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Persistent currents in Möbius strips
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Relation between the geometry of a two-dimensional sample and its equilibrium physical properties
is exemplified here for a system of non-interacting electrons on a Möbius strip. Dispersion relation
for a clean sample is derived and its persistent current under moderate disorder is elucidated,
using statistical analysis pertinent to a single sample experiment. The flux periodicity is found to
be distinct from that in a cylindrical sample, and the essential role of disorder in the ability to
experimentally identify a Möbius strip is pointed out.
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I. INTRODUCTION

An important theme in quantum mechanics is to find
a relation between a global geometry of a sample (e.g.,
boundary conditions) and its physical properties. We
address this issue by comparing flux periodicity of per-
sistent currents in a cylinder and in a Möbius strip. The
aim is to determine whether the geometrical (in some
sense topological) difference is tangible and experimen-
tally observable. At zero temperature, the persistent cur-
rent I(φ) in a ring can be expressed as1

I(φ) = −
∂E(φ)

∂φ
=

∞
∑

n=1

In sin(2πnφ), (1)

where φ is the magnetic flux threading the ring in units
of Φ0 = hc/e, E(φ) is the ground state energy, and In
are the current harmonics.

The current I(φ) is an anti-symmetric and periodic
function of φ with period 1. Possible occurrence of
smaller flux periodicity in mesoscopic physics is one of the
cornerstones of weak localization. For the cylinder geom-
etry, conductance measurements2 and magnetization of
107 copper rings3 indicate the emergence of periodicity
1/2. It is shown to be intimately related to the procedure
of averaging over disorder realizations and numbers of
electrons in the rings2,4,5,6. Very recently, a microscopic
NbSe3 Möbius strip has been fabricated7. Obviously, in
this case, attention should be focused on a single sample

measurement8 for which there is no self-averaging.
Let us first mention several intuitive points relevant to

the flux periodicity in the Möbius strip, based on semi-
classical arguments and geometry9. First, recall that the
periodicity is related to interference between trajecto-
ries (such as Aharonov-Bohm interference between differ-
ent trajectories or weak-localization interference between
time-reversed paths). In the cylinder (Möbius) geometry,
an electron moving in the longitudinal direction along the
ring encircles the system once (twice) before returning to
its initial position. Therefore, we might expect differ-
ent flux periodicities of the persistent current between
the two cases. Second, unlike a cylinder which can be
“pressed” into a one-dimensional ring, the Möbius strip
cannot be pressed into a one-dimensional structure. This
brings in another important factor, namely, the motion of
electrons in the transverse direction. In a tight-binding

model this motion is controlled by the transverse hop-
ping. If it is very weak, the twice-encircling property of
the Möbius strip implies the dominance of even harmon-
ics I2n. Contrary, for a strong transverse hopping, the
current in the Möbius strip is expected to be effectively
similar to that in the cylindrical strip10. In the following
we are mainly interested in a regime where the trans-
verse hopping is slightly less than with the longitudinal
one. Third, the role of disorder should be carefully exam-
ined. Weak disorder is not expected to significantly alter
interference between semi-classical trajectories discussed
above, while strong disorder should result in a reduced
sensitivity to the pertinent geometry, due to localization
effects. The most intriguing disorder effect might then be
expected in a moderate strength of disorder which will
be used below. The upshot of the present study is that
the periodicity pattern in a Möbius strip is remarkably
distinct from that of a cylinder, and that disorder plays
a crucial role in making the statistical effect detectable.

II. MODEL

A Möbius strip is modelled by considering a non-
interacting particle in a rectangle of length Lx and width
Ly, requiring its wave-function ψ(x, y) to satisfy Dirich-
let boundary conditions in the y direction, and Möbius
boundary conditions11 in the x direction:

ψ(x,−Ly/2) = ψ(x, Ly/2) = 0 (Dirichlet B.C.) , (2)

ψ(x+Lx, y) = ψ(x,−y) (Möbius B.C.) . (3)

The quantized wave-numbers are ky = (π/Ly)ny and
kx = (2π/Lx)([ 1

2
]ny

+ nx), where ny = 1, 2, · · · and
nx = 0,±1,±2, · · · . The notation [α]n represents α for
n = even and 0 for n = odd. In the cylinder geometry,
Eq. (3) should be replaced by ψ(x+Lx, y) = ψ(x, y), and
gives kx = (2π/Lx)nx. Thus, only the ny = even eigen-
states are affected by the switch from the conventional
cylinder (periodic) boundary conditions to the Möbius
ones.

In the absence of disorder, the energies of the eigen-
states both in the Möbius and cylinder strips are given
by the formula

Enxny
= ǫx

(

kx −
2πφ

Lx

)

+ ǫy(ky), (4)
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where ǫx and ǫy provide the dispersion relation. Equa-
tion (4) is rather general for clean systems. To be more
specific, let us model the Möbius strip by a tight-binding
Hamiltonian. The Möbius strip is constructed from a
rectangular lattice including N × 2M sites. The rectan-
gle is twisted by 180◦, and its two sides are connected,
such that longitudinal wire 1 is attached to wire 2M ,
wire 2 is attached to wire 2M−1 and so on. The Möbius
strip so constructed includes M longitudinal wires with
2N sites on each one. The Hamiltonian is then

HMöbius =

2N
∑

n=1

M
∑

m=1

[

εnmc
†
nmcnm − t1e

−2πiφ/Nc†nmcn+1m

]

−t2

2N
∑

n=1

M−1
∑

m=1

c†nm+1cnm −
t2
2

2N
∑

n=1

c†nMcn+NM + h.c. (5)

where cnm is the fermion operator at the site (n,m)
(n = 1, 2, . . . , 2N , m = 1, 2, . . . ,M) and t1 and t2 are
longitudinal and transverse hopping amplitudes respec-
tively. The quantity εnm is the site energy. Connecting
the two sides of the rectangle without twisting, we obtain
a cylindrical strip which includes 2M longitudinal wires
composed of N sites. The Hamiltonian of the cylinder is

Hcylinder =

N
∑

n=1

2M
∑

m=1

[

εnmc
†
nmcnm − t1e

−2πiφ/N c†nmcn+1m

]

−t2

N
∑

n=1

2M−1
∑

m=1

c†nm+1cnm + h.c. (6)

Locally the two Hamiltonians (5) and (6) look the same.
But there is a couple of essential differences between
them: a) The Möbius Hamiltonian (5) includes an extra
term which describes long range hopping between distant
parts of the Mth wire11. b) While the magnetic phase
accumulated along the longitudinal direction on each link
is the same (that is, 2πφ/N), the corresponding number
of links is different (2N for the Möbius strip and N for
the cylinder).

III. THE SPECTRUM

We first consider a system without disorder, namely,
εnm = 0. The dispersion relation for an electron in the
Möbius strip reads,

Enxny
= − 2t1 cos

[

2π

N

(

[1

2

]

ny

+ nx − φ

)

]

− 2t2 cos

(

π

2M+1
ny

)

, (7)

where nx = 1, · · · , N and ny = 1, · · · , 2M . Defining new
indexes k = [1]ny

+ 2nx and q = [ 1

2
]k +ny/2, one obtains

a more suggestive form,

Ekq = − 2t1 cos
[ π

N
(k − 2φ)

]

− 2t2 cos
[ π

2M + 1
(2q − [1]k)

]

, (8)
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FIG. 1: Single-particle energy spectrum as a function of flux
threading the Möbius ring. The 195th-200th energy levels are
shown. The parameters are N = 20, M = 10, t2 = 0.5, and
W = 0.5. Energies are measured in units of t1.

where k = 1, · · · , 2N and q = 1, · · · ,M . It is instruc-
tive to compare it with the energy in the cylinder geome-

try, Ekq = −2t1 cos
[

2π
N (k−φ)

]

−2t2 cos
(

π
2M+1

q
)

, where

k = 1, · · · , N and q = 1, · · · , 2M . Despite the apparent
similarity between these two spectra, there are at least
two important differences. First, the combination of flux
and longitudinal momentum is distinct, namely, it is k−φ
for the cylinder and k − 2φ for the Möbius strip. For a
small ratio t2/t1 this might affect the periodicity of the
current10. Second, the mini-band structure is different.

We now turn to elucidate the current in disordered
Möbius strips. The random numbers εnm are assumed to
be uniformly distributed over the range −W/2 ≤ εnm ≤
W/2, where W represents the strength of disorder. The
Hamiltonian Eq. (5) [or Eq. (6)] is treated numerically.
As an example, the evolution of single-particle energies
with flux in a disordered Möbius strip with N = 20
and M = 10 is shown in Fig. 1. The parameters are
t2/t1 = 0.5 and W/t1 = 0.5. The pattern of avoided
crossing turns out to be remarkably different from that
for a cylinder (see ref. 5 figure 1 therein). It must then
be reflected in the behavior of persistent currents.

The first stage of the analysis is an inspection of the
typical values of In, aiming in determination of their de-
pendence on the ratio t2/t1. As expected, in the absence
of averaging we find typical I1 dominance in case of the
cylinder geometry irrespective of the t2/t1 ratio. For the
Möbius geometry the emerging picture is quite different.
Figure 2 shows the Fourier components of the persistent
current for a clean Möbius strip as a function of the ratio
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FIG. 2: Fourier components of the persistent current for the
clean Möbius strip as a function of the transverse-hopping
energy (a) at the half-filling and (b) below the half-filling.
The size of the Möbius strip is given by N = 20 and M = 10.

t2/t1 at and below the half-filling (Ne = 200). For small
ratios (t2/t1 < 0.1) we find, as can be naively expected,
I2 dominance. The expected effect of averaging in the
cylinder case is to emphasize the I2 contribution, while
in the Möbius case the expected effect is to emphasize
the I4 contribution. For clean Möbius strip the In with
odd n, as a function of the number of electrons Ne, is
anti-symmetric around half-filling. Therefore I1 and I3
completely vanish [Fig. 2(a)]. See further discussionin
Sect. V. To avoid this particularity at the half-filling, we
display in Fig. 2(b) also the case where the number of
electrons (Ne = 190) is below half-filling. For large ra-
tios (t2/t1 > 0.8) we observe in Fig. 2(b) a cylinder-like
regime where there is typically I1 dominance. This is be-
cause the strong transverse hopping changes the period-
icity of the Möbius strip to that of the conventional cylin-
der. The somewhat unexpected observation is that there
is a distinct wide intermediate regime (0.1 < t2/t1 < 0.8)
where I1, I2, I3 and I4 are all comparable. This is the
regime which is of experimental relevance. The expected
effect of averaging in this regime is to emphasize both
the I2 and the I4 contributions.

IV. STATISTICAL ANALYSIS

The problem arising in the analysis of persistent cur-
rents in disordered Möbius strips is how to character-
ize the statistics of the calculated data. It was already
pointed out that essential properties of observables result

from the averaging procedure and the nature of the un-
derlying statistical ensemble4,5,6. On the other hand, fab-
rication of a Möbius strip requires an outstanding effort7,
and hence, anticipated measurements of the persistent
current would probably be performed on a single sam-
ple. Thus, somewhat unfortunately, the important re-
sults reported therein and the powerful calculation meth-
ods based on super-symmetry might be less useful for
single-sample experiments since there is no averaging.

What is then the most efficient way to present our
calculated results? The answer is provided by elemen-
tary statistics. An experimental result consists of a set
of K measurements I(φi), i = 1, 2, . . . ,K performed on
a given sample. This sample is taken out of an en-
semble of Möbius strips with different disorder realiza-
tions, electron numbers Ne, aspect ratios, etc. The set
{I(φi)|i = 1, . . . ,K} can be regarded as an instance of a
random vector in a K dimensional space. Alternatively,
this instance can be represented by the current harmonics
(I1, I2, . . . ) defined via Eq. (1). For our purpose it seems
adequate to keep only the first 4 harmonics. The relevant
statistical ensemble is then a set of “points” (I1, I2, I3, I4)
in four-dimensional probability space, each point corre-
sponds to a possible experimental measurement of the
current on the entire φ interval. Let us denote the num-
ber of points within an infinitesimal four-dimensional vol-
ume element by P (I1, I2, I3, I4)dI1dI2dI3dI4. The distri-
bution function P is normalized to N , the total number
of members in the ensemble. The most probable (typical)
experimental result is then determined by the quadruple
I1, I2, I3, I4 at which P is maximal. Another quantity,
which seems more informative and easy to analyze, is
the distribution

pn(In) =

∫ 1

2
|In|

0

P (I1, I2, I3, I4)
∏

m 6=n

d|Im|. (9)

This corresponds to the possibility of finding a sample
whose current I(φ) is approximately described by I(φ) ≈
In sin(2πnφ). (For a sample counted by pn(In), all the
harmonics other than In are at most half of In in mag-
nitude). The number of members in the ensemble that
exhibit In dominance is therefore Nn =

∫ ∞

0
pn(In)d|In|.

If Nn > Nm for any m 6= n, the typical periodicity of
I(φ) is dominantly 1/n. In actual calculations, we as-
sume that the lattice structure, the aspect ratio, and the
strength of disorder are fixed, and that the temperature
is very low. Then, two quantities are still fluctuating,
namely, the filling factor (or the electron number Ne)
and the specific realization of disorder. We generate an
ensemble of N = N aN b members corresponding to N a

consecutive values of Ne, usually around half filling, and
N b realizations of disorder for each one of them. Actu-
ally, for our systems of size N = 20, M = 10 with t1 = 1,
t2 = 0.5, and W = 0.5, we take 150 ≤ Ne ≤ 250, hence
N a = 101 and N b = 250, so that N = 25250. The dis-
tributions pn(In) for the cylinder and Möbius ensembles
are shown in Fig. 3.
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FIG. 3: The distributions pn(In) (n = 1, 2, 3, 4) defined by
Eq. (9) for the cylinder and Möbius ensembles. The numbers
of members with In dominance are N1 = 15, 829, N2 = 382,
N3 = 4, and N4 = 439 for the cylinder ensemble, and N1 =
1, 562, N2 = 336, N3 = 384, and N4 = 1, 992 for the Möbius
ensemble.

V. MAIN OBSERVATIONS

The most striking result that can be deduced from
Fig. 3 is the essential reduction of N1 for the Möbius en-
semble compared with the cylinder one. For the present
ratio N/2M = 1, there is also a strong tendency towards
Φ0/4 periodicity, since N4 > Nm 6=4 for the Möbius en-
semble. This result is intriguing, because here we have
no averaging procedure which is crucial to get the 1/2
periodicity in cylindrical strips. However, this 1/4 peri-
odicity emerges only for the specific ratioN/2M = 1. We
have calculated the distributions pn(In) for Möbius strips
with several aspect ratios. The value of Nn depends on
the aspect ratio. No specific n gives prominent Nn in-
dependently of the aspect ratio. On the other hand, the
collapse of I1 dominance in the Möbius ensemble is ro-
bust and persists in systems with different ratios N/2M
as well. We can safely say that N1, N2, N3, and N4

become all comparable in the Möbius ensemble.
The natural question that comes to mind is whether

this result is a consequence of the Möbius geometry or,
rather, it is due to the presence of disorder. In order
to answer this question, we have performed the calcula-
tion of P 0(I1, I2, I3, I4) for a “clean” Möbius ensemble
(without disorder, only Ne is being changed). We found
out that the probability to find any In dominance is ex-
tremely small. The immediate conclusion is that disor-
der is essential for the identification of Möbius strips via
In>1 dominance. Does this mean that interference or
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FIG. 4: I1 and I2 as a function of Ne for the ordered (solid
line) and disordered (dots) systems. Parameters describing
the systems are the same with those for Fig. 3.

weak-localization effects due to the presence of disorder
is important? To clarify this point, we should understand
how P 0(I1, I2, I3, I4) is modified by disorder. The distri-
bution P 0(I1, I2, I3, I4) is, in fact, a function defined on
a one dimensional curve [I1(Ne), I2(Ne), I3(Ne), I4(Ne)]
in (I1, I2, I3, I4) space. For this reason, it is unlikely to
find a sample where one of the In is dominant. The ef-
fect of disorder is to give some “thickness” to this curve
(see Fig. 4). Taking into account that the amplitudes of
In(Ne) for Möbius strips are all comparable, the thick-
ness gives a finite probability to find samples where one
of the In is dominant. On the contrary, in the case of
cylindrical strips, the amplitude of I1(Ne) is overwhelm-
ingly larger than those of In6=1(Ne), which makes it un-
likely to find In6=1(Ne) dominated samples even if we take
the statistical effect of disorder into account. We should
note here that the function In with odd n for the clean
Möbius strip is an even function around the half-filling
(Ne = 200) and an odd function for odd n, while the
function In for arbitrary n is an even function in the
cylinder case.

Our findings regarding Nn for the Möbius ensemble are
based on the fact that the amplitudes of In(Ne) are all
comparable for Möbius strips. As we have observed in
Fig. 2, this is a robust statistical property in the inter-
mediate regime 0.1 < t2/t1 < 0.8. The choice t2/t1 = 0.5
above, provides typical results for pn(In) and Nn in case
that t2/t1 is within this distinct regime.
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VI. CONCLUSIONS

We have studied the persistent currents of non-
interacting electrons in Möbius strips. The spectral prop-
erties for a clean system were found analytically, and the
effect of disorder on the currents was analyzed numeri-
cally. We have found that disorder is quite essential for
the identification of Möbius strips. The issue of disorder
averaging is not relevant for single sample experiments,
and hence, special care is required for statistical analysis
of the current harmonics. The fingerprint of the Möbius
geometry is an enhanced probability to find samples in

which In, with n > 1 dominates. This should be con-
trasted with the case of cylinder geometry, where there is
a clear I1 dominance. The above assertion regarding the
fingerprint of the Möbius geometry is correct provided
the effect of disorder is properly taken into account.
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