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Abstract

Stationary solutions of the Chern-Simons effective field theory for the frac-

tional quantum Hall systems with edges are presented for Hall bar, disk and

annulus. In the infinitely long Hall bar geometry (non compact case), the

charge density is shown to be monotonic inside the sample. In sharp contrast,

spatial oscillatory modes of charge density are found for the two circular ge-

ometries, which indicate that in systems with compact geometry, charge and

current exist also far from the edges.
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I. INTRODUCTION

The present work focuses on charge and current distributions in clean two dimensional

electronic systems with edges which are subject to strong perpendicular magnetic fields.

Investigating the physics of the integer or fractional quantum Hall effect (QHE), and in

particular, elucidation of the precise charge and current profiles in these systems is a fun-

damental problem from both theoretical and practical experimental points of view. The

quantum mechanical dynamics of electrons in two dimensional systems at strong magnetic

field is characterized by two fundamental concepts. The first one is the formation of Landau

levels which play an essential role in the studies of integer QHE. The second, and probably

more profound is the effect of the Coulomb interaction and the emergence of the fractional

QHE.

Indeed, a substantial theoretical effort has been devoted to compute the charge and cur-

rent distributions within a realistic quantum mechanical picture. For the integer QHE in an

infinitely long Hall bar, a self consistent formalism relating charge density and electrostatic

potential has been suggested [1]. Numerical solutions of the pertinent equations indicate

that the charge density is monotonic decreasing inside the Hall bar, and has a power law

singularity (|x− L|−1/2) at the edges [1]. In the particular geometry of a semi-infinite plan,

an analytic solution using the Wiener-Hopf method is obtained [2], and the charge density

is found to have the same power law singularity near the single edge.

For two dimensional electronic systems at very strong magnetic fields the electron-

electron interaction plays a fundamental role, as it leads to the fractional quantum Hall

effect (and in fact, according to the global picture [3], also to the integer quantum Hall

effect). Hence, an evaluation of the charge and current profiles in the fractional QHE is

somewhat more intricate. One of the successful methods for describing the fractional QHE

is the effective Chern-Simons gauge field theory [4], which includes the Coulomb interaction

in a non-perturbative manner. Employing this theory for the calculations of charge and

current distributions is therefore distinct from various other approximations used for treat-
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ing these quantities in interacting systems. These include Hartree [5], Hartree-Fock [6] and

others [7].

In the present work, calculation of charge and current profiles are based on the Chern-

Simons field theory for treating the fractional quantum Hall liquids. It turns out however,

that in order to preserve gauge invariance, inclusion of edges within this formalism must

be done carefully. One possible approach [8] is to add a one dimensional edge term to the

original action. (See also [9,10] and refs. therein.) Once it is assumed that all the important

physical quantities are concentrated near the edges, this chiral edge action becomes a pow-

erful tool for studying the various edge effects. Thereby, the theory is formulated through

the Tomonaga-Luttinger liquid description, whose experimental verification is under intense

investigation especially in tunneling experiments. Recently, such tunneling effects were mea-

sured and found to be consistent with theoretical predictions [11].

While studying the physics pertaining to stationary quantum Hall states in which there

are ‘non-zero’ currents flowing, one has no apriori knowledge of whether or not charge and

current are concentrated near the edge. In order to approach this problem, we start our

investigation from the Chern-Simons effective theory which treats edge and bulk properties

on an equal footing [12]. It leads, among other results, to a set of self-consistent equations

for charge and current distributions within the two-dimensional sample. In the most general

case, for filling factor ν = m/(mp+1) with integer m and even p, there are 3m×3m coupled

integro-differential equations. Here we restrict ourself to stationary solutions with m = 1

(non-hierarchial case). For clean systems with sufficiently high symmetry it ends up with

a single homogeneous eigenvalue problem determined by an integro-differential equation.

This equation was derived in ref. [12] for the Hall bar geometry, and appears to be markedly

different from its anlalogous one for the integer QHE [1].

One of the interesting problems is to study the spectrum of the eigenvalue equation thus

obtained. For the integer QHE, it is suggested that the spectrum is continuous [1]. On the

other hand, nothing is known for the fractional case so far. If we assume that the spectrum

is continuous also for the fractional case, the integro-differential equations can be solved
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analytically order by order and it leads to a charge distribution which is finite at the edges

[13].

We present below a general method for solving the pertinent equations both for the inte-

ger [1] and the fractional [12] QHE systems. Unlike the previous order by order treatment,

our method is based on the Green function method for solving eigenvalue problems. The

general method is then applied for some specific systems of physical interest.

Our results indicate that for the infinitely long Hall bar geometry, only a single eigenvalue

exists, which is physically acceptable, and the corresponding charge distribution agrees with

the one obtained earlier using the analytic method [13]. For the disk and annulus geometries,

many physically acceptable eigenvalues are present, and the corresponding solutions behave

as radial modes ρn(r) with n nodes between R1 and R2. This surprising appearance of

spatial charge oscillations in fractional quantum Hall systems with compact geometries has

not been noticed before, and might shed a new light on the physics of edge channels.

In Section 2, we explain the Green function method which is used in solving the equa-

tions for the charge density. For convenience, the method is explained within the Hall bar

geometry. The solutions for the charge and current profiles in a disk and an annulus, which

comprise the novel part of the present work are presented in Section 3. A few specific topics

are discussed in the Appendices. In Appendix A, the Green function method for the integer

QHE system [1] is discussed, while in Appendix B, the results for the fractional QHE in the

Hall bar geometry are presented and shown to be consistent with those obtained within an

analytic treatment [13]. Finally, in Appendix C, the Green function method is combined

with a power expansion technique which proves to be useful for the Hall bar geometry.

II. THE GREEN FUNCTION SOLUTION

Consider an infinitely long Hall bar stretched along the y axis between the points x = L1

and x = L2 subject to a strong magnetic field H in the z direction. In the stationary QHE

the charge density ρ depends only on x, and at present we are interested in the density profile
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ρ(x) for non-hierarchial filling fraction ν = 1/(p + 1) with p even. Here ρ is the difference

between the charge distribution and its average. The equations derived in Ref. [12] couple

the charge density ρ(x) and the current density Jy(x), but if the later is eliminated, a single

integro-differential equation for ρ(x) remains, which reads

(8πνcg−1)2
d2

dx2
ρ(x)− ρ(x) = (4ν2ξg−1)

d2

dx2

∫ L2

L1
log|x− x′|ρ(x′)dx′. (1)

In this equation c is the velocity of the Chern-Simons gauge field and g−1 is the coupling

constant of the Maxwell term in the Chern-Simons Lagrangian. The constant ξ ≥ 0 comes

from the solution of the Poisson equation relating the electrostatic potential to the charge

density. Eq.(1) must also be accompanied by the condition

∫ L2

L1

ρ(x)dx = 0. (2)

It is useful to define q ≡ (8πνcg−1)−1 and scale coordinates x → qx so that the integration

limits are Xi = qLi. Eq.(1) then reads,

d2

dx2
ρ(x)− ρ(x) = µ

d2

dx2

∫ X2

X1

log|x− x′|ρ(x′)dx′, (3)

where all the quantities appearing in the above equation are dimensionless, including the

constant µ ≡ νξ/2πc.

Before proceeding with the solution of Eq.(3) three general remarks are useful at this

point. 1) Eq.(3) (and similar equations which are obtained later for other geometries) is a

peculiar eigenvalue problem for the charge density ρ, which can formally be written as

Aρ+ µBρ = 0, (4)

where A and B are certain linear operators and µ is an eigenvalue. In Eq.(4), the operator A

is self adjoint but B is not. However, physics requires the existence of real eigenvalues. We

show below that Eq.(3) can indeed be cast into an equation having the same form as Eq.(4)

in which A is symmetric and B is symmetric and positive definite. This problem has then

only real eigenvalues. 2) The value of µ appearing therein cannot be chosen arbitrarily, but
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must be selected from the relevant set of eigenvalues. On the other hand, following Eq.(3),

the constant µ is composed of certain physical quantities such as mass, charge, dielectric

constant, filling factor etc. If the spectrum is discrete, it might be tempting to formulate

here a kind of quantization rule. This is of course too ambitious, since the basic theory is

not an exact one. On the other hand, the sign of µ should be consistent with its physical

content. 3) It is not useful to perform the second derivative on the right hand side of Eq.(3)

and obtain an integral equation. Indeed, the resulting equation will have a very singular

kernel which turn its solution practically impossible. Instead, we use the Green function

method which is so successful in solving eigenvalue problems of the Sturm-Lioville type.

Without loss of generality we can set the Hall bar symmetrically between the points

X1 = −qL and X2 = qL (namely, L2 = −L1 = L). Furthermore, following Refs. [1,13]

we limit our set of solutions to be antisymmetric, ρ(−x) = −ρ(x) which automatically

satisfy the condition (2). The coordinate x is then limited within the interval [0, qL] and

the equation for the charge density becomes,

d2

dx2
ρ(x)− ρ(x) = µ

d2

dx2

∫ qL

0

log

∣

∣

∣

∣

∣

x− x′

x+ x′

∣

∣

∣

∣

∣

ρ(x′)dx′, (5)

together with the condition ρ(0) = 0. The value of ρ(qL) is not specified.

We look for a (symmetric) Green function G(x, x′) = G(x′, x) which, formally can be con-

sidered as the inverse of the operator [ d2

dx2 − 1] with the appropriate boundary conditions.

Hence, it should satisfy
[

d2

dx2
− 1

]

G(x, x′) = δ(x− x′), (6)

G(0, x′) = 0. (7)

Denoting respectively by x< and x> the smaller and larger values of x and x′, it is easily

verified that

G(x, x′) = − sinh(x<) cosh(x>) + α sinh(x) sinh(x′), (8)

where the second term on the right hand side reflects the freedom resulting from the absence

of a second boundary condition at x = qL.

6



We now express ρ on the left hand side of Eq.(5) in terms of G(x, x′). Formally we apply

the operator G = [ d2

dx2 − 1]−1 on both side of (5) and use the formal identity

[

d2

dx2
− 1

]−1
d2

dx2
= 1 +

[

d2

dx2
− 1

]−1

. (9)

Strictly speaking, the operator [ d2

dx2 − 1] has a zero eigenvalue corresponding to the function

sinh x so that its inverse must be defined within the subspace that is orthogonal to this

function. In so doing we might abandon some of the solutions of the original equation (5).

We will see however that the set of solutions is rich enough to capture the main physical

content. With this point kept in mind the integro-differential equation (5) is transformed

into an integral equation,

ρ(x) = µ
∫ qL

0

dx′ log

∣

∣

∣

∣

∣

x− x′

x+ x′

∣

∣

∣

∣

∣

ρ(x′) + µ
∫ qL

0

dx′′
∫ qL

0

dx′ G(x, x′′) log

∣

∣

∣

∣

∣

x′′ − x′

x′′ + x′

∣

∣

∣

∣

∣

ρ(x′). (10)

Note that the right hand side of Eq.(10) vanishes at x = 0 as required. The kernel of the

integral equation does not appear to be symmetric, so, apriori, there is no guarantee that

the eigenvalues µ are real. In order to proceed and actually show it, it is convenient to write

Eq.(10) in its operator form,

ρ = µ(1 +G)Lρ, (11)

where the integral operators have their obvious coordinate representations 〈x|G|x′〉 =

G(x, x′), 〈x|L|x′〉 = log
∣

∣

∣

x−x′

x+x′

∣

∣

∣ (not to be confused with the system length) and 〈x|1|x′〉 =

δ(x − x′), all of them are symmetric. It is not difficult to show that the operator −L is

positive definite, and therefore its square root (−L)1/2 exists. Eq.(11) is then equivalent to

the following equation for η ≡ (−L)1/2ρ,

η = µ(−L)1/2[−(1 +G)](−L)1/2η, (12)

whose kernel is symmetric. Only solutions corresponding to positive eigenvalues µ are phys-

ically acceptable. As we have commented after Eq.(9), every solution of Eq.(12) is also a

solution of Eq.(5), but the converse is not necessarily true. Numerical solutions of Eq. (12)

will be discussed in appendix B.
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III. OSCILLATING CHARGE AND CURRENT DISTRIBUTION IN DISK AND

ANNULUS

We now use the Green function method introduced above to solve the equations of Ref.

[12] in a circular geometry and demonstrate the occurrence of spatial charge oscillations. The

algorithm is demonstrated for a disk geometry, and then, later on, some minor modifications

are introduced in order to study the annulus geometry. We believe that for both systems

our results are experimentally relevant.

Consider a clean disk of radius R subject to a strong perpendicular magnetic field such that

the filling factor is ν = 1/(p+ 1) with p an even number. For systems with axial symmetry

the charge density ρ, the electrostatic potential V and the (tangential) current density Jθ

depend only on the radial coordinate r. There is of course no radial current. It is useful to

define the radial differential operator D2
r ≡ d2

dr2
+ 1

r
d
dr
. Then, we obtain the following set of

equations,

ρ(r)− 1

q2
D2

rρ(r) =
4ν2

g
D2

rV (r) (13)

V (r) = −ξ
∫ R

0

φ(r, r′)ρ(r′)r′dr′ (14)

φ(r, r′) =
∫

2π

0

dθ√
r2 + r′2 − 2rr′ cos θ

, (15)

where q ≡ (8πνcg−1)−1. Of course, the last two equations are just the solution of the Poisson

equation expressing the electrostatic potential V (r) in terms of the charge density ρ(r) for

systems with axial symmetry, with ξ ≥ 0. The charge density and the electrostatic potential

are expected to be finite in the disk. In particular they should be regular at the origin. The

weak singularity of φ(r, r′) at r = r′ is then integrable.

Eliminating V (r) from Eqs.(13) and transforming to dimensionless coordinates x = qr we

get a single integro-differential equation for ρ(x),

[D2

x − 1]ρ(x) = µD2

x

∫ qR

0

φ(x, x′)ρ(x′)x′dx′, (16)

where µ ≡ νξ/2πc > 0.
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We look for a (symmetric) Green function G(x, x′) = G(x′, x) which, formally can be con-

sidered as the inverse of the operator [D2
x − 1] with the appropriate boundary conditions

(regularity at x = 0). Hence, it should satisfy

[D2

x − 1]G(x, x′) =
δ(x− x′)

x
, (17)

G(0, x′) : finite. (18)

Denoting respectively by x< and x> the smaller and larger values of x and x′, it is easily

verified that

G(x, x′) = −I0(x<)K0(x>) + αI0(x)I0(x
′), (19)

where I0 and K0 are the modified Bessel functions. The second term on the right hand side

reflects the freedom resulting from the absence of a second boundary condition at x = qR.

We can now repeat the same procedure which led from Eq.(5) to Eq.(10), and later to

Eq.(12), with some slight modification due to the presence of the volume element x dx in

the relevant integrals. Thus we define the operators G and Φ such that their configuration

space representations are 〈x|G|x′〉 = √
xG(x, x′)

√
x′ and 〈x|Φ|x′〉 = √

xφ(x, x′)
√
x′. It is not

difficult to show that the operator Φ is positive definite, so its square root is well defined.

The function η ≡ Φ1/2x1/2ρ then satisfies the integral equation

η = µΦ1/2(1 +G)Φ1/2η, (20)

whose kernel is symmetric.

For an annulus with radii R1 < R2 the Green function has much more freedom because the

origin is not reached. Instead of (19) we may now have

G(x, x′) = −[αI0(x<)K0(x>) + βK0(x<)I0(x>)] + γI0(x)I0(x
′) + δK0(x)K0(x

′), (21)

with α + β = 1.

We have solved Eqs.(21) numerically for the disk and the annulus geometry using N =

160 Gaussian integration points for the radial integration. As a credibility check of our
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numerical procedure we have confirmed that the numerical value of the positive eigenvalues

is independent of N .

The operator appearing on the right hand side of equation (20) is real and symmetric.

One can then look upon the eigenvalue equation as an equation for a rope which is not

attached at its ends. This analogy is somewhat expected, since equation (16) is very similar

to an inhomogeneous wave equation for stationary solutions. The resulting solutions ρn(x)

corresponding to positive eigenvalues λn = 1/µn, n = 0, 1, 2, ..with λn < λn+1 appear to have

n radial nodes. The lowest mode n = 0 cannot satisfy the condition of zero total charge (2),

and hence it is physically unacceptable. All the other modes indeed have zero total charge,

and can therefore be regarded as representing the pertinent radial charge density.

For the disk geometry we chose qR = 1 in Eq.(16) and α = 0 in the expression (19) for

the Green function. The charge density profile for the lowest four modes n = 1, 2, 3, 4 is

displayed in Fig. 1. The basic features of these solutions are as follows: 1) The charge

density is maximal at the center. 2) The mode n = 1 with one zero reminds us of the charge

distribution in the Hall bar geometry although it does not have a sharp peak at the edge. 3)

Most notably, there are numerous oscillatory solutions which, to the best of our knowledge,

were not predicted so far.

For the annulus geometry we chose qR1 = 0.5 and qR2 = 1.0 as integration limits instead of

0 and qR in Eq.(16). We also take α = 1, β = γ = δ = 0 in the expression (21) for the Green

function. The charge density profile for the lowest four modes n = 1, 2, 3, 4 is displayed in

Fig. 2. The basic features of these solutions are different from the ones found for the disk

in that they do not have a maximum at the inner edge. From that point of view, a disk

cannot be considered as an annulus with vanishingly small inner radius. The large value

of the charge at R = 0 is attributed to the weak (but integrable) singularity of K0(x) near

x = 0. However, here again there are numerous oscillatory solutions. We know [13] and

shall also see in Appendices B and C that in the Hall bar geometry, there is only a single

solution, which is monotonic. The novel result of spatial oscillatory charge density must

then be related to the fact that the pertinent physical systems are compact. It then belongs
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to the realm of mesoscopic and quantum dot physics, which, nowadays, is experimentally

accessible.

We now present our results for the current profile in the circular geometry. The derivation

of the current once the charge density is given has been explained for the Hall bar geometry

in refs. [12,13]. Here we are interested mainly in the oscillatory pattern. It is not difficult

to show that the tangential current Jθ(x = qr) is given by,

Jθ(x) = a
1

x

∫ x

qR1

x′ρ(x′)dx′ + b, (22)

where a and b are constants and R1 = 0 for the disk and finite for the annulus. In the

following we display the integral appearing on the RHS of (22) since it gives the main

characteristics of the actual current. In figure 3 the current profile for the disk is shown, for

the same configuration as in figure 1. The current of the lowest mode is similar in shape

to the current evaluated in the Hall bar geometry [1,13]. The current of other modes is

oscillating, which shows clearly that for these modes, current is not concentrated solely near

the edges. Similar result occurs also for the annulus geometry, for which the current of the

four modes pertinent to figure 2 is displayed in figure 4.

One of us (Y.A) would like to thank the Japanese Society for the Promotion of Science for

supporting his visit to the Institute for Solid State Physics in which this work has been

carried out.

APPENDIX A

Solution of the equation for the integer QHE.

In this appendix we present a Green function solution of the equations derived in Ref. [1] for

the integer quantum Hall effect in a Hall bar. If the Hall bar stretches along the y direction

between points x = L1 and x = L2, the charge density and the electrostatic potential depend

only on x. They are determined by a set of equations,
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V (x) = −2e2
∫ L2

L1

log |x− x′|ρ(x′)dx′ (23)

ρ(x) =
n

hωc

V ′′(x), (24)

where n is the Landau level number and ωc is the cyclotron frequency. Transforming to

dimensionless coordinates x → qx this set of equations is equivalent to a single equation for

ρ(x) which, for antisymmetric solutions reads

− ρ(x) = µ
d2

dx2

∫ qLx

0

log

∣

∣

∣

∣

∣

x− x′

x+ x′

∣

∣

∣

∣

∣

ρ(x′)dx′, (25)

where µ ≡ (4e2nq)/(hωc) > 0 and Lx = L2 = −L1 is half the width of the Hall bar. Here q

is just a parameter with dimensions of inverse length. In order to apply our Green function

method for solving Eq.(25) we add ρ′′ on both sides and use algebraic manipulations as in

Section 2. The result, using the notation of section 2, is

−Gρ = µ(1 +G)Lρ. (26)

If we apply the operator (1 +G)−1 on both sides, we get

[1− (1 +G)−1]ρ = µ(−L)ρ. (27)

Equation (27) is of the form (4) with symmetric A and symmetric positive definite B and

therefore it has real eigenvalues µ. It would have been more useful to solve an equation for

the potential V (x) rather than the density ρ(x), since the later one is known to have a power

singularity near the edges [1,2,13]. Unfortunately we were unable to obtain an equation of

the form (4) with symmetric A and symmetric positive definite B.

The charge density in a Hall bar for the integer QHE is displayed in Fig. 5. For the actual

numerical solution we take the Hall bar to be located between x = −2 and x = +2 in order

to compare the charge density of the non-interacting system with that of the interacting

system reported below in Appendix B. As can convincingly be inferred from Fig. 5 the

charge density in the integer quantum Hall regime is singular near the edge. This is of

course consistent with earlier results [1,2,13].
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APPENDIX B

Charge density profile in the Hall bar geometry for the fractional QHE.

As was stated already, the charge distribution profile in the Hall bar geometry for the

fractional quantum Hall system was calculated by an analytic iterative method [13]. In

this appendix we present the exact solution obtained within the Green function technique

introduced in Section 2. We have solved Eq.(12) numerically using mesh of N = 400

integration points between 0 and 2, replacing the operators by N ×N matrices. The weak

logarithmic singularity at x = x′ is of course integrable. Out of the N eigenvalues only one

is found to be positive. This feature as well as the numerical value of the positive eigenvalue

persist independent on the number N (provided it is sufficiently large). The parameters qL

(upper limit of integration in Eq.(10) and α (the free parameter in the Green function (8)

should be chosen in such a way that Eq.(12) has at least one positive eigenvalue. In all

our attempts, we could not obtain more than a single positive eigenvalue, a result which

is markedly distinct from that obtained in the circular geometry. For the special choice

qL = 2 and α = 0 the charge density in a Hall bar is displayed in Fig. 6. It is reassuring to

note that this solution is extremely close to the one obtained by iteration methods [13] or

the one obtained by solving Eq.(12) using a power basis technique as explained in the next

Appendix.

APPENDIX C

Solution of the equations in the Hall bar using a power series expansion.

In this appendix we present an alternative formulation to study the integro-differential Eq.(3)

in the form

u(x)− au′′(x) = −µ
∫

1

−1

dx′ ln |x− x′|u′′(x′), (28)

with the antisymmetry condition u(−x) = −u(x). Here, we have used the notation ρ(x) =

u′′(x). We can then choose {x2k+1|k = 0, 1, · · ·} as an expansion basis. The integration
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operator on the RHS of (28) is represented as

L · x2l+1 = −
∫

1

−1

dx′ ln |x− x′|x′2l+1

=
∞
∑

k=0

−2

(2k + 1)(2k − 2l − 1)
x2k+1, (29)

whose matrix representation reads

L =

































2 2

3

2

5

2

7
· · ·

−2

3

2

3

2

9

2

15

− 2

15
−2

5

2

5

2

15

− 2

35
− 2

21
−2

7

2

7

...
. . .

































, (30)

and the double derivative is

D2x2l+1 =
d2

dx2
x2l+1 = (2l + 1)(2l)x2l−1.

Thus we have

(1− aD2)u = µLD2u.

Since the double derivative D2 has rapidly increasing next-diagonal elements (2l+1)(2l), it

seems impossible to simulate the eigenvalue problem (28) numerically with any finite size

truncation of D2. A remedy for this is to integrate twice the original equation (28). Let us

introduce the double integration operator I2 by

I2x2l+1 = clx+
1

(2l + 3)(2l + 2)
x2l+3,

where cl is an integration constant. Then all the solutions of equation

I2(I2L)−1(I2 − a)u = µu,

also satisfy equation (28). After finding some suitable set of constants cl, we obtain a positive

eigenvalue µ whose eigenvector is consistent with the one obtained by the Green function

method and by an analytic argument [13].
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FIGURES

FIG. 1. Charge distribution in a disk. The parameters are qR = 1 and α = 0 (see equation

(19)). The four modes correspond to the four positive eigenvalues λn ≡ 1/µn of equation (20),

with n = 1, 2, 3, 4 which also counts the number of radial nodes.

FIG. 2. Charge distribution in an annulus. The parameters are qR1 = 0.5, qR2 = 1 and

α = 1, β = γ = δ = 0 (see equation (21)). The four modes are as in figure 1.

FIG. 3. Current distribution in a disk. The parameters are qR = 1 and α = 0 (see equation

(19)). The four modes correspond to the four positive eigenvalues λn ≡ 1/µn of equation (20),

with n = 1, 2, 3, 4 which also counts the number of radial nodes.

FIG. 4. Current distribution in an annulus. The parameters are qR1 = 0.5, qR2 = 1 and

α = 1, β = γ = δ = 0 (see equation (21)). The four modes are as in figure 3.

FIG. 5. Charge distribution in a Hall bar for the integer quantum Hall system obtained

by solving equation (27). The Hall bar is located between x = −2 and x = 2 and the charge

distribution is antisymmetric. The parameter α in the Green function (8) is set equal to zero.

FIG. 6. Charge distribution in a Hall bar for the fractional quantum Hall system obtained

by solving equation (12). The Hall bar is located between x = −2 and x = 2 and the charge

distribution is antisymmetric. The parameter α in the Green function (8) is set equal to zero.
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