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Fluctuation of Coulomb blockade peak spacings in large two-dimensional

semiconductor quantum dots are studied within a model based on the elec-

trostatics of several electron islands among which there are random inductive

and capacitive couplings. Each island can accommodate electrons on quan-

tum orbitals whose energies depend also on an external magnetic field. In

contrast with a single island quantum dot, where the spacing distribution is

close to Gaussian, here the distribution has a peak at small spacing value.

The fluctuations are mainly due to charging effects. The model can explain

the occasional occurrence of couples or even triples of closely spaced Coulomb

blockade peaks, as well as the qualitative behavior of peak positions with the

applied magnetic field.
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I. INTRODUCTION

Recently, it became apparent that the physics exposed in the addition spectra of quan-

tum dots is rather rich, and hence its investigation is at the focus of both experimental and

theoretical studies. The present work concentrates on the distribution of spacings between

Coulomb blockade peaks in large semiconductor quantum dots. Coulomb blockade is evi-

dently one of the hallmarks of mesoscopic physics. The experimental achievement of tracing

an addition of a single electron to a quantum dot and the appearance of isolated conductance

peaks led to the concept of single electron transistors. After the origin of Coulomb blockade

peaks has been elucidated, investigation is directed toward more subtle questions like their

heights, widths and spacings. The underlying physics is related to the ground state energy,

chemical potential and inverse compressibility of a few electron islands coupled capacitively

to its environment, as well as fluctuations of these quantities with the number N of electrons

on the dot.

As far as the distribution of spacings between adjacent Coulomb blockade peaks is concerned,

the question can be stated as follows: According to the simplest picture in which the quantum

dot is regarded as a single electron island whose coupling with the leads is through its

capacitance C, the total potential energy of a quantum dot is Q2/2C−VgQ, where Vg is the

corresponding gate voltage. The conductance peaks occur at those values of Vg for which

CVg = e(N + 1/2), where e is the electron charge (henceforth e = −1). For this value of Vg

the addition of an electron to the dot (which contains N electrons) does not cost any charging

energy. The position of the N th Coulomb blockade peak is then a linear function of N , and

therefore the spacing should be a constant 1/C, independent of N . Recent experiments [1,2]

indicate however that spacing between Coulomb blockade peaks in small quantum dots is in

general not constant but, rather, a fluctuating quantity close to Gaussian. The average of

its distribution approximately coincides with the constant value mentioned above, but the

elucidation of its standard deviation is still under investigation [3,4].

The situation is even more intriguing if the quantum dot is very large. As indicated in a series
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of recent experiments, the spacing occasionally vanishes, namely, two peaks (and sometimes

even three peaks) coincide. Moreover, the evolution of peak positions and spacings with

an applied magnetic field indicates the existence of strong correlations between them [5–7].

These observations motivated numerous theoretical models based on the concept of pair

tunneling [8] or that of two-electron bound-states in depleted electron islands [9].

In the present work we examine the scenario according to which a large quantum dot, like

the one used in the last experiment [7], is, in fact, composed of several electron islands which

are coupled capacitively among themselves as well as to the leads. Electrons are added in

such a way that the total potential energy of the dot is minimum. This simple generalization

of the single island picture leads to a remarkable change in the spacing distribution from

a Gaussian [1,3,4] centered around a finite average to one which is large at small spacings.

When the coupling between islands is zero, the distribution has indeed a maximum at zero

spacing. If the coupling is non-zero but small, the maximum is slightly shifted away from

zero, yet leaving an appreciable tail down to zero. These results are short of explaining

the perfect overlap of peaks, since it requires a delta function component at zero spacing.

Yet, it leads to the occurrence of couples and sometimes triples of closely spaced peaks,

similar to the experimental observation. Moreover, the evolution of the peak positions with

the magnetic field is qualitatively similar to the experimental one. On the other hand, the

present model does not predict a definite periodicity in the bunching of Coulomb blockade

peaks with electron number N . In the next section the model is explained, and the results

of the calculations are presented in section 3.

II. FORMALISM

We consider a large isolated two-dimensional quantum dot in a perpendicular magnetic

field B subject to a gate voltage Vg. Unlike the traditional Coulomb blockade picture, it

might contain several electron islands which can be regarded as metallic objects with induc-

tive couplings among themselves. These are determined by a positive definite symmetric
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matrix C whose diagonal elements Cii ≡ Ci – the corresponding capacities – are positive,

whereas the nondiagonal elements Cij = Cji, (i 6= j) – the corresponding coefficients of

induction – are negative. The electrostatic energy of such a system may be written as

Ec =
1

2

K
∑

i,j=1

pijNiNj − VgN, (1)

where Ni is the number of electrons on island i (the number of islands K > 1 might be

around 10), N =
∑K

i=1
Ni is the total numbers of electrons, and p = (pij) is the (symmetric

positive-definite) matrix C−1.

Beside the electrostatic energy it is assumed that electrons in each island occupy single

particle quantum states (orbitals), whose energies ǫiα (i = 1, 2, ..K;α = 1, 2, ..) depend on

the confining potential as well as on the magnetic field. The latter is manifested through

its orbital effects as well as due to Zeeman splitting (in which case the quantum number α

contains also a spin label). The corresponding occupation numbers niα can be either 0 or 1.

The system described above might then be represented by a classical Hamiltonian

H = Hc +Hsp, (2)

where the charging Hamiltonian Hc is just the electrostatic energy of (1) written in terms

of the orbital occupation numbers

Hc =
1

2

K
∑

i,j=1

pij [
∑

α

niα][
∑

α′

njα′]− Vg

K
∑

i=1

∑

α

niα, (3)

and the single particle part of the Hamiltonian Hsp is

Hsp =
K
∑

i=1

∑

α

ǫiαniα. (4)

The precise form of the matrix elements pij = [C−1]ij as well as the single particle energies

ǫiα are specified in the next section when we present our results. Despite the fact that the

Hamiltonian H = Hc+Hsp is classical (and relatively simple), the elucidation of its spectrum

for large N and K is virtually hopeless. In order to compute the ground state energy E(N),

one has to find the minimum of H on all the possible K-tuples (N1, N2, . . . , NK) with the
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constraint
∑K

i=1
Ni = N . Note that the so-called “Coulomb Glass” model obtains as a

special case when i refers to a lattice site with random energy ǫiα = ǫi, and a single orbital

Ni = ni = 0, 1. The interaction matrix is then given by pij = 1/rij for i 6= j and pii = 0,

where rij is the distance between sites i and j.

The position of the N th conductance peak is given by the first difference of the ground state

energy, namely, the chemical potential of the (isolated) dot, µ ≡ E(N + 1) − E(N). The

spacing between peaks is determined by the second difference (the inverse compressibility),

χN ≡ E(N + 1)− 2E(N) + E(N − 1). (5)

The occurrence of close peaks for certain values of electron number N corresponds to small

values of χN (recall that for a single island quantum dot, in which the single particle energies

are neglected, the inverse compressibility is a constant 1/C11). For the more general model

described above the spacing distribution will of course fluctuate. In general, some constants

appearing in the Hamiltonian H = Hc + Hsp are random (e.g. the elements of the matrix

C and the single particle energies ǫiα), but most experiments are performed on a single

quantum dot, so that fluctuations are meant with respect to the electron number N . The

numbers χ(N) might then be considered as values assumed by a random variable χ which

has a certain distribution function P (χ).

It might be instructive to compute the distribution P (χ) for a particular special case (albeit

not realistic) which looks deceptively simple. The reader who is not interested may skip the

rest of this section. Take K > 1, Cij = 0 for i 6= j, and ǫiα = 0. The Hamiltonian H = Hc is

the classical energy of a set of K charged metallic bodies which are very far apart from each

other, so there is no coupling among them. This problem then belongs to a class of problems

dealing with statistics of spectra of independent quantum systems [10]. Here it refers to the

addition spectra for a system composed of several independent subsystems, each of which

has a certain spectrum which is a quadratic function of the number of particles residing on

it. Thus, for example, by replacing C−1

ii → h̄ωi, it can represent the energy of N spinless

fermions distributed among K independent oscillators.
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Our aim is to find the distribution function P (χ). If charge is not quantized, the problem

of finding the ground state energy is simply formulated as follows: Given K independent

capacitors Ci, i = 1, . . . , K, (in general, with random capacitances Ci), how should the

corresponding charges Qi be chosen so as to minimize the electrostatic energy E(Q) =

∑K
i=1

Q2

i

2Ci
while holding the total charge Q =

∑K
i=1

Qi fixed? This constrained minimum

problem is trivially solved by requiring ∂E(Q)/∂Q = 0 and expressing Q1 = Q−
∑K

i=2
Qi. It

is evident from dimensional arguments that E(Q) is proportional to Q2, with some coefficient

denoted by 1/2C, in which C may be interpreted as the total capacitance of the system.

Evidently, in this case the second derivative of E(Q) with respect to Q is independent of Q

(and is easily calculated), namely ∂2E/∂Q2 = 1/C.

What happens then if charge is quantized? The formulation of the problem is now repeated

albeit with Q = N,Qi = Ni (with N and Ni integers). Intuitively, one would expect P (χ) to

be centered about 1/C, but, surprisingly, this is not the case, and P (χ) is large near χ = 0.

An analytic expression for P (χ) has been obtained recently by the authors [11]. In order to

present it, let us assume that the K capacities Ci, i = 1, 2, . . . , K, are rearranged so that

C1 > C2 > C3... > CK . It is also useful to divide all the capacitors by the largest one, to

obtain scaled capacitors ci ≡ Ci/C1. with 1 = c1 > c2 > c3 > . . . > cK . Now let us define

the following quantities:

aℓ =
∑

2≤i1<i2<..<iℓ≤K

ci1ci2...ciℓ
∏

j 6=im

(1− cj), ℓ = 1, 2, . . . , K − 1, (6)

C ≡
K
∑

i=1

ci, (7)

B ≡
K
∏

i=2

(1− ci). (8)

With these notations we can provide a precise formula for the spacing distribution. The

formula relates to the density function of the distribution and holds in the generic case

(meaning that for a specific set of measure 0 of parameters it is incorrect). The following is
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obtained if the spacings are normalized to lie in the interval [0, 1] (multiplying all of them

by C1):

P (χ) =
1

2C

K
∑

ℓ=2

aℓℓ(ℓ+ 1)(1− χ)ℓ−1 +
B

C
δ(1− χ). (9)

A plot of P (χ) is given in figure 1 and shows indeed that it has a maximum at χ = 0 and a

delta function component at the inverse of the largest capacitance. In fact, when K → ∞,

the weight of the delta function shrinks to zero and (after an appropriate renormalization)

P (χ) approaches the Poisson distribution e−χ.

III. RESULTS

We now return to the full Hamiltonian of Eq. 2. It contains the coefficients of capacitance

and induction matrix Cij and the single particle energies ǫiα as input. In choosing the actual

numerical values we use a few guidelines, one of which is to avoid too many independent

input data. As will be clear below, these are not fitting parameters, but rather a set of

constants which are chosen once and for all on general physical grounds. First, for the

electrostatic part, recall that the matrix C should be a symmetric positive definite matrix

with Cii > 0 and Cij < 0 for i 6= j. Besides, we expect it to be random. We then assume that

Cii are random numbers uniformly distributed between 0 and W , whereas the nondiagonal

elements are uniformly distributed between −w and 0. Actually, it is only the ratio w/W

which matters, so one may assume W = 1 and use e2/W = 1 as an energy unit, leaving

w as a single constant reflecting the strength of coupling between islands. Practically, for

each realization of cij’s drawn at random we check whether the resulting matrix is positive

definite, and reject realizations which are not. Thus, we must put the restriction w < 1

in order to generate a positive definite matrix C. Indeed, for w > 0.25 (and K = 5) most

of the matrices generated randomly failed to be positive definite. Second, for the single

particle energies, we consider each electron island i as a two-dimensional potential well
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Vi(r) =
1

2
Mω2

i r
2, where M is an effective mass. One may then regard ω

−1/2
i as a measure of

the radius of the corresponding electron island. Since the capacitance Cii is also proportional

to this radius we assume ωi = γC−2

ii , where γ is a constant reflecting the relation between

charging energies and single particle energies. The single particle energies in each electron

island (subject to a perpendicular magnetic field B) are then given explicitly. To be more

specific, recall that in two dimensions there are two quantum numbers for the orbital motion

(denoted hereafter by n,m) to which we add a spin index σ = ±1. Then, with α = (n,m, σ),

we have

ǫiα =
h̄

2



nωc +m

√

ω2

i +
1

4
ω2
c



+ gµBσB, (10)

where ωc = eB/Mc is the cyclotron frequency, g is the g-factor and µB is the Bohr magne-

ton. Since g contains the effective mass it is not known accurately. Its value is constrained

on physical grounds (see below). Note that in this scheme the spacings between single par-

ticle energies are deterministic, and do not follow the Wigner surmise. The main cause of

fluctuation is then due to the combination of non-random single particle energies and the

occurrence of numerous charging energies. Finally, the number of electron islands K is de-

termined by the size of the quantum dot. The four input data of the model are then K,w, γ

and g. Note that the gate voltage Vg does not have an important role here. Indeed, in

actual experiments the variation of gate voltage serves to adjust the energies E(N) with the

chemical potential of the leads, but here the ground state energies are calculated directly.

In order to avoid redundancy we are content with having a single set of these constants

which is physically reasonable. In particular, it assures that the charging energy is much

larger than single particle level spacings and that the Zeeman splitting is small at moderate

magnetic fields. Specifically, for B = 0 we test the distributions for w = 0.03, 0.08 and

0.20, while for B 6= 0 we fix w = 0.03. Besides, we take γ = 0.1, and g = 0.0081 is chosen

such that for moderate fields the Zeeman splitting is of the order of the mean level spacing.

Finally, the number of electron islands is fixed as K = 5. Indeed, we use just a brute force

trial algorithm, and hence cannot treat systems with a large number of electron islands.
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With these prescriptions the ground state energies E(N) and their first and second differ-

ences are calculated for B = 0 up to N = 200 and for B 6= 0 up to N = 50.

The first question we addressed is how the electrons are added among the islands. Figure 2

shows electron numbers Ni in each of the five islands, v.s the total electron number N , in the

range 60 < N < 80 (for w = 0.03). Evidently, the order of curves is according to the value of

the capacitance Cii. On a larger scale, the numbers Ni grow linearly with N , as it should be.

Let us then consider the question of redistribution. From figure 2 we see that redistribution

occurs only once, as N grows between 67 and 68 (see the vertical line). The addition of

an electron to the second (or third) island involves also a transfer of an electron from the

fourth island to the second (or the third) one. This scenario occurs also in other ranges of

N with the same proportion (namely about four percent). Thus, within the present model,

redistribution is present, although it is rare and minimal.

The next question we address is how the ratio between the inductive and capacitive coef-

ficients (represented here by the parameter w) affects the distribution P (χ). It was shown

in the previous section that for w = 0 the distribution has a maximum at χ = 0. It is

intuitively expected (based on the concept of level repulsion) that for w 6= 0 the maximum

will be shifted away from zero. This is also verified by our numerical results but, somewhat

unexpectedly, the peak at small χ persists even at w = 0.20. The distribution P (χ) is drawn

in figure 3 for w = 0.03, 0.08 and w/W = 0.20. The normalization is such that the largest

capacitor is C11 = 1.0, so that if other capacitors are absent the distribution would have a

delta function at χ = 1. In all three cases the peak position is much smaller than 1. Recall,

however, that besides the capacitance induction matrix C the total energy is determined also

by the single particle energies in each island. The remarkable point is that the distribution

is not Gaussian (which is the hallmark of spacing distributions in small quantum dots).

Finally, we check the behavior of the first difference E(N + 1)− E(N) as a function of the

magnetic field. Recall that this quantity is proportional to the position of the N th Coulomb

blockade peak. As a measure of the strength of the magnetic field we use the parameter

ωc/ω0, where ω0 is the harmonic oscillator frequency of the largest island. The positions
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of the peaks for 39 < N < 48 and w/W = 0.03 are displayed in figure 4. A comparison

with the results displayed in figure 2 of Ref. [7] indicates a remarkable qualitative agree-

ment. In particular, it shows that groups of two (and sometimes even three) electrons can

tunnel through the quantum dot at almost the same gate voltage. The oscillations at small

magnetic field just mark transitions to lower Landau levels as the magnetic field increases.

The phenomena of alternate bunching (N,N + 1) → (N − 1, N) is also reproduced in the

present picture.

In conclusion, we suggest a classical model in which a large semiconductor quantum dot

is viewed as a collection of metallic electron islands with capacitive and inductive coupling

among them. The effect of adding a magnetic field is manifested through its orbital as well

as its spin contents. The model can explain the occasional occurrence of couples or even

triples of closely spaced Coulomb blockade peaks, as well as the qualitative behavior of peak

positions with the magnetic field. The results of the previous section displayed in figure 1

together with an analysis of the results displayed in figure 3 can provide an answer to the

question why, in the present model, there are couples and sometimes even triples of close

Coulomb blockade peaks. When the capacitors are completely independent, the distribu-

tion is close to Poissonian as can be proved analytically. Introducing an inductive coupling

spoils this picture, but does not destroy it completely, so that even at w = 0.2 there is still

a probability for the occurrence of close peaks. The eventual decrease of the distribution

near χ = 0 seems to be related to the fact that, unlike the case of independent systems,

the capacitance matrix is non-diagonal. Switching on the coupling here then has an effect

similar to a weak “spacing repulsion”, similar to the familiar effect of perturbation in two

level systems.
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IV. FIGURE CAPTIONS

FIG. 1. Distribution of inverse compressibility P (χ) for a system containing independent subsys-

tems each of which has a ground state energy proportional to the square of the number of particles

it contains. The graph corresponds to a special case of equation 9 with K = 5.

FIG. 2. Distribution of electrons among the five islands as a function of the total electron

number N at zero magnetic field. The choice of constants K = 5, w = 0.03 is explained in the

text. The number Ni of electrons on island i is commensurate with its capacitance Cii. In most

cases the addition of an electron does not perturb the occupation of other islands. An example

of redistribution is marked with a vertical line. An addition of an electron causes a minimal

redistribution.

FIG. 3. Effect of strength of inductive coupling w on the distribution P (χ) of level spacings in

the dot at zero magnetic field (not normalized). It is displayed for K = 5 and w = 0.03, 0.08 and

0.20 in (a), (b) and (c) respectively.

FIG. 4. Coulomb blockade peak position for electron number N between 39 and 48 as functions

of the magnetic field. Here ωo is the oscillator frequency of the largest island and ωc is the

cyclotron frequency. The units on the ordinate are energy units as explained previously. They are

proportional to the gate voltage appropriate for the corresponding peak. The values chosen for the

constants w = 0.03, K = 5, γ = 0.1 and g = 0.0081 are explained in the text.
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