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We study the Kondo effect in a CNT (left lead)-CNT(QD)-CNT(right lead) structure. Here CNT is
a single-wall metallic carbon nanotube, for which 1) the valence and conduction bands of electrons
with zero orbital angular momentum (m = 0) coalesc at the two valley points K and K’ of the
first Brillouin zone and 2) the energy spectrum of electrons with m # 0 has a gap whose size is
proportional to |m|. Following adsorption of hydrogen atoms and application of an appropriately
designed gate potential, electron energy levels in the CNT(QD) are tunable to have: 1) two-fold
spin degeneracy; 2) two-fold isospin (valley) degeneracy; 3) three-fold orbital degeneracy m = 0, £1.
As a result, an SU(12) Kondo effect is realized with remarkably high Kondo temperature. Unlike
the SU(2) case, the low temperature conductance and magnetic susceptibility have a peak at finite

temperature. Moreover, the magnetic susceptibilities for parallel and perpendicular magnetic fields

(WRT the tube axis) display anisotropy with a universal ratio x

the electron’s orbital and spin g factors.

PACS numbers: 73.21.Hb, 73.21.La, 73.22.Dj, 73.23.Hk

I. INTRODUCTION

Background: Kondo tunnelling through carbon nan-
otube quantum dots CNT(QD) has recently become a

subject of intense theoretical! © 1712

and experimenta
studies. One of the motivations for pursuing this re-
search direction is the quest for achieving an exotic
Kondo effect with SU(N) dynamical symmetry,? 17
based on the peculiar properties of electron spectrum
in CNT.'819 Achieving SU(4) symmetry is natural be-
cause the energy spectrum of metallic CNT consists of
two independent valleys that touch at the K and K’
points of the Brillouin zone. The energy levels possess
degeneracy in both spin (1,]) and isospin (or valley
K,K’) quantum numbers. Thus, due to both spin
and isospin degeneracy, an SU(4) Kondo effect takes

place.1-3:10-12

Motivation: Achieving even higher degeneracy
SU(N>4) of the QD is highly desirable. Firstly, the
Kondo temperature dramatically increases with N.
Secondly, there is a hope to expose novel physical
observables that are peculiar to these higher symme-
tries. In the present device, higher degeneracy may be
obtained by employing the orbital (cylindrical) sym-
metry of electron states in CNT, an option which so
far has not been effectively employed in this quest.

In order to manipulate these orbital features, we use

imp

/X#np = n that depends only on

the fact that adsorption of oxygen, hydrogen or flu-
orine atoms on the surface of the CNT gives rise to
gap opening in the spectrum of the metallic CNT.2%:2!1
Realization of SU(N> 4) Kondo effect then becomes
feasible, since there is now spin, isospin (valley) and

orbital degeneracy.

The main objectives: The main goals of the present
work are: 1) To show that SU(12) Kondo effect in the
CNT(left lead)-CNT(QD)-CNT(right lead) structure
is indeed achievable and 2) To elucidate the physi-
cal content of this structure at the Kondo regime as
encoded by tunneling conductance and the magnetic
susceptibility. The first goal obtains by designing the
electron spectrum in the CNT(QD) to have a 12-fold
degeneracy following adsorption of hydrogen atoms
combined with an application of a non-uniform gate
potential. Namely, the energy levels of the central el-
ement CNT(QD) are tunable into a three-fold orbital
degeneracy for m = 0,41 (where m is the compo-
nent of the orbital angular momentum along the CNT
axis). The second goal is achieved through quantita-
tive analysis, based on perturbation theory at high
temperatures and mean field slave boson formalism

at low temperature.

The main results: The energy spectrum of the
CNT(QD) gated by a spacially modulated potential is
elucidated, and the possibility to get a CNT(QD) with



twelve-fold degenerate quantum states is substanti-
ated. This CNT(QD) is then integrated into a tun-
nelling junction CNT (left lead)-CNT(QD)-CNT (right
lead) as shown in Fig. 1. When the ground state of the
interacting CNT(QD) is occupied by a single electron,
Kondo tunneling with SU(12) dynamical symmetry is
realized. This exotic Kondo effect is quantitatively
analyzed. First, the corresponding Kondo tempera-
ture is calculated and shown to be much higher than
in the standard SU(2) Kondo effect. The tunneling

conductance G(T') and the magnetic susceptibilities

I
Ximp

lel and perpendicular to the CNT axis are calculated
in the weak (T' > Tk ) and strong (T' < Tk) coupling

(T), Ximp(T) for respective magnetic fields paral-

regimes.

The low temperature dependencies of both G(T)
and x(T) are entirely distinct from their analogs per-
taining to the SU(2) Kondo effect in quantum dot.?
More concretely, the temperature dependence of both
quantities is shown to have a peak at finite tempera-
ture, unlike the familiar monotonic behavior encoun-
tered in the ordinary SU(2) Kondo effect in quantum
dots.
tibility exposes an observable peculiar to the SU(12)

Moreover, inspection of the magnetic suscep-

symmetry (or other SU(N) symmetry with N > 2):
It is shown that the magnetic response is anisotropic,
that is, X!‘mp(T) # Xime(T). Even more remarkable,
the ratio n = Xyrnp(T)/XiJ;np(T) is a “universal num-
ber” depending only on go;1, and gspin, that are the or-
bital and spin ¢ factors of electrons in the CNT(QD)
(and not on temperature).

These distinctions open the door for experimental
manifestation of this peculiar junction. This is helped
by the unusually high Kondo temperature that en-
ables the measurement of the tunneling conductance

in the Kondo regime at relatively high temperature.
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FIG. 1: (Color online) CNT(left lead)-CNT(QD)-CNT(right

lead) junction.

Organization: This paper is structured as follows:

In Section II, we describe the basic structure of an

infinitely long metallic CNT with adsorbed hydro-
gen atoms. The energy spectrum of the CNT(QD)
is discussed in Section III. The Anderson model for
the tunnel junction is introduced in Section IV, fol-
lowed by Section V in which the Anderson Hamil-
tonian in the local moment regime is mapped on a
spin Hamiltonian, poor-man scaling equations for the
coupling constants are derived, and the Kondo tem-
perature is evaluated. In Sections VI and Section
VII the results of our calculations of the tunnelling
conductance and the magnetic susceptibilities are re-
spectively presented both in the weak and strong cou-
pling regimes. The main achievements of the present
work are summarized in Section VIII. Analysis of the
electron wave functions in the CNT(QD) with ad-
sorbed hydrogen atoms under the appropriate gate
potential is relegated to Appendix A. Zeeman split-
ting for electrons in CNT subject to an external mag-
netic field is calculated in Appendix B. The ratio
Xi”mp(T) /Ximp(T) is derived in Appendix C using the
fluctuation-dissipation theorem.

II. MODEL

Characteristic energy dispersion relation for elec-
tron in CNT is derivable from the special band struc-
ture of a graphene sheet.!®1923.24 Let ¢, ,, denote
the chiral vector that represents a possible rolling of
graphene into a CNT. When n; —ns is an integer mul-
tiple of 3, a CNT becomes a zero-gap semiconductor.
Else, it becomes a semiconducting nanotube with a
finite band gap.'®1Y The band structure of a metal-
lic CNT exhibits two Dirac points with a right- and
left-moving branch around each Dirac point. A pecu-
liar consequence of the Dirac nature of charge carriers
in CNT is that electrons can tunnel through a po-
tential barrier without reflection.?® This Klein para-
dox prevents a practical aspect of CNT: it is virtually
impossible to trap an electron in between potential
barriers, as it can escape out. It also hinders the for-
mation of a gap in the band spectrum. Fortunately,
this can be circumvented by chemical modification of
the CNT. In Refs.2%2! it is shown that when radi-
cals such as atomic oxygen, hydrogen or fluorine are

adsorbed on the graphene surface they form covalent



bonds with the carbon atoms. These covalent bonds
are realized since the carbon atoms change their hy-
bridization from sp? to sp?, and that results in the
opening of a band gap (similar to the situation in
diamond crystals). Its size can reach 2A, ~ 1 eV

depending on the density of adsorbed atoms.?%:26
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FIG. 2: (Color online) Observation of a gap opening in hydro-
genated graphene. Density plot denotes photoemission inten-
sity along the A-K-A’ direction of the Brillouin zone (see inset)
measured in Ref.[27], whereas the dashed line is the spectrum
calculated according to Eq.(1). Inset: The Brillouin zone of

graphene.

The energy spectrum of the metallic CNT with ad-
sorbed atoms can adequately be approximated (at
least, at low energy) from that of a graphene sheet

with adsorbed atoms using the formula,

ok, = /()2 + (hoky)2 + A2 (1)

In the above equation we keep k, to be a continuous
wave number for electron motion along the CNT axis
and k, = m/ro as discrete wave number for the mo-
tion along the circumference direction. Here v is the
Fermi velocity, rg is the CNT radius and the integer
m is an orbital quantum number. The energy spec-
trum of hydrogenated graphene measured in Ref.?7 is
shown in Fig.2. It is seen that Eq.(1) (dashed line)
agrees well with experimental data.

With present experimental facilities, the density of

adsorbed atoms can be manipulated to be dependent
on z in such a way that the gap A, is approximately

given by the following function of z,

My, if |z| <hor|z|>h+a,
Ag(z) = { 0 (2)

No, if h<lz| <h+a,

where Ny > M. The Fermi level ep is tuned to sat-
isfy the inequality Ny > ¢ > M;. Thereby, the CNT
is divided into five intervals numbered 1-5, with the
following respective electronic properties: Two inter-
vals (1 and 5), with |z| > h + a, serve as left and
right metallic leads. Two insulating intervals (2 and
4), with h < |z| < h + a, serve as left and right tun-
neling barriers. Finally, interval 3 with |x| < h serves
as quantum dot (see Fig.3).
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FIG. 3: (Color online) Left and right tunnel barriers separating
left and right leads from the quantum dot. Here My = 2A¢,
M1 = V3Ag, Ng = 3A¢ and N1 = v10Ag. The twelve fold
degenerate level is e4 = 2.3635A¢ (red line) and the Fermi level
is ep = 2.4013A0. The QD half-length is h = 5.682670 and the

barrier width is a = 1.73rq.

III. ENERGY LEVELS OF CNT(QD)

We describe the quantum states of electrons in the
CNT in the long-wave k - p approximation. This ap-
proximation is good when the wave vector k of the
electron is close to the K or K’ point of the first Bril-
louin zone (BZ) of the hexagonal lattice of the CNT,
ie., when k — K| < K or |k — K'| < K [see Figure
4 for illustration|. However, when electron is rejected
from the edges of the CNT QD, the possible tran-
sitions between the valleys K and K’ cannot be de-
scribed in the framework of long-wave approximation.
Therefore, it will be useful to start our discussions

from the microscopic tight-binding model.8:19



A CNT is specified by a chiral vector
Cn1n2 =nia; + noasg, (3)

where a; and ay are the basis vectors [|a;| = |a| =
ap = 2.46 A], n1 and ng are integers. A CNT is ob-
tained by rolling a 2D graphene sheet such that the
atom at the origin coincides with the atom at ¢y, n,.
Then [Cp,n,| = 27rg is the length of the CNT cir-

cumference and 7 is the CNT radius. We specify the
CNT by a chiral angle ¢¢, the angle between c,,n,
and the basis vector aj, as shown in Figure 4. The
hexagonal symmetry of grapheene gives us the con-
dition —% < ¢o < %
gbO:Oand(bO:%.
constructed, while f
CNT.lS’lg

Two special values of ¢ are
For ¢9 = 0, a zigzag CNT is

r ¢ = %, one has an armchair
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FIG. 4: (Color online) Panel (a): A monoatomic layer of graphene. The red and blue dots denote carbon atoms of the sub-

lattice A and B. The primitive vectors of graphene are a; and as.

The nanotube is obtain by choosing the chiral vector cnn,,

equation (3). The unit vectors e; and e, are fixed in the CNT in such a way that e; is along the CNT axis, and e, is along the

circumferential direction ¢n,n,. The chiral angle between a; and ¢pnyn, is ¢o. Panel (b): The first Brillouin zone of graphene. k

is the component of the 2D wave vector k alon the CNT axis and ky is the component of k in the circumferential direction. The

angle between K and the axis k; is ¢o — % K +q and K’ £+ q (green dots) are degenerate quantum states in the valleys K and K'.

When an electron is scattered off an effective poten-
tial given in Eq. (2), the component k, of the 2D wave
vector k is not a good quantum number, whereas k,
is still a good quantum number. As a result, for most
types of nanotubes with ¢o # & [that is, except arm-
chair ones] the vectors K and K’ are not collinear to
the CNT axis [see Figure 4b], and therefore the elec-
tron that is localized by the potential (2) can change
its wave vector from K +q to K —q or from K’ +q to
K’ — q, and there is no quantum transitions between
the valleys K and K’. For an armchair CNT, the vec-
tors K and K’ are collinear with the axis of the CNT,
and therefore there are quantum transitions from K
to K’ which lift the inter-valley degeneracy. In what
follows, we will consider the CNT QD’s which possess
the inter-valley degeneracy (that is, ¢o # ).

When |q] <« K, the single electron wave func-

tions and the corresponding energy spectrum of the
CNT(QD) are deduced from the corresponding analog
of the Dirac equation which in the present geometry

takes the form,
f{dfbmn(xv(b) = E(I)mn(xa¢)' (4)

Here ®,,,(z,¢) is the wave function with principal
quantum number n [n = 1,2,3,...] and magnetic
=0,+1,42,...]. The Hamil-
tonian of the QD in the k - p approximation is Hy =

d(x) - T, where

d(z) = dind(h — |z]) + dowtV(|z| — h),
d”]—-hv(ewk +eyk, )—%ezkﬁ,

quantum number m [m

QM—MG$4ww)+%M

Here 7 = (7, 7y,7,) is the vector of Pauli matrices

acting in the iso-spin space, ¥(z) is the step function



and
ky = —i8y,  ky = —— . (5)
To

The function ®,,,(x) is calculated in Appendix A.
The energy levels of the QD are obtained by solving

the equation,

Fi(e) vVe+ M, cos (kwh + n_27r) =

= Fr(e) m sin (kwh + H)7 (6)

2
where

Zm(

S N ()

Xf,”) [v = 1, 2] are eigenspinors of the operators

My = mAoty + Mg T2,
M}, = M,,, M2 = N,,. Explicitly,
v 1 My + My
X = A G
\/2M51(M5L + MY) mAg

W = 7oy,

The energy spectrum of the QD for different values
of the dot length 2h is shown in Fig.5. The red or
blue curves denote energy levels for m = 0 or m =
The light red and

light blue curve describe quantum states with even

+1 and different spatial parities.

principal quantum number n [the wave functions of
such states are symmetric with respect to the inversion
x — —x], whereas the dark red and dark blue curves
correspond to odd n. The level crossing points (green
dots) are three fold (orbital) degenerate. At these

points, SU(12) symmetry is expected.

IV. ANDERSON MODEL

We now consider the tunnel junction consisting of
left and right CNT metallic leads (CNT), and a CNT
quantum dot (QD), as shown in Fig. 1. The Anderson
Hamiltonian of the CNT — CNT (QD) — CNT junction
has the form,

H = Hy+ Hy, Hy=H; + H, + Hg, (9)
H, = Zekm ch)\cak»u a=1,r, (10)
kA
H; = €dZd;d)\+Ude(Nd_1)v (11)
Ht =

> tw{wlady+He ), (12)
al
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FIG. 5: (Color online) Parametric diagram e-h describing ener-
gies € of the discrete levels of the quantum dot for m = 0 (light
red and dark red curves) and m = %1 (light blue and dark
blue curves) and different values of the CNT(QD) half-length
h. The crossing points (green dots) denote energies with three-
fold orbital degeneracy for which SU(12) symmetry is expected.
Here we use My = 2Ag and Ng = 3Ag. The light red and light
blue curves correspond to even principal quantum number n

and dark red and dark blue curves correspond to odd n.

where
Ny =Y _did.
A

Here A = {&,m,o}, where £ = K, K’ (the isospin)
corresponds to electrons with wave vectors near the
K and K’ corner points in the 2D Brillouin zone, m
is the magnetic quantum number and o is the spin.
Finally, ¥ax = Yo (z = 0) is a field operator at x = 0,

Yar(r) = ﬁt Z Cak)\e

Lent is the length of the CNT lead. The tunneling
rates t,, are estimated as
hv M
tm, o N2 _
Vh er exp{ ho F }
We choose the parameters Ny, e and a such that the

resonance width,
[ = 42 pmler), (13)

does not depend on m. Here py,(€) is the density of

states of electrons with magnetic quantum number m,

el I(lel = Mim)
() = . 14
pm(€) 2hvy/€2 — M2, (14)

V. SPIN HAMILTONIAN, SCALING
EQUATIONS AND KONDO TEMPERATURE

The properly tuned CNT(QD) in its ground state

has one electron whose energy ¢ is twelve-fold degen-



erate (m = 0,+1, £ = K,K’ and ¢ =t,]). Tunnel-
ing of electrons between the CNT(QD) and the CNT
leads, encoded by H:, Eq. (12), changes the number
of electrons in the dot. In the local moment regime,
the Schrieffer-Wolff transformation is then used?®32?
to project out zero and two electron states (|0) and
[AN). It maps the Hamiltonian H, Eq. (9) onto an ef-
fective Hamiltonian H = H;+H,.+Hg. Here Hg, the
Cogblin-Shrieffer spin Hamiltonian with the dot states

|0) and |[AN) frozen out, has the following form,2%-30

Hy = % ZZKmm "/’lo\wa)\ +

aa’ A

1
+ 5 Z Z JmmZ)\Ad}L/)\wa)\ + (15)
aa’ A

-+ % Z Z Jmm/X)\X w(];/)\/wo&n (16)

aa’ A£EN

where X' = |\)(\| are Hubbard operators coupling

different degenerate dot states, and

1 1A
ANy A N _
M = X —N;X ., N=12.
The couplings K, and Jy,,, are
Jmm’ = J(l) , + J(2) ’
Ko = I8, — (- 102,
2t
J,,(_r;l,,)n/ = 3
€EFp — €4
2t
J(2) = mblm '
mm Uj—€r +¢€q

Employing the simplifying assumption (13) we in-

troduce the dimensionless coupling constant

pm(eF)pm’ (GF) =
B Uyl
o 27T(€F —Ed)(Ud —EF-‘rEd) > 0. (17)

j = Jmm

By equation (13), j does not depend on the orbital
quantum number m while J,,,, and p,, do. Within
the standard poor man’s scaling technique, the cou-
pling j(D) is renormalized as the original bandwidth
D is reduced to D < D by integrating out high en-
ergy excitations. Within the same assumption on T,
the constants K,,,, are not renormalized and there-
fore the interaction terms proportional to K,,, can

be considered as part of potential scattering.

The scaling equation for j(D) supported by the ini-

tial condition at D reads,

9j _ Nj?

= 1
dInD 2 (18)
= U,r
D) = .
]( ) ZW(GF—Ed)(Ud—EF—l-Ed)
Equation (18) has the solution
(1) = e (19)
T = Nm(T/Tx)’

where the Kondo temperature (the scaling invariant

of the RG equation) is given by,

47T(€F — ed)(Ud —€p + Ed)
NU I '

Tk =D exp | — (20)

The argument of the exponent is six time smaller than
the one obtained for SU(2) Kondo effect, implying the
Tr[SU(12)]> Tk [SU(2)].

VI. CONDUCTANCE

In this section we will calculate the tunneling
conductance G(T') of the CNT(left lead)-CNT(QD)-
CNT(right lead) junction in the Kondo regime.
The calculation is carried out in the weak and
strong coupling regimes characterized respectively
by T > Tk and T < Tk.

regime, perturbation RG formalism is used to calcu-

In the weak coupling

late the non-linear conductance within the Keldysh
non-equilibrium Green’s function formalism. In the
strong coupling regime the mean field slave boson
formalism is employed, which is appropriate only

within linear response.

Conductance in the Weak Coupling Limit:
Calculations of the tunneling conductance in the
weak coupling regime are carried out below using the
Keldysh technique in order to treat a system out of
equilibrium. The required quantities to be used be-
low are the Keldysh electron matrix Green’s functions
(GF) g, for a =lm,rm, [ standing for left lead, right
lead and dot respectively,

R K

90 Ya
a — 5 21
g (0 92‘) (21)

where the superscripts refer to retarded (R), advanced
(A) and Keldysh (K) types of the GF. The explicit



expressions are,

9k, = -9, = —impm,

g5 (e) = —2impm(1 —2f(e)), (22)
R/A, \ 1

95 (6) o e—ed:I:in7
Ki\ _ _2i77(1 —2f(e))

gf (E) - (6 . ed)2 i 772 s (23)

where f(e) is the Fermi function. Within the Keldysh
formalism, the tunneling current from the left to the
right lead is

e

=5

>~ Ko (Vi = v ) +
A
205 T 2N (Yt — vl ) +
A
+% Z Jmm’XAX (U)?)\/djr)\ - 1/11)\/1/}”\) . (24)
A£N

In addition to the exchange constant j, Eq. (17), the
conductance depends also on the dimensionless pa-

rameter k, defined as (see comment after Eq. (17)),

F(QUd — 13ep + 136d)
4.7T(6F — ed) (U —€p + 6d) '

To second order in j and k the conductance G =
AI)/IV is,

7T62

2Nh

Gy = (k:2+ (N2 - 1)j2), (26)

while only j contributes to the third order correction

to the conductance,

2 2 >
Gy — (N? —1)me A ( D

- 7\/m> (27)

Due to the large pre-factor and the logarithmic
term, which, strictly speaking, is not small either, G
is not small as compared with G2. Hence, expansion
up to third order in j is inadequate. Instead, we derive
an expression for the conductance in the leading log-
arithmic approximation using the RG equations (18).

In the following analysis we split the second or-
(26), in

two parts: The first part results from exchange co-

der contribution to the conductance, Eq.

tunneling, which is proportional to 52, while the sec-
ond part is due to regular co-tunneling, which is pro-
portional to k2. The regular co-tunneling contribu-

tion containing k2 does not grow at low temperatures

and/or bias, and therefore it does not contribute to
the Kondo effect. The exchange co-tunneling contains
a term j2 which demonstrates logarithmic enhance-
ment of the conductance at low temperatures [see Eq.
(19)] and contributes to the Kondo effect. Therefore,
we single out the exchange contribution in the second
order term,
N? — 1)me?
Goen(py — W= DTE oy 28
(D) = ST AD). (@)
The condition imposing invariance of the conductance
under “poor man’s scaling” transformation has the
form,

7]

Gexch D
31nD{ 2 (D) +

Lk ;hl)weQ J*n ( T2 f(eV)2>} =0 (%)

Within the accuracy of this equation, when differenti-

+

ating the second term, we should neglect any implicit
dependence on D through the couplings j. Eq. (29)
yields the scaling equation (18). The renormalization
procedure should proceed until the bandwidth D is

reduced to a quantity

d(T,V) = \/(eV)2 + T2,

At this point, the third order correction to the con-
ductance vanishes and the current and conductance
can be calculated in the Born approximation, as in
Eq. (28).3! The expression for the conductance for
Max(T, |eV])2Tk is,

- 7T2N Go
CIT.V) = In? (d(T,V)/Tk) 7 (30)
where
N = 2(N%—1) o e? (31)

N3 TR

The total differential conductance (30) is displayed in
Fig. 6 for V = 0 (zero bias differential conductance).
The conductance increases when the temperature is
lowered, which is typical to the standard scenario of
Kondo tunnelling through the tunnel junction.?’ The
nonlinear conductance (30) as a function applied bias
is shown in Fig. 7 for several temperatures 7. The
zero bias peak of the conductance is typical for the
ordinary SU(2) Kondo effect.
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FIG. 6: (Color online) The zero bias conductance (30) as func-

tion of temperature in the weak coupling regime.
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FIG. 7: (Color online) The nonlinear conductance (30) as func-
tion of applied bias in the weak coupling regime for T' = 7.5Tk
(curve a), T = 10Tk (curve b), T = 12.5Tx (curve c) and
T = 15Tk (curve d).

It should be noted that the the conductance (30)
has a factor N, Eq. (31), which is 2 for N = 2 or
% for N = 12. In other word, as far as the conduc-
tance in the weak coupling regime is concerned, the
main difference between the SU(12) and the SU(2)
Kondo tunneling is the substantial difference of the
corresponding Kondo temperatures (20). This simi-
larity no longer holds in the strong coupling regime as
we will now show.

Conductance in the Strong Coupling Limit:

For T' < Tk, the mean field slave boson approxima-
tion (MFSBA) is employed to calculate the zero bias
tunneling conductance. In the limit U — oo, the dot
can be either empty or singly occupied. The dot elec-
tron annihilation and creation operators are written
as dy=b'fy and d;: f;b where the slave fermion op-
erators fy and the slave boson operator b satisfy the

constraint condition,
Q=Y fH+dlb=1
A

This condition is encoded by including a Lagrange

multiplier w in the total action S. In the mean field
approximation, we replace the Bose operators b and
b by their expectation values, by = \/W At the
mean field level the constraint condition is satisfied
only on the average.

The current operator reads,
iebo
1= == ;tm [1/);[/\(0)]”,\ “hel. (32

It can be derived from the partition function that is

formally written as,
Z(ay) = /D[fch cfle=PS(aa), (33)

Here S(ay) is the action (written explicitly below)
that contains a term oyl where o is a source field,
and integration is carried out over lead (¢, c') and slave
fermion (f, f1) fields (treated here as Grassman vari-

ables). The action is given explicitly as,

§— / dt £(1), (34)

where L=L;+ L, +Lg— Li — g,

Lo = chm{ih&g - Ekm}TzCak)\, a=1,r,
3\

Lq = Zf;{ihat—ef}TzfA, €f = €q +w,
A
bo i i
L, = tm{ca M+ f TZCO[;Q\}.
t To: azk)\ kX A

The action in the MFSBA is Gaussian and depends
on two real numbers, the boson field by and the chem-
ical potential (Lagrange multiplier) w. Carrying out
the integration according to Eq. (33) yields the parti-
tion function,

t2 b
InZ(ay) = —2Ztrln{g]§i — %Tmo [gzm,Tz} }7

where

Here g is the GF (23) of the (non-interacting) elec-
tron in the QD with shifted energy level, e — € =
€4 + w.

The MFSBA is reliable in equilibrium, V' = 0. There-
fore we will consider below the temperature depen-

dence of the zero bias conductance. In equilibrium,



the mean field solutions for by and w minimize the

free energy,

F=-2T% tr InG,}(iwn) +wbj,  (35)

mwn

where the last term is the slave boson kinetic part of
the free energy due to the constraint, and g;é(zwn)

is the Matsubara’s GF. The mean field equations,

N bl
— arctan <20—) =1-02,

Vi Ef

NT D2

o Mg ) T
(*5) +e5

are solved for w and by with the solutions,

(36)

2Tk

(%)
T sin ~)

where ey = T cos(m/N), Tk being the Kondo tem-

w = —€qg +€5,, b%

perature given by Eq. (20) and T is given in Eq. (13).
The expression for the linear conductance for T' < Tk

is now obtained as,

7TTK 2
G(T):NGO/ de (T) |
) ) o (T

(37)

with G given by Eq. (31). The zero bias conductance
as a function of temperature is shown in Fig.8. It is
seen that the conductance has a peak at T' ~ 0.57Tx
due to the constraint imposed by the Friedel sum

rule.29:34

In addition to the different Kondo temper-
atures (20) for the SU(12) and SU(2) Kondo effects,
this behavior indicates a remarkable distinction from
the standard SU(2) Kondo tunneling.?? In the latter
case, the conductance is monotonically increasing to-
wards the unitary limit as 7' — 0. It should be noted
that we define G as e/(6h) per spin projection [see
eq.(31)], so that the unitary limit corresponds here to
6Go = 12¢2/h. A close inspection shows that this
limit is not perfectly reached. The reason is that
while the DOS has a peak that is shifted from the
Fermi level by Tk, the peak of the ”thermal” func-
tion cosh™?(e/2T) sits right at the Fermi level. As a
result, the peak of the conductance occurs at finite
temperature, and its value is slightly lowered by the

?thermal” function.

I I I I I T T
0.0 0.2 0.4 0.6 0.8 o Tk

FIG. 8: (Color online) The zero bias conductance as a function

of temperature in the strong coupling limit (7" < Tk ).

VII. MAGNETIC SUSCEPTIBILITY

While in bulk metals, the Kondo effect manifests
itself through measurements of electrical resistivity
and magnetic susceptibility, in quantum dots it man-
ifests itself mainly through the properties of the con-
ductance. Designing experiments aiming at study-
ing magnetic response of quantum dot in the Kondo
regime is rather difficult because they require an STM
technique in which the tip is close to the magnetic
impurity. Appropriate STM techniques have already
been worked out for impurities composed of added
magnetic atoms on metallic surface.?? We are unaware
of their applications in quantum dots. The discussion
below is therefore motivated by our hope that mea-
surement of magnetic response of a single magnetic

impurity in quantum dot will eventually materialized.

In the CNT-CNT(QD)-CNT junction the magnetic
response is encoded by the static impurity magnetic
susceptibility x of the CNT(QD) (defined explicitly
below). Unlike the discussion pertaining to the con-
ductance, there is no source-drain bias present here,
and the leads just serve as a source of electron gas
that acts to screen the impurity. The distinction be-
tween the present structure and that of Kondo effect
in bulk CNT7 is that here the impurity is composed of
a trapped electron with a 12-fold degenerate ground

state.

The Zeeman splitting A, of electron energy levels
in a carbon nanotube subject to an external magnetic
field B depends on whether the magnetic field is par-
allel or perpendicular to the CNT axis (see Appendix



B for details). Explicitly,

Ape = _gormeBBH _gSPiHUMBB’ (38)

where B = |B|, B)| is the component of the magnetic
field parallel to the CNT axis, up is the Bohr magne-

ton, gorb and gspin are orbital and spin g-factors,

mevry Ao
— 39
h  ep’ (39)

YGspin ~ 27 GJorb =

where m, is the mass of free electron.
The Zeeman splitting (38) results in an anisotropy
of the magnetic susceptibility: In other words, x is

a tensor, which in the principal frame of the CNT
I

has parallel and perpendicular components, Ximp and
Xﬁnp, responding to the magnetic field parallel or per-
pendicular to the CNT axis. This anisotropy is absent
in the ordinary SU(2) Kondo effect, and is one of the
hallmarks of a higher symmetry such as SU(12) dis-
cussed here that involves orbital symmetry.

The impurity magnetization is defined through the

relation??

Moy = g (43 8) ~ (2 2), | +
+gorbuBem{<L”” + ZQ:A§> - <;A§>O}, (40)

where S and X, [a = [, 7] are respectively the spin

operators of the dot and the lead electrons,

S = Z Sa’a”émm’éff’X)\A )
AN

Yo = Z C‘Lk)\saa’émm’éff’cakk’u (41)
kAN

while L* and A% are respectively the operators of the
x-component of the orbital moment of the dot or the
lead,

Lr = ZmX)‘A, Az = ZmCkaCak)\. (42)
A kA

In Eq. (40), (..
respect to the full Hamiltonian H = Hoy + Hg
[equations (9) and (15)], whereas (...)g indicates

.) indicates thermal averaging with

thermal averaging respect to Hy. It is reasonably
assumed that electrons in the dot and the leads have

the same g-factors.

Susceptibility in the weak coupling regime

Using a similar analysis as for the conductance, we

10

derive an expression for the zero-field magnetic sus-

ceptibility to second order in j,

2 2
gs in 2gor
Xl‘mp = ( i + 3 b) x(T), (43)
93
Ximp = 2% X(T), (44)

where, to second order in 7,
_ x0Tk . Nj? D
) =2 - 2w ()]

2
KB
B 46
X0 Tx ( )

The second term on the RHS of Eq. (43) reflects the
orbital degeneracy, and is absent in the SU(2) Kondo
effect.
one of our main results, as it constitutes an observ-
able that is a hallmark of the SU(12) symmetry of the
pertinent Kondo effect. It is compactly encoded by

This anisotropy of the magnetic response is

the temperature independent ratio,

I
Ximp -1

8 gor
1 9 b (47)
Ximp

3 gszpin'

As we shall see below, this relation holds also in the
strong coupling regime 7' < T. It is then suspected
that this result is “universal” in the sense that it holds
In Ap-
pendix C it is indeed shown that this ratio can be

for the crossover region T' ~ Tk as well.

derived quite generally (in this model) by using the
fluctuation-dissipation formula for the susceptibility
(which relates the susceptibility to the spin correla-
tions).

At high temperatures, the logarithmic term causes
a reduction of the effective magnetic moment as com-
pared with that for a free spin. With decreasing tem-
perature, the second order perturbation theory be-
comes inadequate. In order to derive an expression for
Ximp in the leading logarithmic approximation, we use
the RG equations (18). The condition imposing the
invariance of the susceptibility under the poor man’s

scaling transformation is,
wlk _ 9 [ N (D\\ _,
T omD) | ' 2 )~

Within the accuracy of this equation, when differen-

tiating the third term, we should neglect any implicit
dependence on D through the coupling j. The renor-
malization procedure should proceed until the band-

with D is reduced to the temperature T'. At this point,



the second order of the perturbation theory vanishes

and the susceptibility takes the form,

xoT 2
U e @

The impurity susceptibility in the weak coupling

X(T) =

regime, equations (43), (44) and (48), is shown in
Fig.9.

Ximp/ X0
0.10F
0.081
0.06 ¢
0.04 ¢

0.02¢

0.00 : : : — TT
15 20 25 30 35 Tk

FIG. 9: (Color online) Impurity susceptibility X.H

imp [red curve]

and XiJ[_np [blue curve], as a function of temperature in the weak

coupling regime [equations (43), (44) and (48)].

Susceptibility in the strong coupling regime:
For T' < Ty, the magnetic susceptibility can be cal-
culated in the framework of the MFSBA. For this
purpose, we take into account the dependence of
the right hand side of Eq. (35) for the free energy
on the external magnetic field B. Because the sus-
ceptibility tensor is diagonal, we may write xfmp =

—[0*F(B)/0B2]g-0, where i =||, L. Thereby we get
[

the zero field susceptibility Ximp OF Xf;np. Explic-
itly, for magnetic field parallel or perpendicular to the
CNT axis, the susceptibility is given by equation (43)

or (44), with x(T) given by

X(T) = 22 / - :
AT ] cosh? (%) (e+TK)2 N (WZT\;K)Q

(49)

The magnetic susceptibilities in the strong coupling
regime are shown in Figure 10. They display a peak at
finite-temperature, commensurate with the constraint

imposed by the Friedel sum rule.2%:34:3

VIII. CONCLUSIONS

Whereas the theoretical framework of the Cogblin-

Schrieffer model is intensively studied, the present
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Ximp/XO
0.8F
0.7¢
0.6F
0.5}
0.4¢

(Color online) Impurity susceptibility Xlln’)p [red
1
imp

the strong coupling regime [equations (43), (44) and (49)].

FIG. 10:

curve| and x [blue curve] as a function of temperature in

work focuses on one of its special facet that is less ex-
plored, namely, its possible realization in a transport
device with a Dirac spectrum and peculiar DOS. We
substantiate the possibility of tuning a metallic CNT
into a tunnel junction consisting of two CNT metallic
leads and a CNT(QD). The spin, isospin (valley) and
orbital degeneracy of the CNT(QD) energy spectrum
gives rise to the Kondo effect with SU(12) dynamical
symmetry. The high symmetry of the CNT(QD) leads
to an enhanced Kondo temperature. The conductance
through the junction is evaluated using Keldysh tech-
nique. Renormalization group analysis is performed
in the weak coupling regime (T >> Tyx) while the
MFSBA is used at the strong coupling regime T < T .
In the weak coupling regime, the behavior of G(T)
as function of temperature for the SU(12) Kondo ef-
fect is qualitatively the same as that for the ordi-
nary SU(2) Kondo effect, and the main difference is
that Tk [SU(12)]>> Tk [SU(2)]. In the strong coupling
regime the situation is different. Due the constraints
imposed by the Friedel sum rule, the conductance has
a peak at finite temperature that becomes sharper the
higher is N. This distinction of the conductance be-
tween SU(2) and SU(12) Kondo effect in quantum dot

should be experimentally observable.

The magnetic response exposes yet another remark-
able distinction between the SU(12) and the SU(2)
Kondo effects. For the SU(12) Kondo effect, the re-

sponse is anisotropic and the susceptibility is a ten-
I

sor. It has two components, x;.,, and Xf;np ac-

cording to whether the magnetic field is along the

CNT axis or perpendicular to it. Moreover, the ra-

t10 Ximnp/Ximp = 1 + 8921/ (392,m) depends only on



the orbital and spin g factors. This result is demon-
strated in the weak coupling regime based on RG cal-
culations and in the strong coupling regime based on
the MFSBA. A proof that this result is true in every
order of perturbation theory is derived in Appendix
C employing the fluctuation-dissipation theorem. An
experimental search for such anisotropy would con-
stitute a confirmation of this unusual Kondo effect,
but as was pointed out earlier, observing magnetic re-
sponse of a single impurity is quite difficult.

The Kondo physics in systems with Dirac spectrum
proves to be rather rich. While the Kondo effect in
bulk graphene reveals peculiar equilibrium properties
such as the existence of two distinct classes of Kondo
quantum critical points®3, analysis of non-equilibrium
transport in correlated CNT(left lead)-CNT(QD)-
CNT(right lead) junction reveals another facet,
namely, Kondo tunneling with an SU(12) dynamical
symmetry.
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Appendix A: Wave Functions of CNT Quantum
Dot

For electrons in CNT(QD), the single electron wave
functions and the corresponding energy spectrum are
derived from the Dirac equation (4). The solution

D, (2, @) of the Dirac equation is written as,
o), () €™ if || < h,
@572121(:10) e™me if x> h,
@5,%21(:10) em® if x < —h,

Prn (2, 0) = (A1)

where m = 0, +1,£2,...
ber, n =0,1,2,...
The function @%L(x} is given by,

q’%%(f) = @ {X%DMCOS (kmx + %T) +
6
—HX(UMSin (kzx + %) }, (A2)

is a magnetic quantum num-

is a radial quantum number.
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where M, and M, are defined through the relations
2. My, = /M3 +m2A3.

2 _ M2
(1)

The expressions for the spinors Y

vk, =

and Xff) (to be
used later) are given in equation (8).

The function @5&’ (x) has the following symmetry,

Mm@g) (—z) = (_1)anq)£r}L) (z).

Similarly, the function @53’(@) (for > h) reads,

B, —r(z—h)
8 (o) - Dm0

{ @ /N et i W} (A3)
where N, and Ny are defined through
hok = /N2 — €2, N, = /N2 +m2A2.
Finally, the function @5321(:6) (for x < —h) is

o8 () = (;V_l)" N, @2 (—x).

m

Applying the continuity condition for ®,,,(z,¢),
Eq. (Al) at the points * = +h, we obtain the set

of equations,

AN €+ M, cos

/N

kenh + ”7”) = B Fi(e),
(Ada)

kenh + ”7”) = By (6),
(Adb)

A € — M, sin

/N

where F,(¢) is given by Eq.(7).

The set of equations (A4) has nontrivial solutions
when its determinant vanishes. This condition gives
us equation (6) for the energy levels in the quantum

dot.

Appendix B: Magnetization of the Tunnel

Junction

It order to describe electronic properties of a carbon
nanotube in an external magnetic field B, we should
add to the CNT Hamiltonian the term Hp describing

spin-Zeeman splitting,

Hspin = —YspinMUB (S : B)7 (B]‘)



and replace the wave vector k by the operator k’,'819
e
he

Here s is a vector of the spin operators, A is a vector

k - k' = —iV — A.

potential, B =V x A. Then the motion of electron in
a CNT with the wave vector close to the K point of
the first Brillouin zone can be described by the Hamil-

tonian,
H=nh (k__A) T+ A 7, + Hgpi (ng)
v ﬁ gz spin-

Here we use use the cylindrical system of coordinates
where k = (k;, k) with k, = —i0, and k, = —%8(;5.
The Hamiltonian for the motion of electron with the
wave vector near K’ point can be obtained from equa-
tion (B2) just by replacing k, — —k,.

In what follows, we will calculate Zeeman splitting
for the magnetic field parallel and perpendicular to
the CNT axis.

Magnetic field parallel to the CNT axis: When
the magnetic field is parallel to the CNT axis, B =

Be,, the vector potential can be written as,

Br

A” = 7 €p. (B?))
The eigenfunction of the Hamiltonian (B2) is,
(9o (#)) = [Xo) @ [Vsbm(9)),  (B4)

where ¢ = mBr is the magnetic flux through the
cross section of the CNT. Here |x,) is a spin wave
function of electron with spin parallel or anti-parallel

to the magnetic field,

Ixt) = <(1)> Ixi) = (2) (B5)

[¥skm (@) is the spatial wave function of electron in
the conduction (s = +1) or valence (s = —1) band

with orbital quantum number m (m = 0,+1), and

eikw-{-imqﬁ Sbkm ((P)
VAarL < ) ’ (B)

Km () — ik

bm () = Wa Km () o

The corresponding energy is,

wave number k,

|wskm ((P)> =

Eskr = s\/(hvk)2 + (m — )2A2+ A2 —

—2U/J,BB. (B?)
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For weak magnetic fields (¢ < 1), esxa can be ex-

panded to linear with B correction,

AZmy

EskA = Eskm — —20upB + 0(¢?),

Eskm
Eshom = s\/(hvk)2 + m2Af + A2,

Then for 44, close to the Fermi level, we get equation
(38).
Then the magnetization (40) in linear with B ap-

proximation is,

Mg, = gfpinu%3{<(ix)2> - <Z (22)2>0} i

(03

+ girbu%3{<(ﬂw)2> - <Z (A§)2>O},
! (B3)

where 3 = (X%, %%, %2%) is the total spin of the tunnel

junction,

¥ =S+ %, (B9)

A” is the orbital momentum of the total system,

A" = L"+ ) AL (B10)
Magnetic field perpendicular to the CNT axis:
Let us consider now the magnetic field perpendicular
to the CNT axis. For definiteness, we take B, =
Ble, cos ¢p—e4 sin @], so that A| = Brsin¢ e,. Then
the Hamiltonian (B2) takes the form,

H = HO + Hspin + Horb7 (Bll)
Hy = hot -k + A7z,
where Hgpiy is given by equation (B1),
A 2
Hyp, = ——20 sing 7, (B12)
Is
Ip is the magnetic length given by
ch
lp = \/—=. B13
P hi (B13)

When I > rg, the field can be regarded as a small
perturbation.

The eigenfunction of the Hamiltonian Hy+ Hpin are
[Xo) ®|Vskm), where |y, ) describes the quantum state

with the spin parallel or anti-parallel to the magnetic



field B, [t)skm) is the spatial wave function of elec-
tron with wave number k, orbital number m in the
conduction or valence band, s = +1.

In order to estimate the contribution of H,.,, we

note that the nontrivial matrix elements of H,,, are,

<1/}skm|Horb|wskm+1>7 <1/}skm+1|Horb|1/}skm>a

i.e., Hyp, change the orbital quantum number by +1
keeping the other quantum numbers (wave number,
band index, spin, ...) unchanged. The quantum tran-
sitions from the state |¢srm) to the state |[Vskm41)
costs the energy espmi1 — Eskm ~ Ao. As a result,
for low magnetic fields [lg > ro], corrections of H,,
to the energy spectrum is of order 154 ~ B? and the
energy dispersion in linear with B approximation is
given by equation (38).

The magnetization (40) in linear with B approxi-

mation is,

My = s B ((£2)7) - (X (20)%), |

[e3

(B14)

where we take the y-component of the spin operators

for definiteness, 3¢ is given by equation (B9).

Appendix C: Magnetic Susceptibility of CNT

QD: Fluctuation-Dissipation Theorem

In this section we derive the universal relation, (47)

using the fluctuation dissipation theorem.

1. Magnetic Susceptibility

According to the fluctuation-dissipative theorem,
the tensor of the magnetic susceptibility of the quan-
tum dot is defined as,

0’F 1
=g 7 () = (m) ()

() (), (%),

Here (...) denotes the thermal average with respect to

(C1)

the Hamiltonian of interacting quantum dot and leads,
(...)o is the average with respect to the Hamiltonian of

the isolated leads. i,j = z,y, z are Cartesian indices,
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m = (mg,my,m,) is magnetic momentum of the
0) _ (0) <0>)

quantum dot and the lead, m( (mﬁ”, my’, my

is magnetic moment of isolated leads,

m = gspinMB{S + Z Ea}
+gorb,UJBez{Lx + ZAZ}a

m(o) = YspinMB Z Yo+ JorbB€x Z A27(C3)

(C2)

where the spin operators of the dot and the lead elec-
(41),
while the operators of the z-component of the or-
bital moment of the dot and the lead [L* and AZ,
a = I,r] are given by Eq. (42). The Hubbard op-
erator X = |\)(X| is defined after Eq. (16). It is

reasonably assumed that electrons in the dot and the

trons [S and X, a = [,r| are given by Eq.

leads have the same g-factors.

We choose the set of coordinates in such a way that
the x axis is parallel to the CNT axis, whereas the y
and z axes are perpendicular. In this set of coordi-

nates, the tensor of the susceptibility is diagonal,

XH 0 0
x=10 x. 0
0 0 xu
We will prove that the zero-field susceptibilities satisfy
the ratio,
X| 8 Jow
— = 14 == C4
XL 3 g:?pin ( )

For this purpose, we note the following: The Kondo
Hamiltonian (15) describes the co-tunneling process
such that an electron with the quantum number A (the
spin o, the orbital quantum number m and the valley
number &) exits from the dot to the lead and another
electron with the quantum number A’ (the spin ¢/, the
orbital quantum number m’ and the valley number
&') enters the quantum dot from the lead. That mean
that the total spin and the total orbital momentum of
the lead and the quantum dot are the good quantum
numbers.

Proof: Let us consider first x ,

T

+ Zzgz@ -3 <zgzg,>0}. (C5)

ao’ aa’

g2 12
xy="2nB B{<SZSZ+2ZSZ22



The total Hamiltonian satisfies the SU(12) symmetry,
so that we can apply such a unitary transformation
that make the spin operators S* and ¥Z become to
be diagonal. This unitary transformation does not
change the thermal average of the spin operators, so

that x, (C5) is,

92inlh oo’
o spin AN
w = BRI (3o +
AN
+ 2chk)\cak>\X}\)\
ak

+ E : Clk,\cak,\CL/k/,\/Ca’ko\f> -

ao’ kK’

— Z <CLk)\Cozk>\CL/k/)\/co/k’>\’>0}' (06)

ao’kk’

We will estimate each term in the right hand side of

eq. (C6) in turn. The first term gives,

o2 1
Xaa =Y T =1
A

(CT7a)

where (X*) = & [N = 12] does not depend on the
quantum number A.
The second term in the right hand side of eq. (C6)

is,

/
Xda = Z %<CLkAcak)\XXX>.
EAN
The antiferromagnetic Kondo interaction makes the
difference between the two-particle states with parallel
and antiparallel states, therefore X, is not zero. In

subsection C2 it is a proof that

Pr = (chircamnX™) (CTb)
does not depend on A, whereas
P2 = <ch)\cak>\X>\/)\/> (C?C)

does not depend on A and X (just we should keep

A # )X). Using these equalities, we can write,

Xgo = N{P1 —Pg}. (C7d)

T2
The third term in the right hand side of eq. (C6)

is,

/
Xoor = § T<Cak)\cak)\ca/k/)\/ca/k/>\/>'
kk' AN
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The ex-

change interaction between the leads and the dot

Xaar can be estimated similarly to Xg,.

generates an effective interaction between electrons
in the leads.

(clk)\camcl,k,)\,ca/kw> depends either A is equal to

As a result, the expectation value

A or not. Defining K140 and Kanar,

_ E T
Kiqar = <Cak)\cak)\cllk)\ca’k>\>

kk’
_ T T
Cak CakAChrpaCa’kX )
kk’ 0
Koqar = § <CL]€)\Cak)\CL/k/>\/Ca/k/X>
kk’
} : T T /
- <Cak)\cak>\ca/k/)\/ca’k’>\’ o’ A#EN,
kk'

(C7e)

(K1aor and Kaaes do not depend on \'s3¢), we get

N
Xoca’ - _{Klaa’_K2aa’}-

I (CT7f)

With equations (C7a), (C7d) and (C7f), the suscep-
tibility x takes the form

XL = gs"i}“% {1+aN(P - ) +
NS (Kigar — sz,)}. (C8)
Now consider x,
XI = 79521’;“23 {<swsw +23 570+
+ g sE5L) - ; <zgzg,>o} +
+ 795pi“gT"rb“2B {<S””L”” + za: (s7A% +Loxz) +
+ g 23A3,> . g <2§Ag,>0} +
+ %{@wﬂ +23 L°AL +
+ Z A3A3,> - Z <A§A3/>O}. (C9)

The right hand side of eq. (C9) consists of three
blocks of terms consisting of the spin-spin, spin-orbital
and orbital-orbital correlation functions. The Kondo
Hamiltonian (15) does not contain the spin-orbital in-
teractions, so that the spin-orbital correlation func-

tions are zero. In order to derive the spin-spin part of



X||> we apply the unitary transformations to make the
spins S* and X* diagonal. It is easy to see that the
spin part of x| gives eq. (C8). Consider now the last
block of terms coming from the orbital-orbital correla-
tions. Applying the unitary transformations to make
the orbital moments L* and A? diagonal, we can write

the orbital moment contribution to x| as,

orb ggrbIUQB Z mm/ xmmgs ,

mm/

+2 Z CLkACQkAX)\ A

ak
"
+ E CakAcak/\CL'k'A'Ca’k’/\’ -
ao'kk’
_ T T
CakrCakACarpr xCak/X ) -
aa’kk’

(C10)

The right hand side of eq. (C10) consists of the terms
coming from the dot-dot, dot-lead and lead-lead cor-
relations. We will consider all of them in turn.
The dot-dot correlation is,
2

Odd = Zm2<X’\)‘> = g = g de. (Clla)
A

The dot-lead correlation is,
Oga = 2 Z mm/<ch)\cak>\X)‘l’\,>.
EAN

Similarly to X4, Ogq can be expressed in terms of P;
and Py, egs. (C7b) and (C7c), as

8
Oda = 16(PL— P) = 3 Xda:  (Cl1D)
Finally, the lead-lead correlation gives,
Oust = 3 mn (el )
k! AN

Similarly to X,a/, Oaas can be expressed in terms of
Kiaa and Kaga, eqs. (C7e) and (C7e), as

Oaa' = S(Klaa/ - Kgaa/) = g Xaa’- (Cllc)

Combining equations (C10) and (C11), we get x|

in the form,

2 2
o é gspin + 2gspin «
=\ T 3

{1+4N (P - P) +

+NZ (Klao/ - K2o¢o/)}-

aa’

(C12)

Egs. (C12) and (C8) prove eq. (C4).
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2. Proof of equations (C7b) and (C7c¢)

(C7b), we prove that two

expected values, G and Gy, are equal one to an-

In order to prove eq.

other,

G = <Clk)\cak>\X)\>\>v

G)\’)\’ = <Clk)\/cak)\’X)\/X>a (013)

where A # X. Let, for the brevity, enumerate the
quantum states of the quantum dot in such a way
that A = 1 and M = 2. The expected value Gy is

invariant with respect to any unitary transformations,

Cak) — E Uxiarcakar, CLM/ — E CLM//U,\",\M
>\// A//

I AN Ay "y’
AN Z NN XN AN
)\//)\///
where Uy~ is a unitary N x N matrix. In particular,
it is invariant with respect to the transformation given

by the matrix,

01 0
U=|(10 0 |,
0 0 I

where Io is the 10 x 10 identity matrix. Applying
this transformation to the expected value Gy, we
get the expected value Gy, so that Gy = Gy

In order to prove eq. (CT7c), we consider two ex-
pected values, Gan+ and Gy, are equal one to an-

other,

AN
Gy = <Clk)\cak)\X >,

G = (el iy camn XN, (C14)
akA

where A £ N, A #£ X and N # \’'. Let, for the
brevity, enumerate the quantum states of the quantum
dot in such a way that A = 1, N = 2 and \ = 3. The
expected value Gy~ is invariant with respect to any

unitary transformations,

Cakr — E Uxxi Caka s Clm — E CLMIUAM,
A1 A1

AN " "
X)\ A _ § U)\ >\1X>\1)\2U)\2)\ ’
A1 A2



where Uy/y» is a unitary N x N matrix. In particular,

it is invariant with respect to the transformation given

by the matrix,

100 0
0010
0100
000 I

where Iy is the 9 x 9 identity matrix. Applying this

ot
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transformation to the expected value Gy, we get the

expected value Gy, so that Gyy» = Gy .
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