axes Xi, Zi−1, and Zi, respectively, as indicated in

Fig. 3.2b, then ii is defined as ki−1 × ki. Moreover, if Zi−1 and Zi are parallel, the

location of Xi is undefined. In order to define it uniquely, we will specify Xi as

passing through the origin of the (i− 1)st frame, as shown in Fig. 3.2c.

3. The distance between Zi and Zi+1 is defined as ai, which is thus nonnegative.
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4. The Zi-coordinate of the intersection O′
i of Zi with Xi+1 is denoted by bi. Since this

quantity is a coordinate, it can be either positive or negative. Its absolute value is

the distance between Xi and Xi+1, also called the offset between successive common

perpendiculars.

5. The angle between Zi and Zi+1 is defined as αi and is measured about the positive

direction of Xi+1. This item is known as the twist angle between successive pair

axes.

6. The angle between Xi and Xi+1 is defined as θi and is measured about the positive

direction of Zi.

3.2.3 Spherical Four-Bar-Linkages

e1e2

e3

e4

Z1Z2

Z3

Z4

D

A

B

C

X1

X2

X3

X4

α1

α2

α3

α4

φ

ψ O

Figure 3.3: A spherical four-bar linkage for function generation

A spherical four-bar linkage for function generation is depicted in Fig. 3.3. In this

case, we are interested in deriving a relation between the input angle ψ and the output

angle φ, that should include the linkage dimensions {αi }41 as parameters. To this end, we

introduce the unit vectors { ei }41, directed along the concurrent axes of the four revolutes,

as depicted in Fig. 3.3. Notice that, in order to bring the notation adopted for planar

four-bar linkages, as proposed by Freudenstein and displayed in Fig. 3.1, in line with the

Denavit-Hartenberg notation, we have placed Z1 along the axis of the output joint and

Z2 along that of the input joint.

Deriving the desired relation is now a simple matter, for we have one geometric relation

at our disposal, namely,

e3 · e4 = cosα3 (3.14)
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Now, in order to perform the foregoing dot product, we need expressions for its two factors

that satisfy two conditions: (i) the expressions should give the two unit vectors e3 and

e4 in the same coordinate frame; and (ii) the expressions should involve the input and

output angles. Apparently, if we choose F2, the coordinate frame fixed to the mechanism

frame, to represent the two unit vectors in question, we will have the desired expressions.

Under the Denavit-Hartenberg notation, the Zi-axis is defined as the axis of the ith

revolute, while Xi is defined as the common perpendicular to Zi−1 and Zi, directed from

the former to the latter, according to the right-hand rule. These axes are illustrated in

Fig. 3.3.

Now, the matrix rotating Fi into Fi+1 is denoted Qi. This matrix is given as (Denavit

and Hartenberg, 1964; Angeles, 2007):

Qi ≡ [Qi ]i ≡





cos θi −λi sin θi µi sin θi

sin θi λi cos θi −µi cos θi

0 µi λi



 (3.15)

where λi ≡ cosαi and µi ≡ sinαi, while θi was already defined in Subsection 3.2.2.

Apparently, vector ei in Fi, denoted [ ei ]i, is given by

[ ei ]i =





0

0

1



 (3.16)

Moreover, Qi can be regarded as the matrix transforming Fi+1-coordinates into Fi-
coordinates, i.e., for any three-dimensional vector v,

[v ]i = Qi[v ]i+1 (3.17)

Likewise,

[v ]i+1 = [QT
i ]i[v ]i (3.18)

More specifically, we represent the foregoing transformations in the abbreviated form:

Q1: F1 → F2, Q2: F2 → F3, Q3: F3 → F4, Q4: F4 → F1 (3.19a)

Q1: [ · ]2 → [ · ]1, Q2: [ · ]3 → [ · ]2, Q3: [ · ]4 → [ · ]3, Q4: [ · ]1 → [ · ]4 (3.19b)

QT
1 : F2 → F1, QT

2 : F3 → F2, QT
3 : F4 → F3, QT

3 : F1 → F4 (3.19c)

QT
1 : [ · ]1 → [ · ]2, QT

2 : [ · ]2 → [ · ]3, QT
3 : [ · ]3 → [ · ]4, QT

4 : [ · ]4 → [ · ]1 (3.19d)

In particular, given expression (3.16) for [ ei ]i, it is apparent that the third column of

QT
i or, equivalently, the third row of Qi, is [ ei ]i+1. By the same token, the third column

of Qi is [ ei+1 ]i, i.e.,

[ ei ]i+1 =





0

µi

λi



 , [ ei+1 ]i =





µi sin θi

−µi cos θi

λi



 (3.20)

71



The vector representations required are derived below. We do this by recalling that

[ e3 ]2 is the third column of Q2, while [ e4 ]1 is the third row of Q4.

[ e3 ]2 =





µ2 sin θ2

−µ2 cos θ2

λ2



 (3.21)

[ e4 ]2 = QT
1 [ e4 ]1 ≡





cos θ1 sin θ1 0

−λ1 sin θ1 λ1 cos θ1 µ1

µ1 sin θ1 −µ1 cos θ1 λ1









0

µ4

λ4



 (3.22)

=





µ4 sin θ1

µ4λ1 cos θ1 + λ4µ1

−µ4µ1 cos θ1 + λ4λ1



 (3.23)

which are the expressions sought. Hence,

[ eT3 ]2[ e4 ]2 = µ2µ4 sin θ1 sin θ2 − µ2 cos θ2(µ4λ1 cos θ1 + λ4µ1) + λ2(−µ4µ1 cos θ1 + λ4λ1)

(3.24)

Upon substituting the above expression into eq.(3.14), we obtain

λ4λ1λ2 − λ3 − λ4µ1µ2 cos θ2 − µ4λ1µ2 cos θ1 cos θ2 − µ4µ1λ2 cos θ1 + µ2µ4 sin θ1 sin θ2 = 0

(3.25)

which is a form of the input-output equation sought. This equation can be simplified

upon realizing that the last coefficient of its left-hand side cannot vanish, least one of the

input and output links, or even both, shrinks to one point on the sphere—a consequence

of at least one of α2 and α4 vanishing or equating π. In this light, we can safely divide

both sides of the above equation by µ2µ4. Moreover, in order to render the same equation

terser, we introduce the Freudenstein parameters for the spherical linkage below:

k1 ≡
λ4λ1λ2 − λ3

µ2µ4

, k2 =
λ4µ1

µ4

, k3 = λ1, k4 =
µ1λ2λ4

µ2µ4

(3.26)

Upon dividing both sides of eq.(3.25) by µ2µ4, and introducing definitions (3.26) in

the equation thus resulting, the same equation becomes

k1 − k2 cos θ2 − k3 cos θ1 cos θ2 − k4 cos θ1 + sin θ1 sin θ2 = 0 (3.27)

This equation, however, involves a relation between angles θ1 and θ2 of the DH nota-

tion, which are different from, although related to, the input and the output angles ψ and

φ. To better understand the relation between the two pairs of angles, we sketch these in

Fig. 3.4. From this figure, it is apparent that

θ2 = ψ + π, θ1 = 2π − φ or θ1 = −φ (3.28)

Hence,

cos θ2 = − cosψ, sin θ2 = − sinψ, cos θ1 = cosφ, sin θ1 = − sin φ (3.29)
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Figure 3.4: Relation between input and output angles with their counterparts in the DH

notation: (a) ψ and θ2; and (b) φ and θ1

Substitution of relations (3.29) into eq.(3.27) leads to

F (ψ, φ) ≡ k1 + k2 cosψ + k3 cosψ cosφ− k4 cosφ+ sinψ sinφ = 0 (3.30)

which is the input-output equation for spherical linkages written in terms of the input and

output angles ψ and φ, respectively.

Either eq.(3.27) or eq.(3.30) can be used to find the output angle φ for a given linkage

and a given value of the input angle ψ, which constitutes the analysis problem. The same

equation is to be used for synthesis, as described below.

In a synthesis problem, we aim at calculating the set of unknown linkage angles {αi }41,
for a given set of pairs { (ψi, φi) }m1 of I/O angle values that the linkage is to meet. In

order to obtain the synthesis equations allowing us to compute the set of Freudenstein

parameters leading to the desired linkage, we proceed as in the planar case and write

eq.(3.30) for the given set of pairs of angle values, thus obtaining the synthesis equations

in the form of eq.(3.12), as derived for planar four-bar linkages. Obviously, the synthesis

matrix S and vectors b and k now change to

S ≡








1 cosψ1 cosψ1 cosφ1 − cosφ1

1 cosψ2 cosψ2 cosφ2 − cosφ2
...

...
...

1 cosψm cosψm cosφm − cosφm







, k ≡








k1

k2

k3

k4







, b ≡








− sinψ1 sinφ1

− sinψ2 sinφ2
...

− sinψm sinφm








(3.31)

Similar to the planar case, we have exact synthesis when the number m of given pairs

of input-output angular values equals the number of Freudenstein parameters at hand,

which in this case happens when m = 4. When m > 4, then we have a problem of
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approximate synthesis.

However, eq.(3.30) only provides values for the linkage parameters { ki }41. Hence, we

need a means to convert the latter into the former.

Notice that the relations between the two sets, {αi }41 and { ki }41, are nonlinear, and

hence, solving eqs.(3.26) for the former needs careful planning. For starters, the foregoing

equations are rewritten explicitly in terms of the linkage dimensions {αi }41, and reordered

conveniently:

cα1 − k3 = 0 (3.32a)

cα4sα1 − k2sα4 = 0 (3.32b)

cα2cα4sα1 − k4sα2sα4 = 0 (3.32c)

cα1cα2cα4 − cα3 − k1sα2sα4 = 0 (3.32d)

In a semigraphical method, based on contour-intersection and favoured in this course,

all but two of the unknowns are first eliminated from the set of nonlinear equations,

thereby ending up with a reduced number of equations in the two remaining unknowns.

Each of these equations is then plotted in the plane of the two unknowns, which yields one

contour per bivariate equation, in that plane. All real solutions are then found by inspec-

tion, at the intersections of all the contours. Notice that, if the reduced system comprises

more than two bivariate equations, then the system entails algebraic redundancy, which

is convenient, as this adds robustness to the system.

In the particular case at hand, the transformation sought can be most readily found

by noticing the structure of eqs.(3.32a–d): the first equation involves one single unknown,

α1; the second only one new unknown, α4; the third only one new unknown, α2; and the

fourth only one new unknown as well, α3. Hence, we devise the algorithm below:

i) From eq.(3.32a), compute α1 = cos−1(k3) ⇒ two possible values of α1;

ii) From eq.(3.32b), compute α4 = tan−1(sinα1/k2) ⇒ two possible values of α4 for

each value of sinα1;

iii) From eq.(3.32b), cosα4 sinα1 = k2 sinα4, which, upon substitution into eq.(3.32c),

leads to (k2 cosα2 − k4 sinα2) sinα4 = 0. However, sinα4 6= 0 for a physically

meaningful linkage, and hence, the two sides of the foregoing equation can be divided

by sinα4, which then leads to α2 = tan−1(k2/k4), thereby obtaining two values of

α2, independent of all other αi values;

iv) From eq.(3.32a), cosα1 = k3, eq.(3.32b) leading to sinα4 = cosα4 sinα1/k2; more-

over, eq.(3.32c) leads to cosα2 cosα4 = k4 sinα2 sinα4/ sinα1. If the three foregoing

expressions are substituted into eq.(3.32d), then cosα3 = (k3k4−k1 sinα1) sinα2 cosα4/k2,

whence, α3 = cos−1[(k3k4 − k1 sinα1) sinα2 cosα4/k2] ⇒ two values of α3 are ob-

tained for each possible combination of values of sinα1, sinα2 and cosα4.
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In summary, then, we have: four possible combinations of values of of α1 and α4; two

possible values of α2; and 16 values1 of α3. Hence, we end up with up to 4× 2× 16 = 128

sets of {αi }41 values for one single set { ki }41. However, some of the 128 sets of linkage

dimensions found above may be complex, and hence, uninteresting. The problem may

also not admit any single real solution, for example, if |k3| > 1. As well, α3 becomes

complex when |(k3k4 − k1 sinα1) sinα2 cosα4/k2| > 1. That is, for a feasible linkage, two

conditions must be obeyed by the Freudenstein parameters { ki }41:

|k3| ≤ 1 and

∣
∣
∣
∣

(k3k4 − k1 sinα1) sinα2 cosα4

k2

∣
∣
∣
∣
≤ 1 (3.33)

Note that the semigraphical method filters all complex solutions and is guaranteed

to yield all real solutions. In order to implement the semigraphical method, first four

pairs of values (α1, α4) are computed from eqs.(3.32a & b). Each of these pairs is then

substituted into eqs.(3.32c & d), thereby obtaining four pairs of contours in the α3-α4

plane. The intersections of each pair of contours, which can be estimated by inspection,

yield one subset of real solutions. Each of these estimates of α3 and α4 values can then

be used as an initial guess for a Newton-Raphson solution of the two equations. Due to

the proximity of each estimate from the pair of real roots, the Newton-Raphson method

should converge in a pair of iterations for a reasonable tolerance. If each pair of contours

is plotted inside a square of side π centred at the origin of the α2-α3 plane, all real roots

of the problem have been computed.

Finally, notice that any spherical triangle and, in fact, any spherical polygon defined

on the surface of the unit sphere, has an antipodal counterpart. In this light, then, even if

we end up with a full set of feasible linkage dimensions, only 64 four-bar linkages defined

by this set are distinct.

3.2.4 Spatial Four-Bar-Linkages

The analysis of spatial four-bar linkages relies heavily on the algebra of dual numbers,

which is extensively discussed in Appendix A. What we should recall now is (a) the usual

representation of dual quantities, by means of a “hat” (̂ ) on top of the variable in question

and (b) the definition of the dual unit, ǫ, via its two properties

ǫ 6= 0, ǫ2 = 0 (3.34)

A general layout of a spatial four-bar linkage is included in Fig. 3.5, in which we use the

Denavit-Hartenberg notation, introduced in Subsection 3.2.2. Similar to that subsection,

we have laid the ouput axis along Z1, in order to comply both with the DH notation and

with the notation adopted in Figs. 3.1 and 3.3. In this case, ψ and φ denote the input

1Two possible values of each of sin α1, sinα2 and cosα4, which yields eight possible values of cosα3,

but the latter yields, in turn, two possible values of α3.

75



and the output angles, as in Subsection 3.2.3, their relations with angles θ1 and θ2 of the

DH notation being exactly as in the spherical case, namely,

ψ = θ2 − π, φ = 2π − θ1 (3.35)

A

B

C

D

O

Z1

Z2

Z3

Z4

X1
X2

X3

X4

a1

a2

a3

a4

d3

d4

d1

d2 α1

α2

α3 α4

θ1

θ2

ψ

φ

Figure 3.5: A RCCC linkage for function generation

The I/O equation of the RCCC linkage is most readily derived by resorting to the

Principle of Transference (Dimentberg, 1965; Rico Mart́ınez and Duffy, 1995), which is

cited below:

The kinematics and statics relations of spatial linkages and cam mechanisms

can be derived upon replacing the real variables occurring in the corresponding

relations for spherical linkages by dual numbers.

Put quite simply, the I/O equation of the RCCC linkage can be derived from that of

the spherical RRRR linkage upon “putting hats” on the variables and the (Freudenstein)

parameters occurring in eq.(3.30), thereby obtaining

F̂ (ψ, φ̂) ≡ k̂1 + k̂2 cosψ + k̂3 cosψ cos φ̂− k̂4 cos φ̂− k̂5 sinψ sin φ̂ = 0 (3.36)

where ψ hasn’t been “hatted” for the reasons given below: dualization of an angular

displacement θ about an axis A is an operation by which a sliding do is introduced along

the same axis; the dual angle θ̂ is then represented as

θ̂ = θ + ǫdo (3.37)

the variable θ then being referred to as the primal part of θ̂, do being the dual part.

Notice that the latter being a sliding, its units are those of length; the dual unit ǫ can

then be thought of as “having units of length-inverse.” The dualization operation then,
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can be kienmatically interpreted as the replacement of a R joint of axis A by a C joint of

the same axis. Hence, the RCCC linkage of Fig. 3.5 is obtained by replacing all R joints

of the spherical linkage of Fig. 3.3, but that associated with the input angle ψ, with a C

joint, which explains why this variable need not be dualized. In this light, then, the dual

quantities appearing in eq.(3.36) are to be interpreted as

φ̂ = φ+ ǫφo, F̂ (ψ, φ̂) = F (ψ, φ) + ǫFo(ψ, φo), k̂i ≡ ki + ǫkoi, i = 1, . . . , 4 (3.38)

Consistently, then, ki is dimensionless, while koi, for i = 1, . . . , 4, has units of length.

Moreover, if the angle of rotation θi, associated with the ith R joint of Fig. 3.3, of the

DH notation, for i = 1, 3, 4, is dualized, the dual angles thus resulting become, in the

notation of Fig. 3.5,

θ̂1 = θ1 + ǫd1 = −φ+ ǫd1, θ̂2 = θ2 = ψ + π, θ̂3 = θ3 + ǫd3, θ̂4 = θ4 + ǫd4 (3.39)

where

−∞ < di <∞, i = 1, 3, 4

which is an unbounded real number, with units of length. Notice that di is not a “length,”

properly speaking, because a length is positive, while di can be negative, exactly the same

as a joint angle.

Now, in order to derive the trigonometric functions of the dual input and output angles,

we recall from the Appendix, that a dual function f̂(x̂), of the dual variable x̂ ≡ x+ ǫxo

is defined as

f̂(x̂) = f̂(x+ ǫxo) ≡ f(x) + ǫxo
df(x)

dx
whence,

cos φ̂ ≡ cos(φ)− ǫd1 sinφ, sin φ̂ ≡ sin φ+ ǫd1 cosφ (3.40)

Further, the synthesis equations for the spatial four-bar linkage can be readily set up

by dualizing those derived for the spherical case, with the synthesis matrix S and the

right-hand side b of eq.(3.31) substituted by their “hatted” counterparts, namely,

Ŝk̂ = b̂ (3.41)

where, as usual,

Ŝ = S + So, k̂ = k + ko, b̂ = b + bo (3.42)

the primal and dual parts of vector k̂ having been displayed componentwise in eq.(3.38).

The primal and dual parts of S and b are derived below: Upon dualizing S of eq.(3.31)

componentwise, the relation below is obtained:

Ŝ =








1 cψ1 cψ1(cφ1 − ǫu1sφ1) −cφ1 + ǫu1sφ1

1 cψ2 cψ2(cφ2 − ǫu2sφ2) −cφ2 + ǫu2sφ2
...

...
...

1 cψm cψm(cφm − ǫumsφm) −cφm + ǫumsφm








(3.43)
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or

Ŝ =








1 cψ1 cψ1cφ1 −cφ1

1 cψ2 cψ2cφ2 −cφ2
...

...
...

1 cψm cψmcφm −cφm








︸ ︷︷ ︸

S

+ǫ








0 0 −u1cψ1sφ1 u1sφ1

0 0 −u2cψ2sφ2 u2sφ2
...

...
...

0 0 −umcψmsφm umsφm








︸ ︷︷ ︸

So

(3.44)

where the definition ui ≡ (d1)i has been introduced. Likewise,

k̂ =








k1

k2

k3

k4








︸ ︷︷ ︸

k

+ǫ








ko1

ko2

ko3

ko4








︸ ︷︷ ︸

ko

, b̂ =








sψ1sφ1

sψ2sφ2
...

sψmsφm








︸ ︷︷ ︸

b

+ǫ








u1sψ1cφ1

u2sψ2cφ2
...

umsψmcφm








︸ ︷︷ ︸

bo

(3.45)

Now, upon equating the primal and the dual parts of eq.(3.41), two real vector equa-

tions are obtained, namely,

Sk = b, Sko + Sok = bo (3.46)

As the reader can readily verify, the first of the two foregoing equations is identical

to that derived for spherical linkages in eq.(3.31). That is, the problem of synthesis of

a spatial function generator has been decoupled into two, the synthesis procedure then

being straightforward:

1. Synthesize first a spherical linkage for the angular input-output data given at the

outset;

2. Substitute vector k obtained from step 1 along with the additional data { (d1)i }m1 ,

with ui ← (d1)i, for i = 1, . . . , m, and solve the second vector equation of (3.46)

for ko, thereby completing the synthesis problem.

Remark 3.2.1 Given that the output involves a sliding variable d1, besides the angle φ,

two sets of data-points must be given: {ψi, φi }m1 and {ψi, (d1)i }m1 .

3.3 Exact Synthesis

3.3.1 Planar Linkages

We have m = 3 in this case, and hence, the synthesis equations look like





1 cφ1 −cψ1

1 cφ2 −cψ2

1 cφ3 −cψ3









k1

k2

k3



 =





c(φ1 − ψ1)

c(φ2 − ψ2)

c(φ3 − ψ3)



 (3.47a)

78



where

c(·) ≡ cos(·) and s(·) ≡ sin(·) (3.47b)

Solving numerically for {ki}31 is straightforward, if Gaussian elimination, or LU-decomposition,

is applied—as, implemented, e.g., in Matlab. Given the simple structure of the system at

hand, however, a solution in closed form is also possible: To this end, subtract the first

equation from the second and third equations:





1 cφ1 −cψ1

0 cφ2 − cφ1 −cψ2 + cψ1

0 cφ3 − cφ1 −cψ3 + cψ1









k1

k2

k3



 =





c(φ1 − ψ1)

c(φ2 − ψ2)− c(φ1 − ψ1)

c(φ3 − ψ3)− c(φ1 − ψ1)



 (3.48)

Note that the second and third equations are free of k1, and hence, one can solve them

first for k2 and k3:
[
cφ2 − cφ1 −cψ2 + cψ1

cφ3 − cφ1 −cψ3 + cψ1

] [
k2

k3

]

=

[
c(φ2 − ψ2)− c(φ1 − ψ1)

c(φ3 − ψ3)− c(φ1 − ψ1)

]

(3.49)

The above 2× 2 system can be solved for k2 and k3 if we recall expression (1.8):

[
k2

k3

]

=
1

∆

[−cψ3 + cψ1 cψ2 − cψ1

−cφ3 + cφ1 cφ2 − cφ1

] [
c(φ2 − ψ2)− c(φ1 − ψ1)

c(φ3 − ψ3)− c(φ1 − ψ1)

]

(3.50a)

where

∆ ≡ det

[
cφ2 − cφ1 −cψ2 + cψ1

cφ3 − cφ1 −cψ3 + cψ1

]

= (cφ2 − cφ1)(−cψ3 + cψ1) + (cψ2 − cψ1)(cφ3 − cφ1) (3.50b)

With k2 and k3 obtained from eqs.(3.50a & b), k1 is derived from the first of eqs.(3.48).

The final result is

ki =
Ni

∆
, i = 1, 2, 3 (3.51)

with numerators Ni calculated sequentially:

N2 = (−cψ3 + cψ1)[c(φ2 − ψ2)− c(φ1 − ψ1]

+ (cψ2 − cψ1)[c(φ3 − ψ3)− c(φ1 − ψ1] (3.52a)

N3 = (−cφ3 + cφ1)[c(φ2 − ψ2)− c(φ1 − ψ1)]

+ (cφ2 − cφ1)[c(φ3 − ψ3)− c(φ1 − ψ1)] (3.52b)

N1 = c(φ1 − ψ1)∆− cφ2N2 + cψ1N3 (3.52c)

The foregoing problem is therefore quite simple to solve. We just showed how to solve

it in closed form. However, the solution obtained must be correctly interpreted. Indeed,

upon looking at definitions (3.8), it is apparent that, all link lengths being positive, k2 and

k3 should be positive as well, while k1 is capable of taking any finite positive or negative

real values. However, nothing in the above formulation prevents k2 and k3 from turning
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out to be negative or zero. Negative values of these parameters are not to be discarded,

for they have a geometric interpretation: Notice that, in eq.(3.10), if φ is changed to φ+π,

then the sign of the second term of the left-hand side of that equation is reversed. Ditto

the third term if ψ is changed to ψ + π. The conclusion then follows:

A negative k2 (k3) indicates that the input (output) angle ψ (φ) should not be

measured as indicated in Fig. 3.1, but all the way down to the extension of

link O1O2 (O4O3).

If the solution to the synthesis problem leads to k2 = 0, then a2 →∞, which means that

the input link is of infinite length. The interpretation now is that the first joint of the

linkage is of the P type, i.e., we end up with a PRRR linkage. Likewise, if k3 = 0, then

a4 → ∞, and we end up with a RRRP linkage.

Finally, even in the presence of nonzero values of the Freudenstein parameters, nothing

guarantees that the link lengths derived from them will yield a feasible linkage. Indeed,

for a linkage to be possible, the link lengths must satisfy the feasibility condition :

Any link length must be smaller than the sum of the three other link lengths.

Bloch Synthesis

A special kind of linkage synthesis occurs when input-output relations are not specified

at three distinct values of the input and output angles, but rather at one single value of

the input and output angles, to which velocity and acceleration conditions are adjoined.

The problem thus arising is known as Bloch synthesis. Besides its special nature, this

problem becomes relevant because of its revelation: the simultaneous vanishing of velocity

and acceleration of the output link, i.e., second-order rest of the output link, cannot be

obtained with a planar four-bar linkage whose input link turns at a constant angular

velocity. As a matter of fact, second-order rest cannot be obtained with any linkage,

but good approximations can be obtained with six-bar linkages producing short-duration

dwell. The foregoing claim will be made clear in the sequel.

The problem at hand then can be stated as: Synthesize a four-bar linkage that meets

conditions on position, velocity and acceleration at a given position of the input link.

In order to formulate this problem, we differentiate both sides of the Freudenstein

equation, eq.(3.10), with respect to time. After rearrangement of terms and a reversal of

signs, this gives

φ̇sφk2 − ψ̇sψk3 = (φ̇− ψ̇)s(φ− ψ) (3.53a)

(φ̈sφ+ φ̇2cφ)k2 − (ψ̈sψ + ψ̇2cψ)k3 = (φ̈− ψ̈)s(φ− ψ)

+ (φ̇− ψ̇)2c(φ− ψ) (3.53b)
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Next, we write eqs.(3.10) and (3.53a & b) at ψ = ψ1, and cast them in vector form:

Ak = b (3.54a)

where A and b are given below:

A ≡





1 cφ1 −cψ1

0 φ̇1sφ1 −ψ̇1sψ1

0 φ̈1sφ1 + φ̇2
1cφ1 −ψ̈1sψ1 − ψ̇2

1cψ1



 (3.54b)

b ≡





c(φ1 − ψ1)

(φ̇1 − ψ̇1)s(φ1 − ψ1)

(φ̈1 − ψ̈1)s(φ1 − ψ1) + (φ̇1 − ψ̇1)
2c(φ1 − ψ1)



 (3.54c)

Again, the second and third equations are free of k1, and hence, we can decouple them

from the first equation to solve for k2 and k3, namely,

[
φ̇1sφ1 −ψ̇1sψ1

φ̈1sφ1 + φ̇2
1cφ1 −(ψ̈1sψ1 + ψ̇2

1cψ1)

] [
k2

k3

]

=





(φ̇1 − ψ̇1)s(φ1 − ψ1)

(φ̈1 − ψ̈1)s(φ1 − ψ1)

+ (φ̇1 − ψ̇1)
2c(φ1 − ψ1)



 (3.55)

In solving the above system, we shall need the determinant ∆ of the above 2 × 2

matrix, which is computed below:

∆ ≡ det

[
φ̇1sφ1 −ψ̇1sψ1

φ̈1sφ1 + φ̇2
1cφ1 −ψ̈1sψ1 − ψ̇2

1cψ1

]

= −φ̇1sφ1(ψ̈1sψ1 + ψ̇2
1cψ1) + ψ̇1sψ1(φ̈1sφ1 + φ̇2

1cφ1) (3.56)

It is thus apparent that, if φ̇1 = 0 and φ̈1 = 0, then ∆ = 0, and the above 2×2 matrix

is singular. A close look at A of eq.(3.54a) will reveal that, under these conditions, A is

indeed singular. As a consequence, a four-bar linkage cannot produce zero velocity

and zero acceleration concurrently at the output link when its input link turns

at a constant rpm.

Now we recall expression (1.8) to invert the 2×2 matrix coefficient of vector [ k2, k3 ]T ,

thus obtaining
[
k2

k3

]

=
1

∆

[−(ψ̈1sψ1 + ψ̇2
1cψ1) ψ̇1sψ1

−(φ̈1sφ1 + φ̇2
1cφ1) φ̇1sφ1

]

×
[

(φ̇1 − ψ̇1)s(φ1 − ψ1)

(φ̈1 − ψ̈1)s(φ1 − ψ1) + (φ̇1 − ψ̇1)
2c(φ1 − ψ1)

]

(3.57)

Hence,

k2 =
N2

∆
, k3 =

N3

∆
(3.58a)

with

N2 ≡ −(ψ̈1sψ1 + ψ̇2
1cψ1)(φ̇1 − ψ̇1)s(φ1 − ψ1) + ψ̇1sψ1[(φ̈1 − ψ̈1)s(φ1 − ψ1)

+ (φ̇1 − ψ̇1)
2c(φ1 − ψ1)] (3.58b)

N3 ≡ −(φ̈1sφ1 + φ̇2
1cφ1)(φ̇1 − ψ̇1)s(φ1 − ψ1) + φ̇1sφ1[(φ̈1 − ψ̈1)s(φ1 − ψ1)

+ (φ̇1 − ψ̇1)
2c(φ1 − ψ1)] (3.58c)
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Once k2 and k3 are known, we can calculate k1 from the first of eqs.(3.54a). After simpli-

fications,

k1 =
c(φ1 − ψ1)∆−N2cφ1 +N3cψ1

∆
(3.58d)

thereby completing the solution of the problem at hand.

3.3.2 Spherical Linkages

In this case, the synthesis matrix of eq.(3.31) becomes of 4×4, while vector b of the same

equation becomes four-dimensional, the synthesis equations thus taking the form








1 cosψ1 cosψ1 cos φ1 − cos φ1

1 cosψ2 cosψ2 cos φ2 − cos φ2

1 cosψ3 cosψ3 cos φ3 − cos φ3

1 cosψ4 cosψ4 cos φ4 − cos φ4















k1

k2

k3

k4








=








− sinψ1 sinφ1

− sinψ2 sinφ2

− sinψ3 sinφ3

− sinψ4 sinφ4








(3.59)

The structure of the synthesis matrix is strikingly similar to that of the planar case,

with the entries of its first column being all 1s. Hence, similar to the planar case of

Subsection 3.3.1, the equations can be reduced by elementary operations on the synthesis

matrix to a subsystems of three equations in three unknowns. This is readily done upon

subtracting the first equation from the remaining three, which is equivalent to subtracting

the first row of the synthesis matrix from its remaining three rows, and subtracting the

first component of vector b from its remaining three components, namely,








1 cψ1 cψ1cφ1 −cφ1

0 cψ2 − cψ1 cψ2cφ2 − cψ1cφ1 −cφ2 + cφ1

0 cψ3 − cψ1 cψ3cφ3 − cψ1cφ1 −cφ3 + cφ1

0 cψ4 − cψ1 cψ4cφ4 − cψ1cφ1 −cφ4 + cφ1















k1

k2

k3

k4








=








−sψ1sφ1

−sψ2sφ2 + sψ1sφ1

−sψ3sφ3 + sψ1sφ1

−sψ4sφ4 + sψ1sφ1








(3.60)

The foregoing system can be now cast in a more suitable block-form:

[
1 aT

03 A3

]

k =

[
b1

b3

]

(3.61a)

with blocks defined as

a ≡





cψ1

cψ1cφ1

−cφ1



 , A3 ≡





cψ2 − cψ1 cψ2cφ2 − cψ1cφ1 −cφ2 + cφ1

cψ3 − cψ1 cψ3cφ3 − cψ1cφ1 −cφ3 + cφ1

cψ4 − cψ1 cψ4cφ4 − cψ1cφ1 −cφ4 + cφ1



 , (3.61b)

b1 ≡ −sψ1sφ1, b3 ≡





−sψ2sφ2 + sψ1sφ1

−sψ3sφ3 + sψ1sφ1

−sψ4sφ4 + sψ1sφ1



 (3.61c)

and 03 is the three-dimensional zero vector. We can thus identify in the above system a

reduced system of three equations in three unknowns that has been decoupled from the
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original system of four equations, namely,

A3k3 = b3, k3 ≡





k2

k3

k4



 (3.62)

Further, A3 is partitioned columnwise as done in Subsection 1.4.3:

A3 = [ c1 c2 c3 ] (3.63)

Therefore, the inverse of A3 can be computed in this case symbolically, as per eq.(1.9a):

A−1
3 =

1

∆





(c2 × c3)
T

(c3 × c1)
T

(c1 × c2)
T



 (3.64a)

where

∆ ≡ c1 × c2 · c3 (3.64b)

and hence,

k3 =
1

∆





(c2 × c3)
Tb3

(c3 × c1)
Tb3

(c1 × c2)
Tb3



 (3.64c)

thereby computing k2, k3 and k4. The remaining unknown, k1, is computed from the first

equation of the array (3.60):

k1 + k2cψ1 + k3cψ1cφ1 − k4cφ1 = −sψ1sφ1

whence,

k1 = −sψ1sφ1 − k2cψ1 − k3cψ1cφ1 + k4cφ1 (3.64d)

all unknowns having thus been found.

Remark 3.3.1 The foregoing closed-form solution of the exact synthesis problem at hand

is apparently elegant and gives some insight into the relations among the variables involved,

e.g., the problem has no solution when the three columns of A3, or its three rows for that

matter, are coplanar. Moreover, the numerical evaluation of the Freudenstein parameters

is exactly that obtained with Cramer’s rule, which is notorious for being inefficient and

prone to roundoff-error amplifiction. In our case, the dimension of the problem at hand

being modest, it should be safe, in general, to use the above formulas.

Remark 3.3.2 Given that k3 = λ1 = cosα1, the computed k3 must be smaller than unity

in absolute value, and hence, any solution with |k3| > 1 must be rejected. By the same

token, cα3 = (k3k4 − k1sα1)sα2cα4/k2, and hence, the absolute value of the foregoing

difference must be smaller than unity.
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3.3.3 Spatial Linkages

The two synthesis matrices, S and So, of eq.(3.44) become now of 4 × 4, while vectors

b and bo of eq.(3.45) become four-dimensional. As a matter of fact, S, k and b are

exactly the same as their counterparts in the spherical case, the first synthesis equation of

eq.(3.46) thus being identical to eq.(3.59), which is reproduced below for quick reference:







1 cψ1 cψ1cφ1 −cφ1

1 cψ2 cψ2cφ2 −cφ2

1 cψ3 cψ3cφ3 −cφ3

1 cψ4 cψ4cφ4 −cφ4















k1

k2

k3

k4








=








−sψ1sφ1

−sψ2sφ2

−sψ3sφ3

−sψ4sφ4








(3.65)

The second synthesis equation of the same eq.(3.46) is rewritten below in the standard

form in which the left-hand side includes the term in the unknown, namely,







1 cψ1 cψ1cφ1 −cφ1

1 cψ2 cψ2cφ2 −cφ2

1 cψ3 cψ3cφ3 −cφ3

1 cψ4 cψ4cφ4 −cφ4















k1o

k2o

k3o

k4o








=








u1sψ1cφ1

u2sψ2cφ2

u3sψ3cφ3

u4sψ4cφ4







−








0 0 −u1cψ1sφ1 u1sφ1

0 0 −u2cψ2sφ2 u2sφ2

0 0 −u3cψ3sφ3 u3sφ3

0 0 −u4cψ4sφ4 u4sφ4















k1

k2

k3

k4








(3.66)

Upon expansion, the right-hand side becomes

bo − Sok =








u1[sψ1cφ1 − sφ1(k3cψ1 − k4)]

u2[sψ2cφ2 − sφ2(k3cψ2 − k4)]

u3[sψ3cφ3 − sφ3(k3cψ3 − k4)]

u4[sψ4cφ4 − sφ4(k3cψ4 − k4)]







≡
[

(b1)o

(b3)o

]

−
[
sT1
S3

]

o

k

Again, as in the spherical case, the system (3.65) can be solved in closed form upon

reducing it to a system of three equations in three unknowns, which is done by subtracting

the first equation from the other three, thereby ending up with a new system of equations,

similar to that of eq.(3.61a), namely,
[

1 aT

03 A3

]

ko ≡
[

(b1)o − (sT1 )ok

(b3)o − (S3)ok

]

(3.67a)

with the above partitioning of b and S, and other blocks defined as

a ≡





cψ1

cψ1cφ1

−cφ1



 , A3 ≡





cψ2 − cψ1 cψ2cφ2 − cψ1cφ1 −cφ2 + cφ1

cψ3 − cψ1 cψ3cφ3 − cψ1cφ1 −cφ3 + cφ1

cψ4 − cψ1 cψ4cφ4 − cψ1cφ1 −cφ4 + cφ1



 , (3.67b)

(b1)o ≡ u1sψ1sφ1, (b3)o ≡





u2[sψ2cφ2 − sφ2(k3cψ2 − k4)]− (b1)o + (sT1 )ok

u3[sψ3cφ3 − sφ3(k3cψ3 − k4)]− (b1)o + (sT1 )ok

u4[sψ4cφ4 − sφ4(k3cψ4 − k4)]− (b1)o + (sT1 )ok



(3.67c)

Now, upon comparison of eq.(3.67a) with its spherical counterpart, eq.(3.60), it is ap-

parent that the matrix coefficient of ko is the same in the two cases. The foregoing vector,
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then, can be computed using exactly the same procedure as that outlined in Section 3.3.2

for spherical function-generator synthesis. The procedure needn’t be repeated here.

Again, it is noteworthy that the foregoing computations lead to the solution of a

system of three equations in three unknowns, which can be solved symbolically by means

of reciprocal bases. Remarks 3.3.1 and 3.3.2 apply in this case as well.

3.4 Analysis of the Synthesized Linkage

After a linkage is synthesized, its performance should be evaluated, which is done by means

of analysis. The first step in analyzing a linkage synthesized for function generation is to

produce its link lengths, for all we have is its Freudenstein parameters. Below we derive

analysis algorithms for planar, spherical and spatial four-bar linkages.

3.4.1 Planar Linkages

We start by recalling the inverse relations of eqs.(3.11), which we reproduce below for

quick reference:

a2 =
1

k2
a1, a4 =

1

k3
a1, a3 =

√

a2
1 + a2

2 + a2
4 − 2k1a2a4 (3.68)

Two remarks are in order:

(i) The link lengths are given in terms of a1, which is thus the link length that de-

termines the scale of the linkage, but any other length can be used for the same

purpose; and

(ii) all lengths are positive. However, negative signs for k2 and k3 can occur, that

hence lead to negative values of a2 or, correspondingly, a4. As we saw in Subsec-

tion 3.3.1, negative values of any of these variables, or of both for that matter, bear

a straightforward interpretation.

We now proceed to derive an algorithm for the fast and reliable computation of the

output values of φ corresponding to a) a given linkage of feasible link lengths {ai}41 and

b) a given input value ψ. We can do this in several ways. We start by recalling the IO

equation of the planar four-bar linkage in homogeneous form, eq.(3.11):

k1 + k2 cosφ− k3 cosψ − cos(φ− ψ) = 0

Upon expansion of the fourth term in the left-hand side, the foregoing equation can

be rewritten as

A(ψ) cosφ+B(ψ) sinφ+ C(ψ) = 0 (3.69a)
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with coefficients defined as

A(ψ) = k2 − cosψ, B(ψ) = − sinψ, C(ψ) = k1 − k3 cosψ (3.69b)

One approach to solving this equation for φ consists in transforming it into an algebraic

equation2, which is done by means of the tan-half identities, which are recalled below, as

applied to angle φ:

cosφ ≡ 1− T 2

1 + T 2
, sinφ ≡ 2T

1 + T 2
, T ≡ tan

(
φ

2

)

(3.70)

Upon substitution of the foregoing identities into eq.(3.69a), a quadratic equation in

T is obtained:

D(ψ)T 2 + 2E(ψ)T + F (ψ) = 0 (3.71a)

whose coefficients are given below:

D(ψ) ≡ k1 − k2 + (1− k3) cosψ (3.71b)

E(ψ) ≡ − sinψ (3.71c)

F (ψ) ≡ k1 + k2 − (1 + k3) cosψ (3.71d)

Now, φ can be readily computed once the two roots of eq.(3.71a) are available. Here,

a caveat is in order: Rather than naively use the standard form of the solution of the

quadratic equation, we follow here a robust approach, as suggested by Forsythe (1970):

In order to avoid catastrophic cancellations when B2 >> AC, that would lead to an

erroneous zero root, we first compute the root with the largest absolute value, namely,

T1 =
−E − sgn(E)

√
E2 −DF

D
, φ1 = 2 tan−1(T1) (3.72a)

where sgn(·) is the well-known signum function introduced in Section 1.4 when we studied

Householder reflections. In the case at hand, B = 0 indicates that sinψ, and hence, E(ψ),

vanishes in the quadratic equation, the two roots of the equation then being symmetric;

therefore, the above formula is to be skipped in favour of the simpler

T1,2 = ±
√
−DF
D

(3.72b)

In case B(ψ) 6= 0, the second root is computed as

T2 =
F

DT1
, φ2 = 2 tan−1(T2) (3.72c)

Thus, cancellations are avoided upon computing T1; then, T2 is computed safely because

the denominator appearing in eq.(3.72c) has the largest possible absolute value. However,

2That is, a polynomial equation.
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notice that the quadratic equation can degenerate into a linear equation under two cases:

(a) F = 0 or (b)D = 0. The first case simply means that one root is zero, the second being

computed from the linear equation derived upon dividing the two sides of that quadratic

by T . The second case is a bit more elusive, but it can be handled as the limiting case

D → 0. To this end, let us divide both sides of eq.(3.71a) by T 2:

D(ψ) +
2E(ψ)

T
+
F (ψ)

T 2
= 0

Now, upon taking the limit of both sides of the above equation when D → 0, we obtain

lim
D(ψ)→0

T →∞

and hence,

lim
D(ψ)→0

φ = π (3.73)

In any event, the two possible solutions of the quadratic equation obtained above lead

to one of three possible cases:

1. The two roots {Ti}21 are real and distinct: the corresponding angles {φi}21 provide

the two conjugate postures of the linkage. As the linkage moves, the two conjugate

postures generate, correspondingly, two conjugate branches of the linkage motion;

2. The two roots {Ti}21 are real and identical: the corresponding single value of φ1 = φ2

indicates the merging of the two branches. This indicates that the output link

reached one extreme position, which is known as a deadpoint.

3. The two roots are complex conjugate: this indicates two possibilities:

(a) The link lengths are unfeasible: they do not define a quadrilateron; or

(b) The linkage is feasible, but its input link does not move through a full turn,

i.e., it is a rocker, the given value of ψ lying outside of its range of motion.

Because of the two conjugate branches of the planar four-bar linkage, the linkage is said

to be bimodal.

It is apparent that the quadratic-equation approach to the input-output analysis of the

four-bar linkage must be handled with care, especially when writing code to implement

it. As an alternative, we can pursue a more geometric, straightforward approach, free of

the singularity T → ∞ of the transformation (3.70), as described below: We go back to

eq.(3.69a), and rewrite it in a slightly different form

L : A(ψ)u+B(ψ)v + C(ψ) = 0 (3.74a)

where

u ≡ cosφ, v ≡ sinφ (3.74b)
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and hence, u and v are subject to the constraint

C : u2 + v2 = 1 (3.74c)

The input-output equation thus defines a line L in the u-v plane, while the constraint

(3.74c) defines a unit circle C centred at the origin of the same plane. The circle is fixed,

but the location of the line in the u-v plane depends on both the linkage parameters k1, k2,

k3 and the input angle ψ. Therefore, depending upon the linkage at hand and the position

of its input link, the line may intersect the circle or may not. If it does, then, additionally,

the line either intersects the circle at two distinct points or, as a special case, at one single

point, in which case the line is tangent to the circle, the two intersection points thus

merging into a single one. In the absence of intersections, either the linkage is unfeasible

or its input link is a rocker, the given input angle lying outside of its mobility range. In

the case of two distinct intersections, these determine the two conjugate postures of the

linkage. In the case of tangency, the linkage is at a deadpoint. Figure 3.6 depicts the

case of two distinct intersection points.

Figure 3.6: Line and circle in the u-v plane

Let the distance of the line to the origin be denoted by d. Apparently, we have the

three cases below:

d < 1: L intersects C at two distinct points;

d = 1: L is tangent to C;

d > 1: L does not intersect C.

88



The distance d can be readily found to be

d =
|C(ψ)|
S(ψ)

(3.75a)

where C(ψ) was defined in eq.(3.69b) and

S(ψ) ≡
√

A(ψ)2 +B(ψ)2 =
√

(k2 − cosψ)2 + sin2 ψ (3.75b)

An interesting singularity occurs whereby the foregoing calculations break down: If

coefficients A(ψ), B(ψ), and C(ψ) in eq.(3.74a) all vanish, then the line L disappears and

any value of φ satisfies the input-output equation for the given value of ψ. The vanishing

of these three coefficients is written below:

k2 − cosψ = 0 (3.76a)

sinψ = 0 (3.76b)

k1 − k3 cosψ = 0 (3.76c)

The second equation leads to ψ = 0 or π. For ψ = 0, the first equation yields k2 = 1 and

the third equation k1 = k3. Now, k2 = 1 means a2 = a1, which, together with k1 = k3,

means a4 = a3, the result being a set of linkage postures whereby joint centres B and D

coincide, the coupler and the output links thus being free to turn about joint centre D as

one single rigid-body.

For ψ = π, the first equation yields k2 = −1, which leads to a2 = −a1, i.e., a

“negative” link length. As we saw in Subsection 3.3.1, a negative a2 means that the input

angle should be measured “all the way down to the extension of the input link,” and we

fall into the case ψ = 0.

Notice that this pathological case, or singularity, is not apparent from the quadratic

equation.

Furthermore, in order to compute the two conjugate values φ1 and φ2, we calculate

first the intersection of L with its normal N from the origin. The intersection point has

coordinates (ū, v̄), given below:

ū =
C(ψ)(k2 − cosψ)

S(ψ)2
, v̄ =

−C(ψ) sinψ

S(ψ)2
(3.77a)

Now, the angle σ that N makes with the u axis, when d > 0, and angle θ, half the angle

subtended by the chord defined by the intersections of L with C, are given by

σ = arctan
( v̄

ū

)

(3.77b)

θ = arccos(d) (3.77c)

When d = 0, σ cannot be calculated from the above expression, but rather as arctan(−1/m),

where m is the slope of L. Nevertheless, in this case σ is not needed, for the two conjugate
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values of the output angle can be calculated directly. Thus,

φ1 = σ + θ, φ2 = σ − θ, for d > 0 (3.77d)

φ2 = arctan

(
k2 − cosψ

sinψ

)

, φ1 = φ2 + π, for d = 0 (3.77e)

We thus have devised the algorithm below for computing the two conjugate values of

the output angle, in Maple code:

Algorithm pl4bar-io(k,input)

This algorithm computes the intersection of one line L and the unit circle

centred at the origin of the cos(phi)-sin(phi) plane. The intersection points,

when they exist, are returned in array out, with out[1] and out[2] denoting

the two conjugate values of the output angle phi

read k[1], k[2], k[3], input;
> pl4bar-io:=proc(k,input) #Use this

> procedure only if are sure that your linkage is feasible

> local dpoint,feasible,pathos,D_d,N_d,d,u,v,sigma,theta; global
> out;

> dpoint:=false; #we assume that we are not in the presence of a

> deadpoint

> feasible:=true; #we assume that current psi-value is feasible

> pathos:=false; #we assume that we are not in the presence of
> pathological case whereby linkage becomes a one-dof open chain if

> k[2]=1 and psi=0 then pathos:=true; print(patholo=pathos); return;

> fi;

> #if k[2]=1, then a[1]=a[2]

> D_d:=k[2]*(k[2]-2*cos(input))+1: N_d:=-k[1]+k[3]*cos(input):
> d:=abs(N_d)/sqrt(D_d): #print(dd=d); #distance of line L to origin

> if d>1.0 then feasible:=false; print(feas=feasible); return; fi;

> if d=1.0 then dpoint:=true; print(dead=dpoint); theta=0; fi;

> u:=(N_d/D_d^2)*(k[2]-cos(input)): v:=-(N_d/D_d^2)*sin(input):

> #coordinates of intersection of line L and its normal N
> passing through the origin sigma:=arctan(v,u): #print(sig=sigma);

> #angle that normal makes with u-axis if dpoint=false then

> theta:=arccos(d); fi; #print(th=theta); #(1/2)angle subtended by

> secant to circle out[1]:=sigma-theta: out[2]:=sigma+theta: if v<0

> and u>0 then out[1]:=sigma+theta: out[2]:=sigma-theta: fi: #Note:
> this line does not appear in the Lecture Notes, but it is needed

> #print(out1=out[1]); print(out2=out[2]);

> end proc;

Various issues stem from the foregoing discussion, namely,

(a) Linkage feasibility: For the four link lengths to yield a feasible linkage, they must

define a quadrilateron. The condition on four given side lengths to close a quadri-

lateron, as given in Subsection 3.3.1, is that every length be smaller than the sum
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of the remaining three. When four link lengths are given as candidates to define a

planar four-bar linkage, these lengths must first and foremost be capable of defining

a quadrilateron. If they do, the lengths are said to be feasible; otherwise, they are

unfeasible.

(b) Link mobility: A link may or may not be capable of a full turn; if capable, it is

called a crank; otherwise, it is called a rocker. This gives rise to various types of

linkages, depending on the type of its input and output links, namely, double crank,

crank-rocker, rocker-crank, or double rocker. Double-crank linkages are known as

drag-link mechanisms. This variety of linkage type leads, in turn, to what is known

as Grashof mechanisms.

A major fundamental result in linkage theory is the Grashof classification of planar

four-bar linkages. This classification looks at the mobility of three links with respect to

the remaining one. Obviously, which of the four links is considered the “remaining one”

is immaterial. According to Grashof’s classification, a linkage is termed Grashof if at

least one of its links is capable of a full turn with respect to any other link. Otherwise,

the linkage is termed non-Grashof. Now we have the main result—for a proof, see, e.g.,

(Waldron and Kinzel, 1999)—below:

A planar four-bar linkage is Grashof if and only if the sum of the lengths of

its shortest and longest links is smaller than or equal to the sum of the two

other link lengths.

In linkage synthesis, we are interested in meeting mobility conditions either on the

input or on the output links, or even on both. We derive below these conditions in terms

of the Freudenstein parameters.

Mobility of the Input and Output Links

The condition under which the input link is a crank is quite useful because four-bar

linkages are frequently driven at a constant angular velocity, and hence, the input link

would better be capable of a full turn. To find this condition, we recall eq.(3.71a), whose

discriminant is a function not only of constants k1, k2 and k3, but also of ψ and, hence, it

is not only linkage- but also posture-dependent. In the discussion below, we assume that

the linkage parameters are fixed, and hence, the linkage discriminant ∆ will be regarded

as a function of ψ only. This is given by

∆(ψ) ≡ E2(ψ)−D(ψ)F (ψ) (3.78a)

Upon expansion, the above discriminant becomes

∆(ψ) ≡ −k2
3 cos2 ψ + 2(k1k3 − k2) cosψ + (1− k2

1 + k2
2) (3.78b)
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which is, clearly, a parabola in cosψ with concavity downward. For the input link to

be a crank, then, the discriminant ∆(ψ) should attain nonnegative values in the range

−1 ≤ cosψ ≤ +1. Moreover, by virtue of the parabolic shape of the ∆(cosψ) vs. cosψ

plot, ∆ is nonnegative for any value of ψ if and only if ∆(cosψ) ≥ 0 when cosψ = ±1. Let

∆1 and ∆2 denote the values that ∆ attains when cosψ equals +1 and −1, respectively,

which are given below:

∆1 = −k2
3 + 2(k1k3 − k2) + 1− k2

1 + k2
2, ∆2 = −k2

3 − 2(k1k3 − k2) + 1− k2
1 + k2

2

The necessary and sufficient conditions for a nonnegative linkage discriminant, for any

value of ψ, are now derived. Note first that ∆1 and ∆2 can be expressed as differences of

squares, namely,

∆1 = (1− k2)
2 − (k1 − k3)

2 , ∆2 = (1 + k2)
2 − (k1 + k3)

2

Now, clearly, ∆1 and ∆2 are nonnegative if and only if the relations below hold:

(k1 − k3)
2 − (1− k2)

2 ≤ 0 and (k1 + k3)
2 − (1 + k2)

2 ≤ 0 (3.79)

Upon factoring of their left-hand sides, the foregoing inequalities become

(k1 − k3 − 1 + k2)(k1 − k3 + 1− k2) ≤ 0 (3.80a)

(k1 + k3 − 1− k2)(k1 + k3 + 1 + k2) ≤ 0 (3.80b)

Each of the above inequalities holds if its two left-hand side factors have opposite signs,

the first inequality thus leading to

k1 − k3 − 1 + k2 ≥ 0 & k1 − k3 + 1− k2 ≤ 0 (3.80c)
or

k1 − k3 − 1 + k2 ≤ 0 & k1 − k3 + 1− k2 ≥ 0 (3.80d)

The second inequality, likewise, leads to

k1 + k3 − 1− k2 ≥ 0 & k1 + k3 + 1 + k2 ≤ 0 (3.80e)
or

k1 + k3 − 1− k2 ≤ 0 & k1 + k3 + 1 + k2 ≥ 0 (3.80f)

Thus, the region of the k-space containing input cranks is the intersection of two sub-

regions, that defined by the four inequalities (3.80c & d) and that defined by (3.80e & f).

Moreover, the subregion represented by each quadruplet is the union of the intersections

of the regions defined by each pair of linear inequalities. Each of these, furthermore,

divides the k-space into two halves, one on each side of the plane obtained when turning

the inequality sign of each relation into an equality sign. As the reader can readily notice,

inequalities (3.80c & d) lead to the same pair of planes; likewise inequalities (3.80e & f)

lead to a second pair of planes, namely,
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k1 + k2 − k3 − 1 = 0 , k1 − k2 − k3 + 1 = 0

k1 − k2 + k3 − 1 = 0 , k1 + k2 + k3 + 1 = 0

In summary, then, the two original quadratic inequalities of eq.(3.79) represent a

region of the k-space bounded by four planes, as displayed in Fig. 3.7. Hence, the region

containing input cranks comprises a regular tetrahedron with its centroid located at the

origin of the above space and two open convexes. Thus, all points within that region

represent linkages whose input link is a crank.

It is noteworthy that the k1-axis represents linkages for which a2, a4 → ∞, i.e., the

k1-axis represents, actually, all PRRP linkages. However, as the reader is invited to verify,

the origin does not represent a feasible linkage.

Figure 3.7: Region comprising planar four-bar linkages with an input crank

Now, in order to analyze the mobility of the output link, we simply exchange the roles

of k2 and k3 in the foregoing results, which is apparent from the definitions of the linkage

parameters {ki}31, as given in eqs.(3.68) and the Freudenstein equation (3.10). Actually,

then, the region containing output cranks can be obtained by mapping that containing

input cranks by means of a linear transformation:
k1 = k1, k2 = −k3, k3 = −k2

The above transformation can be represented in matrix form as a reflection R about

a plane of unit normal [0,
√

2/2,
√

2/2]T , given by (Angeles, 2007)

R =





1 0 0

0 0 −1

0 −1 0




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As the reader can readily verify, RRT = 1, with 1 denoting the 3× 3 identity matrix and

det(R) = −1, which verifies that R is a reflection.

By means of the foregoing exchange in eqs.(3.80a & b), the inequalities leading to an

output crank are obtained as

(k1 − k2)
2 < (1− k3)

2 (3.81a)

(k1 + k2)
2 < (1 + k3)

2 (3.81b)

Figure 3.8: Region comprising four-bar linkages with an output crank

The mobility region represented by the two foregoing inequalities comprises all four-

bar linkages with an output crank. This region is, then, the mirror image of that of

Fig. 3.7 when reflected about a plane Π passing through the k1 axis and intersecting the

k2-k3 plane along a line passing through the origin and contained in the third and fourth

quadrants of this plane. The foregoing region is represented in Fig. 3.8. Note that this

region comprises a tetrahedron identical to that of Fig. 3.7 and, hence, the tetrahedron

is common to both mobility regions. Thus, any point within this region represents a

double-crank four-bar linkage, except for the origin, which does not represent a four-bar

linkage.

Furthermore, the central tetrahedron of Figs. 3.7 and 3.8 can be shown to have axes

of length 2
√

2.

All linkages outside of the two foregoing regions are either of the rocker-rocker type

or unfeasible.
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3.4.2 Spherical Four-Bar Linkages

The analysis of the spherical four-bar linkage parallels that of its planar counterpart.

Indeed, upon introduction of the tan-half identities of eq.(3.70) into the I/O equation of

the spherical linkage, eq.(3.27), we obtain, again, a quadratic equation in T of the form

of eq.(3.71a), namely,

D(ψ)T 2 + 2E(ψ)T + F (ψ) = 0 (3.82a)

but now with coefficients that are given below:

D(ψ) ≡ k1 + (k2 − k3) cosψ + k4 (3.82b)

E(ψ) ≡ sinψ (3.82c)

F (ψ) ≡ k1 + (k2 + k3) cosψ − k4 (3.82d)

Similar to the planar case, rather than attempting a solution of the quadratic equation

as such, we cast the input-output equation (3.27) in the same form as we did for the planar

case:

L: A(ψ)u+B(ψ)v + C(ψ) = 0 (3.83a)

with coefficients given below:

A(ψ) = k3 cosψ − k4, B(ψ) = sinψ, C(ψ) = k1 + k2 cosψ (3.83b)

which is, again, the equation of a line L in the u-v plane, with u and v subject to the

constraint

C: u2 + v2 = 1 (3.83c)

The two conjugate values of φ for a given value of ψ can thus be computed as the

intersection of the line L with the circle C, in exactly the same way as in the planar case.

As in the planar case, an interesting singularity occurs when coefficients A(ψ), B(ψ), and

C(ψ) of the line equation (3.83a) all vanish. In this case, we have the conditions

k3 cosψ − k4 = 0, sinψ = 0, k1 + k2 cosψ = 0 (3.84)

The second of the foregoing equations leads to ψ = 0 or π. If ψ = 0, then the first

equation implies k3 = k4, and hence,

cosα1 sinα2 − sinα1 cosα2 = 0

whence,

α2 = α1 orα2 = α1 + π

If α2 = α1, then the third equation leads to cosα4 = cosα3, and hence, α4 = ±α3. If

ψ = π, a similar reasoning to that introduced for the planar case leads exactly to the

same result as for ψ = 0.

As a consequence, then, the singularity under study leads to a set of postures of the

spherical linkage under which the joint axes OA and OD coincide, the coupler and the

output links then being free to move as a single rigid body.
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Mobility of the Input and Output Links

This analysis is conducted in the space of the four Freudenstein parameters { ki }41, with

results similar to the planar case. Obviously, in this case the visualization is more chal-

lenging.

3.4.3 Spatial Four-Bar Linkages

The analysis of the spatial four-bar linkage parallels that of its planar and spherical

counterparts. There are, however, a few remarkable differences, as described below.

For starters, we cast the input-output equation (3.36) in the form

Âû+ B̂v̂ + Ĉ = 0 (3.85a)

where

û = u− ǫd1v, v̂ = v + ǫd1u, u ≡ cosφ, v ≡ sin φ (3.85b)

with d1 denoting the translation of the output cylindrical pair, while ǫ is the dual unit,

which has the properties ǫ 6= 0 and ǫ2 = 0. Moreover,

Â = A(ψ) + ǫAo(ψ), B̂ = B(ψ) + ǫBo(ψ), Ĉ = C(ψ) + ǫCo(ψ) (3.85c)

whose primal parts A(ψ), B(ψ) and C(ψ) are identical to those of the spherical linkage,

as displayed in eqs.(3.83b), their dual parts Ao(ψ), Bo(ψ) and Co(ψ) being obtained with

the aid of computer algebra and the rules of operations with dual numbers, namely,

Ao = amax(k3ocψ − λk3sψ − k4o) (3.86a)

Bo = amax(sψ + λcψ) (3.86b)

Co = amax(k1o + k2ocψ − λk2sψ) (3.86c)

in which the Freudenstein parameters are now dual numbers: k̂i = ki + ǫkio, while λ is

defined as the ratio

λ ≡ d1/amax (3.86d)

with amax = maxi{ai}, and ri = ai/amax, for i = 1, . . . , 4, where we have taken into

account that ai is a distance, in following the Denavit-Hartenberg notation (Denavit and

Hartenberg, 1964), recalled in Subsection 3.2.2, and hence, non-negative. Moreover,

k1o ≡ −r1sα1cα2cα4 − r2cα1sα2cα4 + r3sα3 − r4cα1cα2sα4 (3.86e)

k2o ≡ r1cα1sα2cα4 + r2sα1cα2cα4 − r4sα1sα2sα4 (3.86f)

k3o ≡ −r1sα1sα2sα4 + r2cα1cα2sα4 + r4cα1sα2cα4 (3.86g)

k4o ≡ r1cα1cα2sα4 − r2sα1sα2sα4 + r4sα1cα2cα4 (3.86h)
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Once we have obtained the input-output equation in terms of dual angles, it is possible

to analyze the RCCC linkage, which allows us, in turn, to compute all the joint rotations

and translations. The input-output equation above can be generally written as

L̂ : Âû+ B̂v̂ + Ĉ = 0 (3.87a)

and

Ĉ : û2 + v̂2 = 1 (3.87b)

where

û = cos φ̂, v̂ = sin φ̂ (3.87c)

Equations (3.87a–c) represent a dual line L̂ and a dual unit circle Ĉ in the dual û-v̂ plane,

respectively. Now, it is possible to decompose the equation of the “line” L̂ into two real

equations, one for its primal, and one for its dual part, namely,

P : Au+Bv + C = 0 (3.88a)

H : (Ao +Bd1)u+ (Bo −Ad1)v + Co = 0 (3.88b)

For the circle Ĉ, the dual part vanishes identically, the primal part leading to a real cicrcle,

namely,

C : u2 + v2 = 1 (3.88c)

Equation (3.88a) represents a plane P parallel to the d1-axis in the (u, v, d1)-space, while

eq.(3.88b) represents a hyperbolic paraboloid H in the same space. Moreover, eq.(3.88c)

represents a cylinder C of unit radius and axis parallel to the d1-axis, all foregoing items

being shown in Figs. 3.9a & b.

The three-dimensional interpretation of eqs.(3.88a–c) is illustrated in Figs. 3.9(a) and

(b), whereby line Li, for i = 1, 2, is defined by the intersection of the plane of eq.(3.88a)

with the cylinder (3.88c). Moreover, each line Li intersects the paraboloid (3.88b) at one

single point, as illustrated in Fig. 3.9b, and as made apparent below.

The system of equations (3.88a–c) should be solved for u, v and d1 in order to calcu-

late the two conjugate output angles and their corresponding output translations. The

intersections L1 and L2 of the plane P and the cylinder intersect the u-v plane at points

P1 and P2, as shown in Fig. 3.9a, while L1 and L2 intersect the hyperbolic paraboloid H
at points I1 and I2, as depicted in Fig. 3.9b. The intersection points P1 and P2 thus yield

the two conjugate output angles φ1 and φ2. Once the two conjugate solutions u and v are

known, via the coordinates of P1 and P2, the unique value of d1 corresponding to each

solution, and defining the intersection points I1 and I2, is determined from eq.(3.88b),

namely,

d1(ψ) =
Aou+Bov + Co

Av − Bu , Av 6= Bu (3.89)
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(a) (b)

Figure 3.9: Intersections of (a) P and C; and (b) Li and H, for i = 1, 2

where we have dispensed with the argument ψ in coefficients A, B, Ao, Bo and Co for

simplicity.

Note that the denominator of eq.(3.89) vanishes if Av = Bu; then, as can be readily

verified, the numerator of d1 in the above expression vanishes as well, and d1 is indeter-

minate. In this case, the surface H disappears for all values of the output translations

d1 and we are left with the plane P and the cylinder C, which means that d1 is free to

take any value. That is, the motion of this linkage in the plane normal to its joint axes is

independent of the translations along these axes. We are here in the presence of a para-

metric singularity producing a degeneracy of the linkage, similar to those described for

the planar and spherical linkages in Subsections 3.4.1 and 3.4.2. Under this singularity,

all joint axes are parallel (αi = 0, i = 1, . . . , 4) and, hence, the coupler and the output

links can freely slide along their cylindrical-joint axes.

Canonical Equation of the Hyperbolic Paraboloid H

In order to gain insight into the problem geometry, we derive below the canonical equation

of H. To this end, we let

x ≡ [ u v d1 ]T , Q(x) ≡ Aou+Bd1u+Bov − Ad1v + Co

the Hessian matrix H of Q(x) then being evaluated as

H ≡ ∂2Q

∂x2
=






0 0 B

0 0 −A
B −A 0




 (3.90)
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whose eigenvalues are readily computed as

λ1 = −
√
A2 +B2, λ2 = 0 , λ3 =

√
A2 +B2

The corresponding non-normalized eigenvectors ei, for i = 1, 2, 3, are

e1 =






B

−A√
A2 +B2




 , e2 =






A

B

0




 , e3 =






−B
A√

A2 +B2






and hence, the canonical equation of the surface H is of the form:

ζ =
ξ2

K
− η2

K
, K =

2(AoA+BoB)

A2 +B2

where

ξ =
−
√

2

2
√
A2 +B2

[

Bu+ Av + d1 +
AoB − BoA

4(AoA+BoB)

]

η =

√
2

4
√
A2 +B2

(

Bu− Av + d1 +
AoB − BoA

AoA +BoB

)

ζ =
1√

A2 +B2

[

Au+Bv +
(A2 +B2)CoA

AoA +BoB

]

which proves that H is indeed a hyperbolic paraboloid.

The Case of d1 Acting as Input

We include here a case that has been overlooked in the literature. In this case we regard

the translational displacement of the output C joint of a RCCC linkage as input, the two

outputs being angles ψ and φ. The problem no longer leads to a quadratic equation,

but rather to a system of one quartic and one quadratic equations in two variables, as

described presently.

Equations (3.88a & b) are both linear in u and v, which allows us to solve for these

variables in terms of d1, namely,

u = u(p, q) =
−BCo + CBo − CAd1

−ABo +BAo +B2d1 + A2d1
(3.91a)

v = v(p, q) =
−CAo −ACo + CBd1

−ABo +BAo +B2d1 + A2d1

(3.91b)

where, in light of eqs.(3.86a–c), with p = cosψ and q = sinψ, u and v become functions

of p and q. The latter, moreover, are subject to

p2 + q2 = 1 (3.92)
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Substituting the values of u and v given above into eq.(3.88c) produces an equation free

of u and v or, correspondingly, free of φ, namely,

f(p, q) = 0 (3.93)

From eq.(3.69b) and eqs.(3.86a–c), both u and v, as given by eqs.(3.91a & b), are

rational functions in these variables, with both numerator and denominator quadratic in

p and q. Hence, u2 and v2 are rational functions with both numerator and denominator

quartic in p and q. Therefore, f(p, q) = 0 leads, after clearing denominators, to a quartic

equation in p and q.

The system of polynomial equations (3.92) and (3.93) apparently has a Bezout number

of 4× 2 = 8.

Numerical Examples

The foregoing algorithm is validated with two numerical examples. All numerical and

symbolic calculations were completed with the aid of Maple 9.0.

Example 1: The Yang and Freudenstein Linkage

The first example is taken from (Yang and Freudenstein, 1964), with data as listed in

Table 3.1. The output displacements, which vary with the input angle, are recorded in

Table 3.2. For conciseness, we list only the results for 0 ≤ ψ ≤ π. Our results match

those reported by Yan and Freudenstein, considering the difference of input and output

angles in both works, as explained in Subsections 3.2.4. It is noteworthy that only two

displacement equations need be solved in our method, as compared with the system of

six equations in six unknowns formulated by Yang and Freudenstein, within a purely

numerical approach.

Table 3.1: D-H parameters of a RCCC mechanism

Link 1 2 3 4

ai[in] 5 2 4 3

αi[deg] 60 30 55 45

di[in] 0 variable variable variable

Example 2: Prescribing d1 as Input

In the second example, we try to find the rotations, ψ and φ, for a given d1, and given

dimensions of a RCCC linkage. The dimensions are the same as those in Example 1, with

d1 = 1.0. In this example, eq.(3.93) takes the form:

A0p
4 + A1(q)p

3 + A2(q)p
2 + A3(q)p+ A4(q) = 0 (3.94)
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Table 3.2: RCCC displacements

Branch 1 Branch 2

ψ[deg] φ[deg] d1[in] φ[deg] d1[in]

0 83.70015289 −0.1731633183 −83.70015289 0.1731633183

20 68.59658457 0.01107737578 −105.3298310 0.8429100445

40 64.21379652 −0.5291731100 235.9479009 1.085719194

60 67.55907283 −1.262205018 223.0109192 0.9378806915

80 75.72376603 −1.888758476 214.5328380 0.6631677103

100 87.21970033 −2.259417488 209.1315343 0.3676536240

120 101.1949772 −2.248309766 206.1460158 0.08437533590

140 116.6745934 −1.770565950 205.6297490 −0.1502382358

160 131.8997404 −0.9205435228 208.4003706 −0.2203697101

180 144.2093802 −0.1150813726 215.7906198 0.1150813650

where coefficients Ai(q), for i = 0, . . . , 4, are given below:

A0 = 0.09209746694

A1(q) = −0.06765823468q − 0.0073324502

A2(q) = −0.1754806581q2 + 0.01487658368q− 0.1902460942

A3(q) = 0.1353164694q3 + 0.1202907568q2 + 0.2424947249q+ 0.04203177757

A4(q) = −0.015625q4 − 0.0811898817q3 − 0.020697377q2 − 0.1362382267q

+ 0.0484753242

Equation (3.94) represents a curve in the p-q plane, whose intersections with the circle

of eq.(3.92) yield all real roots of the system at hand. Note, moreover, that all such roots

are bound to lie on the above circle. The four real solutions of the foregoing system are

given by the four intersections depicted in Fig. 3.10. The solutions are listed in Table 3.3,

including the corresponding angles of rotation3.

Mobility of the Input and Output Links

In this case, the mobility analysis applies only to the input ψ and the output φ, as this

analysis decides whether a joint is fully rotatable—can sweep an angle of 2π—or not.

This analysis thus reduces to that of the spherical mechanism whose I/O equation is the

primal part of the dual equation of this linkage.

3In this table only p and q are given with 10 digits; all other values are given with only four, for the

sake of economy of space.
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Table 3.3: Possible values of ψ and φ

[p, q] ψ[deg] φ[deg]

1 [0.6047587377,−.7964087325] −52.78 [−65.68,−227.07]

2 [−.9289796338,−.3701308418] −158.27 [−130.66,−207.99]

3 [0.5819053587, 0.8132565115] 54.41 [66.04, 226.10]

4 [0.8869350365, 0.4618941881] 27.50 [65.79,−113.02]

0 0.5 1.0-0.5-1.0

-0.5

-1.0

0.5

1.0

p

q

2

1

3

4

Figure 3.10: The case of an input translation
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3.5 Approximate Synthesis

In general, k is a n-dimensional vector of Freudenstein parameters. For planar linkages

n = 3; for spherical linkages, n = 4, while for spatial linkages of the RCCC type4, n = 8.

For spatial linkages of the RSSR type, moreover, n = 6. For m > n, no set of values {ki}n1
can verify all m synthesis equations. We thus have an error vector e:

e ≡ Sk− b (3.95)

This error vector is termed the design-error vector. A positive scalar derived from this

vector will be termed a design error.

The design error ed adopted here is the rms value of the components of vector e, i.e.,

ed ≡

√
√
√
√

1

m

m∑

1

e2i (3.96a)

where ei is the ith component of vector e, i.e., the residual of the ith synthesis equation.

Hence, the design error is proportional to the Euclidean norm of the design-error vector:

ed ≡
√

1

m
‖e‖ (3.96b)

It is apparent that, for fixed m, if we minimize ‖e‖, we minimize ed. The value k0

of k that minimizes ‖e‖ was derived in Subsection 1.4, and is given in eq.(1.37)5. In our

case, this equation leads to

k0 = SIb (3.97a)

which is the least-square approximation of the given overdetermined system of linear equa-

tions, SI being the left Moore-Penrose generalized inverse of S, as introduced in eq.(1.38),

and is given by

SI = (SST )−1ST (3.97b)

Hence,

e0 ≡ Sk0 − b (3.98)

is the least-square error vector, and

ed0 ≡
√

1

m
‖e0‖ (3.99)

is the least-square design error of the approximation to the overdetermined system of

synthesis equations.

4For this type of linkage, two input-output relations are available: the input is the same in both, but

the prescribed output comprises both the rotation and the translation of the C joint.
5k0 shouldn’t be mistaken by ko, the dual part of k̂.
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Remark 3.5.1 Expression (3.97a) for k0 can be derived upon multiplying both sides of

eq.(3.12) by ST :

(STS)k = STb (3.100)

where STS is a n× n matrix. If this matrix is nonsingular, then

k ≡ k0 = (STS)−1STb

Remark 3.5.2 The least-square approximation k0 can be thought of as being derived upon

“inverting” the rectangular S matrix in the original overdetermined system, eq.(3.12), with

the “inverse” of S understood in the generalized sense.

Remark 3.5.3 k0 minimizes the Euclidean norm of e, which is proportional to the design

error.

Remark 3.5.4 The least-square error of the approximation of the overdetermined system

of synthesis equations does not measure the positioning error, a.k.a. the structural error,

but rather the design error e defined above. The structural error produced by the synthe-

sized linkage must be measured with respect to the task, not with respect to the synthesis

equations. That is, if we let φi denote the prescribed value of the output angle, corre-

sponding to the ψi value, with φi denoting the generated value of the output angle, then

the structural error is the vector s given by

s ≡ [φ1 − φ1 φ2 − φ2 · · · φm − φm ]T (3.101)

Computing the least-square approximation k0 verbatim as appearing in eq.(3.97a) is

not advisable because of Remark 1.4.3 and the discussion in the paragraph below this re-

mark. This is, if κ(S) is moderately large, say, of the order of 1000, κ(STS) is inadmissibly

large, of the order of 106.

Alternatives to the solution of eq.(3.12) in the presence of a rectangular S exist (Golub

and Van Loan, 1983), as outlined in Subsection 1.4.5 and implemented in scientific soft-

ware. The two methods outlined in Subsection 1.4.5 fall into what is called the QR

decomposition: S is factored into an orthogonal matrix Q and an upper-triangular matrix

R.

Maple uses Householder reflections to find numerically the least-square approximation

of an overdetermined system of linear equations; it uses Gram-Schmidt orthogonalization

to do the same if data are given symbolically.

In any event, the original system (3.12) is transformed into the form

Tk = c (3.102)

where T and c are the transforms of S and b of eq.(3.95), respectively, with T of the form

T =

[
U

O

]

(3.103)
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while U and O are

U =








u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...

0 0 · · · unn







, O : (m− n)× n zero matrix (3.104)

In order to solve eq.(3.102) for k, we partition vector c into a n-dimensional upper

part cU and a (m− n)-dimensional lower part cL:

c =

[
cU

cL

]

(3.105)

where, in general, cL 6= 0.

System (3.102) thus takes the form

[
U

O

]

k =

[
cU

cL

]

⇒
{

Uk = cU

Ok = cL 6= 0
(3.106)

Remark 3.5.5 If S is of full rank, then so is T and hence, U is nonsingular.

Remark 3.5.6 If U is nonsingular, then none of its diagonal entries vanishes, for det(U) =

u11u22 · · ·unn.

Remark 3.5.7 If U is nonsingular, then k1, k2, . . . , kn can be computed from the first

of eqs.(3.106) by backward substitution.

Remark 3.5.8 The second of eqs.(3.106) is a contradiction: its RHS is zero, but its

LHS is not! Hence, cL is the error vector, and thus, the error in the approximation of the

synthesis equations is

ed0 =

√

1

m− n‖cL‖ (3.107)

Example: Synthesis of a Planar Four-Bar Linkage for 10 Data Points

In this example, taken from (Kimbrell, 1991), we show the effect of roundoff-error ampli-

fication. The input-output pairs are given in Table 3.4.

The synthesis matrix S and vector b of eq.(3.12) become of 10×3 and 10-dimensional,

respectively, i.e.,

105



Table 3.4: Prescribed input-output values for function generation with 10 data points

j 1 2 3 4 5 6 7 8 9 10

ψj (deg) 60.0 55.0 50.0 45.0 40.0 35.0 30.0 25.0 20.0 15.0

φj (deg) 130.0 114.3 99.4 85.7 73.0 61.6 51.5 42.9 35.6 30.0

S =






















1 −.6427876100 −.5000000002

1 −.4115143586 −.5735764363

1 −.1633259618 −.6427876097

1 .07497872679 −.7071067812

1 .2923717047 −.7660444431

1 .4756242093 −.8191520443

1 .6225146366 −.8660254038

1 .7325428988 −.9063077870

1 .8131007611 −.9396926208

1 .8660254038 −.9659258263






















, b =






















.3420201428

.5105429183

.6507742176

.7581343362

.8386705679

.8941542369

.9304175680

.9515944039

.9631625668

.9659258263






















We end up then with a system of 10 linear equations in three unknowns, the three

Freudenstein parameters of the planar four-bar linkage. Prior to solving the linear least-

square problem thus resulting, it is convenient to estimate the expected accuracy of the

results, in light of the precision with which the data are given. Here, a word of caution is

in order: although matrix S and vector b exhibit 10 digits of precision, the data points,

in degrees, are given with only four digits.

In order to have an idea of the expected accuracy of the ensuing results, we compute

the condition number of the synthesis matrix, based on the 2-norm. To this end, we first

compute the eigenvalues { λk }31 of matrix STS, which is displayed below:

P ≡ STS =





10.0 2.659530410 −7.686618952

2.659530410 3.261793180 −2.807787492

−7.686618952 −2.807787492 6.137428730





its eigenvalues being

λ1 = 0.0005198886261, λ2 = 2.342915975, λ3 = 17.05578605

Hence, the condition number of the synthesis matrix is

κ(S) =

√

λ3

λ1
= 181.1259647

which means that the roundoff error is expected to be amplified by a factor of less than

200. Since the data are given with four digits of precision, we can guarantee that the
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results will be accurate to at least two digits. This is fair enough, for the conventional

machine tools that are used to cut links for linkages are capable of accuracies that do not

go much farther than these two digits anyway.

If we compute the least-square approximation of the original overdetermined system

of equations using all 10 digits of matrix S and vector b, then the result obtained by

Maple, using Householder reflections, is

k1 = 2.797688253 , k2 = 1.316326216 , k3 = 3.079675927

which yield the link lengths

a2 = 0.7596901041a1, a3 = 0.5498233725a1, a4 = 0.3247094901a1

and the linkage shown in Fig. 3.11, displayed in its two conjugate postures.

A

B

C

D

C ′

Figure 3.11: Four-bar linkage minimizing the design error for 10 prescribed input-output

values in its two conjugate postures

The least-square error vector obtained with the foregoing values of k0 is computed as

e0 = Sk0 − b =






















−.0697119642

.0209713473

.0476537376

.0394093512

.0152944049

−00.68878011

−.0196254330

−.0192249971

−.0108827912

.0030041453






















which yields ed0 = .03207352463 or 3.2%.

Shown in Fig. 3.12 is the input-output function φ vs. ψ of the synthesized linkage, as

well as the set of prescribed values, indicated as small circles.
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Now we obtain the least-square approximation of the original overdetermined system,

again with Householder reflections, as implemented by Maple, but using only four digits.

S and b are thus rounded off to

S =























1.0 −0.6428 −0.5000

1.0 −0.4115 −0.5736

1.0 −0.1633 −0.6428

1.0 0.07498 −0.7071

1.0 0.2924 −.7660

1.0 0.4756 −0.8192

1.0 0.6225 −0.8660

1.0 0.7325 −0.9063

1.0 0.8131 −0.9397

1.0 0.8660 −0.9659























, b =























0.3420

0.5105

0.6508

0.7581

0.8387

0.8942

0.9304

0.9516

0.9632

0.9659























which yields

k1 = 2.800, k2 = 1.317, k3 = 3.082

and hence the link lengths

a2 = .7593a1, a3 = .5500a1, a4 = .3245a1

The least-square error vector obtained with the foregoing values of k is computed as

1

2

3

4

5

6

–1 –0.5 0 0.5 1

ψ

φ

Figure 3.12: The generated I/O function and the prescribed values
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e0 = Sk0 − b =






















.06970

.02100

−.04770

.03934

−.01512

−.006694

−.01973

−.01919

−.01081

−.002968






















which yields ed0 = .03206 or, again, 3.2%.

Let us now find a solution of the normal equations (3.100), using only four digits of

matrix P and vector STb, namely6,

P =





10.0 2.660 −7.687

2.660 3.262 −2.808

7.687 2.808 6.137



 , STb =





7.805

3.086

−6.298





Below is the solution of the normal equations obtained using LU decomposition, as im-

plemented by Maple:

k1 = −41.93, k2 = −18.07, k3 = −61.82

which bear no resemblance to the values computed with Householder reflections. These

values lead to the link lengths below:

a2 = −0.05533a1, a3 = 1.038a1, a4 = −0.01618a1

and to the linkage shown in Figs. 3.13, where a provision is made to account for the

negative signs of a3 and a4, as outlined at the end of Subsection 3.3.1. It is noteworthy

that the roundoff error incurred upon chopping the data and the numerical results after

the fourth digit resulted in quite a different solution linkage when using the normal equa-

tions. However, the same chopping led only to mild differences in the results when using

Householder reflections.

The least-square error vector obtained with the foregoing values of k is computed as

6For the record, STb with 10 digits is ST b =
[

7.805396785 3.087045313 −6.299436319
]T

.

109



A

B C

D

Figure 3.13: Four-bar linkage minimizing the design error for 10 prescribed input-output

values, as computed with only four digits and the normal equations

e0 = Sk0 − b =























0.2580

0.4595

0.1092

−0.3281

−0.6987

−0.7742

−0.5704

−0.0916

0.5068

1.164























which yields ed0 = .5861 or 59%, a huge error!

The solution reported by Kimbrell (1991) has erroneous values for the (1, 1) and (3, 3)

entries of P. For this reason, those results cannot be used for comparison with ours.

The Approximate Synthesis of Spherical Linkages

This case parallels that of planar linkages, with the provision that, as in the case of

exact synthesis of spherical linkages, nothing guarantees that the computed least-square

approximation complies with the two conditions (3.33). The first of these conditions,

|k3| ≤ 1 can be enforced in the least-square solution by adding one more equation, k3 = 0,

to the synthesis equations. Compliance with this condition, however, will invariably

lead to a larger value of ed0. Enforcing the second condition of eq.(3.33), however, calls

for techniques for solving problems of constrained least squares with nonlinear equality

constraints, which fall outside of the scope of this course, and will not be further discussed.

The reader is referrred to the literature on engineering optimization whenever confronted

with this problem.

Adjoining the above equation, k3 = 0, to the synthesis equation, then, leads to the

augmented synthesis equations

Sak = ba (3.108a)

where

Sa =

[
S

uT

]

, ba =

[
b

0

]

(3.108b)
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with u = [0, 0, 1, 0]T , and hence, Sa now becomes of (m + 1) × 4, while ba is now

(m+ 1)-dimensional.

But least-square approximations allow for more flexibility, if we introduce weights in

eq.(3.108a), by means of a (m+ 1)× (m+ 1) constant matrix Va:

VaSak = Vaba (3.109a)

with

Va =

[
V 0m

0m
T v

]

(3.109b)

in which V is a m×m block, 0m is the m-dimensional zero matrix, and v is a scalar. Both

V and v are assigned by the user under the only constraint of avoiding the introduction

of large roundoff-error amplification. We will describe presently how to prescribe V and

v.

Notice that the least-square approximation k0 of eq.(3.109a) now becomes, symboli-

cally,

k0 = [(VaSa)
T (VaSa)]

−1(VaSa
T )Vaba

= (Sa
TWaSa)

−1Sa
TWaba, Wa ≡ Va

TVa (3.110)

in which the symmetric and positive-definite Wa is termed a weighting matrix.

Also notice that

Wa =

[
VT 0m

0m
T vm+1

] [
V 0m

0m
T vm+1

]

=

[
W 0m

0m
T wm+1

]

(3.111a)

with

W = VTV, wm+1 ≡ v2
m+1 (3.111b)

Since no constraint is imposed on V, besides robustness to round-off error amplifica-

tion, V can be freely chosen as symmetric and positive-definite, and hence, nonsingular,

whence

V2 = W ⇒ V =
√

W (3.112a)

where
√

W denotes the the positive-definite square root of W. Now, the simplest matrices

to square-root are diagonal matrices, W then being chosen as

W = diag(w1, w2, . . . , wm) (3.112b)

Now, the error vector in the approximation of eqs.(3.109a) is

ea = Va(Sak− ba) =

[
V 0m

0m
T vm+1

] [
Sk− b

k3

]

(3.113a)
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whose Euclidean norm is

‖ea‖2 = [kTST − bT k3 ]

[
V2 0m

0m
T v2

m+1

] [
Sk− b

k3

]

= (kTST − bT )W(Sk− b) + wm+1k
2
3

=
m∑

i=1

wie
2
i + wm+1k

2
3 (3.113b)

which thus yields a weighted error-norm. In order to avoid large roundoff-error amplifi-

cation, we choose the weighting factors {wi }m+1
1 as

m+1∑

i=1

wi = 1, 0 ≤ wi ≤ 1, i = 1, . . . , m (3.114)

so that ‖ea‖2 becomes a convex combination of all m+ 1 errors. If no preference is given

to the set { ei }m1 , then the first m weights can be chosen all equal, while wm+1 is to be

chosen so as to enforce |k3| to be smaller than unity but, if wm+1 is chosen unnecessarily

large, then |k3| will be “too small” at the expense of a “large” design error. The best

compromise is to be chosen by trial and error.

The Approximate Synthesis of Spatial Linkages

The synthesis equations (3.41) for the spatial four-bar linkage are reproduced below for

quick reference:

Ŝk̂ = b̂ (3.115)

These equations can be shown to admit the least-square solution

k̂0 = ŜI b̂, ŜI = (ŜT Ŝ)−1ŜT b̂ (3.116)

The inverse of the dual square matrix in the foregoing relations is computed using eq. (A.13)

of the Appendix:

(ŜT Ŝ)−1 = (STS)−1 − ǫ(STS)−1(STSo + STo )(STS)−1 (3.117)

Upon substitution of expression (3.117) in eq.(3.116), and expansion of the expression

thus resulting, the least-square approximation k̂0 is obtained as

k̂0 = (STS)−1STb
︸ ︷︷ ︸

k0

+ǫ (STS)−1[STo b + STbo − (STSo + STo S)(STS)−1STb]
︸ ︷︷ ︸

ko0

(3.118)

While the above expressions for the least-square approximation of the primal part of

k̂, k0, and its dual counterpart ko0 are theoretically sound, they are not appropriate for

computations verbatim, given the large amount of floating-point operations involved, and

their need of the inverse (STS)−1, which, as we saw in Remark 1.4.3, is not advisable
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to compute verbatim because of the large condition number of the matrix product. An

efficient, reliable computational scheme is outlined below:

We recall the synthesis equations (3.46), which lead to

Sk = b (3.119a)

Sko = bo − Sok (3.119b)

where the primal parts of the dual Freudenstein parameters, arrayed in vector k, are first

computed, using an orthogonalization method, from eq.(3.119a). The dual parts of the

same parameters, arrayed in vector ko, are next computed likewise from eq.(3.119b). If, for

example, the least-square approximation k0 to eq.(3.119a) is computed with Householder

reflections, which yield a transformed matrix T in upper-triangular form, then the same

transformed matrix is used to compute the least-square approximation ko0 to eq.(3.119b).

Again, nothing guarantees that k1 and k3, as per Remark 3.3.2, will comply with

the conditions therein, and yield a feasible linkage—these conditions were imposed on

spherical linkages, but since the primal equations of spatial linkages are identical to those

of the former, the conditions at stake apply to the latter as well. The first condition,

|k3| ≤ 1, can be enforced via a weighted least-square approach, as introduced in connection

with spherical linkages.

3.6 Linkage Performance Evaluation

3.6.1 Planar Linkages: Transmission Angle and Transmission

Quality

A variable of merit which is used to assess the linkage performance is the transmission

angle µ, illustrated in Fig. 3.1. The transmission angle is thus the angle between the axes

of the output and the coupler links.

The relevance of this angle is apparent from a kinetostatic analysis: From Fig. 3.14,

the force transmitted by the linkage to the frame has a magnitude |F41| given by

|F41| = |F14| = |F34| (3.120)

where, from the static equilibrium of link 1,

|F34| = |F32| =
∣
∣
∣
∣

τψ
a2 sin(ψ − θ)

∣
∣
∣
∣

(3.121)

and τψ is the applied torque that balances statically the load torque τφ.

The magnitude of the radial component of F14, denoted by |F14|r, is derived upon

substitution of eq.(3.121) into eq.(3.120), thus obtaining

|F14|r ≡ |F14| cosµ =

∣
∣
∣
∣

τψ cosµ

a2 sin(ψ − θ)

∣
∣
∣
∣

(3.122)
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Figure 3.14: A static analysis of the four-bar linkage

from which it is clear that |F14|r is proportional to the magnitude of the applied moment

and to the cosine of the transmission angle. Since this is a nonworking force, one is

interested in keeping it as low as possible. However, it cannot be made zero by simply

making zero the applied torque because, then, no useful force would be transmitted! Thus,

the only possible way of keeping that force as small as possible is by keeping | cosµ| as

small as possible, i.e., by keeping |µ| as close as possible to 90◦.

Clearly, the transmission angle is posture-dependent and, hence, cannot be maintained

at a fixed value for all the linkage postures. In practice,a minimum allowable value on

the transmission angle or, rather, on its absolute value, is prescribed. This is commonly

accepted as 45◦, i.e., a specification when designing four-bar linkages is

|µ| ≥ 45◦ (3.123)

If one is interested in evaluating the overall performance of a four-bar linkage whose

input link is capable of moving between ψ1 and ψ2, then a merit function of the linkage

cosidering all possible postures is needed. This is the transmission quality of the linkage,

which is defined as

Q ≡
√

1

∆ψ

∫ ψ2

ψ1

sin2 µdψ, ∆ψ ≡ ψ2 − ψ1 (3.124)

From the foregoing definition, note that

0 < Q < 1 (3.125)

Evaluating Q as given above is rather difficult because an expression for sinµ is not readily

derivable. However, an expression for cosµ can be readily derived. Indeed, from Fig. 3.1

and the “cosine law”, two expressions for O2O4 can be derived:

O2O4
2

= a2
3 + a2

4 − 2a3a4 cosµ (3.126a)

O2O4
2

= a2
1 + a2

2 − 2a1a2 cosψ (3.126b)
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Upon equating the two right-hand sides of the foregoing equations, an expression for cosµ

is derived, namely

cosµ =
a2

3 + a2
4 − a2

1 − a2
2 + 2a1a2 cosψ

2a3a4

(3.127)

If now relations (3.68) are recalled, an expression for cosµ in terms of the linkage param-

eters {ki}31 is obtained:

cosµ = sgn(k2k3)(c1 + c2 cosψ) (3.128a)

where coefficients c1 and c2 are defined as

c1 ≡
k2 − k1k3√

D
, c2 =

k2
3√
D

(3.128b)

D ≡ k2
2 + k2

3 + k2
2k

2
3 − 2k1k2k3 (3.128c)

Now the transmission quality Q can be written as Q =
√

1− δ2 where δ is the integral of

cos2 µ over the full mobility interval of the input link, i.e.,

δ ≡
√

1

∆ψ

∫ ψ2

ψ1

cos2 µdψ, ∆ψ ≡ ψ2 − ψ1 (3.129)

and, by virtue of the relation between the transmission quality Q and δ, namely,

Q2 + δ2 = 1 (3.130)

it is reasonable to call δ the transmission defect of the linkage. Hence, maximizing Q is

equivalent to minimizing δ. Note that δ2 can be written as

δ2 ≡ 1

∆ψ

[

c21∆ψ + 2c1c2(sinψ2 − sinψ1) +
1

2
c22∆ψ +

c22
4

(sin 2ψ2 − sin 2ψ1)

]

(3.131)

If, in particular, the input link is a crank, then,

δ2 = c21 +
1

2
c22 (3.132)

In synthesizing a four-bar linkage for function generation, the location of the zeros of

the dials of the ψ and φ values is normally immaterial. What matters is the incremental

values of these angles from those zeros. We can thus introduce parameters α and β

denoting the location of the zeros on the ψ and the φ dials, respectively, so that now

ψi = α + ∆ψi, φi = β + ∆φi, for i = 1, 2, . . . , m (3.133)

We can thus regard the least-square approximation k0 as a function of α and β, i.e.,

k0 = k0(α, β) (3.134)

It is apparent, then, that the two new parameters can be used to optimize the linkage

performance, e.g., by minimizing its defect δ.
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As it turns out, the transmission angle plays an important role not only in the force-

transmission characteristics of the linkage, but also in the sensitivity of its positioning

accuracy to changes in the nondimensional parameters k. Indeed, if we make abstraction

of the parameters α and β, for simplicity, we can calculate the sensitivity of the synthesized

angle φi to changes in k from the input-output equation (3.11) written for them prescribed

input-output pairs. We display below the ith component of this vector equation:

Fi(ψi, φi,k) = k1 + k2 cos φi − k3 cosψi − cos(ψi − φi) = 0, i = 1, 2, . . . , m (3.135)

where φi is one of the two values of φ that verify the above equation for ψ = ψi, namely,

the one lying closest to φi, as introduced in eq.(3.101). The sensitivity of interest is,

apparently, ∂φi/∂k, which is computed below:

dFi
dk

=
∂Fi
∂φi

∂φi
∂k

+
∂Fi
∂k

= 0

whence,
∂φi
∂k

= − ∂Fi/∂k
∂Fi/∂φi

(3.136)

Now, we calculate ∂Fi/∂φi from eq.(3.135):

∂Fi
∂φi

= −k2 sin φ− sin(ψi − φi) = −a1 sinφi − a2 sin(φi − ψi)
a2

(3.137)

A pertinent relation among the variables and parameters involved in eq.(3.137) is

displayed in Fig. 3.15. From this figure,

a1 sinφi − a2 sin(φi − ψi) = a3 sin µi (3.138)

Upon substitution of eq.(3.138) into eq.(3.137), we obtain

∂Fi
∂φi

= −a3

a2

sin µi (3.139a)

which, when substituted into eq.(3.136), yields

∂φi
∂k

=
a2

a3 sinµi

∂Fi
∂k

(3.139b)

Furthermore,

∂Fi
∂k

=





1

cosφi

− cosψi



 (3.139c)

and hence,

∂φi
∂k

=
a2

a3 sin µi





1

cosφi

− cosψi



 (3.139d)
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Figure 3.15: Relation between the transmission angle and the parameters and variables

of a four-bar linkage

It is now apparent that the larger | sinµi|, the less sensitive the positioning accuracy

of the linkage is to changes in the linkage dimensions.

An interesting relation between the linkage discriminant defined in eq.(3.78a) and the

transmission angle is now derived. From the expression for cosµ obtained in eqs.(3.128a),

an expression for sin2 µ is readily obtained, in terms of the Freudenstein parameters, as

sin2 µ =
k2

3

k2
2 + k2

3 + k2
2k

2
3 − 2k1k2k3

∆(ψ) (3.140a)

where ∆(ψ) is the linkage discriminant of eq.(3.78a), reproduced below for quick reference:

∆(ψ) ≡ −k2
3 cos2 ψ + 2(k1k3 − k2) cosψ + (1− k2

1 + k2
2) ≥ 0 (3.140b)

which is nonnegative at feasible postures.

Apparently, then, for a given linkage, the square of the sine of the transmission angle

is proportional to the discriminant. Hence, both vanish at dead points of the input link,

which occur when this is a rocker.
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3.6.2 Spherical Linkages: Transmission Angle and Transmission

Quality

3.6.3 Spatial Linkages: Transmission Angle and Transmission

Quality

3.7 Design Error vs. Structural Error

In this section we establish the relation between the design error and the structural error.

In doing this, we build upon the analysis proposed by Tinubu and Gupta (1984).

The structural error was introduced in eq.(3.101); this definition is reproduced below

for quick reference:

s ≡ [φ1 − φ1 φ2 − φ2 · · · φm − φm ]T (3.141)

where, it is recalled, φi denotes the generated value, φi the prescribed value of the output

angle for a given value ψi of the input angle. In the ensuing discussion we assume that

the synthesis equations are cast in the general form

Sk = b (3.142)

regardless of the type of linkage, planar, spherical or spatial. In this context, S is a m×n
matrix, while k and b are n- and m-dimensional vectors, respectively. Obviously, n = 3, 4

or 8, depending on the type of linkage, planar, spherical or spatial7. In the case of spatial

linkages, a second equation of the same gestalt as that of eq.(3.142), involving a second

vector of Freudenstein parameters—the dual part of the dual vector k̂—occurs, as per

eqs.(3.119a & b).

In minimizing the structural error, we aim at minimizing the root-mean square (rms)

value of the components of vector s over k:

z ≡ 1

2m
‖s‖2 → min

k
(3.143)

where ‖s‖ is the Euclidean norm of s. In fact, we aim at minimizing the square of one-half

the rms value of the structural error at the m prescribed points. The positive scalar z

can be fairly called the square of the positioning error.

The above function attains a stationary value with respect to k when its gradient

vanishes, i.e.,

∇z ≡ ∂z

∂k
=

(
∂s

∂k

)T
∂z

∂s
= 0n (3.144)

with 0n denoting the n-dimensional zero vector. The above equation is the normality

condition of the minimization problem at hand. Apparently,

∂z

∂s
=

1

m
s (3.145)

7See footnote 4 of this chapter.
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Now, in order to compute ∂s/∂k, we recall the definition of s, eq.(3.141), whence,

∂s

∂k
=
∂φ

∂k
(3.146)

where φ is the m-dimensional vector whose ith component is the ith generated value of

the output angle, in the same way that φ denotes the m-dimensional vector whose ith

component is the ith prescribed value of the output angle, i.e.,

φ ≡








φ1

φ2
...

φm







, φ =








φ1

φ2
...

φm








(3.147)

the ith row of matrix ∂φ/∂k, for the planar case, being displayed in eq.(3.139d) as a

column array.

Now, in order to compute ∂φ/∂k, we need an equation relating the arrayφ of generated

values of the output angle with vector k. One candidate would be the m synthesis

equations (3.142), which define the design error e:

e ≡ e(φ, k) = Sk− b (3.148)

The above expression is, in general, different from zero, when evaluated at the prescribed

values φi of the output angle, for i = 1, . . . , m, and hence, does not define an implicit

equation in φ and k. As a matter of fact, the problem of approximate synthesis consists

in minimizing the Euclidean norm of the nonzero vector e.

However, when the above vector is evaluated at the generated values φi of the output

angle, for i = 1, . . . , m, then it does vanish. Indeed, the ith component of e as defined

in eq.(3.148) is nothing but the input-output function F (ψ, φ) = 0 evaluated at ψi for a

given linkage defined by k. In our case, k is the current value, within an iterative process

to be formulated in Subsection 3.7.1, of the unknown vector of linkage parameters, the

Freudenstein parameters. Upon solving the input-output equation for φ, two values of φi

are obtained, as found in Section 3.4, and hence, the function does vanish at these two

values. We will assume that, of these two values, φi is chosen as the one closer to φi. We

thus have

F (ψi, φi) ≡ sTi k− bi = 0 (3.149)

in which sT
i denotes the ith row of S and bi the ith component of b.

To avoid confusion, let us distinguish between the design error e when evaluated at φ

and when evaluated at φ, by denoting the latter by e, i.e.,

e ≡ e(φ, k) = Sk− b 6= 0 (3.150)

where S and b denote S and b, respectively, when evaluated at the prescribed values of

the input angle, {ψi }m1 and at the generated φ.
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Moreover, when we evaluate e at the generated value φ, we obtain

e ≡ e(φ, k) = Sk− b = 0m (3.151)

which is an implicit vector function of φ and k, and hence, allows for the evaluation of

∂φ/∂k. Upon differentiation of eq.(3.151) with respect to k, we obtain

de

dk
=
∂e

∂k
+
∂e

∂φ

∂φ

∂k
= Omn (3.152)

where Omn is the m × n zero matrix. Moreover, the m ×m matrix ∂e/∂φ is computed

from the input-output equation (3.149). Since ek is influenced only by φk, and not by φj ,

for j 6= k, ∂e/∂φ is diagonal, i.e.,

∂e

∂φ
= diag [ ∂e1/∂φ1 ∂e2/∂φ2 · · · ∂em/∂φm ] ≡ D (3.153a)

Under the assumption that none of the diagonal elements of D vanishes, this matrix

is nonsingular, and hence, the matrix ∂φ/∂k sought can be solved for from eq.(3.152).

Furthermore, it is apparent from eq.(3.151) that ∂e/∂k is nothing but the synthesis matrix

S, i.e.,
∂e

∂k
= S (3.153b)

Hence, ∂φ/∂k, as computed from eq.(3.152), is

∂φ

∂k
= −D−1S (3.154)

Therefore, the normality condition (3.144) leads to

STD−1s = 0n (3.155)

where 0n denotes the n-dimensional zero vector. The normality condition thus states

that, for k to produce a stationary value of the positioning error—proportional to the

square of the rms value of the structural error s—the structural error s must lie in the

null space of the matrix product STD−1. That is, the structural error of minimum norm

need not vanish and, in general, it won’t, but must verify eq.(3.155).

Now, contrary to the minimization of the design error, the minimization of the posi-

tioning error thus leads to a nonlinear least-square problem, which must be solved itera-

tively, as described in Subsection 3.7.1.

3.7.1 Minimizing the Structural Error

The approach followed here is similar to the Newton-Gauss method used to solve non-

linear least-square problems, as outlined in Subsection 1.6.1: for starters, a sequence

s0, s1, . . . , si, si+1 of structural-error vector values is generated, which, upon convergence,
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should verify the normality condition. For a given si, an improved vector value si+1 is

obtained from the first-order approximation of s:

si+1 ≈ si +
∂s

∂k

∣
∣
∣
∣
k=ki

∆ki = si −D−1
i Si∆ki (3.156)

where Di ≡ D|k=ki and Si ≡ S|k=ki. Hence,

D−1
i Si∆ki = si − si+1 (3.157)

Upon solving for ∆ki, the above equation allows the updating of k as ki+1 = ki +

∆ki. However, in eq.(3.157) we don’t know si+1. Moreover, upon convergence, s needn’t

vanish, and most likely it won’t. We can thus assume that si+1 6= 0m, but, if ki+1 is

an improvement over ki, then the corresponding structural error si+1 will be “close” to

verifying the normality condition (3.155). In fact, let us assume that si+1 does verify the

normality condition. Further, let us multiply both sides of eq.(3.157) from the left by

STi D
−1
i , which yields

STi D
−1
i D−1

i Si∆ki = STi D
−1
i si (3.158)

where the term linear in si+1 has been dropped because it has been assumed to verify the

normality conditions. In eq.(3.158) the coefficient of ∆ki is a square n× n matrix, which

allows for the computation of ∆ki in the form

∆ki = (STi D
−2
i Si)

−1STi D
−1
i si (3.159)

thereby showing that the correction ∆ki can be computed with the numerical values

available at the ith iteration. In fact, the expression for ∆ki given in eq.(3.159) should

be regarded as a formula, not as an algorithm. Indeed, the verbatim inversion of the

matrix in parentheses in the foregoing equation is to be avoided due to its high condition

number 8. As a matter of fact, the condition number, in either the Euclidean or the

Frobenius norm, of the same n× n matrix is exactly the square of the same norm of the

m × n matrix D−1
i Si. Hence, a formulation is sought that will allow the computation of

∆ki from a system of equations involving the foregoing rectangular matrix. If we recall

Subsection 1.4.5, the right-hand side of eq.(3.159) is the least-square approximation of the

overdetermined system

(D−1
i Si)∆ki = si (3.160)

which is identical to eq.(3.157) when the therm si+1 is dropped. Notice, however, that

this term couldn’t simply be dropped from the above-mentioned equation on the basis

that the said term vanishes, because the structural error is not expected to vanish at the

optimum solution. The computation of ∆ki from eq.(3.160) now should be pursued via

an orthogonalization procedure, as studied in Subsection 1.4.5. With ∆ki calculated, the

8See the definition of this concept in Section 1.4.4.
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ith iteration is complete, as a new, improved value ki+1 of the design parameter vector

k is available. Now the new structural-error vector value si+1 can be computed, and

then the normality condition verified. If the condition is not verified, a new iteration

is in order; if the same condition is verified, then the procedure stops. An alternative

convergence criterion, equivalent to the latter, is to verify whether ‖∆ki‖ < ǫ, for a

prescribed tolerance ǫ. The equivalence of the two criteria should be apparent from the

relation between ∆ki and the product of the last three factors of the right-hand side of

eq.(3.159).

Branch-switching Detection

In the foregoing analysis an implicit assumption was adopted: all generated values {φi }m1
lie on the same linkage branch. However, all four-bar linkages studied in this chapter,

planar, spherical and spatial, were shown in Section 3.4 to be bimodal, i.e., they all entail

two solution branches of their input-output equation. This means that, within an iteration

loop, the occurrence of branch-switching should be monitored. Below we explain a simple

means of doing this, as applicable to planar linkages. The two branches of a typical

planar four-bar linkage are apparent in Fig. 3.13. In this figure, the transmission angle is

µ = ∠BCD in one branch, in the second being µ′ = ∠BC ′D. The qualitative difference

between the two branches lies in the sign of the transmission angle, for, in the first branch,

we have sin µ > 0; in the second, sinµ′ < 0. Moreover, sinµ vanishes at dead points, when

the input angle reaches either a maximum or a minimum—linkages of this kind have an

input rocker. Hence, a simple way of deciding whether all values {φi }m1 lie in the same

branch relies on the computation of sinµ with the correct sign. This is most simply done

by means of the 2D version of the cross product9 of vectors
−−→
CB = b−c and

−−→
CD = d−c,

in this order, where b, c and d are the position vectors of points B, C and D, respectively,

in the given coordinate frame. The product at stake is given by

p ≡ (b− c)TE(d− c) = ‖b− c‖‖d− c‖ sinµ = a3a4 sinµ (3.161)

with E introduced in eq.(1.1a). Given that the link lengths are positive, we have the

relation

sgn(sinµ) = sgn(p) (3.162)

which now can be used to monitor branch-switching.

9See Subsection 1.4.1.
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3.7.2 Introducing a Massive Number of Data Points

3.8 Synthesis Under Mobility Constraints

3.8.1 Constrained Least Squares

3.8.2 Introducing a Massive Number of Data Points

3.9 Synthesis of Complex Linkages

3.9.1 Synthesis of Stephenson Linkages
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Chapter 4

Motion Generation

This chapter has not been updated. It will be based, to a large extent, on

1. Chen, C., Bai, S.P. and Angeles, J., 2008, “A comprehensive solution of the classic

Burmester problem,” CSME Transactions, Vol. 32, No. 2, pp. 137–154.

2. Chiang, C.H., 1988, Kinematics of Spherical Mechanisms, Cambridge University

Press, Cambridge.

3. McCarthy, J.M., 2000, Geometric Design of Linkages , Springer, New York.
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Chapter 5

Path Generation

Disclaimer: This chapter is still at a very preliminary state. It should be taken with a

grain of salt!

5.1 Introduction

A recurrent problem in mechanical engineering design is the tracing of a continuous path

by means of a mechanism. Examples abound in practice: cranes to upload and download

containers from ships; guiding of laser beams to cut a profile from a metal plate; and so on.

While the foregoing operations can be realized by means of robots, these become imprac-

tical when the operation involves endless repetitions through the same path. A single-dof

linkage is the solution here not only because of its low cost in terms of production, main-

tenance and servicing, but also because of repeatability. A robot cannot compete with

a linkage in terms of repeatability. Other applications include the synthesis of dwell in

production lines. For example, the gluing of labels or the filling of a bottle, presented

to the pertinent mechanism of a packaging system, calls for contact of a mechanism link

with the bottle during a finite amount of time. From the results of Subsection 3.3.1, it is

apparent that a four-bar linkage cannot produce dwell, which requires that output veloc-

ity and acceleration vanish simultaneously during a finite time interval. This then calls

for a multiloop linkage, e.g., a six-bar linkage with two kinematic loops. The synthesis of

a dwell mechanism then requires the addition of an extra triad1 to a four-bar linkage. The

triad can be of two types, RRR or RPR, with the extreme R joints coupled to the machine

frame and to the coupler link of the four-bar linkage, at a designated point P . For triads

of the first type, dwell is obtained by choosing the point P so that it traces, during a

certain finite interval, a coupler curve (CC) that locally approximates a circle of radius r

to a third order, meaning that the curvature of the CC is 1/r at the linkage posture at

1Similar to a dyad, a tryad is a two-link chain, with two LKPs at its free ends and one third pair

coupling both.
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which the curvature becomes stationary with respect to the input angle of the four-bar

linkage. Points of the coupler curve with the stationarity property are known (Denavit

and Hartenberg, 1964) to lie on a cubic curve fixed to the coupler link, this curve being

quite appropriately known as the cubic of stationary curvature. For triads of the second

type, P is chosen so that its coupler curve locally approximates a line segment to a second

order, meaning that the curvature of the CC traced by P vanishes at a given posture

of the linkage. It is known (Denavit and Hartenberg, 1964) that the locus of points of

the coupler link with a vanishing curvature is a circle, which is rightfully known as the

inflection circle. Both loci are unique at a given linkage posture, meaning that these loci,

fixed on the coupler link, change as the linkage moves from posture to posture.

The balance of the chapter discusses the methodology behind the synthesis of planar,

spherical and spatial four-bar linkages with the property that one point, the planar case,

or one line, the case of the spherical and the spatial cases, of their coupler link, will visit

a discrete set of points or, correspondingly, lines.

5.2 Planar Path Generation

The problem to be solved here is formulated as:

Problem 5.2.1 (Path generation) Synthesize a planar four-bar linkage, as shown in

Fig. 5.1, whose coupler point R will attain a set of positions {Rj}m0 , as the linkage is

driven by its input link.

In the problem statement above, the input link is to be decided by the designer. It

could be any one of the two links pinned to the machine frame, BA or B∗A∗. Before the

assignment of the driving function to one of the two foregoing links, it is futile to speak

of the transmission angle2 in this case, although it is common in the literature to find

synthesis problems in which the transmission angle is to be optimized at this stage.

The general method of linkage synthesis for path generation is based on the synthesis

equations derived for motion generation (Chen et al., 2008), which stem from Fig. 5.2,

and recalled below for quick reference: for dyad BA0,

bT (1−Qj)a0 + rTj Qja0 − rTj b +
1

2
rTj rj = 0 , for j = 1, . . . , m (5.1a)

while, for dyad B∗A∗
0,

(b∗)T (1−Qj)a
∗
0 + rTj Qja

∗
0 − rTj b

∗ +
1

2
rTj rj = 0 , for j = 1, . . . , m (5.1b)

If matrix Qj in the above equations is substituted by the expression given in eq.(1.6),

with φj in lieu of θ, eq.(5.1a) becomes

(b + rj)
T (cj1 + sjE)a0 + rTj

(

b +
1

2
rj

)

= 0, for j = 1, . . . , m

2This concept is defined in Section 3.2.1.
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X0

Y0

θ0

A∗
0

R0 ≡ O0

B∗

B

A0

θjφj

Rj

Aj

Figure 5.1: A planar four-bar linkage whose point R is to visit a set of positions {Rj }m0

with a similar expression for eq.(5.1b) and the definitions: cj ≡ cosφj and sj ≡ sinφj.

If now the tan-half identities of eq.(3.70) are introduced in the above equation, a set of

polynomial equations is obtained upon clearing denominators: for dyad BA0,

(b + rj)
T [(1− T 2

j )1 + 2TjE]a0 + rTj

(

b +
1

2
rj

)

(1 + T 2
j ) = 0 , for j = 1, . . . , m (5.2a)

while, for dyad B∗A∗
0,

(b∗ + rj)
T [(1− T 2

j )1 + 2TjE]a∗
0 + rTj

(

b∗ +
1

2
rj

)

(1 + T 2
j ) = 0 , for j = 1, . . . , m (5.2b)

In summary, then, the problem involves 8 +m unknowns, the two components of the

four position vectors a0, b, a∗
0 and b∗, plus the m angles of orientation of the coupler

link, { θj }m1 . The number of equations is 2m, i.e., m equations for each set of eqs. (5.2a

& b). The maximum number of points that can be visited with a planar four-bar linkage

is obtained by equating the number of equations with that of unknowns, namely,

8 +m = 2m, ⇒ mmax = 8 (5.3)

and, if the reference location R0 is considered, the total number of points in the plane

that can be visited with a planar four-bar linkage is nine.

It should be apparent now that each of equations (5.2a & b) is quartic in the 8 + m

unknowns, a0, b, a∗
0 and b∗, { Tj }m1 . The Bezout number NB of the system of equations

(Salmon, 1964), for the maximum number of prescribed points, is, then,

NB = 42mmax = 416 = 232 = 4294967296 (5.4)
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which is about 4.3 billion! As a matter of fact, because of a concept from algebraic

geometry known as circularity, the actual number of expected roots drops dramatically.

An interesting case is m = 4, which leads to eight equations in 12 unknowns, thereby

allowing for the free choice of four of these unknowns. Morgan and Wampler (1990)

solved an instance of this problem in which they specified the two fixed joint centres B

and B∗. In this case the problem is reduced to our quartic equations in four unknowns,

with a Bezout number of 44 = 256. They showed that this problem admits, in fact, up to

36 nonzero real solutions only.

The algebraic complexity of this problem reduces when the prescribed points are to

be visited at prescribed values of the input angle, a problem known as path generation

with prescribed timing. This problem is the subject of Section 5.3.

5.3 Planar Path Generation With Prescribed Timing

If the problem of path generation calls for a synchronization of the points {Rj }m0 with the

values of the input angle, that will be assumed to be that of BA with X0, as per Fig. 5.1,

{ψj }m0 , then we have a problem of path generation with prescribed timing. This is the

case in which one may need, for example, to have points {Rj }m0 laid down on a line with

equal spacing between consecutive points, for equal increments of the input angle.

The data are thus given as {Rj, ψj }m0 . As Qj is unknown, the synthesis equations

are derived now upon elimination of this matrix from eqs.(5.1a & b), as described below.

Notice, however, that the set of values of the input angle, {ψj }m0 , are now given.

Elimination of Qj

Since the input link BA undergoes rotations about B, we can write

aj − b = Rj(a0 − b) , for j = 1, . . . , m (5.5)

where Rj is the rotation matrix carrying BA0 into BAj through angle βj = ψj−ψ0. Since

timing is prescribed, introduction of matrices Rj does not introduce additional unknowns.

Moreover, matrix Rj can be represented using eq.(1.6), with θ replaced by βj , namely,

Rj = cosβj1 + sin βjE , for j = 1, . . . , m

where 1 is the 2× 2 identity matrix and E is the 90◦-ccw rotation matrix introduced in

eq.(1.1a). Referring to Fig. 5.2, we can write

aj − rj =
−−−→
RjAj = Qj

−−−→
R0A0 = Qja0, for j = 1, . . . , m

Upon substituting eq.(5.5) into the above equation, we obtain

Qja0 = Rja0 + (1−Rj)b− rj , j = 1, . . . , m (5.6)
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Now, if we substitute eq.(1.6) into the above equation, with φj in lieu of θ, we end up

with

cφja0 + sφjEa0 = Rja0 + (1−Rj)b− rj , j = 1, . . . , m

which can be cast in the form

[ a0 Ea0 ]

[

cφj

sφj

]

= Rja0 + (1−Rj)b− rj
︸ ︷︷ ︸

cj

, j = 1, . . . , m

Consequently, we can readily solve the above equation for cφj and sφj as
[

cφj

sφj

]

= [ a0 Ea0 ]−1cj =
1

‖a0‖2

[

aT0 ET

−aT0

]

Ecj =
1

‖a0‖2

[

aT0 cj

−aT0 Ecj

]

,

j = 1, . . . , m

where we have recalled the formula for the inverse of a 2× 2 matrix given in Fact 1.4.2.

The Equation for the BA0R Dyad

When the expression for Qja0 of eq.(5.6) is substituted into the synthesis equations (5.1a),

we obtain

bTa0 − bTRja0 − bT (1−Rj)b + rTj Rja0 + rTj Rjb− rTj b−
1

2
rTj rj = 0 , j = 1, . . . , m

which simplifies to

bT (1−Rj)b + bT (Rj − 1)a0 + rTj (Rj − 1)b− rTj Rja0 +
1

2
rTj rj = 0 , (5.7)

thereby deriving the m synthesis equations for the left-hand dyad of Fig. 5.2 for the

problem at hand. Apparently, these equations are quadratic in b and linear in a0, their

degree being two.

The Equation for the B∗A∗
0R Dyad

Vector Qja
∗
0 appearing in eq.(5.1b) can be derived by mimicking eq.(5.6), which yields

Qja
∗
0 = [ a∗

0 Ea∗
0 ]

[

cφj

sφj

]

=
1

‖a0‖2
[(aT0 cj)a

∗
0 − (aT0 Ecj)Ea∗

0] , for j = 1, . . . , m

or

Qja
∗
0 =

1

‖a0‖2
[
(aT0 cj)1− (aT0 Ecj)E

]
a∗

0 , j = 1, . . . , m

Substituting the above expression into eq.(5.1b), we obtain, after clearing the denomina-

tor,

(b∗)T
[
(‖a0‖2 − aT0 cj)1 + (aT0 Ecj)E

]
a∗

0 + rTj
[
(aT0 cj)1− (aT0 Ecj)E

]
a∗

0

−‖a0‖2rTj b∗ +
1

2
‖a0‖2‖rj‖2 = 0 j = 1, . . . , m (5.8)

which are the synthesis equations for the right-hand dyad of Fig. 5.2 for the problem at

hand. Apparently, these m equations are all cubic.
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Remarks

• We have 2m equations, (5.7 & 5.8), to solve for eight unknowns—the components of

a0, b, a
∗
0, b

∗. Therefore, to have a determined system of equations, we must have

m = 4, which implies that up to five points can be visited in a plane using a four-bar

linkage, with prescribed timing.

• Since the system of eqs.(5.7 & 5.8) involves four quadratic and four cubic equations

in the unknowns {a0,b}, the Bezout number NB of the system, which gives an upper

bound for the number of roots to expect, thus being NB = 24 × 34 = 1296

• Equations (5.7) are linear in a0 and quadratic in b. Consequently, we can eliminate

a0 by casting the said system in the form

Bx = 0 (5.9)

in which x = [ aT0 1 ]T and B is a 4× 3 matrix function of b of the form

B =








bT (R1 − 1)− rT1 R1 bT (1−R1)b + rT1 (R1 − 1)b + (1/2)rT1 r1

bT (R2 − 1)− rT2 R2 bT (1−R2)b + rT2 (R2 − 1)b + (1/2)rT2 r2

bT (R3 − 1)− rT3 R3 bT (1−R3)b + rT3 (R3 − 1)b + (1/2)rT3 r3

bT (R4 − 1)− rT4 R4 bT (1−R4)b + rT4 (R4 − 1)b + (1/2)rT4 r4








For the 4× 3 matrix B to have a nontrivial null space, which is needed in light of

the form of x, B must be rank-deficient. This means that every 3× 3 submatrix of

B must be singular. We can thus derive four bivariate polynomial equations in the

Cartesian coordinates u and v of B, the components of b, namely,

∆j(u, v) = det(Bj) , for j = 1, . . . , 4 (5.10)

where ∆j is the determinant of the jth 3 × 3 submatrix Bj, obtained by deleting

the jth row of B. Notice that ∆j can be computed by the cofactors of the third

column of its corresponding matrix. Moreover, this column is quadratic in b, the

corresponding cofactors being determinants of 2 × 2 matrices whose entries are

linear in b. Such a determinant is expanded in Fact 1.4.1, Subsection 1.4.2, in

which it is apparent that this determinant is a bilinear expression of its rows or,

correspondingly, of its columns. Hence, each 2 × 2 cofactor is quadratic in b, the

result being that ∆j is quartic in b. Therefore, the Bezout number of any pair of

those equations is NB = 42 = 16.

Moreover, each eq.(5.10) defines a contour in the u-v plane. The real solutions of

system (5.9) can be visually estimated by plotting them contours in the same figure.

Notice that, at the outset, we do not have bounds for the location of B in the u-v
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plane. However, we always have a region available of this plane in which we can

anchor the revolute center B. Our first attempt of finding real solutions for B is

thus this region.

Once b is known, we can solve for a0 from eq.(5.9) using a least-square approxima-

tion. To this end, we rewrite eq.(5.9) in the form

Ma0 = n

where

M =








bT (R1 − 1)− rT1 R1

bT (R2 − 1)− rT2 R2

bT (R3 − 1)− rT3 R3

bT (R4 − 1)− rT4 R4







, n =








bT (R1 − 1)b− rT1 (R1 − 1)b− (1/2)rT1 r1

bT (R2 − 1)b− rT2 (R2 − 1)b− (1/2)rT2 r2

bT (R3 − 1)b− rT3 (R3 − 1)b− (1/2)rT3 r3

bT (R4 − 1)b− rT4 (R4 − 1)b− (1/2)rT4 r4








• Equation (5.8) is bilinear in b∗ and a∗
0. Once we have a0 and b from eq.(5.9), we

can solve eq.(5.8) for a∗
0 and b∗ using dialytic elimination, as we did in the motion-

generation case. That is, computing b∗ and a∗
0 leads to the solution of one quartic

polynomial. We need not find the roots of this polynomial numerically, if we apply

the contour technique introduced in Chapter 4.

Reducing the Degree of the Synthesis Equations of the BA0R

Dyad

Using the definition of Qj of eq.(1.6), the first term of eq.(5.7) can be further simplified

to

bT (1−Rj)b = bT [(1− cβj)1 + sβjE]b = (1− cβj)‖b‖2 , j = 1, . . .m

where we used the identity bTEb ≡ 0, because matrix E is skew-symmetric. Thus,

eq.(5.7) reduces to

(1− cβj)‖b‖2 + bT (Rj − 1)a0 + rTj (Rj − 1)b− rTj Rja0 +
1

2
rTj rj = 0 (5.11)

for j = 1, . . . , m.

Let M be j ∈ { 1, . . . , m } that maximizes |1 − cβj |. Use now the Mth equation of

eqs.(5.11) as a pivot, to reduce the order of the remaining equations. After a reshuffling

of the equations, we let M = 1, so that now the pivot equation is the first one of the set.

Just as in Gaussian elimination, subtract a “suitable” multiple of the first equation from

the remaining ones, so as to eliminate the quadratic term of those equations, which leads,

for j = 2, . . . , m, to

(1− cβ1)‖b‖2 + bT (R1 − 1)a0 + rT1 (R1 − 1)b− rT1 R1a0 +
1

2
rT1 r1 = 0 (5.12a)
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bT [Rj − 1− qj(Rj − 1)]a0 + [rTj (Rj − 1)− qjrTj (R1 − 1)]b

−(rTj Rj − qjrT1 R1)a0 +
1

2
(rTj rj − rT1 r1) = 0 (5.12b)

j = 2, . . . , m

where

qj =
1− cβj
1− cβ1

System (5.12) can be cast in linear-homogeneous form in x, if this vector is defined as

x = [ aT0 1 ]T , thereby obtaining

Bx = 04 (5.13a)

with

B =








bT (R1 − 1)− rT1 R1 s1

(1− q2)bT (R2 − 1)− (rT2 R2 − q2rT1 R1) s2

(1− q3)bT (R3 − 1)− (RT
3 r3 − q3rT1 R1) s3

(1− q4)bT (R4 − 1)− (RT
4 r4 − q4rT1 R1) s4








(5.13b)

and

s1 = (1− cβ1)‖b‖2 + rT1 (R1 − 1)b +
1

2
rT1 r1 (5.13c)

sj = [rTj (Rj − 1)− qjrTj (R1 − 1)]b +
1

2
(rTj rj − rT1 r1) , j = 2, . . . , m

Notice that s1 is quadratic and {sj}m2 are all linear in b. Thus, the corresponding ∆1 of

eq.(5.10) for system (5.13) is quadratic, but {∆j}m2 are all cubic in b. Consequently, the

Bezout number of any pair of equations (1, j), for j = 2, . . . , m, is NB = 3× 4 = 12.

5.4 Coupler Curves of Planar Four-Bar Linkages

The four-bar linkage of Fig. 5.2 is given in a Cartesian frame F with origin at B and axes

X and Y . The trajectory traced by point R of its coupler link is called the coupler curve

traced by that point.

Construction of the Coupler Curve

We start by proving a basic result in planar kinematics regarding the nature of the coupler

curve of a planar four-bar linkage, namely,

Theorem 5.4.1 (Coupler Curve of a Planar Four-Bar Linkage) The curve traced

by any point of the coupler link of a planar four-bar linkage is algebraic, of sixth degree.

In general, a curve can be either algebraic or non-algebraic. A planar curve is algebraic

if it is given by an implicit function F (x, y) = 0, with F (x, y) being the sum of products
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Figure 5.2: Determination of the coupler curve traced by point R of a planar four-bar

linkage

of integer powers of x and y. The degree of the curve is the highest degree of the various

terms making up F (x, y). Moreover, a curve of degree n intersects a straight line at a

maximum of n points. Thus, the coupler curve of a four-bar linkage intersects a straight

line at a maximum of six points. As a consequence, the coupler curve under discussion

cannot have straight segments of finite length. There are, however, well-known examples

of planar four-bar linkages that trace coupler curves that, to the naked eye, appear as

having line segments. The best known of these linkages are those bearing the eponyms

of Roberts and Chebyshev. Linkages capable of tracing exactly line segments are also

known, e.g., those of Peaucellier and Hart (Bricard, 1927; Dudiţă et al., 1989; McCarthy,

2000).

The coupler link carries a point R(x, y), which serves as origin of a second Cartesian

frame, G, with origin at R and axes U and V , fixed to this link. What we need now is an

implicit function F (x, y) = 0, free of any linkage variable, and having as parameters the
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link lengths.

The desired function is obtained by first noticing that, irrespective of the linkage

posture,

‖−−→BA0‖2 = a2
2 , ‖−−−→B⋆A⋆0‖2 = a2

4 (5.14)

Henceforth, we shall use subscripted brackets to indicate the Cartesian frame in which

vector components are represented. Thus,

[
−−→
RA0 ]G =

[

−u
−v

]

= const , [
−−→
RA⋆0 ]G =

[

w

−v

]

= const , [
−→
BR ]F =

[

x

y

]

Note that
−−→
BA0 =

−→
BR +

−−→
RA0. We have

−→
BR in F , but

−−→
RA0 in G. In order to be able

to add the two vectors in the above equation, we transform first the components of the

second into F , which is done via the matrix Q rotating F into G, namely,

Q =

[
cos θ − sin θ

sin θ cos θ

]

Hence,

[
−−→
RA0 ]F = Q[

−−→
RA0 ]G =

[−u cos θ + v sin θ

−u sin θ − v cos θ

]

Therefore,

[
−−→
BA0 ]F =

[
x− u cos θ + v sin θ

y − u sin θ − v cos θ

]

(5.15)

On the other hand,

−−−→
B⋆A⋆0 =

−−→
BA⋆0 −

−−→
BB⋆ =

−→
BR+

−−→
RA⋆0 −

−−→
BB⋆ (5.16)

where

[
−→
BR−−−→BB⋆ ]F =

[
x− a1

y

]

, [
−−→
RA⋆0 ]F = Q[

−−→
RA⋆0 ]G =

[
w cos θ + v sin θ

w sin θ − v cos θ

]

(5.17)

Upon substitution of eqs.(5.17) into eq.(5.16), we obtain

[
−−−→
B⋆A⋆0 ]F =

[
x− a1 + w cos θ + v sin θ

y + w sin θ − v cos θ

]

(5.18)

Now, let us substitute eqs.(5.15) and (5.18) into eqs.(5.14), to obtain

x2 + y2 − 2(ux+ vy) cos θ + 2(vx− uy) sin θ + u2 + v2 − a2
2 = 0 (5.19a)

x2 + y2 + 2[w(x− a1)− vy] cos θ + [v(x− a1) + wy] sin θ

−2a1x+ a2
1 + v2 + w2 − a2

4 = 0 (5.19b)

The above two equations yield the desired implicit function F (x, y) = 0, upon elimination

of θ from the two of them. While we can do this at this stage, we risk ending up with a
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resultant equation of too high a degree, for notice that those two equations are quadratic

in x and y and linear in cos θ and sin θ. In order to reduce the degree of the resultant

equation, let us subtract eq.(5.19b) from eq.(5.19a):

2[(u+ w)x− a1w] cos θ + 2[2a1v + (w + u)y] sin θ

−2a1x+ a2
1 + a2

2 − a2
4 + u2 + w2 = 0 (5.19c)

thereby obtaining an alternative equation that is linear in x and y as well as in cos θ and

sin θ. Now, we can eliminate θ from any of the two eqs.(5.19a) or (5.19b) and (5.19c). We

do this by a) choosing eqs.(5.19b) and (5.19c), and b) using dialytic elimination: First,

we introduce the familiar tan-half trigonometric identities, which we reproduce below for

θ:

cos θ ≡ 1− T 2

1 + T 2
, sin θ ≡ 2T

1 + T 2
, T ≡ tan

(
θ

2

)

Further, we substitute the above expressions for cos θ and sin θ into eqs.(5.19b) and

(5.19c), thereby obtaining

A1T
2 − 2B1T + C1 = 0 (5.20a)

A2T
2 − 2B2T + C2 = 0 (5.20b)

with

A1 ≡ x2 + y2 + 2(ux+ vy) + u2 − a2
2

B1 ≡ 4(vx− uy)
C1 ≡ x2 + y2 − 2(ux+ vy) + u2 − a2

2

A2 ≡ −2(a1 + u+ w)x+ a2
1 + a2

2 + a2
4 + u2 + w2 − 2a1w

B2 ≡ 4[−a1v + (w + u)y]

C2 ≡ −2(a1 − u− w)x+ a2
1 + a2

2 + a2
4 + u2 + w2 + 2a1w

In order to eliminate dialytically T from eqs.(5.20a & b), we first multiply both sides of

each of these equations by T , thereby obtaining two additional equations, both cubic in

T :

A1T
3 − 2B1T

2 + C1T = 0 (5.20c)

A2T
3 − 2B2T

2 + C2T = 0 (5.20d)

Equations (5.20a–d ) now represent a system of four linear homogeneous equations in

T 0, T 1, T 2 and T 3, i.e.,

Mx = 04

where 04 is the four-dimensional zero vector, while M and x are given below:

M ≡








A1 −2B1 C1 0

A2 −2B2 C2 0

0 A1 −2B1 C1

0 A2 −2B2 C2







, x ≡








T 3

T 2

T

1







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Apparently, the trivial solution x = 0 is not admissible, and hence, M must be

singular, i.e.,

F (x, y) ≡ det(M) = 0

which is the desired implicit function defining the coupler curve sought. It is apparent

that the first and third rows of M are quadratic in x and y, while the second and fourth

are linear in the same variables. Consequently, F (x, y) is sextic in x and y, q.e.d.

5.5 The Theorem of Roberts-Chebyshev

In the realm of planar linkage synthesis for path generation it is noteworthy that the

solution to any problem is not unique. In fact, for every coupler curve generated by a

planar four-bar linkage, there exist two more four-bar linkages, called the cognates of the

first one, that trace exactly the same coupler curve.

A proof of this result is available in (Bricard, 1927) and (Malik et al., 1994).
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Appendix A

A Summary of Dual Algebra

The algebra of dual numbers is recalled here, with extensions to vector and matrix oper-

ations. This material is reproduced from a chapter in a NATO Advanced Study Institute

book1

A.1 Introduction

The aim of this Appendix is to outine the applications of dual algebra to kinematic

analysis. To this end, the algebra of dual scalars, vectors, and matrices is first recalled.

The applications included here refer to the computation of the parameters of the screw of

a rigid body between two finitely-separated positions and of the instant screw. However,

the applications of dual numbers go beyond that in kinematics. Indeed, the well-known

Principle of Transference (Dimentberg, 1965; Bottema and Roth, 1978; Rico Mart́ınez

and Duffy, 1993) has been found extremely useful in spatial kinematics, since it allows the

derivation of spatial kinematic relations by simply dualizing the corresponding relations

of spherical kinematics.

Dual numbers were first proposed by Clifford (1873), their first applications to kine-

matics being attributed to both Kotel’nikov (1895) and Study (1903). A comprehensive

analysis of dual numbers and their applications to the kinematic analysis of spatial link-

ages was conducted by Yang (1963) and Yang and Freudenstein (1964). Bottema and

Roth(1978) include a treatment of theoretical kinematics using dual numbers. More

1Angeles, J., 1998, “The Application of Dual Algebra to Kinematic Analysis”, in Angeles, J. and

Zakhariev, E. (editors), Computational Methods in Mechanical Systems, Springer-Verlag, Heidelberg,

Vol. 161, pp. 3-31.
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recently, Agrawal (1987) reported on the application of dual quaternions to spatial kine-

matics, while Pradeep, Yoder, and Mukundan (1989) used the dual-matrix exponential in

the analysis of robotic manipulators. Shoham and Brodsky (1993, 1994) have proposed a

dual inertia operator for the dynamical analysis of mechanical systems. A comprehensive

introduction to dual quaternions is to be found in (McCarthy, 1990), while an abstract

treatment is found in (Chevallier, 1991).

A.2 Definitions

A dual number â is defined as the sum of a primal part a, and a dual part a0, namely,

â = a+ ǫa0 , (A.1)

where ǫ is the dual unity, which verifies ǫ 6= 0, ǫ2 = 0, and a and a0 are real numbers, the

former being the primal part of â, the latter its dual part. Actually, dual numbers with

complex parts can be equally defined (Cheng and Thompson, 1996). For the purposes of

this chapter, real numbers will suffice.

If a0 = 0, â is called a real number, or, correspondingly, a complex number ; if a = 0,

â is called a pure dual number ; and if neither is zero â is called a proper dual number.

Let b̂ = b + ǫb0 be another dual number. Equality, addition, multiplication, and

division are defined, respectively, as

â = b̂⇔ a = b, a0 = b0 (A.2a)

â+ b̂ = (a+ b) + ǫ(a0 + b0) (A.2b)

âb̂ = ab+ ǫ(ab0 + a0b) (A.2c)

â

b̂
=
a

b
− ǫ
(
ab0 − a0b

b2

)

, b 6= 0 . (A.2d)

From eq.(A.2d) it is apparent that the division by a pure dual number is not defined.

Hence, dual numbers do not form a field in the algebraic sense; they do form a ring

(Simmons, 1963).

All formal operations involving dual numbers are identical to those of ordinary algebra,

while taking into account that ǫ2 = ǫ3 = · · · = 0. Therefore, the series expansion of the

analytic function f(x̂) of a dual argument x̂ is given by

f(x̂) = f(x+ ǫx0) = f(x) + ǫx0
df(x)

dx
. (A.3)
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As a direct consequence of eq.(A.3), we have the expression below for the exponential

of a dual number x̂:

ex̂ = ex + ǫ x0e
x = ex(1 + ǫ x0) , (A.4)

and hence, the dual exponential cannot be a pure dual number.

The dual angle θ̂ between two skew lines L1 and L2, introduced by Study (1903), is

defined as

θ̂ = θ + ǫs , (A.5)

where θ and s are, respectively, the twist angle and the distance between the two lines.

The dual trigonometric functions of the dual angle θ̂ are derived directly from eq.(A.3),

namely,

cos θ̂ = cos θ − ǫs sin θ, sin θ̂ = sin θ + ǫs cos θ, tan θ̂ = tan θ + ǫs sec2 θ . (A.6)

Moreover, all identities for ordinary trigonometry hold for dual angles. Likewise, the

square root of a dual number can be readily found by a straightforward application of

eq.(A.3), namely,
√
x̂ =
√
x+ ǫ

x0

2
√
x
, (A.7)

A dual vector â is defined as the sum of a primal vector part a, and a dual vector part

a0, namely,

â = a + ǫa0, (A.8)

where both a and a0 are Cartesian, 3-dimensional vectors. Henceforth, all vectors are

assumed to be of this kind. Further, let â and b̂ be two dual vectors and ĉ be a dual

scalar. The concepts of dual-vector equality, multiplication of a dual vector by a dual

scalar, inner product and vector product of two dual vectors are defined below:

â = b̂ ⇔ a = b and a0 = b0 ; (A.9a)

ĉ â = c a + ǫ (c0a + c a0) ; (A.9b)

â · b̂ = a · b + ǫ (a · b0 + a0 · b) ; (A.9c)

â× b̂ = a× b + ǫ (a× b0 + a0 × b) . (A.9d)

In particular, when b̂ = â, eq.(A.9c) leads to the Euclidean norm of the dual vector â,

i.e.,

‖â‖2 = ‖a‖2 + ǫ 2a · a0 . (A.9e)
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Furthermore, the six normalized Plücker coordinates of a line L passing through a point

P of position vector p and parallel to the unit vector e are given by the pair ( e, p× e ),

where the product e0 ≡ p× e denotes the moment of the line. The foregoing coordinates

can be represented by a dual unit vector ê∗, whose six real components in e and e0 are

the Plücker coordinates of L, namely,

ê∗ = e + ǫ e0, with ‖e‖ = 1 and e · e0 = 0 . (A.10)

The reader is invited to verify the results summarized below:

Lemma A.2.1 For ê∗ ≡ e + ǫ e0 and f̂∗ ≡ f + ǫ f0 defined as two dual unit vectors

representing lines L and M, respectively, we have:

(i) If ê∗ × f̂∗ is a pure dual vector, then L and M are parallel;

(ii) if ê∗ · f̂∗ is a pure dual number, then L and M are perpendicular;

(iii) L and M are coincident if and only if ê∗ × f̂∗ = 0; and

(iv) L and M intersect at right angles if and only if ê∗ · f̂∗ = 0.

Dual matrices can be defined likewise, i.e., if A and A0 are two real n × n matrices,

then the dual n× n matrix Â is defined as

Â ≡ A + ǫA0 . (A.11)

We will work with 3×3 matrices in connection with dual vectors, but the above definition

can be applied to any square matrices, which is the reason why n has been left arbitrary.

Equality, multiplication by a dual scalar, and multiplication by a dual vector are defined

as in the foregoing cases. Moreover, matrix multiplication is defined correspondingly, but

then the order of multiplication must be respected. We thus have that, if Â and B̂ are

two n× n dual matrices, with their primal and dual parts self-understood, then

ÂB̂ = AB + ǫ (AB0 + A0B) . (A.12)

Therefore, matrix Â is real if A0 = O, where O denotes the n × n zero matrix; if

A = O, then Â is called a pure dual matrix. Moreover, as we shall see below, a square

dual matrix admits an inverse if and only if its primal part is nonsingular.
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Now we can define the inverse of a dual matrix, if this is nonsingular. Indeed, it

suffices to make B̂ = Â−1 in eq.(A.12) and the right-hand side of this equation equal to

the n×n identity matrix, 1, thereby obtaining two matrix equations that allow us to find

the primal and the dual parts of Â−1, namely,

AB = 1, AB0 + A0B = O ,

whence

B = A−1, B0 = −A−1A0A
−1 ,

which are defined because A is invertible by hypothesis, and hence, for any nonsingular

dual matrix Â,

Â−1 = A−1 − ǫA−1A0A
−1 . (A.13)

Note the striking similarity of the dual part of the foregoing expression with the time-

derivative of the inverse of A(t), namely,

d

dt
[A−1(t)] = −A−1(t)Ȧ(t)A−1(t) .

In order to find an expression for the determinant of an n × n dual matrix, we need

to recall the general expression for the dual function defined in eq.(A.3). However, that

expression has to be adapted to a dual-matrix argument, which leads to

f(Â) = f(A) + ǫ tr

[

A0

(
df

dÂ

)T
]∣
∣
∣
∣
∣
Â=A

. (A.14)

In particular, when f(Â) = det(Â), we have, recalling the formula for the derivative of

the determinant with respect to its matrix argument (Angeles, 1982), for any n×n matrix

X,
d

dX
[det(X)] = det(X)X−T ,

where X−T denotes the transpose of the inverse of X or, equivalently, the transpose of

X−1. Therefore,

tr

[

A0

(
df

dÂ

)T
]∣
∣
∣
∣
∣
Â=A

= det(A)tr(A0A
−1) ,

and hence,

det(Â) = det(A)[1 + ǫ tr(A0A
−1)] . (A.15)
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Now we can define the eigenvalue problem for the dual matrix Â defined above. Let

λ̂ and ê be a dual eigenvalue and a dual (unit) eigenvector of Â, respectively. Then,

Âê = λ̂ê, ‖ê‖ = 1 . (A.16a)

For the foregoing linear homogeneous equation to admit a nontrivial solution, we must

have

det(λ̂1− Â) = 0 , (A.16b)

which yields an nth-order dual polynomial in the dual number λ̂. Its n dual roots, real

and complex, constitute the n dual eigenvalues of Â. Note that, associated with each dual

eigenvalue λ̂i, a corresponding dual (unit) eigenvector ê∗
i is defined, for i = 1, 2, . . . , n.

Moreover, if we recall eq.(A.4), we can write

eÂ = eA + ǫA0e
A . (A.17)

Upon expansion, the foregoing expression can be cast in the form

eÂ = (1 + ǫA0)e
A 6= eA(1 + ǫA0) , (A.18)

the inequality arising because, in general, A and A0 do not commute. They do so only in

the case in which they share the same set of eigenvectors. A special case in which the two

matrices share the same set of eigenvectors is when one matrix is an analytic function of

the other. More formally, we have

Lemma A.2.2 If F is an analytic matrix function of matrix A, then the two matrices

(i) share the same set of eigenvectors, and

(ii) commute under multiplication.

Typical examples of analytic matrix functions are F = AN and F = eA, for an integer N .

A.3 Fundamentals of Rigid-Body Kinematics

We review in this section some basic facts from rigid-body kinematics. For the sake of

conciseness, some proofs are not given, but the pertinent references are cited whenever

necessary.
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A.3.1 Finite Displacements

A rigid body is understood as a particular case of the continuum with the special feature

that, under any given motion, any two points of the rigid body remain equidistant. A rigid

body is available through a configuration or pose that will be denoted by B. Whenever a

reference configuration is needed, this will be labelled B0. Moreover, the position vector

of a point P of the body in configuration B will be denoted by p, that in B0 being denoted

correspondingly by p0.

A rigid-body motion leaving a point O of the body fixed is called a pure rotation, and

is represented by a proper orthogonal matrix Q, i.e., Q verifies the two properties below:

QQT = 1, det(Q) = +1 . (A.19)

According to Euler’s Theorem (Euler, 1776), a pure rotation leaves a set of points of

the body immutable, this set lying on a line L, which is termed the axis of rotation. If

we draw the perpendicular from an arbitrary point P of the body to L and denote its

intersection with L by P ′, the angle φ between P ′P 0 and P ′P , where, according to our

convention, P 0 denotes the point P in the reference configuration B0 of the body, is called

the angle of rotation. Note that a direction must be specified along this line to define the

sign of the angle. Furthermore, the direction of the line is specified by the unit vector e.

We term e and φ the natural invariants of Q.

As a result of Euler’s Theorem, the rotation Q can be represented in terms of its

natural invariants. This representation takes the form

Q = eeT + cosφ(1− eeT ) + sinφE , (A.20)

where E denotes the cross-product matrix of e, i.e., for any 3-dimensional vector v,

e× v = Ev .

As a result of the foregoing definition, E is skew-symmetric, i.e., E = −ET and, moreover,

it has the properties below:

E2k+1 = (−1)kE, E2k = (−1)k(1− eeT ), for k = 1, 2, . . .

By virtue of the foregoing properties of the cross-product matrix E of e, the rotation

matrix Q can be written in the alternative form

Q = 1 + sinφE + (1− cos φ)E2 . (A.21)
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Now, if we recall the Cayley-Hamilton Theorem (Halmos, 1974), we can realize that

the right-hand side of the foregoing equation is nothing but the exponential of φE, i.e.,

Q = eφE , (A.22)

which is the exponential form of the rotation matrix. Now it is a simple matter to obtain

the eigenvalues of the rotation matrix if we first notice that one eigenvalue of E is 0, the

other eigenvalues being readily derived as ±
√
−1, where

√
−1 is the imaginary unit, i.e.,

√
−1 ≡

√
−1. Therefore, if Q is the exponential of φE, then the eigenvalues of Q are the

exponentials of the eigenvalues of φE:

λ1 = e0 = 1, λ2,3 = e±
√
−1φ = cosφ±

√
−1 sin φ . (A.23)

Moreover, we recall below the Cartesian decomposition of an n×n matrix A, namely,

A = As + Ass , (A.24a)

where As is symmetric and Ass is skew-symmetric. These matrices are given by

As ≡
1

2
(A + AT ), Ass ≡

1

2
(A−AT ) . (A.24b)

Any 3×3 skew-symmmetric matrix is fully defined by three scalars, which means that

such a matrix can then be made isomorphic to a 3-dimensional vector. Indeed, let S be a

3× 3 skew-symmetric matrix and v be an arbitrary 3-dimensional vector. Then, we have

Sv ≡ s× v . (A.25)

When the above items are expressed in a given coordinate frame F , the components of

S, indicated as { si,j }3i,j=1, and of s, indicated as { si }31, bear the relations below:

S =





0 −s3 s2

s3 0 −s1

−s2 s1 0



 , s =
1

2





s32 − s23

s13 − s31

s21 − s12



 . (A.26)

In general, we define the axial vector of an arbitrary 3 × 3 matrix A in terms of the

difference of its off-diagonal entries, as appearing in eq.(A.26) for the entries of matrix S.

Apparently, the axial vector of any 3× 3 matrix is identical to that of its skew-symmetric

component; this vector, represented as a ≡ vect(A), is the vector linear invariant of A.
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The scalar linear invariant of the same matrix is its trace, tr(A). With this notation,

note that

1

2
(A−AT )v = a× v .

Further, with reference to Fig. A.3.1, let A and P be two points of a rigid body, which

is shown in its reference and its current configurations.

Figure A.1: Displacements of two points of a rigid body in two finitely-separated config-

urations

We can regard vector p− a as the image of p0 − a0 under the rotation Q, namely,

p− a = Q(p0 − a0) , (A.27)

whence an expression for p can be derived as

p = a + Q(p0 − a0) . (A.28)

Furthermore, the displacement dA of A is defined as the difference a− a0, with a similar

definition for the displacement dP of P . From the above equation, it is now apparent that

a linear relation between the two displacements follows:

dP = dA + (Q− 1)(p0 − a0) . (A.29)

Therefore,

Theorem A.3.1 The displacements of all the points of a rigid body have identical pro-

jections onto the axis of the concomitant rotation.
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The proof of the foregoing result follows upon dot-multiplying both sides of eq.(A.29)

by e:

e · dP = e · dA .

From the previous result it is apparent that ‖dP‖ can attain infinitely large values,

depending on ‖p0− a0‖, but, in general, dP does not vanish. Hence, a minimum of ‖dP‖
can be found, a result summarized in the Mozzi-Chasles Theorem (Mozzi, 1763;Chasles,

1830). This theorem states that the points of B of minimum-norm displacement lie in a

lineM that is parallel to the axis of the rotation represented by matrix Q, the minimum-

norm displacement being a vector parallel to the same axis. If we recall that e and φ

denote the natural invariants of Q, then the position vector p∗ of the point P ∗ ofM lying

closest to the origin O is given by (Angeles, 1997)

p∗ =
(Q− 1)T (Qa0 − a)

2(1− cosφ)
, for φ 6= 0 , (A.30)

the special case in which φ = 0 corresponding to a pure translation, whereby all points

of B undergo identical displacements. In this case, then, the axis M is indeterminate,

because all points of the body can be thought of as undergoing minimum-norm displace-

ments. Henceforth, lineM will be termed the Mozzi-Chasles axis. Note that the Plücker

coordinates of the Mozzi-Chasles axis are given by e and e0 ≡ p∗ × e. We shall denote

with d∗ the minimum-norm displacement, which can be represented in the form

d∗ = d∗e, d∗ = dP · e . (A.31)

Therefore, the body under study can be regarded as undergoing, from B0 to B, a screw

motion, as if the body were rigidly attached to the bolt of a screw of axisM and pitch p

given by

p =
d∗

φ
=

e · dP
φ

. (A.32)

We list below further results:

Lemma A.3.1 Let A and P be two points of a rigid body undergoing a general motion

from a reference pose B0 to a current pose B. Then, under the notation adopted above,

the difference p−Qp0 remains constant and is denoted by d, i.e.,

p−Qp0 = a−Qa0 = d . (A.33)
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Proof: If we recall eq.(A.28) and substitute the expression therein for p in the difference

p−Qp0, we obtain

p−Qp0 = a + Q(p0 − a0)−Qp0 = a−Qa0 = d ,

thereby completing the intended proof.

Note that the kinematic interpretation of d follows directly from eq.(A.33): d repre-

sents the displacement of the point of B that coincides with the origin in the reference

pose B0.

The geometric interpretation of the foregoing lemma is given in Fig. A.2. What this

figure indicates is that the pose B can be attained from B0 in two stages: (a) first, the

body is given a rotation Q about the origin O, that takes the body to the intermediate

pose B′; (b) then, from B′, the body is given a pure translation of displacement d that

takes the body into B.

Figure A.2: Geometric interpretation of Lemma 3.1

Therefore, eq.(A.30) for the position vector of the point of the Mozzi-Chasles axis

lying closest to the origin can be expressed in terms of vector d as

p∗ =
(1−Q)Td

2(1− cos φ)
, for φ 6= 0 . (A.34)

Note that, in general, d is not of minimum norm. Additionally, d is origin-dependent,

and hence, is not an invariant of the motion under study. Now, if we choose the origin on

the Mozzi-Chasles axis M, then we have the layout of Fig. A.3, and vector d becomes a

multiple of e, namely, d = d∗e.
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Figure A.3: Rigid-body displacement with origin on the Mozzi-Chasles axis

We can now express the Plücker coordinates of a line L of a rigid body B in terms

of those of the line in its reference configuration L0 (Bottema and Roth, 1978; Pradeep,

Yoder, and Mukundan, 1989), as shown in Fig. A.3.1. To this end, we let f be the unit

vector parallel to L and P be a point of L, and arrange the Plücker coordinates of L0 and

L in the 6-dimensional arrays λ0 and λ, respectively, defined as

λ0 ≡
[

f0

p0 × f0

]

, λ ≡
[

f

p× f

]

. (A.35)

Figure A.4: The reference and the current configurations of a body and one of its lines

We thus have

f = Qf0, p = Qp0 + d ,

and hence,

p× f = (Qp0 + d)×Qf0 = (Qp0)×Qf + d×Qf0 .

Now, the first term of the rightmost-hand side of the above equation can be simplified

upon noticing that the cross product of two rotated vectors is identical to the rotated
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cross product. Furthermore, the second term of the same side can be expressed in terms

of D, the cross-product matrix of d, thereby obtaining

p× f = Q(p0 × f0) + DQf0 .

Upon substituting the foregoing expressions for f and p× f into eq.(A.35), we obtain

λ =

[
Qf0

DQf0 + Q(p0 × f0)

]

,

which can be readily cast in the form of a linear transformation of λ0, i.e.,

[
f

p× f

]

=

[
Q O

DQ Q

] [
f0

p0 × f0

]

, (A.36a)

where O denotes the 3× 3 zero matrix.

As the reader can readily verify, the inverse relation of eq.(A.36a) takes the form

[
f0

p0 × f0

]

=

[
QT O

−QTD QT

] [
f

p× f

]

. (A.36b)

By inspection of eq.(A.36a), and recalling the dual-unit-vector representation of a line,

as given in eq.(A.10), we can realize that the dual unit vector of L can be expressed as the

image of the dual unit vector of L0 upon a linear transformation given by a dual matrix

Q̂. Moreover, the dual matrix of interest can be readily derived from the real matrix

of eq.(A.36a). Indeed, it can be realized from Section 2 that the difference between the

primal and the dual parts of a dual quantity is that the units of the dual part are those of

the primal part times units of length. Hence, the primal part of the dual matrix sought

is bound to be Q, which is dimensionless, the corresponding dual part being DQ, which

has units of length. A plausible form of the matrix sought is, then,

Q̂ = Q + ǫDQ . (A.37)

The correctness of the above expression can be readily realized. Indeed, let f̂∗ = f+ǫp× f

and f̂0∗ = f0 + ǫp0 × f0 be the dual unit vectors of L and L0, respectively. Then upon

performing the product Q̂f̂0∗, we note that the product is rightfully f̂∗, i.e., f̂∗ = Q̂f̂0∗. In

the derivations below, we will need expressions for the vector and scalar linear invariants

of the product of two matrices, one of which is skew-symmetric. These expressions are

derived in detail in (Angeles, 1997). For quick reference, we recall these relations below:
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Theorem A.3.2 Let both A and S be 3 × 3 matrices, the former arbitrary, the latter

skew-symmetric. Then,

vect(SA ) =
1

2
[tr(A)1−A]s , (A.38)

where s ≡ vect(S ).

Now, as a direct consequence of the above result, we have

Corollary A.3.1 If A in Theorem A.3.2 is skew-symmetric, then the axial vector of the

product SA reduces to

vect(SA ) = −1

2
As = −1

2
a× s , (A.39)

where a ≡ vect(A).

Moreover,

Theorem A.3.3 Let A, S, and s be defined as in Theorem A.3.2. Then,

tr(SA ) = −2s · [vect(A )] . (A.40)

Furthermore, we prove now that Q̂ is proper orthogonal. Indeed, orthogonality can

be proven by performing the product Q̂Q̂T and noticing that this product yields the 3×3

identity matrix, i.e., Q̂Q̂T = 1. Proper orthogonality is proven, in turn, upon application

of formula (A.15) to matrix Q̂, as given by eq.(A.37), namely,

det(Q̂) = det(Q)[1 + ǫ tr(DQQ−1)] = det(Q)[1 + ǫ tr(D)] = 1 ,

thus completing the proof.

The exponential form of the dual rotation matrix can be obtained if we note that the

exponential of a pure dual number x̂ = ǫx0 reduces to

eǫx0 = 1 + ǫx0 . (A.41)

On the other hand, we can write

Q̂ = (1 + ǫD)Q . (A.42)
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In analogy with eq.(A.41), the foregoing expression takes the form

Q̂ = eǫDQ .

Furthermore, if we recall the exponential form of Q, as given in eq.(A.22), the foregoing

expression simplifies to

Q̂ = eǫDeφE . (A.43)

However, since D and E are unrelated, they do not share the same set of eigenvectors,

and hence, they do not commute under multiplication, the foregoing expression thus not

being further reducible to one single exponential. Nevertheless, if the origin is placed on

the Mozzi-Chasles axis, as depicted in Fig. A.3, then the dual rotation matrix becomes

Q̂ = Q + ǫ d∗EQ , (A.44)

where d∗E is, apparently, the cross-product matrix of vector d∗e. Furthermore, the expo-

nential form of the dual rotation matrix, eq.(A.43), then simplifies to Q̂ = e(φ+ǫ d∗)E or, if

we let φ̂ = φ+ ǫ d∗, then we can write Q̂ = eφ̂E.

A.3.2 Velocity Analysis

Upon differentiation with respect to time of both sides of eq.(A.27), we obtain

ṗ− ȧ = Q̇(p0 − a0) ,

and, if we solve for (p0 − a0) from the equation mentioned above, we obtain

ṗ− ȧ = Q̇QT (p− a) , (A.45)

where Q̇QT is defined as the angular-velocity matrix of the motion under study, and is

represented as Ω, namely,

Ω ≡ Q̇QT . (A.46a)

It can be readily proven that the foregoing matrix is skew-symmetric, i.e.,

ΩT = −Ω . (A.46b)

Moreover, the axial vector of Ω is the angular-velocity vector ω:

ω = vect(Ω) . (A.46c)
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We can now write eq.(A.45) in the form

ṗ = ȧ + Ω(p− a) = ȧ + ω × (p− a) , (A.47)

whence,

ṗ− ω × p = ȧ− ω × a ≡ v0 = const . (A.48)

Therefore, the difference ṗ − ω × p is the same for all points of a rigid body. The

kinematic interpretation of this quantity is straightforward: If we rewrite v0 in the form

v0 = ṗ + ω × (−p), then we can readily realize that, −p being the vector directed from

point P of the rigid body to the origin O, v0 represents the velocity of the point of the

body that coincides instantaneously with the origin. Furthermore, we express d, as given

by eq.(A.33), in terms of the position vector of an arbitrary point P , p, thus obtaining

d = p−Qp0 . (A.49)

Upon differentiation of the two sides of the above expression with respect to time, we

obtain

ḋ = ṗ− Q̇p0 ,

which can be readily expressed in terms of the current value of the position vector of P ,

by solving for p0 from eq.(A.49), namely,

ḋ = ṗ−Ω(p− d) or ḋ− ω × d = ṗ− ω × p , (A.50)

and hence, the difference ḋ− ω × d is identical to the difference ṗ− ω × p, i.e.,

ḋ− ω × d = v0 . (A.51)

Furthermore, upon dot-multiplying the two sides of eq.(A.48) by ω, we obtain an

interesting result, namely,

ω · ṗ = ω · ȧ , (A.52)

and hence,

Theorem A.3.4 The velocities of all points of a rigid body have the same projection onto

the angular-velocity vector of the motion under study.

Similar to the Mozzi-Chasles Theorem, we have now
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Theorem A.3.5 Given a rigid body B under general motion, a set of its points, on a line

L, undergoes the identical minimum-magnitude velocity v∗ parallel to the angular velocity

ω.

The Plücker coordinates of line L, grouped in the 6-dimensional array λ, are given as

λ ≡
[

f

π × f

]

, f ≡ ω

‖ω‖ , π ≡ ω × v0

‖ω‖2 , (A.53)

where v0 was previously introduced as the velocity of the point of B that coincides in-

stantaneously with the origin. Line L is termed the instant screw axis–ISA, for brevity.

Thus, the instantaneous motion of B is defined by a screw of axis L and pitch p′, given

by

p′ =
ṗ · ω
‖ω‖2 , (A.54)

where ṗ is the velocity of an arbitrary point P of B, the product ṗ ·ω being constant by

virtue of Theorem A.3.4. A proof of the foregoing results is available in (Angeles, 1997).

A.3.3 The Linear Invariants of the Dual Rotation Matrix

We start by recalling the linear invariants of the real rotation matrix (Angeles, 1997).

These are defined as

q ≡ vect(Q) = (sin φ)e, q0 ≡
tr(Q)− 1

2
= cosφ . (A.55a)

Note that the linear invariants of any 3×3 matrix can be obtained from simple differ-

ences of its off-diagonal entries and sums of its diagonal entries. Once the foregoing linear

invariants are calculated, the natural invariants can be obtained uniquely as indicated

below: First, note that the sign of e can be changed without affecting q if the sign of φ

is changed accordingly, which means that the sign of φ–or that of e, for that matter–is

undefined. In order to define this sign uniquely, we will adopt a positive sign for sin φ,

which means that φ is assumed, henceforth, to lie in the interval 0 ≤ φ ≤ π.

We can thus obtain the inverse relations of eq.(A.55a) in the form

e =
q

‖q‖ , φ = arctan

(‖q‖
q0

)

, q 6= 0 , (A.55b)

the case q = 0 being handled separately. Indeed, q vanishes under two cases: (a) φ = 0,

in which case the body undergoes a pure translation and the axis of rotation is obviously
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undefined; and (b) φ = π, in which case Q is symmetric and takes the form

For φ = π : Q = −1 + 2eeT , (A.55c)

whence the natural invariants become apparent and can be readily extracted from Q.

Similar to the linear invariants of the real rotation matrix, in the dual case we have

q̂ ≡ vect(Q̂), q̂0 ≡
tr(Q̂)− 1

2
. (A.56)

Expressions for the foregoing quantities in terms of the motion parameters are derived

below; in the sequel, we also derive expressions for the dual natural invariants in terms

of the same parameters. We start by expanding the vector linear invariant:

vect(Q̂) = vect(Q + ǫDQ) = vect(Q) + ǫ vect(DQ) . (A.57a)

But, by virtue of eq.(A.20),

vect(Q) = (sin φ)e . (A.57b)

Furthermore, the second term of the rightmost-hand side of eq.(A.57a) can be readily

calculated if we recall Theorem A.3.2, with d ≡ vect(D):

vect(DQ) =
1

2
[tr(Q)1−Q]d . (A.57c)

Now, if we recall expression (A.20), we obtain

tr(Q)1−Q = (1 + cosφ)1− sinφE− (1− cosφ)eeT .

Upon substitution of the foregoing expression into eq.(A.57c), the desired expression for

vect(DQ) is readily derived, namely,

vect(DQ) =
1

2
[(1 + cosφ)d− sinφe× d− (1− cos φ)(e · d)e] , (A.57d)

and hence,

q̂ = (sinφ)e + ǫ
1

2
[(cosφ)(e · d)e + (1 + cosφ)d + (sinφ)d× e − (e · d)e]. (A.57e)

On the other hand, the position vector p∗ of the Mozzi-Chasles axis, given by eq.(A.34),

can be expressed as

p∗ =
1

2

sinφ

1− cosφ
e× d +

1

2
d− 1

2
(e · d)e , (A.58a)

156



and hence,

p∗ × e =
1

2

sin φ

1− cosφ
d− 1

2

sin φ

1− cos φ
(e · d)e +

1

2
d× e . (A.58b)

Moreover, let us recall the identity

1 + cosφ

sinφ
=

sinφ

1− cosφ
, (A.58c)

which allows us to rewrite eq.(A.58b) in the form

p∗ × e =
1

2

1 + cosφ

sin φ
d− 1

2

1 + cosφ

sinφ
(e · d)e +

1

2
d× e , (A.58d)

whence,

(sin φ)p∗ × e =
1

2
[(1 + cosφ)d− (1 + cosφ)(e · d)e + (sinφ)d× e] ,

and q̂ takes the form

q̂ = (sinφ)e + ǫ [(cosφ)(e · d)e + (sinφ)p∗ × e] . (A.59)

If we now recall eqs.(A.31) and (A.32), d · e ≡ d∗ = pφ, while p∗ × e is the moment

of the associated Mozzi-Chasles axis, e0, and hence, eq.(A.59) becomes

q̂ = (sinφ)e + ǫ [(cos φ)pφe + (sin φ)e0] , (A.60)

and hence, q̂ can be further simplified to

q̂ = ê∗ sin φ̂, φ̂ ≡ φ1 + ǫ p) , (A.61)

where ê∗ is the dual unit vector representing the Mozzi-Chasles axis, i.e., ê∗ = e + ǫ e0.

Now, such as in the real case, we can calculate the dual natural invariants of the motion

under study in terms of the foregoing dual linear invariants. We do this by mimicking

eqs.(A.55b), namely,

ê∗ =
q̂

‖q̂‖ , φ̂ = arctan

(‖q̂‖
q̂0

)

, ‖q̂‖ 6= 0 , (A.62)

where ‖q̂‖ is calculated from eq.(A.9e), which gives ‖q̂‖2, the square root of the latter

then following from eq.(A.7), thus obtaining

‖q̂‖ = sin φ̂ = sinφ+ ǫ (e · d) cosφ , (A.63)
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and hence, upon simplification,

ê∗ = e + ǫp∗ × e = e + ǫ e0 , (A.64)

which is rightfully the dual unit vector of the Mozzi-Chasles axis. Furthermore,

tr(Q̂) = tr(Q) + ǫ tr(DQ) , (A.65a)

where, from Theorem A.3.3, tr(DQ) turns out to be

tr(DQ) = −2[vect(Q)] · d = −2 sinφ(e · d) , (A.65b)

whence,

tr(Q̂) = 1 + 2 cosφ− ǫ 2(sinφ)e · d , (A.65c)

and so, from the second of eqs.(A.56),

q̂0 ≡ cos φ̂ = cosφ− ǫ (sin φ)(e · d) ,

which, by virtue of eqs.(A.31), leads to

q̂0 = cosφ− ǫ (sin φ)d∗, φ̂ = φ+ ǫ d∗ = φ(1 + ǫ p) . (A.65d)

In summary, the dual angle of the dual rotation under study comprises the angle

of rotation of Q in its primal part and the axial component of the displacement of all

points of the moving body onto the Mozzi-Chasles axis. Upon comparison of the dual

angle between two lines, as given in eq.(A.5), with the dual angle of rotation φ̂, it is then

apparent that the primal part of the latter plays the role of the angle between two lines,

while the corresponding dual part plays the role of the distance s between those lines. It

is noteworthy that a pure rotation has a dual angle of rotation that is real, while a pure

translation has an angle of rotation that is a pure dual number.

Example 1: Determination of the screw parameters of a rigid-body motion.

We take here an example of (Angeles, 1997): The cube of Fig. A.5 is displaced from

configuration A0B0 . . .H0 into configuration AB . . .H . Find the Plücker coordinates of

the Mozzi-Chasles axis of the motion undergone by the cube.
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Figure A.5: Motion of a cube

Solution: We start by constructing Q̂: Q̂ ≡ [ î∗ ĵ∗ k̂∗ ], where î∗, ĵ∗, and k̂∗ are the dual

unit vectors of lines AB, AD, and AE, respectively. These lines are, in turn, the images

of lines A0B0, A0D0, and A0E0 under the rigid-body motion at hand. The dual unit

vectors of the latter are denoted by î0∗, ĵ0∗, and k̂0∗, respectively, and are parallel to the

X, Y , and Z axes of the figure. We thus have

î∗ = −j0 + ǫ a× (−j0), ĵ∗ = k0 + ǫ a× k0, k̂∗ = −i0 + ǫ a× (−i0) ,

where a is the position vector of A, and is given by

a = [ 2 1 −1 ]T a .

Hence,

î∗ = −j0 + ǫ a(−i0 − 2k0)

ĵ∗ = k0 + ǫ a(i0 − 2j0)

k̂∗ = −i0 + ǫ a(j0 + k0)
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Therefore,

Q̂ =





− ǫ a + ǫ a −1

−1 − ǫ 2a + ǫ a

− ǫ 2a 1 + ǫ a



 ,

whence,

vect(Q̂) =
1

2





1− ǫ a
−1 + ǫ 2a

−1− ǫ a



 , tr(Q̂) = − ǫ (2a) ,

and

‖vect(Q̂)‖2 = ‖1
2





1

−1

−1



 ‖2 + ǫ 2
1

2
[ 1 −1 −1 ]





−1

2

−1




a

2
=

3

4
− ǫ a .

Thus,

‖vect(Q̂)‖ =

√
3

2
+ ǫ
−a√

3
=

√
3

2
− ǫ
√

3

3
a .

Therefore, the unit dual vector representing the Mozzi-Chasles axis of the motion at hand,

ê∗, is given by ê∗ = vect(Q̂)/‖vect(Q̂)‖, i.e.,

ê∗ =
1√
3/2

1

2





1

−1

−1



− ǫ a

3/4




1

2





1

−1

−1




−
√

3

3
− 1

2





−1

2

−1





√
3

2



 .

After various stages of simplification, the foregoing expression reduces to

ê∗ =

√
3

3





1

−1

−1



+ ǫ

√
3

9





−1

4

−5



 a .

Thus, the Mozzi-Chasles axis is parallel to the unit vector e, which is given by the primal

part of ê, while the dual part of the same dual unit vector represents the moment of

the Mozzi-Chasles axis, from which the position vector p∗ of P ∗, the point of the Mozzi-

Chasles axis closest to the origin, is readily found as

p∗ = e× e0 =
a

3
[ 3 2 1 ]T .

A.3.4 The Dual Euler-Rodrigues Parameters of a Rigid-Body

Motion

We first recall the definition of the Euler-Rodrigues parameters of a pure rotation, which

are isomorphic to the quaternion of the rotation (Hamilton, 1844). These are most nat-

urally introduced as the linear invariants of the square root of the rotation at hand, and
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represented, paralleling the definition of the linear invariants, as

r ≡ vect(
√

Q), r0 ≡
tr(
√

Q)− 1

2
, (A.66)

the proper orthogonal square root of Q being given as (Angeles, 1997):

√

Q = 1 + sin

(
φ

2

)

E +

[

1− cos

(
φ

2

)]

)E2 . (A.67)

The dual Euler-Rodrigues parameters of a rigid-body motion are thus defined as

r̂ ≡ vect(

√

Q̂), r̂0 ≡
tr(

√

Q̂)− 1

2
. (A.68)

Below we derive an expression for

√

Q̂. Prior to this, we introduce a relation that will

prove useful:

Lemma A.3.2 Let a and b be arbitrary 3-dimensional vectors, and c ≡ a × b. The

cross-product matrix C of c is given by

C = baT − abT . (A.69)

Proof: This follows by noticing that, for any 3-dimensional vector u,

c× u = (a× b)× u = b(aTu)− a(bTu) ,

which readily leads to

Cu = (baT − abT )u ,

thereby completing the proof.

Now we proceed to determine

√

Q̂. To this end, we regard the motion at hand, from

a reference configuration B0 to a current configuration B, as consisting of a rotation Q

about the origin O followed by a translation d. Then, this motion is decomposed into two

parts, as shown in Fig. A.3.4: First, the body is rotated about the origin O by a rotation
√

Q and a translation ds; then, from the configuration B′ thus attained, the body is given

a new rotation
√

Q about O as well, followed by the same translation ds.
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It is apparent that, from the general expression for the dual rotation matrix, eq.(A.42),
√

Q̂ can be represented as
√

Q̂ = (1 + ǫDs)
√

Q , (A.70)

the calculation of

√

Q̂ thus reducing to that of the skew-symmetric matrix Ds, which is

the cross-product matrix of ds. This matrix is calculated below in terms of
√

Q and D.

We thus have

p2 =
√

Qp0 + ds , (A.71)

p4 =
√

Qp2 + ds = Qp0 + (1 +
√

Q)ds . (A.72)

Figure A.6: Decomposition of the motion of a rigid body

But p4 is the position vector of point P in B, which can be attained by a rotation Q

about O followed by a translation d, i.e.,

p4 = Qp0 + d . (A.73)

Upon comparing the right-hand sides of eqs.(A.72) and (A.73), we obtain

(1 +
√

Q)ds = d ,

whence,

ds = (1 +
√

Q)−1d . (A.74)

An expression for the above inverse can be derived if we realize that this inverse is an

analytic function of
√

Q, which is, in turn, an analytic function of Q. We can thus conclude

that by virtue of the Cayley-Hamilton Theorem, invoked when deriving the exponential
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form of the rotation matrix in eq.(A.22), the inverse sought must be a linear combination

of the first three powers of E: e0 ≡ 1, E, and E2, namely,

(1 +
√

Q)−1 = α1 + βE + γE2 , (A.75)

where α, β, and γ are to be determined. To this end, we write

(1 +
√

Q)−1(α1 + βE + γE2) = 1 .

If we now substitute in the above equation the expression for
√

Q displayed in eq.(A.67),

we obtain three equations for the three unknowns α, β, and γ, from which it is a simple

matter to solve for these unknowns, namely,

α =
1

2
, β = − sin(φ/2)

2[1 + cos(φ/2)]
, γ = 0 , (A.76)

the inverse sought thus taking the form

(1 +
√

Q)−1 =
1

2

[

1− sin(φ/2)

1 + cos(φ/2)
E

]

. (A.77)

Therefore, eq.(A.74) yields

ds = (1 +
√

Q)−1d =
1

2

[

1− sin(φ/2)

1 + cos(φ/2)
E

]

d ,

i.e.,

ds =
1

2

[

d− sin(φ/2)

1 + cos(φ/2)
e× d

]

. (A.78)

Thus, Ds is the cross-product matrix of the sum of two vectors, and hence, Ds reduces

to the sum of the corresponding corss-product matrices. The cross-product matrix of the

first term of the right-hand side of the foregoing equation is apparently proportional to

D, that of the second term being proportional to the cross-product matrix of e× d. The

latter can be readily obtained by application of Lemma A.3.2, which leads to

Ds =
1

2

[

D− sin(φ/2)

1 + cos(φ/2)
(deT − edT )

]

. (A.79)

Hence,
√

Q̂ = 1 + ǫ
1

2

[

D− sin(φ/2)

1 + cos(φ/2)
(deT − edT )

]
√

Q . (A.80)

Now, the linear invariants of

√

Q̂ are

vect(

√

Q̂) = vect(
√

Q) + ǫ vect(Ds

√

Q) (A.81a)
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and

tr(

√

Q̂) = tr(
√

Q) + ǫ tr(Ds

√

Q) . (A.81b)

An expression for vect(
√

Q), appearing in the first term of vect(

√

Q̂), can be obtained

from eq.(A.67), namely,

vect(
√

Q) = sin

(
φ

2

)

vect(E) = sin

(
φ

2

)

e , (A.82)

while an expression for the second term of the right-hand side of eq.(A.81b) is obtained

by application of Theorem A.3.2:

vect(Ds

√

Q) =
1

2
[tr(
√

Q)1−
√

Q]ds ,

which can be further expanded without intermediate lengthy derivations if we realize

that the above expression is the counterpart of that appearing in eq.(A.57c); the latter

is expanded in eq.(A.57d). Thus, all we need now is mimic eq.(A.57d), if with φ and d

substituted by their counterparts φ/2 and ds, respectively, i.e.,

vect(Ds

√

Q) =
1

2

{[

1 + cos

(
φ

2

)]

ds − sin

(
φ

2

)

e× ds

−
[

1− cos

(
φ

2

)]

(e · d)e

}

. (A.83)

If we now simplify the above expression for vect(Ds

√
Q), and substitute the simplified

expression into eq.(A.81a), along with eq.(A.82), we obtain the desired expression for r̂.

Note that the latter is defined in eq.(A.68), and hence,

r̂ = sin

(
φ

2

)

e + ǫ

[

cos

(
φ

2

)

ps
φ

2
e + sin

(
φ

2

)

e0

]

, (A.84)

where ps is the pitch associated with the motion represented by

√

Q̂, namely,

ps ≡ ds · e =
1

2
d , (A.85)

where we have recalled the expression for ds displayed in eq.(A.78). Similar to eq.(A.61),

then, the dual vector of the Euler-Rodrigues parameters is given by

r̂ = ê∗ sin

(

φ̂

2

)

, φ̂ ≡ φ+ ǫ d∗s, d∗s ≡ ds · e . (A.86)
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The scalar of the Euler-Rodrigues parameters under study, r̂0, is now found in terms

of the trace of

√

Q̂, which is displayed in eq.(A.81b). In that equation,

tr(
√

Q) = 1 + 2 cos

(
φ

2

)

,

the dual part of the right-hand side of eq.(A.81b) being calculated by application of

Theorem A.3.3:

tr(Ds

√

Q) = −2ds · vect(
√

Q) = −2ds · e sin

(
φ

2

)

or, in terms of the corresponding pitch ps,

tr(Ds

√

Q) = −2ps sin

(
φ

2

)

.

Therefore,

tr(

√

Q̂) = 1 + 2 cos

(
φ

2

)

− ǫ 2ps sin

(
φ

2

)

,

and hence,

r̂0 = cos

(
φ

2

)

− ǫ ps sin

(
φ

2

)

, (A.87)

which is the counterpart of the second of eqs.(A.55a). The set (r̂, r̂0) constitutes the dual

quaternion of the motion under study (McCarthy, 1990).

A.4 The Dual Angular Velocity

Similar to the angular-velocity matrix Ω introduced in eq.(A.46a), the dual angular ve-

locity matrix Ω̂ is defined as

Ω̂ ≡ ˙̂
QQ̂T . (A.88)

Now we differentiate with respect to time the expression for Q̂ introduced in eq.(A.42),

which yields

˙̂
Q = (1 + ǫD)Q̇ + ǫḊQ .

Upon substitution of the above expression for
˙̂
Q and of the expression for Q̂ of eq.(A.42)

into eq.(A.88), we obtain

Ω̂ = Ω + ǫ (DΩ−ΩD + Ḋ) . (A.89)
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The dual angular-velocity vector ω̂ of the motion under study is then obtained as the

axial vector of the foregoing expression, namely,

ω̂ = vect(Ω̂) = ω + ǫ [vect(DΩ−ΩD) + ḋ] , (A.90)

with ḋ being the time-derivative of vector d, introduced in eq.(A.33). Thus, in order to

determine ω̂, all we need is the axial vector of the difference DΩ− ΩD. An expression

for this difference can be obtained in various manners, one of which is outlined below:

First, note that this difference is skew-symmetric, and hence,

vect(DΩ−ΩD) = 2 vect(DΩ) .

Further, the vector of DΩ is computed by means of Corollary A.3.1, eq.(A.39), upon

substituting A by Ω in that expression. Thus,

vect(DΩ) = −1

2
ω × d . (A.91)

Therefore,

ω̂ = ω + ǫ (ḋ− ω × d) , (A.92)

and, if we recall eq.(A.51), the foregoing expression takes the alternative form

ω̂ = ω + ǫv0 . (A.93)

In consequence, the dual angular velocity is the dual representation of the twist t of

B, defined as the 6-dimensional array

t ≡
[
ω

v0

]

. (A.94)

We can therefore find the angular velocity vector and the moment of the ISA about

the given origin–i.e., the instant screw parameters of the motion at hand–if we are given

enough information as to allow us to compute ω̂. The information required to determine

the screw parameters of the motion under study can be given as the position and velocity

vectors of three noncollinear points of a rigid body (Angeles, 1997). However, note that

the dual rotation matrix was obtained in Example 1 in terms of the dual unit vectors

representing three mutually orthogonal lines. Notice that, by virtue of Lemma A.2.1, the

three lines of Example 1 were chosen concurrent and mutually orthogonal.
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Now, in order to find the instant-screw parameters of interest, we need the time-

derivatives of the dual unit vectors representing three concurrent, mutually orthogonal

lines, but all we have at our disposal is the position and velocity vectors of three non-

collinear points. Nevertheless, once we know three noncollinear points of a rigid body, say

A, B, and C, along with their velocities, it is possible to find the position and velocity

vectors of three pairs of points defining a triad of concurrent, mutually orthogonal lines,

an issue that falls beyond the scope of this chapter. Rather than discussing the problem

at hand in its fullest generality, we limit ourselves to the special case in which the position

vector p of a point P of the rigid body under study can be determined so that the three

lines PA, PB, and PC are mutually orthogonal. Further, we let the position vectors of

the three given points be a, b, and c. Thus, point P of the body in this case forms a

rectangular trihedron with vertex at P and edges PA, PB, and PC. We can thus express

p as a nonlinear function of the three position vectors a, b, and c:

p = p(a, b, c) . (A.95)

Moreover, the velocity of point P , ṗ, can be calculated now as a linear combination of

the velocities of the three given points, by straightforward differentiation of the foregoing

expression, namely,

ṗ = Paȧ + Pbḃ + Pcċ , (A.96)

where Pa, Pb, and Pc denote the partial derivatives of p with respect to a, b, and c,

respectively. Once the position and the velocity vectors of point P are known, it is

possible to determine the time-rates of change of the dual unit vectors representing the

three lines PA, PB and PC, as described below.

Let ê∗ denote the dual unit vector representing the line determined by points A and

P , its primary and dual parts, e and e0, being given by

e =
a− p

‖a− p‖ , e0 = p× a− p

‖a− p‖ . (A.97)

Straightforward differentiation of the foregoing expressions with respect to time leads

to

ė =
1

‖a− p‖

(

ȧ− ṗ− e
d

dt
‖a− p‖

)

,

ė0 = ṗ× a− p

‖a− p‖ + p× 1

‖a− p‖

(

ȧ− ṗ− e
d

dt
‖a− p‖

)

.
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Figure A.7: A rigid triangular plate undergoing a motion given by the velocity of its

vertices

Upon simplification, we obtain the desired expression for ˙̂e
∗
, namely,

˙̂e
∗

=
1

‖a− p‖ [ȧ− ṗ + ǫ (pȧ + ṗ× a)] . (A.98)

Therefore, knowing the velocity of two points of a line, we can determine the time-

rate of change of the dual unit vector representing the line. The foregoing idea is best

illustrated with the aid of the example included below.

Example 2: Determination of the ISA of a rigid-body motion.

For comparison purposes, we take an example from (Angeles, 1997): The three vertices

of the equilateral triangular plate of Fig. A.4, which lie in the X-Y plane, {Pi }31, have

the position vectors {pi }31. Moreover, the origin of the coordinate frame X, Y, Z lies at

the centroid C of the triangle, and the velocities of the foregoing points, { ṗi }31, are given

in this coordinate frame as

ṗ1 =
4−
√

2

4





0

0

1



 , ṗ2 =
4−
√

3

4





0

0

1



 , ṗ3 =
4 +
√

2

4





0

0

1



 .

With the above information, compute the instant-screw parameters of the motion under

study.
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Solution: Since the centroid C of the triangle coincides with that of the three given

points, we have c = 0, where c is the position vector of C. Moreover,

p1 =





1/2

−
√

3/6

0



 , p2 =





0√
3/3

0



 , p3 =





−1/2

−
√

3/6

0



 .

First and foremost, we have to verify the compatibility of the data. To do this, we

calculate the component of the relative velocities of two given points onto the line that

they define. It can be readily shown that the data are compatible, and hence, the motion

is possible. Next, we obtain the position vector of the point P that, along with {Pi}31,
forms an orthogonal trihedron. It is not difficult to realize that the position vector of

point P can be expressed as2

p = c +

√
2

3
(p2 − p1)× (p3 − p1) ,

and hence,

ṗ = ċ +

√
2

3
[(p3 − p2)× ṗ1 + (p1 − p3)× ṗ2 + (p2 − p1)× ṗ3] ,

with the numerical values of p and ṗ given below:

p =

√
6

6





0

0

1



 , ṗ =
1

12





2
√

3√
6

12−
√

3



 .

Now, let ê∗
i denote the dual unit vector representing the line that passes through P and

Pi, i.e.,

ê∗
i =

1

‖pi − p‖ [pi − p + ǫp× pi] ,

where

‖pi − p‖ =

√
2

2
, i = 1, 2, 3 .

Next, the three foregoing dual unit vectors are stored columnwise in the dual rotation

matrix Q̂, i.e.,

Q̂ = [ ê∗
1 ê∗

2 ê∗
3 ] .

Upon substitution of the numerical values of these vectors into the above expression, we

obtain

Q̂ =

√
12

12





6 + ǫ 2 − ǫ 2
√

2 −6 + ǫ
√

2

−2
√

3 + ǫ
√

6 4
√

3 −2
√

3− ǫ
√

6

−2
√

6 −2
√

6 −2
√

6



 .

2Although c = 0 in this case, ċ 6= 0, and hence, c must be written explicitly in the expression for p.
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Likewise, the time derivative of Q̂ is computed as

˙̂
Q =

√
2

24









−4
√

3 −4
√

3 −4
√

3

−2
√

6 −2
√

6 −2
√

6

−6
√

2 + 2
√

3 −4
√

3 6
√

2 + 2
√

3





+ ǫ





−1 + 4
√

3 2− 8
√

3 −1 + 4
√

3

12−
√

3 0 −12 +
√

3

−(2 +
√

6) 4 −2 +
√

6







 .

Therefore,

Ω̂ =
˙̂
QQ̂T =

1

12





0 − ǫ (12−
√

3) 6
√

2

+ ǫ (12−
√

3) 0 6

−6
√

2 −6 0



 ,

which, as expected, is a dual skew-symmetric matrix. Hence,

ω̂ = vect(Ω̂) =
1

2





−1√
2

0



+ ǫ
12−

√
3

12





0

0

1



 ,

from which we can readily identify

ω =
1

2





−1√
2

0



 , v0 =
12−

√
3

12





0

0

1



 .

Furthermore, the position vector π∗ of the point P ∗ of the ISA lying closest to the origin

can be obtained from v0. Indeed, let v∗ be the velocity of P ∗, which thus allows us to

write

v0 = v∗ + ω × (−p∗) = v∗ + p∗ × ω .

Upon cross-multiplying the two sides of the foregoing expression by ω, we obtain

v0 × ω = v∗ × ω + (p∗ × ω)× ω ,

whose first term of the right-hand side vanishes because v∗ and ω are parallel. Therefore,

v0 × ω = (p∗ × ω)× ω = (p∗ · ω)ω − ‖ω‖2p∗ .

The first term of the rightmost-hand side of the foregoing equation vanishes because p∗

being the position vector of the point of the ISA that lies closest to the origin, and the

ISA being parallel to ω, these two vectors are orthogonal. We can thus solve for p∗ from

the above expression, which yields

p∗ = −v0 × ω
‖ω‖2 .
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The quantities involved in the foregoing expression are now evaluated:

−v0 × ω = ω × v0 =
12−

√
3

24





√
2

1

0



 , ‖ω‖2 =
3

4
.

Finally, p∗ = {[(12 −
√

3)]/18}[
√

2 1 0]T , which coincides with the results reported in

(Angeles, 1997), obtained by another method.

A.5 Conclusions

We revisited dual algebra in the context of kinematic analysis, which led us to a straight-

forward introduction of dual quaternions. In the process, we showed that the parameters

of both the finite screw and the instant screw of a rigid-body motion can be computed

from the sum of the diagonal and the difference of the off-diagonal entries of the dual

rotation and, correspondingly, the dual angular-velocity matrices.
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Arai, T., Hervé, J.M. and Tanikawa, T., 1996, “Development of 3 dof micro

finger,” Proc. IROS’96 , Osaka, pp. 981–987.

Bai, S.P. and Angeles, J., 2008, “A unified input-output analysis of four-bar

linkages”. Mechanism and Machine Theory, Vol. 43, pp. 240–251.

Bai, S., Hansen, M.R. and Angeles, J., 2009, “A robust forward-displacement

analysis of spherical parallel robots,” to appear in Mechanism and Machine Theory.
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Hervé, J, 1999, “The Lie group of rigid body displacements, a fundamental tool

for mechanism design,” Mechanism and Machine Theory , Vol. 34, pp. 719–730.
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Kinematics, Kluwer Academic Publishers, Dordrecht, pp. 129–138.

Shoham, M. and Brodsky, V., 1994, “The dual inertia operator and its applica-

tion to robot dynamics,” ASME J. Mechanical Design, Vol. 116, pp. 1089–1095.

178



Simmons, G.F., 1963, Introduction to Topology and Modern Analysis, McGraw-Hill

Book Co., New York.

Stein, J., 1979, Random House College Dictionary, Random House, New York.

Sternberg, S., 1994, Group Theory and Physics, Cambridge University Press,

Cambridge.

Strang, G., 1988, Linear Algebra, 3rd ed., Harcourt Brace Jovanovich College

Publishers, Fort Worth.

Study, E., 1903, Geometrie der Dynamen, Leipzig.

Teng, C.P. and Angeles, J., 2001, “A sequential-quadratic-programming algo-

rithm using orthogonal decomposition with Gerschgorin stabilization”, ASME J. of

Mechanical Design, Vol. 123, pp. 501–509.

The Concise Oxford Dictionary of Current English, 1995, Clarendon Press, Oxford.

Tinubu, S.O. and Gupta, K.C., 1984, “Optimal synthesis of function generators

without the branch defect,” ASME, J. Mech., Trs., and Auto. in Design,, Vol. 106,

pp. 348–354.

Uspensky, J., 1948, Theory of Equations, McGraw-Hill Book Company, Inc., New

York.

Vitruvius, P.M., 28 BCE De Architectura, Vol. X.

Waldron, K.J. and Kinzel,G .L., 1999, Kinematics, Dynamics, and Design of

Machinery , John Wiley & Sons, Inc., New York.

Webster’s Collegiate Dictionary, 2003, (on-line).

Wohlhart, K., 1991, “Der homogene Paralleltrieb-Mechanismus,” Mathematica

Pannonica, Vol. 2, No. 2, pp. 59–76.

Wohlhart, K., 1992, “Displacement analysis of the general spatial parallelogram

manipulator,” Proc. 3rd International Workshop on Advances in Robot Kinematics,

Ferrara, Italy, pp. 104–111.

179



Wright, D., Desai S., and Henderson, W., 1964, “Action of the subtalar and

ankle-joint complex during the stance phase of walking,” The J. Bone and Joint

Surgery , Vol. 46-A, No. 2, pp. 361–382.

Yang, A.T., 1963. Application of Quaternion Algebra and Dual Numbers to the

Analysis of Spatial Mechanisms, Doctoral Dissertation, Columbia University, New

York, No. 64-2803 (University Microfilm, Ann Arbor, Michigan).

Yang, A.T. and Freudenstein, F., 1964, “Application of dual-number quater-

nion algebra to the analysis of spatial mechanisms,” J. of Applied Mechanics ,

Vol. 31, pp. 300–308.

180



Index

Π-joint, 44

algebraic equation

degree, 12

approximate synthesis

for function generation, 103

assemblability, 60

augmented synthesis equations, 110

bimodal linkage, 87

bivariate equations, 12

branch switching, 122

chain

exceptional, 55
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