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Over-screened Kondo effect is feasible in carbon nanotube quantum dot junction hosting a spin 1

2

atom with single s-wave valence electron (e.g Au). The idea is to use the two valleys as two symmetry
protected flavor quantum numbers ξ = K,K′. Perturbative RG analysis exposes the finite weak-
coupling two-channel fixed point, where the Kondo temperature is estimated to be around 0.5÷5 K.
Remarkably, occurrence of two different scaling regimes implies a non-monotonic dependence of the
conductance as function of temperature.

Introduction About three and a half decades ago, it
was noticed [1] that when a magnetic impurity of spin
1/2 is over-screened by two identical conducting electron
channels, the many-body physics is characterized by a
non-Fermi-liquid fixed point at temperature T smaller
than the Kondo temperature TK . Experimentally, this
phenomenon, referred to as two-channel Kondo effect
(2CKE), is characterized by unusual physics as T → 0,
such as non-zero entropy, divergence of susceptibility and
others [2–6]. Realizing 2CKE in quantum dot with odd
electron occupation is remarkably elusive due to chan-
nel anisotropy emerging from inter-channel co-tunneling
processes. To remedy this instability, a suppression of
inter-channel co-tunneling is attempted [7] where the in-
terference is suppressed by Coulomb blockade.

In this work we use a novel approach to avoid chan-
nel mixing using a CNTL-CNTQDA-CNTR junction as
shown in Fig. 1(a). Here CNTL, CNTR are semi infi-
nite carbon nano tube (CNT) left and right leads and
CNTQDA is a short CNT quantum dot with an atom A
with s-wave valence electron of spin SA=

1
2 implanted on

its axis. The two valleys K and K′ serve as two symme-
try protected flavor quantum numbers ξ = K,K′. The
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FIG. 1: CNTL-CNTQDA-CNTR junction. (a) Schematic geome-
try of the junction including semi-infinite left and right leads, sep-
arated from a quantum dot of length 2h (that hosts a spin 1/2
atom A) by two barriers of width a. (b) Low energy levels of the
quantum dot with (from below) the caged atom, followed by triplet
and singlet atom-electron states.

CNTQDA is gated such that its (neutral) ground state
consists of the caged atom ket |MA=± 1

2 〉 and its lowest
excited (charged) states are singlet and triplet (defined
explicitly below), formed as proper combinations of basic
states |MA〉⊗|ξσ〉, where |ξσ〉 is a CNTQD electron of fla-
vor ξ and spin projection σ = ± 1

2 . The Anderson model
hybridizes lead and dot electrons with the same flavor
and spin projection, and the Schrieffer-Wolf transforma-
tion, while mixing spin projections does not mix flavors,
thereby realizing a two-channel Kondo physics. Pertur-
bative RG analysis exposes the finite weak-coupling two-
channel fixed point, where the Kondo temperature is es-
timated to be around 0.5÷ 5 K.
It should be stressed that a junction with CNTQD con-
taining odd number of electrons in the ground state albeit
without a caged atom, will not display the 2CKE, because
an electron with flavor quantum number ξ can tunnel
from the dot to the lead, and be replaced by another elec-
tron with flavor quantum number ξ′. As a result, flavor
is not a good quantum number and flavor (channel) mix-
ing results in crossover to the ordinary (single-channel)
Kondo effect [8, 9].
Implanting Gold Atom on the CNT axis

A crucial ingredient in the present analysis is the fea-
sibility of caging an atom such as Au (for example) on
the CNT axis x as in Fig. 1a. Here we briefly describe
the underlying construction. Technical aspects of atomic
physics are detailed in the Supplemental Material (SM).
Consider first an infinitely long CNT (along the x axis)
and let q = k − K or q = k − K′. For an electron
at small |q|, the energy dispersion is [10, 11], ǫqm =
√

(~vq)2 + (m+ ν)2∆2
0, where q = (q, m+ν

r0
), q is the

wave number in the CNT direction and m is the or-
bital quantum number (m = 0,±1,±2, . . .), ∆0 = ~v

r0
,

v ∼ 108 cm/sec is the group velocity of electrons in a
metallic CNT [10, 11] and r0 is the CNT radius. The
quantum number ν is 0 for metallic CNT or ± 1

3 for semi-
conductor CNT [10, 11]. In what following, ν will be
tuned to be non-zero, implying a semiconductor CNT.
Now let us check under what conditions it is possible to
implant and stabilize a gold atom on the CNT axis. De-
noting the van der Waals interaction between the Au and
C atoms a distance Y apart by Vw(Y ), the van der Waals
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interaction of the Au atom with the entire CNT is then,

V (R) =
∑

α=A,B

∑

Rα

Vw
(∣

∣R−Rα

∣

∣

)

, (1)

where R is the position of the Au atom, RA,B are the
positions of atoms C on sub-lattices A,B. Due to cylin-
drical symmetry, V (R) = V (R,X) depends on X (along
which it is periodic) and R (radial variable). Plots of
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FIG. 2: (Color online) (a) Van der Waals potential V (0, X), Eq.
(16). The purple dots and lined denote the lattice of the CNT. (b)
Van der Waals potential V (R,X) as a function of R for different val-
ues of X: Curves a,b,c,d,e correspond to X = 0.25(m− 1)X1,m =
1, 2, 3, 4, 5.

V (0, X) and V (R;X) [as calculated in the SM based on
realistic parametrization of Vw(Y )], are displayed in Fig.
2a, b for a zigzag CNT with radius r0 = 3.13 Å. V (R,X)
has minima and saddle points at (0, Xmin

n ), (0, Xsad
n ),

(n = 0,±1,±2, . . .)

Xmin
n = 2nX1, X

sad
n = (2n+ 1)X1, X1 =

3a0

4
√
3
. (2)

The height of the tunnel barriers between two minima is

Wb = V (0, Xsad
n ) = 32.8 meV. (3)

Expansion of V (R,X) around the minima (0, Xmin
n )

shows that, to second order, the Au atom moves in an
anisotropic harmonic oscillator potential with spring con-
stants Kx = 0.072 eV/Å2, Kr = 1.117 eV/Å2. The
energy of the ground state in this harmonic potential
is about 5.5 meV, much smaller than the barrier height
Wb. Moreover, the harmonic radius ax ≈ 0.11 Å, is much
smaller than X1 = 1.07 Å, so that the harmonic approxi-
mation is self-consistent and the picture of well localized
Au atom on the CNT axis makes sense.
Gating a Quantum Dot with implanted Magnetic Atom:

To get a CNTL-CNTQDA-CNTR junction as in Fig. 1(a)

the infinite CNT is now gated by the potentil:

Vg(x) = −∆0

3
− V0 ϑ(|x| − h− a) + Vd ϑ(h− |x|)

+Vb ϑ(|x| − h) ϑ(h+ a− |x|), (4)

where Vb > Vd > 0 and V0 > 0. This gate divides the
CNT into 5 intervals whose geometry and energy levels
are displayed in Figs 1(a) and 1(b):
1) |x| > h + a, (left and right leads): Here the Fermi
energy ǫF is over the bottom of the conduction band.
2) h+ a > |x| > h, the left and right barriers.
3) |x| < h, (the QD): Here the Fermi energy is below
the single-electron level, so that the ground state of the
QD hosts solely the spin 1/2 caged atom while its ex-
cited states contain one electron and the caged atom.
Together, they form singlet (S) and triplet (T) states.
The exchange interaction between the atom and the elec-
tron is considered in the SM (based on Hund rules, as it
is quite a standard aspect of atomic physics). It is shown
that the singlet-triplet splitting Vexch = ǫT − ǫS due to
the direct exchange term is Vexch = −43.3 meV, while
the indirect exchange term is absent. Since Vexch < 0
the exchange interaction is ferromagnetic and the corre-
sponding energies satisfy ǫS > ǫT , see Fig. 1(b).
Notations for Anderson model: 1) cαqξσ are electron an-
nihilation operators in the leads α = L,R, with momen-

tum q, energy ǫq =
√

(~vq)2 + 1
9∆

2
0, flavour ξ=K,K′

and spin projection σ=± 1
2 . 2) For a lead of length L the

electron DOS is ρ(ǫ) = 1
L

∑

k δ(ǫ− ǫk) =
ϑ(ǫ− 1

3
∆0)

π~vǫ
where

vǫ =
v
ǫ

√

ǫ2 − 1
9∆

2
0 is the group velocity. 3) dξσ is the an-

nihilation operator for dot electron of flavour ξ and spin
projection σ. 4) |MA〉 is a dot atom state with spin pro-
jection MA=↑, ↓ and energy ǫMA

=0. 5) The atom (dou-
blet) and atom-electron singlet and three triplet states
of the dot are collectively denoted as |Λ〉=|MA〉, |Sξ〉,
|1ξ〉, |0ξ〉, |1̄ξ〉. The triplet states are,

|1ξ〉=d†ξ↑| ↑〉, |0ξ〉= 1√
2
{d†ξ↑| ↓〉+d†ξ↓| ↑〉}, |1̄ξ〉=d†ξ↓| ↓〉,

and the singlet state is |Sξ〉= 1√
2
{d†ξ↑| ↓〉 − d†ξ↓| ↑〉}.

6) The dot Hubbard operators are XΛ,Λ′ ≡ |Λ〉〈Λ′|. The
dot electron operators dξσ defined in 3) are expressible

in terms of XMA,Sξ, XMA,1ξ, XMA,0ξ, XMA,1̄ξ as,
dξσ = Xσ,1ξ + 1√

2

{

X σ̄,0ξ + 2σX σ̄,Sξ
}

, (σ̄ ≡ −σ).
Anderson and Kondo Hamiltonians The Anderson
Hamiltonian of the CNTL-CNTQDA-CNTR junction is:

H = HL +HR +HD +HT , (5a)

Hα =
∑

qξσ

ǫqc
†
αqξσcαqξσ, (5b)

HD =
∑

ξ

{

ǫT
∑

m

Xmξ,mξ + ǫSX
Sξ,Sξ

}

, (5c)

HT =
∑

αqξσ

tǫq

{

c†αqξσdξσ + d†ξσcαqξσ
}

, (5d)
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Here tǫ = tF
√

vǫ
vF

, vF = vǫF , and tF is the tunneling rate

for electrons at the Fermi level. The energies of the triplet
and singlet states, ǫT and ǫS , satisfy the properties, ǫS >
ǫT > ǫF , (see Fig. 1(b)). Applying the Schrieffer-Wolf
transformation leads to the Kondo Hamiltonian

HK =
∑

ξqq′

{

Kǫqǫq′nξ,qq′ + Jǫqǫq′
(

S · sξ,qq′
)

}

, (6)

nξ,qq′ =
∑

αα′σ

c†αqξσcα′q′ξσ,

sξ,qq′ =
1

2

∑

αα′σσ′

c†αqξστσσ′cα′q′ξσ′ ,

S =
1

2

∑

σσ′

τσσ′Xσσ′

.

The couplings Kǫǫ′ and Jǫǫ′ are

Kǫǫ′ =
3tǫtǫ′

4(ǫT − ǫF )
+

tǫtǫ′

4(ǫS − ǫF )
,

Jǫǫ′ =
tǫtǫ′

ǫT − ǫF
− tǫtǫ′

ǫS − ǫF
. (7)

In the special case ǫS = ǫT , HK contains just a poten-
tial scattering which does not include spin-flipping. Since
ǫT < ǫS , an anti-ferromagnetic spin-spin exchange inter-
action appears (J > 0). Eq. (6) describes two-channel
Kondo scattering with dot spin S = 1

2 , so that it results
in over-screening of the impurity spin.
Scaling equation and Kondo temperature: Employing
the poor man’s scaling technique to the Kondo Hamilto-
nian (6), one can see that only the dimensionless coupling

jǫǫ′ = Jǫǫ′
√

ρ(ǫ)ρ(ǫ′) =
t2F (ǫS−ǫT )ϑ(ǫ−∆0

3
)ϑ(ǫ′−∆0

3
)

π~vF (ǫS−ǫF )(ǫT−ǫF ) renor-

malizes. Note that for ǫ, ǫ′ > 1
3∆0, j ≡ jǫǫ′ does not

depend on ǫ and ǫ′.
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FIG. 3: (Color online) Two different intervals of the effective band-
width D, D0 < D < D1 and D < D1, where different RG regimes
are expected.

The RHS of the scaling equation (see below) consists
of the following terms, jǫǫ+Djǫ+Dǫ′ , and jǫǫ′−Djǫ−Dǫ′ ,
where ǫ and ǫ′ are close to ǫF . The first term does not
depend on energies and equals to j2, whereas the second
term depends on the sign of ǫF −D− 1

3∆0. For ǫF −D >
1
3∆0, jǫǫ−Djǫ−Dǫ′ = j2, otherwise jǫǫ−Djǫ−Dǫ′ = 0. As a
result, for D0 > ǫF − 1

3∆0, there are two different regimes
of the poor man’s scaling procedure: D0 < D < D1 =

ǫF − 1
3∆0 and D < D1, as shown in Fig. 3. Within the

first of them, D0 < D < D1, the energy level ǫF +D lies
within the conduction band, whereas the energy ǫF −D
is below the bottom of the conduction band. Within the
second interval, D < D1, both the energy levels, ǫF ±D,
lie within the conduction band. This property effects
on the RG procedure.We will consider the RG procedure
within both of the intervals in turn.
First interval, D0 < D < D1: The second and third
order diagrams containing hole lines (i.e., lines describing
virtual electrons with energy ǫ−D) vanish. Then scaling
equations for k and j are,

∂k

∂ lnD
= −k2 − 3j2

16
, (8a)

∂j

∂ lnD
= −2kj − j2

2
, (8b)

where D < D0 and the initial conditions are k(D0) = k0
and j(D0) = j0.
The solution of the set of equations (8) is,

k(D) =
1

4 ln

(

D

Tg

) +
3

4 ln

(

D

Tf

) , (9a)

j(D) =
1

ln

(

D

Tg

) − 1

ln

(

D

Tf

) , (9b)

where

Tg = D0 exp
(

− 1

g0

)

, Tf = D0 exp
(

− 1

f0

)

,

g0 = k0+
3
4j0 and f0 = k0− 1

4 j0. Since g0 > f0, Tg > Tf .
Provided that D1 > Tg, the renormalization procedure

(9) stops when D approaches D1 and k and j approach
k1 = k(D1) and j1 = j(D1). From this point, the second
RG regime starts.

Tg > D1

Tg < D1

5 10 15 20 25 30
ΕT HmeVL0.0
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FIG. 4: (Color online) Intervals of ǫT and ǫF where TK1
< D1

(green area) or TK1
> D1 (orange area) separated by the purple

curve where TK1
= D1. Here ǫS − ǫT = 43.3 meV.

Intervals of ǫF and ǫT where Tg < D1 or Tg > D1

are shown in Fig. 4. It is seen that there are some
values ǫc(ǫT ) (purple curve) such that for ǫF > ǫc(ǫT ),
Tg < D1 and the crossover from the single-channel
to the two-channel Kondo regimes occurs in the weak
coupling regime. When ǫF < ǫc(ǫT ), Tg > D1 and
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the crossover from the single-channel to the two-channel
Kondo regimes occurs in the strong coupling regime.
Second interval, D < D1: The third order scaling
equation for j is,

∂j(D)

∂ lnD
= −j2(D) + 2j3(D), (10)

and the initial condition is j(D1) = j1. Within this inter-
val, the coupling k does not renormalizes. The solution
of the scaling equation (10) is,

1

j1
− 1

j
+ 2 ln

[

j(1 − 2j1)

j1(1− 2j)

]

= ln
D1

D
. (11)

When D decreases, j(D) renormalizes towards j∗ = 1
2 ,

the fixed point value of j, and when D goes to 0, j(D)
goes to j∗. When |j−j∗| ≪ j∗, the asymptotic expression
for j is,

j − j∗

j∗
=

j∗ − j1
j1

(

DT ∗

D1TK

)j∗

,

where the scaling invariants TK and T ∗ are

TK = D1 exp

(

− 1

j1

)

, T ∗ = D1 exp

(

− 1

j∗

)

. (12)

Estimate of the couplings and Kondo temperature TK :
The dimensionless couplings are,

j0 =
t2F (ǫS − ǫT )

π~vF (ǫS − ǫF )(ǫT − ǫF )
,

k0 =
t2F (3ǫS + ǫT − 4ǫF )

4π~vF (ǫS − ǫF )(ǫT − ǫF )
.

Here ǫS − ǫT = 43.3 meV (see the SM). The tunneling
rate can be tuned by fitting the tunnel barrier height and
width.
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FIG. 5: (Color online) (a) k and (b) j as functions of D for ǫT =
19 meV and different values of ǫF . Here ǫS − ǫT = 43.3 meV,
tF

√
kF = 0.35(ǫT −ǫF ) and curves (1) – (6) correspond to ǫF=1.5,

1.6, 1.7, 1.9, 2.1 and 2.3 meV, respectively.

The dependence of the effective couplings k and j
on the effective bandwidth D and the Fermi energy ǫF
is shown in Fig.5 for the energy of the triplet state
ǫT = 19 meV. k(D) as a function of D is shown in
Fig.5(a) and renormalization of j(D) is shown in Fig.5(b)

for different values of ǫF . It should be noted the behav-
ior of the curves (1), (2) and (3) [ǫF ≤ 1.7 meV]: Within
the interval D0 > D > D1, the effective coupling j(D)
increases to the value over j∗, and then within the in-
terval D < D1, j(D) decreases approaching j∗. This be-
havior is unexpected, since in the standard two-channel
Kondo model, the exchange coupling changes monotoni-
cally with D approaching j∗ for D → 0. The nonmono-
tonic behavior is caused by the crossover from the single-
channel GR regime for D > D1 to the two-chanel RG
regime for D < D1.
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ΕT HmeVL
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FIG. 6: (Color online) (a) TK , Eq. (12), as a function of ǫT
and different values of ǫF . (b) The conductance G(T ), Eq. (14) as
function of T for ǫT = 19 meV and different values of ǫF . For both
panels, tF

√
kF = 0.35(ǫT − ǫF ), and curves (1) – (6) correspond to

ǫF=1.5, 1.6, 1.7, 1.9, 2.1 and 2.3 meV, respectively. In panel (b),
the dots from right to left correspond to D0,D1 and TK , separating
the RG regimes from one another.

The Kondo temperature TK (12) is shown in Fig. 6a as
a function of ǫT for tF

√
kF = 0.35(ǫT − ǫF ) and different

values of ǫF . It is seen that TK changes in between 0.5 K
and 5 K for reasonable parameter values.

Conductance The non-linear tunneling conductanceG(T )
of the CNTL-CNTQDA-CNTR junction in the weak
coupling Kondo regime will now be calculated, employ-
ing perturbation RG formalism within the Keldysh non-
equilibrium Green’s function approach. The tunneling
current from the left to the right lead is

I =
ie

~

∑

ξkk′σσ′

{

Kǫkǫk′ δσσ′ +
Jǫkǫk′

2

(

τσσ′ · S
)

}

×
(

c†LkξσcRk′ξσ′ − c†RkξσcLk′ξσ′

)

. (13)

Applying perturbation theory and the condition of invari-
ance of the conductance with respect to the “rescaling”
transformations, we get the following expression for the
conductance,

G =
π2G0

2

{

k2(T ) + 3j2(T )
}

, G0 =
e2

π~
, (14)

where j(T ) is given by Eqs. (9b) and (11) for T > D1

and T < D1, respectively; k(T ) is given by Eq. (9a) for
T > D1 and k(T ) = k(D1) for T < D1 [see also Fig. 5].

The conductance (14) as function of T is shown in Fig.
6b for tF

√
kF = 0.35(ǫT − ǫF ), ǫT = 19 meV and differ-

ent values of ǫF . Note the non-monotonic behavior of the
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conductance for ǫF ≤ 1.7 meV [curves (1) – (3)]. This ex-
otic behavior is caused by the non-monotonicity of j(T )
[see Fig. 5(b)]. In the standard 2CKE, G(T ) is mono-
tonic, depending on the bare value j0 of j. If j0 < j∗ = 1

2 ,
(j0 > j∗), the conductance increases (decreases) mono-
tonically with reducing T . Non-monotonicity of G(T )
exposed here is the result of the crossover between differ-
ent RG scaling regimes.
Summary: In addition to suggesting a scheme for expos-
ing 2CKE in an electronic transport system, the present
scheme reveals a novel facet of the RG scaling framework,
namely, the existence of two scaling regimes in which
the running coupling constant behaves differently. This
enables the physics of the 2CKE to be visible also in
the weak coupling regime due to the non-monotonic be-
haviour of the conductance as function of temperature.
Our analysis requires a versatile use of several physical
disciplines. The properties of CNT are employed for the
generation of decoupled electron channels, while the need
to implant an atom on the axis of the CNT requires mas-
tering of material science techniques. The elucidation of
the van der Waals potential and the CNT and the calcula-
tion of the exchange constants are based on fundamental
aspects of atomic physics, and the derivation of the An-
derson and Kondo Hamiltonians touch upon the corner

sotnes of strongly correlated electrons.
Acknowledgement: The research of Y.A is partially sup-
ported by grant 400/12 of the Israel Science Foundation
(ISF).
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SUPPLEMENTARY MATERIAL

In this Supplementary Material section we first expand upon the atomic-physics aspects of the CNTL-CNTQDA-
CNTR junction and second, derive the scaling equations for the exchange coupling constants. In subsection I the van
der Waals interaction between the gold atom and the CNT is derived based on the van der Waals interaction between
the gold atom and a single carbon atom and on the geometry of the CNT. In subsection II the gold atom states in
the CNT potential (derived in subsection I) are analyzed. Direct exchange interaction between the CNT itinerant
electrons and the caged gold atom are discussed in subsection III providing us with the exchange constants that are
required to arrive at the Kondo model of the main text. In subsection IV it is shown that the indirect exchange
contribution is virtually negligible. Finally, in subsection V the scaling equations for the dimensionless couplings are
derived. The reason for doing so is that these equations are not the standard ones encountered in the Kondo physics
because, as indicated in the main text, there are two different scaling intervals, D > D1 and D < D1, corresponding
to two different sets of scaling equations, and each regions requires a separate treatment.

I. Van der Waals Interaction between gold and carbon atoms forming CNT

When an atom of gold is implanted on the central axis of a CNT, there is van der Waals interaction between the
gold and all the carbon atoms forming the CNT that need to be calculated. In order to calculate it we first write
down the van der Waals interaction between the gold and a single carbon atom a distance Y apart, that reads,

Vw(y) = V0

{

1

2

R12
w

Y 12
− R6

w

Y 6

}

, (15)

where Rw = 3.36 Å is the equilibrium position and

V0 =
εAuεC
εAu + εC

αAuαC

r6w
= 32.6 meV,

where εAu = 9.2255 eV or εC = 11.2603 eV is the ionization energy for gold or carbon, αAu = 36.1a3B = 5.34 Å3 or
αC = 11.7a3B = 1.73 Å3 is polarizability of the atom of gold or carbon (aB = 0.529 Å is the Bohr radius). Then the
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van der Vaals interaction of the caged atom of gold with the CNT (see Fig. 7 for the geometry) is obtained just by
summation,

V (R) =
∑

RA

Vw
(
∣

∣R−RA

∣

∣

)

+
∑

RB

Vw
(
∣

∣R−RB

∣

∣

)

, (16)

where RA or RB are positions of atoms of sub-lattice A or B. Numerical calculations for V (R) result its profile
as displayed in Fig. 2 of the main text for a zigzag CNT with the chiral vector c8,0 and CNT radius r0 = 3.13 Å.
Essentially, the potential depends on two variables (cylindrical coordinates), X (along the CNT axis) and R (radial
variable) and almost does not depend on the azimuthal angle φ. Hence we may write V (R) = V (R,X), which is, by
construction, periodic in X . More concretely, for fixed X it increases quadratically with R, and for R = 0, V (0, X)
as a function of X has local minima Xmin

n and saddle points Xsad
n given by,

Xmin
n = 2nX1, Xsad

n = (2n+ 1)X1, X1 =
3a0

4
√
3

= 1.07 Å, (17)

where n is integer. Numerical estimates show that neighboring minima are separated by tunnel barriers of height

Wb = V (0, Xsad
n ) = 32.8 meV. (18)

Expansion of V (R,X) around the minima Rmin
n = (Xmin

n , 0) up to quadratic powers yield,

V (R,X) ≈ 1
2Kx

(

X −Xmin
n

)2
+ 1

2KrR
2, (19)

where |X −Xmin
n | ≪ X1 and R≪ r0,

Kx = 0.072
eV

Å
2 , Kr = 1.117

eV

Å
2 . (20)

In what follows, we will assume that the gold atom performs small oscillations around the point R = (0, 0).

R

r

RA,B

FIG. 7: (Color online) Atom of gold (red circle) and carbon atoms of the CNT (purple circles). Position of electron of the gold atom is
r, position of the gold nuclei is R, positions of the carbon atoms are RA and RB.

II. Atomic Quantum States in the CNT Potential

Consider a neutral gold atom of mass M as a positively charged rigid ion (with filled shell) and one electron on
the outer 6s orbital. The positions of the ion and the outer electron are respectively specified by vectors R and r

[see Fig. 7]. In the adiabatic approximation (which is natural in atomic physics), the wave function of the atom is a
product of the corresponding wave functions ΨAu(R) and ψ6(r) describing the stationary states of the ion and the
outer electron. In order to find the wave functions and energies of the gold atoms in the anisotropic potential well
(19), we need to solve the following Schrödinger equation for ΨAu(R),

− ~
2

2M
∆ΨAu(R) + V (R)ΨAu(R) = εΨAu(R). (21)
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Within the Harmonic approximation (19), the solutions of Eq. (21) are,

ΨAu
nmℓ(R) = Φνm(R) Fℓ(X) eimφ, (22a)

where X , R and φ are cylindrical coordinates. Denoting ρ ≡ R/ar, the radial wave function Φnm(R) is,

Φnm(R) =
1

ar
√
π

√

n!

(n+ |m|)! ρ
|m|L(|m|)

ν

(

ρ2
)

e-
ρ2

2 , (22b)

where L
(|m|)
ν is the generalized Laguerre polynomial, n = 0, 1, 2, . . . and m = 0,±1,±2, . . ., and

ar =

√

~ωr

Kr
, ωr =

√

Kr

MAu
. (22c)

Denoting ζ ≡ X/ax the motion along X is described by

Fℓ(X) =
1

(

πa2x
)

1
4

1√
2ℓ ℓ!

Hℓ(ζ)e
−ζ2/2, (22d)

where Hℓ is the Hermite polynomial, ℓ is the harmonic quantum number, ℓ = 0, 1, 2, . . ..

ax =

√

~ωx

Kx
, ωx =

√

Kx

MAu
. (22e)

The corresponding energy levels depend on two quantum number, n = 2ν + |m| and ℓ,

εnℓ = ~ωr

(

n+ 1
)

+ ~ωx

(

ℓ+
1

2

)

. (23)

When ωr and ωx are incommensurate, the degeneracy of the level (n, ℓ) is (n+ 1)(2s+ 1). For the values of Kx and
Kr given by Eq. (20), ~ωx = 1.24 meV, ~ωr = 4.87 meV, ax = 0.13 Å and ar = 0.07 Å. Then the energy of the
ground state is ε00 = 5.49 meV. The quantum state with m = 5 has the excitation energy 5~ωr = 24.35 meV which
is of order of the ultraviolet cut off.

III. Direct Exchange Interaction between CNT QD electron and the Caged Atom

In order to calculate the exchange interaction between the gold atom and the itinerant electrons in the CNT we
neglect the deviation of the gold atom from the equilibrium position R = (0, 0). Such a small deviation results in
a small variation of the calculated exchange coupling as calculated below. The exchange interaction is determined
mainly by the Coulomb repulsion between the CNT itinerant electron and the outer 6s electron of the gold atom.
These two electrons can for singlet and triplet states and the corresponding energies are determined by Hund rules.
When the implanted gold atom is placed on the CNT axis, the singlet-triplet energy splitting Vexch = εT − εS due to
the direct exchange interaction between the caged atom and the CNT wall is,

Vexch = −2

∫

d3rd3r′ ψ∗
CNT(r)ψ

∗
6(r

′)
e2

∣

∣r− r′
∣

∣

ψCNT(r
′)ψ6(r). (24)

Here ψ6(r) is the wave function of the 6s-electron in the atom of gold and ψCNT(r) is the wave function of electron in
the CNT QD. In order to calculate the latter we need to recall the formalism for calculating electron wave function
in CNT.
A zigzag CNT is specified by two basic vectors a1 and a2, and a chiral vector cN ,

cN = Na1, (25)

where N is integer and |a1| = |a2| = a0 = 2.46 Å. A CNT is obtained by rolling a 2D graphene sheet such that the
atom at the origin coincides with the atom at cN . Then |cN | = 2πr0 is the length of the CNT circumference and r0
is the CNT radius [see Figure 8].
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The coordinates of atoms of the sub-lattice A or B are,

RAn1n2
= n1a1 + n2a2 +

d1

2
=
(

XAn2
, Yn1+

n2
2

)

,

RBn1n2
= n1a1 + n2a2 −

d1

2
=
(

XBn2
, Yn1+

n2
2

)

,

where

XAn2
=

a0

2
√
3
+

3n2a0

2
√
3
, XBn2

= − a0

2
√
3
+

3n2a0√
3
, Yn = na0. (26)

Here x-axis is along the CNT axis and the y-axis is in the circumference direction. Then n2 changes from 1 to N and
we have the periodicity condition Yn+N = Yn. For the CNT to be semiconductor, N is not an integer multiplier of 3.
We consider here the CNT with N = 8 and r0 = 3.13 nm.

(a) (b)

a1

a2

ex

ey

cN

kx

ky

K K+q

K' K'+q

G

FIG. 8: (Color online) Panel (a): A monoatomic layer of graphene. The red and blue dots denote carbon atoms of the sub-lattice A and
B. The primitive vectors of graphene are a1 and a2. The nanotube is obtained by choosing the chiral vector cN = Na1. The unit vectors
ex and ey are fixed in the CNT in such a way that ex is along the CNT axis, and ey is along the circumferential direction cN . Panel (b):
The first Brillouin zone of graphene. kx is the component of the 2D wave vector k along the CNT axis and ky is the component of k in
the circumferential direction. The green and purple dots denote the corners K and K′ of the first BZ. The lines q denote the component
of the wave vector k along the CNT axis measured with respect to the corners K and K′.

The wave function of the lowest-energy quantum state of the CNT QD of the length 2h (i.e., for |XA,Bn2
| ≤ h) is

ψCNT(r) =
1√
N

∑

n1n2

Φ
(

r−RAn1n2

)

sin

(

π
(

h+XAn2

)

2h

)

e
i(K+qN )Y

n1+
n2
2 +

+
1√
N

∑

n1n2

Φ
(

r−RBn1n2

)

sin

(

π
(

h+XBn2

)

2h

)

e
i(K+qN )Y

n1+
n2
2 , (27)

where Φ(r) is a Wannier function,

K =
4π

3a0
, qN =

2πµ

3Na0
, (28)

where N = 3M + µ with M being integer and µ = ±1. µ is chosen in such a way that (K + qN )Na0 be integer
multiplier of 2π.
The Wannier functions Φ(r − R) and Φ(r − R′) with R 6= R′ are orthogonal one to another, so that the wave

function (27) is normalized by the condition,

∫

d3r
∣

∣ψCNT(r)
∣

∣

2
= 1.

The wave function ψCNT(r) vanishes when |x| > h. The term qN is introduced to satisfy the Bohr-Sommerfeld
quantization rule which says that (K + qN )Na0 is an integer multiplier of 2π.
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In what following, we consider the following model wave function,

ψCNT(r) =
NCNT√
πh

sin

(

π(h+ x)

2h

)

ei(Kr0+ν)φ e
− |r−r0|

aC , (29)

where r = (x, r, φ) are cylindrical coordinates, ν = µ
3 [see Eq. (28)], aC = 0.80 Å is the radius of the carbon atom.

The normalization factor NCNT is

NCNT =
2

√

aC(4r0 + aCe
− 2r0

aC )

≈ 1√
aCr0

.

As for ψ6(r), the wave function of the 6s-electron in the gold atom, we will use the following model wave function,

ψ6(r) =
1

√

πa3Au

e
−

√
x2+r2

aAu , (30)

where aAu = 1.35 Å is the atomic radius of gold.
Substituting the wave function (29) into eq. (24), we get

Vexch = − 2

πha3AuaCr0

h
∫

−h

dx dx′
∞
∫

0

rdr r′dr′ G(x, x′, r, r′)F(x, x′, r, r′), (31)

where

G(x, x′, r, r′) = sin

(

π(h+ x)

2h

)

sin

(

π(h+ x′)

2h

)

e
− |r−r0|+|r′−r0|

aC e
− 1

aAu

(√
x2+r2+

√
x′2+r′2

)

, (32)

F(x, x′, r, r′) =

2π
∫

0

dφ dφ′
e−i(Kr0+ν)(φ−φ′)

√

(x− x′)2 + r2 + r′2 − 2rr′ cos(φ− φ′)
. (33)

HaL HbL HcL HdL HeL HfL

0.0 0.5 1.0 1.5 2.0
· HÅL0.0

0.2

0.4

0.6

0.8

1.0

1.2

2Π· F

FIG. 9: (Color online) The function 2π̺F(x+ 1

2
̺ cosϕ, x− 1

2
̺ cosϕ, r + 1

2
̺ sinϕ, r − 1

2
̺ sinϕ) as functions of ̺ for different values of r.

Curves (a) – (f) correspond to r = 0.5, 1, 1.5, 2, 2.5, 3 Å. The dots denote the half-maximum of the function.

The function F(x, x′, r, r′) depends on x − x′ but not on x+ x′. It has its maximum at x− x′ = 0 and r − r′ = 0,
decreases with ̺ =

√

(x − x′)2 + (r − r′)2 and vanishes when ̺ ≫ ̺c exceeds some critical value ̺c. Numerical
calculations plotted in Fig. 9 show that ̺c . 1.2 Å. The function G(x, x′, r, r′) varies slowly with x − x′ and r − r′.
Therefore, we can approximate F(x, x′, r, r′) by the following expression,

F(x, x′, r, r′) = F0

(

r
)

δ(r − r′)δ(x− x′), (34)

where

F0(r) =

∞
∫

−∞

dx′
∞
∫

−∞

dr′ F
(

x+
x′

2
, x− x′

2
, r +

r′

2
, r − r′

2

)

. (35)

Integration of the RHS of Eq. (35) yields,

F0(r) =
32π2r

99
.
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Then the exchange interaction (31) can be written as,

Vexch = − 64π

99ha3AuaCr0

h
∫

−h

dx sin2
(

π(h+ x)

2h

)

∞
∫

0

r3dr e
− 2|r−r0|

aC e
− 2

aAu

√
x2+r2

. (36)

For aC = 0.8 Å, aAu = 1.35 Å, r0 = 3.13 Å and h = 5r0 = 15.65 Å, Vexch ≈ −43.3 meV. The exchange interaction
is ferromagnetic which agrees with the Hund rules.

IV. Absence of electron tunneling between the CNT and the Caged Atom

The tunneling rate T between the atom and the CNT can be estimated as,

Vt =

∫

d3R
∣

∣ΨAu
000(R)

∣

∣

2
∫

d3r Ψ∗
CNT(r)

e2
∣

∣r+R
∣

∣

ψ6(r), (37)

where the electronic wave functions ΨCNT(r) and ψ6(r) are given by Eqs. (29) and (30), and the atomic wave function
ΨAu

000(R) is defined by Eq. (22). Using cylindrical coordinates r = (x, r, φ) and R = (X,R, ϕ), we get

Vt =
1

√

πa3AuhaCr0

h
∫

−h

dx sin

(

π(h+ x)

2h

)

∞
∫

−∞

dX F 2
0 (X)

∞
∫

0

rdr e
− 1

aC
|r−r0|e−

1
aAu

√
x2+r2

∞
∫

0

RdR Φ2
00(R)

×
2π
∫

0

dϕ
e2

√

(

x−X
)2

+ r2 +R2 + 2rR cosϕ

2π
∫

0

dφ ei(Kr0+ν)φ.

Taking into account that Kr0 + ν is non-zero integer, we get Vt = 0.

V. Derivation of the Scaling Equations

In this subsection we describe the derivation of the scaling equations as displayed in the main text around Eqs.
(8-12) therein. In order to carry out the poor man’s scaling analysis, let us divide the energy interval |ǫ| < D
(“conduction band”) into three intervals (see Fig. 10):

i. −D + δD < ǫ − ǫF < D − δD,

ii. D − δD < ǫ− ǫF < D,

iii. −D < ǫ− ǫF < −D + δD.

The quantum states within the interval (i) are retained and the quantum states within the intervals (ii) and (iii) are
to be integrated out.
The corrections to HK due to the virtual scattering are shown in Figs. 11 and 12. Here the solid blue lines describe

the quantum state of the quantum dot. The dashed purple lines with a red circle at one side describe falling or
scattered conduction electron and dashed purple lines with two red circles at the ends describe virtual conduction
electron within the energy interval (i). The dashed and dotted violet lines with arrow right or left correspond to
virtual electron with energy within the interval (ii) or (iii).
The contribution of the second order diagram in Fig. 11(a) is,

δK(2a)
ǫqǫq′

= −δD
D

(

KǫqDKDǫq′ +
3

16
JǫqDJDǫq′

)

ρ(D), (38a)

δJ (2a)
ǫqǫq′

= −δD
D

(

KǫqDJDǫq′ + JǫqDKDǫq′ +
1

2
JǫqDJDǫq′

)

ρ(D). (38b)

The contribution of the second order diagram in Fig. 11(b) is,

δK(2b)
ǫqǫq′

=
δD

D

(

Kǫq −DK−Dǫq′ +
3

16
Jǫq −DJ−Dǫq′

)

ρ(−D), (38c)

δJ (2b)
ǫqǫq′

=
δD

D

(

Kǫq −DJ−Dǫq′ + Jǫq −DK−Dǫq′ −
1

2
JǫqDJDǫq′

)

ρ(−D). (38d)
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(a) (b)

ΕF

DOS

∆D

∆D

2D 2D1 ΕF

DOS

∆D

∆D

2D

FIG. 10: (Color online) The particle and hole states which are integrated out from the conduction band on reducing the bandwidth by
δD for D > D1 [panel (a)] and D < D1 [panel (b)]. The curve denotes the density of states (DOS).

(a) (b)

FIG. 11: (Color online) Second order electronic [panel (a)] and hole [panel (b)] diagrams which have a particle in an intermediate state
at a band edge (dashed and dotted line).

It should be taken into account that ρ(−D) = 0 when D > D1, so that the diagram in Fig. 11(b) contributes to HK

just when D < D1.
The contribution of the third order diagram in Fig. 12(a) is,

δK(3a)
ǫqǫq′

= −δD
D

Kǫqǫq′

(

8k2 +
3

2
j2
) 1

D

0
∫

−D

dǫ ϑ(−ǫ)ϑ(ǫ +D1),

δJ (3a)
ǫqǫq′

=
δD

D
Jǫqǫq′

(

− 4k2 + j2
) 1

D

0
∫

−D

dǫ ϑ(−ǫ)ϑ(ǫ +D1).

After integration over ǫ, we get,

δK(3a)
ǫqǫq′

= −δD
D

Kǫqǫq′

(

8k2 +
3

2
j2
) min(D,D1)

D
, (39a)

δJ (3a)
ǫqǫq′

=
δD

D
Kǫqǫq′

(

− 4k2 + j2
) min(D,D1)

D
. (39b)

(a) (b)

FIG. 12: (Color online) Third order electronic [panel (a)] and hole [panel (b)] diagram with a particle in an intermediate state at a band
edge (dashed and dotted line) which results in the over-screened fixed point.
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Similarly, the contribution of the third order diagram in Fig. 12(b) is,

δK(3b)
ǫqǫq′

=
δD

D
Kǫqǫq′

(

8k2 +
3

2
j2
)

ϑ(D1 −D), (39c)

δJ (3b)
ǫqǫq′

=
δD

D
Kǫqǫq′

(

4k2 + j2
)

ϑ(D1 −D). (39d)

Combining Eqs. (38) and (39), we get the scaling equations for the dimensionless couplings k and j. For D ≫ D1,
the equations are

δk = −δD
D

(

k2 +
3j2

16

)

, (40a)

δj = −δD
D

(

2kj +
j2

2

)

. (40b)

Approximating

D
δk

δD
≈ ∂k

∂ lnD
, D

δj

δD
≈ ∂j

∂ lnD
,

we get Eqs. (8a) and (8b) of the main text. Similarly, for D < D1 we get δk = 0 and

δj = −δD
D

(

j2 − 2j3
)

. (41)

The last equation yields Eq. (10) of the main text.


