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We study the Kondo effect in a CNT(left lead)-CNT(QD)-CNT(right lead) structure. Here CNT is

a single-wall metallic carbon nanotube, for which 1) the valence and conduction bands of electrons

with zero orbital angular momentum (m = 0) coalesc at the two valley points K and K′ of the

first Brillouin zone and 2) the energy spectrum of electrons with m 6= 0 has a gap whose size is

proportional to |m|. Following adsorption of hydrogen atoms and application of an appropriately

designed gate potential, electron energy levels in the CNT(QD) are tunable to have: 1) two-fold

spin degeneracy; 2) two-fold isospin (valley) degeneracy; 3) three-fold orbital degeneracy m = 0,±1.

As a result, an SU(12) Kondo effect is realized with remarkably high Kondo temperature. Unlike

the SU(2) case, the low temperature conductance and magnetic susceptibility have a peak at finite

temperature. Moreover, the magnetic susceptibilities for parallel and perpendicular magnetic fields

(WRT the tube axis) display anisotropy with a universal ratio χ
‖
imp/χ

⊥
imp = η that depends only on

the electron’s orbital and spin g factors.

PACS numbers: 73.21.Hb, 73.21.La, 73.22.Dj, 73.23.Hk

I. INTRODUCTION

Background: Kondo tunnelling through carbon nan-

otube quantum dots CNT(QD) has recently become a

subject of intense theoretical1–6 and experimental7–12

studies. One of the motivations for pursuing this re-

search direction is the quest for achieving an exotic

Kondo effect with SU(N) dynamical symmetry,13–17

based on the peculiar properties of electron spectrum

in CNT.18,19 Achieving SU(4) symmetry is natural be-

cause the energy spectrum of metallic CNT consists of

two independent valleys that touch at the K and K′

points of the Brillouin zone. The energy levels possess

degeneracy in both spin (↑, ↓) and isospin (or valley

K,K′) quantum numbers. Thus, due to both spin

and isospin degeneracy, an SU(4) Kondo effect takes

place.1–3,10–12

Motivation: Achieving even higher degeneracy

SU(N>4) of the QD is highly desirable. Firstly, the

Kondo temperature dramatically increases with N .

Secondly, there is a hope to expose novel physical

observables that are peculiar to these higher symme-

tries. In the present device, higher degeneracy may be

obtained by employing the orbital (cylindrical) sym-

metry of electron states in CNT, an option which so

far has not been effectively employed in this quest.

In order to manipulate these orbital features, we use

the fact that adsorption of oxygen, hydrogen or flu-

orine atoms on the surface of the CNT gives rise to

gap opening in the spectrum of the metallic CNT.20,21

Realization of SU(N> 4) Kondo effect then becomes

feasible, since there is now spin, isospin (valley) and

orbital degeneracy.

The main objectives: The main goals of the present

work are: 1) To show that SU(12) Kondo effect in the

CNT(left lead)-CNT(QD)-CNT(right lead) structure

is indeed achievable and 2) To elucidate the physi-

cal content of this structure at the Kondo regime as

encoded by tunneling conductance and the magnetic

susceptibility. The first goal obtains by designing the

electron spectrum in the CNT(QD) to have a 12-fold

degeneracy following adsorption of hydrogen atoms

combined with an application of a non-uniform gate

potential. Namely, the energy levels of the central el-

ement CNT(QD) are tunable into a three-fold orbital

degeneracy for m = 0,±1 (where m is the compo-

nent of the orbital angular momentum along the CNT

axis). The second goal is achieved through quantita-

tive analysis, based on perturbation theory at high

temperatures and mean field slave boson formalism

at low temperature.

The main results: The energy spectrum of the

CNT(QD) gated by a spacially modulated potential is

elucidated, and the possibility to get a CNT(QD) with



2

twelve-fold degenerate quantum states is substanti-

ated. This CNT(QD) is then integrated into a tun-

nelling junction CNT(left lead)-CNT(QD)-CNT(right

lead) as shown in Fig. 1. When the ground state of the

interacting CNT(QD) is occupied by a single electron,

Kondo tunneling with SU(12) dynamical symmetry is

realized. This exotic Kondo effect is quantitatively

analyzed. First, the corresponding Kondo tempera-

ture is calculated and shown to be much higher than

in the standard SU(2) Kondo effect. The tunneling

conductance G(T ) and the magnetic susceptibilities

χ
‖
imp(T ), χ

⊥
imp(T ) for respective magnetic fields paral-

lel and perpendicular to the CNT axis are calculated

in the weak (T ≫ TK) and strong (T < TK) coupling

regimes.

The low temperature dependencies of both G(T )

and χ(T ) are entirely distinct from their analogs per-

taining to the SU(2) Kondo effect in quantum dot.22

More concretely, the temperature dependence of both

quantities is shown to have a peak at finite tempera-

ture, unlike the familiar monotonic behavior encoun-

tered in the ordinary SU(2) Kondo effect in quantum

dots. Moreover, inspection of the magnetic suscep-

tibility exposes an observable peculiar to the SU(12)

symmetry (or other SU(N) symmetry with N > 2):

It is shown that the magnetic response is anisotropic,

that is, χ
‖
imp(T ) 6= χ⊥

imp(T ). Even more remarkable,

the ratio η ≡ χ
‖
imp(T )/χ

⊥
imp(T ) is a “universal num-

ber” depending only on gorb and gspin, that are the or-

bital and spin g factors of electrons in the CNT(QD)

(and not on temperature).

These distinctions open the door for experimental

manifestation of this peculiar junction. This is helped

by the unusually high Kondo temperature that en-

ables the measurement of the tunneling conductance

in the Kondo regime at relatively high temperature.

left lead right leadQD

tmtm

FIG. 1: (Color online) CNT(left lead)-CNT(QD)-CNT(right

lead) junction.

Organization: This paper is structured as follows:

In Section II, we describe the basic structure of an

infinitely long metallic CNT with adsorbed hydro-

gen atoms. The energy spectrum of the CNT(QD)

is discussed in Section III. The Anderson model for

the tunnel junction is introduced in Section IV, fol-

lowed by Section V in which the Anderson Hamil-

tonian in the local moment regime is mapped on a

spin Hamiltonian, poor-man scaling equations for the

coupling constants are derived, and the Kondo tem-

perature is evaluated. In Sections VI and Section

VII the results of our calculations of the tunnelling

conductance and the magnetic susceptibilities are re-

spectively presented both in the weak and strong cou-

pling regimes. The main achievements of the present

work are summarized in Section VIII. Analysis of the

electron wave functions in the CNT(QD) with ad-

sorbed hydrogen atoms under the appropriate gate

potential is relegated to Appendix A. Zeeman split-

ting for electrons in CNT subject to an external mag-

netic field is calculated in Appendix B. The ratio

χ
‖
imp(T )/χ

⊥
imp(T ) is derived in Appendix C using the

fluctuation-dissipation theorem.

II. MODEL

Characteristic energy dispersion relation for elec-

tron in CNT is derivable from the special band struc-

ture of a graphene sheet.18,19,23,24 Let cn1n2
denote

the chiral vector that represents a possible rolling of

graphene into a CNT. When n1−n2 is an integer mul-

tiple of 3, a CNT becomes a zero-gap semiconductor.

Else, it becomes a semiconducting nanotube with a

finite band gap.18,19 The band structure of a metal-

lic CNT exhibits two Dirac points with a right- and

left-moving branch around each Dirac point. A pecu-

liar consequence of the Dirac nature of charge carriers

in CNT is that electrons can tunnel through a po-

tential barrier without reflection.25 This Klein para-

dox prevents a practical aspect of CNT: it is virtually

impossible to trap an electron in between potential

barriers, as it can escape out. It also hinders the for-

mation of a gap in the band spectrum. Fortunately,

this can be circumvented by chemical modification of

the CNT. In Refs.20,21 it is shown that when radi-

cals such as atomic oxygen, hydrogen or fluorine are

adsorbed on the graphene surface they form covalent
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bonds with the carbon atoms. These covalent bonds

are realized since the carbon atoms change their hy-

bridization from sp2 to sp3, and that results in the

opening of a band gap (similar to the situation in

diamond crystals). Its size can reach 2∆g ∼ 1 eV

depending on the density of adsorbed atoms.20,26

Γ

M

K

A

A'

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

0.0 0.2-0.2

k (Å-1)

ε
(e

V
)

FIG. 2: (Color online) Observation of a gap opening in hydro-

genated graphene. Density plot denotes photoemission inten-

sity along the A-K-A′ direction of the Brillouin zone (see inset)

measured in Ref.[27], whereas the dashed line is the spectrum

calculated according to Eq.(1). Inset: The Brillouin zone of

graphene.

The energy spectrum of the metallic CNT with ad-

sorbed atoms can adequately be approximated (at

least, at low energy) from that of a graphene sheet

with adsorbed atoms using the formula,

εkxky
=
√

(~vkx)2 + (~vky)2 +∆2
g. (1)

In the above equation we keep kx to be a continuous

wave number for electron motion along the CNT axis

and ky = m/r0 as discrete wave number for the mo-

tion along the circumference direction. Here v is the

Fermi velocity, r0 is the CNT radius and the integer

m is an orbital quantum number. The energy spec-

trum of hydrogenated graphene measured in Ref.27 is

shown in Fig.2. It is seen that Eq.(1) (dashed line)

agrees well with experimental data.

With present experimental facilities, the density of

adsorbed atoms can be manipulated to be dependent

on x in such a way that the gap ∆g is approximately

given by the following function of x,

∆g(x) =

{

M0, if |x| < h or |x| > h+ a,

N0, if h < |x| < h+ a,
(2)

where N0 > M0. The Fermi level ǫF is tuned to sat-

isfy the inequality N0 > ǫF > M1. Thereby, the CNT

is divided into five intervals numbered 1-5, with the

following respective electronic properties: Two inter-

vals (1 and 5), with |x| > h + a, serve as left and

right metallic leads. Two insulating intervals (2 and

4), with h < |x| < h + a, serve as left and right tun-

neling barriers. Finally, interval 3 with |x| < h serves

as quantum dot (see Fig.3).

M0

M1

ΕF
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2.5
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Ε�D0

FIG. 3: (Color online) Left and right tunnel barriers separating

left and right leads from the quantum dot. Here M0 = 2∆0,

M1 =
√
3∆0, N0 = 3∆0 and N1 =

√
10∆0. The twelve fold

degenerate level is εd = 2.3635∆0 (red line) and the Fermi level

is ǫF = 2.4013∆0. The QD half-length is h = 5.6826r0 and the

barrier width is a = 1.73r0.

III. ENERGY LEVELS OF CNT(QD)

We describe the quantum states of electrons in the

CNT in the long-wave k · p approximation. This ap-

proximation is good when the wave vector k of the

electron is close to the K or K′ point of the first Bril-

louin zone (BZ) of the hexagonal lattice of the CNT,

i.e., when |k −K| ≪ K or |k −K′| ≪ K [see Figure

4 for illustration]. However, when electron is rejected

from the edges of the CNT QD, the possible tran-

sitions between the valleys K and K′ cannot be de-

scribed in the framework of long-wave approximation.

Therefore, it will be useful to start our discussions

from the microscopic tight-binding model.18,19
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A CNT is specified by a chiral vector

cn1n2
= n1a1 + n2a2, (3)

where a1 and a2 are the basis vectors [|a1| = |a2| =
a0 = 2.46 Å], n1 and n2 are integers. A CNT is ob-

tained by rolling a 2D graphene sheet such that the

atom at the origin coincides with the atom at cn1n2
.

Then |cn1n2
| = 2πr0 is the length of the CNT cir-

cumference and r0 is the CNT radius. We specify the

CNT by a chiral angle φ0, the angle between cn1n2

and the basis vector a1, as shown in Figure 4. The

hexagonal symmetry of grapheene gives us the con-

dition −π
6 < φ0 ≤ π

6 . Two special values of φ0 are

φ0 = 0 and φ0 = π
6 . For φ0 = 0, a zigzag CNT is

constructed, while for φ = π
6 , one has an armchair

CNT.18,19

(a) (b)

a1

a2

rc

ex

ey

Φ0
G

KK-q K+q

K'K'-q K'+q

kx

ky

Φ0

FIG. 4: (Color online) Panel (a): A monoatomic layer of graphene. The red and blue dots denote carbon atoms of the sub-

lattice A and B. The primitive vectors of graphene are a1 and a2. The nanotube is obtain by choosing the chiral vector cn1n2
,

equation (3). The unit vectors ex and ey are fixed in the CNT in such a way that ex is along the CNT axis, and ey is along the

circumferential direction cn1n2
. The chiral angle between a1 and cn1n2

is φ0. Panel (b): The first Brillouin zone of graphene. kx

is the component of the 2D wave vector k alon the CNT axis and ky is the component of k in the circumferential direction. The

angle between K and the axis kx is φ0 − π
6
. K±q and K′±q (green dots) are degenerate quantum states in the valleys K and K′.

When an electron is scattered off an effective poten-

tial given in Eq. (2), the component kx of the 2D wave

vector k is not a good quantum number, whereas ky

is still a good quantum number. As a result, for most

types of nanotubes with φ0 6= π
6 [that is, except arm-

chair ones] the vectors K and K′ are not collinear to

the CNT axis [see Figure 4b], and therefore the elec-

tron that is localized by the potential (2) can change

its wave vector from K+q to K−q or from K′+q to

K′ − q, and there is no quantum transitions between

the valleys K and K′. For an armchair CNT, the vec-

tors K and K′ are collinear with the axis of the CNT,

and therefore there are quantum transitions from K

to K′ which lift the inter-valley degeneracy. In what

follows, we will consider the CNT QD’s which possess

the inter-valley degeneracy (that is, φ0 6= π
6 ).

When |q| ≪ K, the single electron wave func-

tions and the corresponding energy spectrum of the

CNT(QD) are deduced from the corresponding analog

of the Dirac equation which in the present geometry

takes the form,

H̃dΦmn(x, φ) = ǫΦmn(x, φ). (4)

Here Φmn(x, φ) is the wave function with principal

quantum number n [n = 1, 2, 3, . . .] and magnetic

quantum number m [m = 0,±1,±2, . . .]. The Hamil-

tonian of the QD in the k · p approximation is H̃d =

d(x) · τ , where

d(x) = dinϑ(h− |x|) + doutϑ(|x| − h),

din = ~v
(

exkx + eyky

)

+ ezM0,

dout = ~v
(

exkx + eyky

)

+ ezN0.

Here τ = (τx, τy, τz) is the vector of Pauli matrices

acting in the iso-spin space, ϑ(x) is the step function
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and

kx = −i∂x, ky = − i

r0
∂φ. (5)

The function Φmn(x) is calculated in Appendix A.

The energy levels of the QD are obtained by solving

the equation,

F↓(ǫ)
√

ǫ+Mm cos
(

kxh+
nπ

2

)

=

= F↑(ǫ)
√

ǫ −Mm sin
(

kxh+
nπ

2

)

, (6)

where

Fσ(ǫ) =
∑

σ′

√

ǫ(Nm + σ′ǫ)√
2Nm

(

χ(1)
σ · χ(2)

σ′

)

. (7)

χ
(ν)
σ [ν = 1, 2] are eigenspinors of the operators

M̂ν
m = m∆0τy +Mν

0 τz,

M1
m =Mm, M2

m = Nm. Explicitly,

χ
(ν)
↑ =

1
√

2Mν
m(Mν

m +Mν
0 )

(

Mν
m +Mν

0

im∆0

)

, (8)

χ
(ν)
↓ = τxχ

(ν)
↑ .

The energy spectrum of the QD for different values

of the dot length 2h is shown in Fig.5. The red or

blue curves denote energy levels for m = 0 or m =

±1 and different spatial parities. The light red and

light blue curve describe quantum states with even

principal quantum number n [the wave functions of

such states are symmetric with respect to the inversion

x → −x], whereas the dark red and dark blue curves

correspond to odd n. The level crossing points (green

dots) are three fold (orbital) degenerate. At these

points, SU(12) symmetry is expected.

IV. ANDERSON MODEL

We now consider the tunnel junction consisting of

left and right CNT metallic leads (CNT), and a CNT

quantum dot (QD), as shown in Fig. 1. The Anderson

Hamiltonian of the CNT – CNT (QD) – CNT junction

has the form,

H = H0 +Ht, H0 = Hl +Hr +Hd, (9)

Hα =
∑

kλ

ǫkm c†αkλcαkλ, α = l, r, (10)

Hd = ǫd
∑

λ

d†λdλ + UdN̂d(N̂d − 1), (11)

Ht =
∑

αλ

tm

{

ψ†
αλdλ +H.c.

}

, (12)

2.35 2.40 2.45 2.50 2.55 2.60
Ε�D05

6

7

8

9

10

11

h�r0

FIG. 5: (Color online) Parametric diagram ǫ-h describing ener-

gies ǫ of the discrete levels of the quantum dot for m = 0 (light

red and dark red curves) and m = ±1 (light blue and dark

blue curves) and different values of the CNT(QD) half-length

h. The crossing points (green dots) denote energies with three-

fold orbital degeneracy for which SU(12) symmetry is expected.

Here we use M0 = 2∆0 and N0 = 3∆0. The light red and light

blue curves correspond to even principal quantum number n

and dark red and dark blue curves correspond to odd n.

where

N̂d =
∑

λ

d†λdλ.

Here λ = {ξ,m, σ}, where ξ = K,K′ (the isospin)

corresponds to electrons with wave vectors near the

K and K′ corner points in the 2D Brillouin zone, m

is the magnetic quantum number and σ is the spin.

Finally, ψαλ ≡ ψαλ(x = 0) is a field operator at x = 0,

ψαλ(x) =
1√
Lcnt

∑

k

cαkλe
ikx,

Lcnt is the length of the CNT lead. The tunneling

rates tm are estimated as

tm ∼= ~v√
h

Mm

ǫF
exp

{

− a

~v

√

N2
m − ǫ2F

}

.

We choose the parameters N0, ǫF and a such that the

resonance width,

Γ = 4πt2mρm(ǫF ), (13)

does not depend on m. Here ρm(ǫ) is the density of

states of electrons with magnetic quantum number m,

ρm(ǫ) =
|ǫ| ϑ

(

|ǫ| −Mm

)

2π~v
√

ǫ2 −M2
m

. (14)

V. SPIN HAMILTONIAN, SCALING

EQUATIONS AND KONDO TEMPERATURE

The properly tuned CNT(QD) in its ground state

has one electron whose energy ε0 is twelve-fold degen-



6

erate (m = 0,±1, ξ = K,K′ and σ =↑, ↓). Tunnel-

ing of electrons between the CNT(QD) and the CNT

leads, encoded by Ht, Eq. (12), changes the number

of electrons in the dot. In the local moment regime,

the Schrieffer-Wolff transformation is then used28,29

to project out zero and two electron states (|0〉 and

|λλ′〉. It maps the Hamiltonian H , Eq. (9) onto an ef-

fective Hamiltonian H̃ = Hl+Hr+HK . Here HK , the

Coqblin-Shrieffer spin Hamiltonian with the dot states

|0〉 and |λλ′〉 frozen out, has the following form,29,30

HK =
1

24

∑

αα′

∑

λ

Kmm ψ†
α′λψαλ +

+
1

2

∑

αα′

∑

λ

JmmZ
λλψ†

α′λψαλ + (15)

+
1

2

∑

αα′

∑

λ6=λ′

Jmm′Xλλ′

ψ†
α′λ′ψαλ, (16)

where Xλλ′

= |λ〉〈λ′| are Hubbard operators coupling

different degenerate dot states, and

Zλλ = Xλλ − 1

N

∑

λ′

Xλ′λ′

, N = 12.

The couplings Kmm and Jmm′ are

Jmm′ = J
(1)
mm′ + J

(2)
mm′ ,

Kmm = J
(1)
mm′ − (N − 1)J

(2)
mm′ ,

J
(1)
mm′ =

2tmtm′

ǫF − ǫd
,

J
(2)
mm′ =

2tmtm′

Ud − ǫF + ǫd
.

Employing the simplifying assumption (13) we in-

troduce the dimensionless coupling constant

j = Jmm′

√

ρm(ǫF )ρm′(ǫF ) =

=
UdΓ

2π(ǫF − ǫd)(Ud − ǫF + ǫd)
> 0. (17)

By equation (13), j does not depend on the orbital

quantum number m while Jmm′ and ρm do. Within

the standard poor man’s scaling technique, the cou-

pling j(D) is renormalized as the original bandwidth

D̄ is reduced to D < D̄ by integrating out high en-

ergy excitations. Within the same assumption on Γ,

the constants Kmm are not renormalized and there-

fore the interaction terms proportional to Kmm can

be considered as part of potential scattering.

The scaling equation for j(D) supported by the ini-

tial condition at D̄ reads,

∂j

∂ lnD
= −Nj

2

2
, (18)

j(D̄) =
UdΓ

2π(ǫF − ǫd)(Ud − ǫF + ǫd)
.

Equation (18) has the solution

j(T ) =
2

N ln(T/TK)
, (19)

where the Kondo temperature (the scaling invariant

of the RG equation) is given by,

TK = D̄ exp

[

− 4π(ǫF − ǫd)(Ud − ǫF + ǫd)

NUdΓ

]

. (20)

The argument of the exponent is six time smaller than

the one obtained for SU(2) Kondo effect, implying the

TK [SU(12)]≫ TK [SU(2)].

VI. CONDUCTANCE

In this section we will calculate the tunneling

conductance G(T ) of the CNT(left lead)-CNT(QD)-

CNT(right lead) junction in the Kondo regime.

The calculation is carried out in the weak and

strong coupling regimes characterized respectively

by T ≫ TK and T < TK . In the weak coupling

regime, perturbation RG formalism is used to calcu-

late the non-linear conductance within the Keldysh

non-equilibrium Green’s function formalism. In the

strong coupling regime the mean field slave boson

formalism is employed, which is appropriate only

within linear response.

Conductance in the Weak Coupling Limit:

Calculations of the tunneling conductance in the

weak coupling regime are carried out below using the

Keldysh technique in order to treat a system out of

equilibrium. The required quantities to be used be-

low are the Keldysh electron matrix Green’s functions

(GF) ga for a = lm, rm, f standing for left lead, right

lead and dot respectively,

ga =

(

gRa gKa
0 gAa

)

, (21)

where the superscripts refer to retarded (R), advanced

(A) and Keldysh (K) types of the GF. The explicit



7

expressions are,

gRαm = −gAαm = −iπρm,
gKαm(ǫ) = −2iπρm(1 − 2f(ǫ)), (22)

g
R/A
f (ǫ) =

1

ǫ− ǫd ± iη
,

gKf (ǫ) = −2iη(1− 2f(ǫ))

(ǫ − ǫd)2 + η2
, (23)

where f(ǫ) is the Fermi function. Within the Keldysh

formalism, the tunneling current from the left to the

right lead is

I =
ie

24~

∑

λ

Kmm

(

ψ†
lλψrλ − ψ†

tλψlλ

)

+

+
ie

2~

∑

λ

Jmm Zλλ
(

ψ†
lλψrλ − ψ†

rλψlλ

)

+

+
ie

2~

∑

λ6=λ′

Jmm′Xλλ′

(

ψ†
lλ′ψrλ − ψ†

rλ′ψlλ

)

. (24)

In addition to the exchange constant j, Eq. (17), the

conductance depends also on the dimensionless pa-

rameter k, defined as (see comment after Eq. (17)),

k = Kmmρm =
Γ
(

2Ud − 13ǫF + 13ǫd
)

4π
(

ǫF − ǫd
)(

U − ǫF + ǫd
) . (25)

To second order in j and k the conductance G =

∂〈I〉/∂V is,

G2 =
πe2

2N~

(

k2 + (N2 − 1)j2
)

, (26)

while only j contributes to the third order correction

to the conductance,

G3 =
(N2 − 1)πe2

4~
j3 ln

(

D̄
√

T 2 + (eV )2

)

. (27)

Due to the large pre-factor and the logarithmic

term, which, strictly speaking, is not small either, G3

is not small as compared with G2. Hence, expansion

up to third order in j is inadequate. Instead, we derive

an expression for the conductance in the leading log-

arithmic approximation using the RG equations (18).

In the following analysis we split the second or-

der contribution to the conductance, Eq. (26), in

two parts: The first part results from exchange co-

tunneling, which is proportional to j2, while the sec-

ond part is due to regular co-tunneling, which is pro-

portional to k2. The regular co-tunneling contribu-

tion containing k2 does not grow at low temperatures

and/or bias, and therefore it does not contribute to

the Kondo effect. The exchange co-tunneling contains

a term j2 which demonstrates logarithmic enhance-

ment of the conductance at low temperatures [see Eq.

(19)] and contributes to the Kondo effect. Therefore,

we single out the exchange contribution in the second

order term,

Gexch
2 (D) =

(N2 − 1)πe2

2N~
j2(D). (28)

The condition imposing invariance of the conductance

under “poor man’s scaling” transformation has the

form,

∂

∂ lnD

{

Gexch
2 (D) +

+
(N2 − 1)πe2

4~
j3 ln

(

D
√

T 2 + (eV )2

)}

= 0. (29)

Within the accuracy of this equation, when differenti-

ating the second term, we should neglect any implicit

dependence on D through the couplings j. Eq. (29)

yields the scaling equation (18). The renormalization

procedure should proceed until the bandwidth D is

reduced to a quantity

d(T, V ) =
√

(eV )2 + T 2.

At this point, the third order correction to the con-

ductance vanishes and the current and conductance

can be calculated in the Born approximation, as in

Eq. (28).31 The expression for the conductance for

Max(T, |eV |)&TK is,

G(T, V ) =
π2N G0

ln2
(

d(T, V )/TK
) , (30)

where

N =
2(N2 − 1)

N3
, G0 =

e2

π~
. (31)

The total differential conductance (30) is displayed in

Fig. 6 for V = 0 (zero bias differential conductance).

The conductance increases when the temperature is

lowered, which is typical to the standard scenario of

Kondo tunnelling through the tunnel junction.31 The

nonlinear conductance (30) as a function applied bias

is shown in Fig. 7 for several temperatures T . The

zero bias peak of the conductance is typical for the

ordinary SU(2) Kondo effect.
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FIG. 6: (Color online) The zero bias conductance (30) as func-

tion of temperature in the weak coupling regime.
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FIG. 7: (Color online) The nonlinear conductance (30) as func-

tion of applied bias in the weak coupling regime for T = 7.5TK

(curve a), T = 10TK (curve b), T = 12.5TK (curve c) and

T = 15TK (curve d).

It should be noted that the the conductance (30)

has a factor N , Eq. (31), which is 3
4 for N = 2 or

143
864 for N = 12. In other word, as far as the conduc-

tance in the weak coupling regime is concerned, the

main difference between the SU(12) and the SU(2)

Kondo tunneling is the substantial difference of the

corresponding Kondo temperatures (20). This simi-

larity no longer holds in the strong coupling regime as

we will now show.

Conductance in the Strong Coupling Limit:

For T < TK , the mean field slave boson approxima-

tion (MFSBA) is employed to calculate the zero bias

tunneling conductance. In the limit U → ∞, the dot

can be either empty or singly occupied. The dot elec-

tron annihilation and creation operators are written

as dλ=b
†fλ and d†λ=f

†
λb where the slave fermion op-

erators fλ and the slave boson operator b satisfy the

constraint condition,

Q =
∑

λ

f †
λfλ + b†b = 1.

This condition is encoded by including a Lagrange

multiplier ω in the total action S. In the mean field

approximation, we replace the Bose operators b and

b† by their expectation values, b0 =
√

〈b†b〉. At the

mean field level the constraint condition is satisfied

only on the average.

The current operator reads,

I =
ieb0
~

∑

λ

tm

[

ψ†
lλ(0)fλ − h.c.

]

. (32)

It can be derived from the partition function that is

formally written as,

Z(αq) =

∫

D[ff †c c†]e−βS(αq). (33)

Here S(αq) is the action (written explicitly below)

that contains a term αqI where αq is a source field,

and integration is carried out over lead (c, c†) and slave

fermion (f, f †) fields (treated here as Grassman vari-

ables). The action is given explicitly as,

S =

∞
∫

−∞

dt L(t), (34)

where L = Ll + Lr + Ld − Lt − αqI,

Lα =
∑

kλ

c†αkλ

{

i~∂t − ǫkm

}

τzcαkλ, α = l, r,

Ld =
∑

λ

f †
λ

{

i~∂t − ǫf

}

τzfλ, ǫf = ǫd + ω,

Lt =
b0√
Lcnt

∑

αkλ

tm

{

c†αkλτ
zfλ + f †

λτ
zcαkλ

}

.

The action in the MFSBA is Gaussian and depends

on two real numbers, the boson field b0 and the chem-

ical potential (Lagrange multiplier) ω. Carrying out

the integration according to Eq. (33) yields the parti-

tion function,

lnZ(αq) = −2
∑

m

tr ln
{

G−1
fm − eαqt

2
mb

2
0

~

[

glm, τx
]

}

,

where

G−1
fm = g−1

f − t2mb
2
0

(

glm + grm

)

.

Here gf is the GF (23) of the (non-interacting) elec-

tron in the QD with shifted energy level, ǫd → ǫf =

ǫd + ω.

The MFSBA is reliable in equilibrium, V = 0. There-

fore we will consider below the temperature depen-

dence of the zero bias conductance. In equilibrium,
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the mean field solutions for b0 and ω minimize the

free energy,

F = −2T
∑

mωn

tr lnG−1
fm(iωn) + ωb20, (35)

where the last term is the slave boson kinetic part of

the free energy due to the constraint, and G−1
fm(iωn)

is the Matsubara’s GF. The mean field equations,

N

π
arctan

(

b20Γ

2ǫf

)

= 1− b20,

NΓ

8π
ln

(

D̄2

( b2
0
Γ

2

)2
+ ǫ2f

)

= ω, (36)

are solved for ω and b0 with the solutions,

ω = −ǫd + ǫf , , b20 =
2TK
Γ

sin
( π

N

)

,

where ǫf = TK cos(π/N), TK being the Kondo tem-

perature given by Eq. (20) and Γ is given in Eq. (13).

The expression for the linear conductance for T < TK

is now obtained as,

G(T ) =
NG0

8T

∫

dǫ

cosh2
( ǫ

2T

)

(πTK
N

)2

(

ǫ− ǫf
)2

+
(πTK
N

)2 ,

(37)

with G0 given by Eq. (31). The zero bias conductance

as a function of temperature is shown in Fig.8. It is

seen that the conductance has a peak at T ≈ 0.57TK

due to the constraint imposed by the Friedel sum

rule.29,34 In addition to the different Kondo temper-

atures (20) for the SU(12) and SU(2) Kondo effects,

this behavior indicates a remarkable distinction from

the standard SU(2) Kondo tunneling.22 In the latter

case, the conductance is monotonically increasing to-

wards the unitary limit as T → 0. It should be noted

that we define G0 as e2/(6h) per spin projection [see

eq.(31)], so that the unitary limit corresponds here to

6G0 = 12e2/h. A close inspection shows that this

limit is not perfectly reached. The reason is that

while the DOS has a peak that is shifted from the

Fermi level by TK , the peak of the ”thermal” func-

tion cosh−2(ǫ/2T ) sits right at the Fermi level. As a

result, the peak of the conductance occurs at finite

temperature, and its value is slightly lowered by the

”thermal” function.

0.0 0.2 0.4 0.6 0.8 1.0
T�TK

0.4

0.5

0.6

0.7

0.8

0.9

1.0

G�G0

FIG. 8: (Color online) The zero bias conductance as a function

of temperature in the strong coupling limit (T < TK).

VII. MAGNETIC SUSCEPTIBILITY

While in bulk metals, the Kondo effect manifests

itself through measurements of electrical resistivity

and magnetic susceptibility, in quantum dots it man-

ifests itself mainly through the properties of the con-

ductance. Designing experiments aiming at study-

ing magnetic response of quantum dot in the Kondo

regime is rather difficult because they require an STM

technique in which the tip is close to the magnetic

impurity. Appropriate STM techniques have already

been worked out for impurities composed of added

magnetic atoms on metallic surface.32 We are unaware

of their applications in quantum dots. The discussion

below is therefore motivated by our hope that mea-

surement of magnetic response of a single magnetic

impurity in quantum dot will eventually materialized.

In the CNT-CNT(QD)-CNT junction the magnetic

response is encoded by the static impurity magnetic

susceptibility χ of the CNT(QD) (defined explicitly

below). Unlike the discussion pertaining to the con-

ductance, there is no source-drain bias present here,

and the leads just serve as a source of electron gas

that acts to screen the impurity. The distinction be-

tween the present structure and that of Kondo effect

in bulk CNT7 is that here the impurity is composed of

a trapped electron with a 12-fold degenerate ground

state.

The Zeeman splitting ∆mσ of electron energy levels

in a carbon nanotube subject to an external magnetic

field B depends on whether the magnetic field is par-

allel or perpendicular to the CNT axis (see Appendix
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B for details). Explicitly,

∆mσ = −gorbmµBB‖ − gspinσµBB, (38)

where B = |B|, B‖ is the component of the magnetic

field parallel to the CNT axis, µB is the Bohr magne-

ton, gorb and gspin are orbital and spin g-factors,

gspin ≈ 2, gorb =
mevr0
π~

∆0

ǫF
, (39)

where me is the mass of free electron.

The Zeeman splitting (38) results in an anisotropy

of the magnetic susceptibility: In other words, χ is

a tensor, which in the principal frame of the CNT

has parallel and perpendicular components, χ
‖
imp and

χ⊥
imp, responding to the magnetic field parallel or per-

pendicular to the CNT axis. This anisotropy is absent

in the ordinary SU(2) Kondo effect, and is one of the

hallmarks of a higher symmetry such as SU(12) dis-

cussed here that involves orbital symmetry.

The impurity magnetization is defined through the

relation29

Mimp = gspinµB

{

〈

S+
∑

α

Σα

〉

−
〈

∑

α

Σα

〉

0

}

+

+ gorbµBex

{

〈

Lx +
∑

α

Λx
α

〉

−
〈

∑

α

Λx
α

〉

0

}

, (40)

where S and Σα [α = l, r] are respectively the spin

operators of the dot and the lead electrons,

S =
∑

λλ′

sσσ′δmm′δξξ′X
λλ′

,

Σα =
∑

kλλ′

c†αkλsσσ′δmm′δξξ′cαkλ′ , (41)

while Lx and Λx
α are respectively the operators of the

x-component of the orbital moment of the dot or the

lead,

Lx =
∑

λ

mXλλ, Λx
α =

∑

kλ

mc†αkλcαkλ. (42)

In Eq. (40), 〈. . .〉 indicates thermal averaging with

respect to the full Hamiltonian H̃ = H0 + HK

[equations (9) and (15)], whereas 〈. . .〉0 indicates

thermal averaging respect to H0. It is reasonably

assumed that electrons in the dot and the leads have

the same g-factors.

Susceptibility in the weak coupling regime

Using a similar analysis as for the conductance, we

derive an expression for the zero-field magnetic sus-

ceptibility to second order in j,

χ
‖
imp =

(

g2spin
4

+
2g2orb
3

)

χ(T ), (43)

χ⊥
imp =

g2spin
4

χ(T ), (44)

where, to second order in j,

χ(T ) =
χ0TK
T

{

1− j − Nj2

2
ln

(

D

T

)}

, (45)

χ0 =
µ2
B

TK
. (46)

The second term on the RHS of Eq. (43) reflects the

orbital degeneracy, and is absent in the SU(2) Kondo

effect. This anisotropy of the magnetic response is

one of our main results, as it constitutes an observ-

able that is a hallmark of the SU(12) symmetry of the

pertinent Kondo effect. It is compactly encoded by

the temperature independent ratio,

χ
‖
imp

χ⊥
imp

= 1 +
8

3

g2orb
g2spin

. (47)

As we shall see below, this relation holds also in the

strong coupling regime T < TK . It is then suspected

that this result is “universal” in the sense that it holds

for the crossover region T ≈ TK as well. In Ap-

pendix C it is indeed shown that this ratio can be

derived quite generally (in this model) by using the

fluctuation-dissipation formula for the susceptibility

(which relates the susceptibility to the spin correla-

tions).

At high temperatures, the logarithmic term causes

a reduction of the effective magnetic moment as com-

pared with that for a free spin. With decreasing tem-

perature, the second order perturbation theory be-

comes inadequate. In order to derive an expression for

χimp in the leading logarithmic approximation, we use

the RG equations (18). The condition imposing the

invariance of the susceptibility under the poor man’s

scaling transformation is,

χ0TK
T

∂

∂ ln(D)

{

1− j − Nj2

2
ln

(

D

T

)}

= 0.

Within the accuracy of this equation, when differen-

tiating the third term, we should neglect any implicit

dependence on D through the coupling j. The renor-

malization procedure should proceed until the band-

withD is reduced to the temperature T . At this point,
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the second order of the perturbation theory vanishes

and the susceptibility takes the form,

χ(T ) =
χ0TK
T

{

1− 2

N ln(T/TK)

}

. (48)

The impurity susceptibility in the weak coupling

regime, equations (43), (44) and (48), is shown in

Fig.9.
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FIG. 9: (Color online) Impurity susceptibility χ
‖
imp

[red curve]

and χ⊥
imp

[blue curve], as a function of temperature in the weak

coupling regime [equations (43), (44) and (48)].

Susceptibility in the strong coupling regime:

For T < TK , the magnetic susceptibility can be cal-

culated in the framework of the MFSBA. For this

purpose, we take into account the dependence of

the right hand side of Eq. (35) for the free energy

on the external magnetic field B. Because the sus-

ceptibility tensor is diagonal, we may write χi
imp =

−[∂2F (B)/∂B2
i ]B=0, where i =‖,⊥. Thereby we get

the zero field susceptibility χ
‖
imp or χ⊥

imp. Explic-

itly, for magnetic field parallel or perpendicular to the

CNT axis, the susceptibility is given by equation (43)

or (44), with χ(T ) given by

χ(T ) =
χ0

4T

∫

dǫ

cosh2
( ǫ

2T

)

(TK
N

)2

(

ǫ+ TK
)2

+
(πTK
N

)2 .

(49)

The magnetic susceptibilities in the strong coupling

regime are shown in Figure 10. They display a peak at

finite-temperature, commensurate with the constraint

imposed by the Friedel sum rule.29,34,35

VIII. CONCLUSIONS

Whereas the theoretical framework of the Coqblin-

Schrieffer model is intensively studied, the present

Χimp
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FIG. 10: (Color online) Impurity susceptibility χ
‖
imp

[red

curve] and χ⊥
imp

[blue curve] as a function of temperature in

the strong coupling regime [equations (43), (44) and (49)].

work focuses on one of its special facet that is less ex-

plored, namely, its possible realization in a transport

device with a Dirac spectrum and peculiar DOS. We

substantiate the possibility of tuning a metallic CNT

into a tunnel junction consisting of two CNT metallic

leads and a CNT(QD). The spin, isospin (valley) and

orbital degeneracy of the CNT(QD) energy spectrum

gives rise to the Kondo effect with SU(12) dynamical

symmetry. The high symmetry of the CNT(QD) leads

to an enhanced Kondo temperature. The conductance

through the junction is evaluated using Keldysh tech-

nique. Renormalization group analysis is performed

in the weak coupling regime (T ≫ TK) while the

MFSBA is used at the strong coupling regime T < TK .

In the weak coupling regime, the behavior of G(T )

as function of temperature for the SU(12) Kondo ef-

fect is qualitatively the same as that for the ordi-

nary SU(2) Kondo effect, and the main difference is

that TK [SU(12)]≫ TK [SU(2)]. In the strong coupling

regime the situation is different. Due the constraints

imposed by the Friedel sum rule, the conductance has

a peak at finite temperature that becomes sharper the

higher is N . This distinction of the conductance be-

tween SU(2) and SU(12) Kondo effect in quantum dot

should be experimentally observable.

The magnetic response exposes yet another remark-

able distinction between the SU(12) and the SU(2)

Kondo effects. For the SU(12) Kondo effect, the re-

sponse is anisotropic and the susceptibility is a ten-

sor. It has two components, χ
‖
imp and χ⊥

imp ac-

cording to whether the magnetic field is along the

CNT axis or perpendicular to it. Moreover, the ra-

tio χ
‖
imp/χ

⊥
imp = 1 + 8g2orb/(3g

2
spin) depends only on
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the orbital and spin g factors. This result is demon-

strated in the weak coupling regime based on RG cal-

culations and in the strong coupling regime based on

the MFSBA. A proof that this result is true in every

order of perturbation theory is derived in Appendix

C employing the fluctuation-dissipation theorem. An

experimental search for such anisotropy would con-

stitute a confirmation of this unusual Kondo effect,

but as was pointed out earlier, observing magnetic re-

sponse of a single impurity is quite difficult.

The Kondo physics in systems with Dirac spectrum

proves to be rather rich. While the Kondo effect in

bulk graphene reveals peculiar equilibrium properties

such as the existence of two distinct classes of Kondo

quantum critical points33, analysis of non-equilibrium

transport in correlated CNT(left lead)-CNT(QD)-

CNT(right lead) junction reveals another facet,

namely, Kondo tunneling with an SU(12) dynamical

symmetry.
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Appendix A: Wave Functions of CNT Quantum

Dot

For electrons in CNT(QD), the single electron wave

functions and the corresponding energy spectrum are

derived from the Dirac equation (4). The solution

Φmn(x, φ) of the Dirac equation is written as,

Φmn(x, φ) =











Φ
(1)
mn(x) eimφ if |x| < h,

Φ
(2)
mn(x) eimφ if x > h,

Φ
(3)
mn(x) eimφ if x < −h,

(A1)

wherem = 0,±1,±2, . . . is a magnetic quantum num-

ber, n = 0, 1, 2, . . . is a radial quantum number.

The function Φ
(1)
mn(x) is given by,

Φ(1)
mn(x) =

Amn√
ǫ

{

χ
(1)
↑

√

ǫ+Mm cos
(

kxx+
nπ

2

)

+

+iχ
(1)
↓

√

ǫ−Mm sin
(

kxx+
nπ

2

)

}

, (A2)

where Mm and M0 are defined through the relations

~vkx =
√

ǫ2 −M2
m, Mm =

√

M2
0 +m2∆2

0.

The expressions for the spinors χ
(1)
σ and χ

(2)
σ (to be

used later) are given in equation (8).

The function Φ
(1)
m (x) has the following symmetry,

M̂mΦ(1)
m (−x) = (−1)nMmΦ(1)

m (x).

Similarly, the function Φ
(2)
m (x) (for x > h) reads,

Φ(2)
mn(x) =

Bme
−κ(x−h)

√
2Nm

×

×
{

χ
(2)
↑

√

Nm + ǫ+ iχ
(2)
↓

√

Nm − ǫ

}

, (A3)

where Nm and N0 are defined through

~vκ =
√

N2
m − ǫ2, Nm =

√

N2
0 +m2∆2

0.

Finally, the function Φ
(3)
mn(x) (for x < −h) is

Φ(3)
mn(x) =

(−1)n

Nm
N̂mΦ(2)

mn(−x).

Applying the continuity condition for Φmn(x, φ),

Eq. (A1) at the points x = ±h, we obtain the set

of equations,

Amn

√

ǫ+Mm cos
(

kxh+
nπ

2

)

= BmnF↑(ǫ),

(A4a)

Amn

√

ǫ −Mm sin
(

kxh+
nπ

2

)

= BmnF↓(ǫ),

(A4b)

where Fσ(ǫ) is given by Eq.(7).

The set of equations (A4) has nontrivial solutions

when its determinant vanishes. This condition gives

us equation (6) for the energy levels in the quantum

dot.

Appendix B: Magnetization of the Tunnel

Junction

It order to describe electronic properties of a carbon

nanotube in an external magnetic field B, we should

add to the CNT Hamiltonian the term HB describing

spin-Zeeman splitting,

Hspin = −gspinµB

(

s ·B
)

, (B1)
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and replace the wave vector k by the operator k′,18,19

k → k′ = −i∇− e

~c
A.

Here s is a vector of the spin operators, A is a vector

potential, B = ∇×A. Then the motion of electron in

a CNT with the wave vector close to the K point of

the first Brillouin zone can be described by the Hamil-

tonian,

H = ~v
(

k− e

~c
A
)

· τ +∆gτz +Hspin. (B2)

Here we use use the cylindrical system of coordinates

where k = (kx, ky) with kx = −i∂x and ky = − i
r0
∂φ.

The Hamiltonian for the motion of electron with the

wave vector near K′ point can be obtained from equa-

tion (B2) just by replacing ky → −ky.
In what follows, we will calculate Zeeman splitting

for the magnetic field parallel and perpendicular to

the CNT axis.

Magnetic field parallel to the CNT axis: When

the magnetic field is parallel to the CNT axis, B‖ =

Bex, the vector potential can be written as,

A‖ =
Br

2
eφ. (B3)

The eigenfunction of the Hamiltonian (B2) is,

∣

∣Ψ
‖
skmσ(ϕ)

〉

=
∣

∣χσ

〉

⊗
∣

∣ψskm(ϕ)
〉

, (B4)

where ϕ = πBr20 is the magnetic flux through the

cross section of the CNT. Here |χσ〉 is a spin wave

function of electron with spin parallel or anti-parallel

to the magnetic field,

∣

∣χ↑

〉

=

(

1

0

)

,
∣

∣χ↓

〉

=

(

0

1

)

. (B5)

|ψskm(ϕ)〉 is the spatial wave function of electron in

the conduction (s = +1) or valence (s = −1) band

with orbital quantum number m (m = 0,±1), and

wave number k,

∣

∣ψskm(ϕ)
〉

=
eikx+imφ

√
4πL

(

sbkm(ϕ)

1

)

, (B6)

bkm(ϕ) =
κm(ϕ) − ik
√

κ2m(ϕ) + k2
, κm(ϕ) =

m− ϕ

r0
.

The corresponding energy is,

ε̃skλ = s
√

(~vk)2 + (m− ϕ)2∆2
0 +∆2

g −
−2σµBB. (B7)

For weak magnetic fields (ϕ ≪ 1), εskλ can be ex-

panded to linear with B correction,

ε̃skλ = εskm − ∆2
0mϕ

εskm
− 2σµBB +O(ϕ2),

εskm = s
√

(~vk)2 +m2∆2
0 +∆2

g.

Then for εskm close to the Fermi level, we get equation

(38).

Then the magnetization (40) in linear with B ap-

proximation is,

Mx
imp = g2spinµ

2
BB

{

〈

(

Σ̃x
)2
〉

−
〈

∑

α

(

Σx
α

)2
〉

0

}

+

+ g2orbµ
2
BB

{

〈

(

Λ̃x
)2
〉

−
〈

∑

α

(

Λx
α

)2
〉

0

}

,

(B8)

where Σ̃ = (Σ̃x, Σ̃y, Σ̃z) is the total spin of the tunnel

junction,

Σ̃ = S+
∑

α

Σα, (B9)

Λ̃x is the orbital momentum of the total system,

Λ̃x = Lx +
∑

α

Λx
α. (B10)

Magnetic field perpendicular to the CNT axis:

Let us consider now the magnetic field perpendicular

to the CNT axis. For definiteness, we take B⊥ =

B[er cosφ−eφ sinφ], so that A⊥ = Br sinφ ex. Then

the Hamiltonian (B2) takes the form,

H = H0 +Hspin +Horb, (B11)

H0 = ~vτ · k+∆gτz,

where Hspin is given by equation (B1),

Horb = −∆0r
2
0

l2B
sinφ τx, (B12)

lB is the magnetic length given by

lB =

√

c~

Be
. (B13)

When lB ≫ r0, the field can be regarded as a small

perturbation.

The eigenfunction of the HamiltonianH0+Hspin are

|χσ〉⊗|ψskm〉, where |χσ〉 describes the quantum state

with the spin parallel or anti-parallel to the magnetic
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field B, |ψskm〉 is the spatial wave function of elec-

tron with wave number k, orbital number m in the

conduction or valence band, s = ±1.

In order to estimate the contribution of Horb, we

note that the nontrivial matrix elements of Horb are,

〈ψskm|Horb|ψskm+1〉, 〈ψskm+1|Horb|ψskm〉,

i.e., Horb change the orbital quantum number by ±1

keeping the other quantum numbers (wave number,

band index, spin, ...) unchanged. The quantum tran-

sitions from the state |ψskm〉 to the state |ψskm+1〉
costs the energy εskm+1 − εskm ∼ ∆0. As a result,

for low magnetic fields [lB ≫ r0], corrections of Horb

to the energy spectrum is of order l−4
B ∼ B2 and the

energy dispersion in linear with B approximation is

given by equation (38).

The magnetization (40) in linear with B approxi-

mation is,

M⊥
imp = g2spinµ

2
BB

{

〈

(

Σ̃y
α

)2
〉

−
〈

∑

α

(

Σy
α

)2
〉

0

}

,

(B14)

where we take the y-component of the spin operators

for definiteness, Σ̃y is given by equation (B9).

Appendix C: Magnetic Susceptibility of CNT

QD: Fluctuation-Dissipation Theorem

In this section we derive the universal relation, (47)

using the fluctuation dissipation theorem.

1. Magnetic Susceptibility

According to the fluctuation-dissipative theorem,

the tensor of the magnetic susceptibility of the quan-

tum dot is defined as,

χij = − ∂2F

∂Bi∂Bj
=

1

T

{

〈

mimj

〉

−
〈

mi

〉 〈

mj

〉

−
〈

m
(0)
i m

(0)
j

〉

0
+
〈

m
(0)
i

〉

0

〈

m
(0)
j

〉

0

}

. (C1)

Here 〈. . .〉 denotes the thermal average with respect to

the Hamiltonian of interacting quantum dot and leads,

〈. . .〉0 is the average with respect to the Hamiltonian of

the isolated leads. i, j = x, y, z are Cartesian indices,

m = (mx,my,mz) is magnetic momentum of the

quantum dot and the lead, m(0) =
(

m
(0)
x ,m

(0)
y ,m

(0)
z

)

is magnetic moment of isolated leads,

m = gspinµB

{

S+
∑

α

Σα

}

+gorbµBex

{

Lx +
∑

α

Λx
α

}

, (C2)

m(0) = gspinµB

∑

α

Σα + gorbµBex
∑

α

Λx
α,(C3)

where the spin operators of the dot and the lead elec-

trons [S and Σα, α = l, r] are given by Eq. (41),

while the operators of the x-component of the or-

bital moment of the dot and the lead [Lx and Λx
α,

α = l, r] are given by Eq. (42). The Hubbard op-

erator Xλλ′

= |λ〉〈λ′| is defined after Eq. (16). It is

reasonably assumed that electrons in the dot and the

leads have the same g-factors.

We choose the set of coordinates in such a way that

the x axis is parallel to the CNT axis, whereas the y

and z axes are perpendicular. In this set of coordi-

nates, the tensor of the susceptibility is diagonal,

χ̂ =







χ‖ 0 0

0 χ⊥ 0

0 0 χ⊥






.

We will prove that the zero-field susceptibilities satisfy

the ratio,

χ‖

χ⊥
= 1 +

8

3

g2orb
g2spin

. (C4)

For this purpose, we note the following: The Kondo

Hamiltonian (15) describes the co-tunneling process

such that an electron with the quantum number λ (the

spin σ, the orbital quantum number m and the valley

number ξ) exits from the dot to the lead and another

electron with the quantum number λ′ (the spin σ′, the

orbital quantum number m′ and the valley number

ξ′) enters the quantum dot from the lead. That mean

that the total spin and the total orbital momentum of

the lead and the quantum dot are the good quantum

numbers.

Proof: Let us consider first χ⊥,

χ⊥=
g2spinµ

2
B

T

{

〈

SzSz+2
∑

α

SzΣz
α

+
∑

αα′

Σz
αΣ

z
α′

〉

−
∑

αα′

〈

Σz
αΣ

z
α′

〉

0

}

. (C5)
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The total Hamiltonian satisfies the SU(12) symmetry,

so that we can apply such a unitary transformation

that make the spin operators Sz and Σz
α become to

be diagonal. This unitary transformation does not

change the thermal average of the spin operators, so

that χ⊥ (C5) is,

χ⊥ =
g2spinµ

2
B

T

∑

λλ′

σσ′

4

{

〈

Xλλδλλ′ +

+ 2
∑

αk

c†αkλcαkλX
λ′λ′

+
∑

αα′kk′

c†αkλcαkλc
†
α′k′λ′cα′k′λ′

〉

−

−
∑

αα′kk′

〈

c†αkλcαkλc
†
α′k′λ′cα′k′λ′

〉

0

}

. (C6)

We will estimate each term in the right hand side of

eq. (C6) in turn. The first term gives,

Xdd =
∑

λ

σ2

4

〈

Xλλ
〉

=
1

4
, (C7a)

where 〈Xλλ〉 = 1
N [N = 12] does not depend on the

quantum number λ.

The second term in the right hand side of eq. (C6)

is,

Xdα =
∑

kλλ′

σσ′

2

〈

c†αkλcαkλX
λ′λ′

〉

.

The antiferromagnetic Kondo interaction makes the

difference between the two-particle states with parallel

and antiparallel states, therefore Xdα is not zero. In

subsection C 2 it is a proof that

P1 =
〈

c†αkλcαkλX
λλ
〉

(C7b)

does not depend on λ, whereas

P2 =
〈

c†αkλcαkλX
λ′λ′

〉

(C7c)

does not depend on λ and λ′ (just we should keep

λ 6= λ′). Using these equalities, we can write,

Xdα =
N

2

{

P1 − P2

}

. (C7d)

The third term in the right hand side of eq. (C6)

is,

Xαα′ =
∑

kk′λλ′

σσ′

4

〈

c†αkλcαkλc
†
α′k′λ′cα′k′λ′

〉

.

Xαα′ can be estimated similarly to Xdα. The ex-

change interaction between the leads and the dot

generates an effective interaction between electrons

in the leads. As a result, the expectation value

〈c†αkλcαkλc
†
α′k′λ′cα′k′λ′〉 depends either λ is equal to

λ′ or not. Defining K1αα′ and K2αα′ ,

K1αα′ =
∑

kk′

〈

c†αkλcαkλc
†
α′kλcα′kλ

〉

−
∑

kk′

〈

c†αkλcαkλc
†
α′kλcα′kλ

〉

0
,

K2αα′ =
∑

kk′

〈

c†αkλcαkλc
†
α′k′λ′cα′k′λ′

〉

−
∑

kk′

〈

c†αkλcαkλc
†
α′k′λ′cα′k′λ′

〉

0
, λ 6= λ′,

(C7e)

(K1αα′ and K2αα′ do not depend on λ’s36), we get

Xαα′ =
N

4

{

K1αα′ −K2αα′

}

. (C7f)

With equations (C7a), (C7d) and (C7f), the suscep-

tibility χ⊥ takes the form

χ⊥ =
g2spinµ

2
B

4T

{

1 + 4N
(

P1 − P2

)

+

+N
∑

αα′

(

K1αα′ −K2αα′

)

}

. (C8)

Now consider χ‖,

χ‖ =
g2spinµ

2
B

T

{

〈

SxSx + 2
∑

α

SxΣx
α +

+
∑

αα′

Σx
αΣ

x
α′

〉

−
∑

αα′

〈

Σx
αΣ

x
α′

〉

0

}

+

+
gspingorbµ

2
B

T

{

〈

SxLx +
∑

α

(

SxΛx
α + LxΣx

α

)

+

+
∑

αα′

Σx
αΛ

x
α′

〉

−
∑

αα′

〈

Σx
αΛ

x
α′

〉

0

}

+

+
g2orbµ

2
B

T

{

〈

LxLx + 2
∑

α

LxΛx
α +

+
∑

αα′

Λx
αΛ

x
α′

〉

−
∑

αα′

〈

Λx
αΛ

x
α′

〉

0

}

. (C9)

The right hand side of eq. (C9) consists of three

blocks of terms consisting of the spin-spin, spin-orbital

and orbital-orbital correlation functions. The Kondo

Hamiltonian (15) does not contain the spin-orbital in-

teractions, so that the spin-orbital correlation func-

tions are zero. In order to derive the spin-spin part of
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χ‖, we apply the unitary transformations to make the

spins Sx and Σx diagonal. It is easy to see that the

spin part of χ‖ gives eq. (C8). Consider now the last

block of terms coming from the orbital-orbital correla-

tions. Applying the unitary transformations to make

the orbital moments Lx and Λx
α diagonal, we can write

the orbital moment contribution to χ‖ as,

χorb
‖ =

g2orbµ
2
B

T

∑

mm′

mm′

{

〈

Xmmδmm′

+2
∑

αk

c†αkλcαkλX
λ′λ′

+
∑

αα′kk′

c†αkλcαkλc
†
α′k′λ′cα′k′λ′

〉

−

−
∑

αα′kk′

〈

c†αkλcαkλc
†
α′k′λ′cα′k′λ′

〉

0

}

.

(C10)

The right hand side of eq. (C10) consists of the terms

coming from the dot-dot, dot-lead and lead-lead cor-

relations. We will consider all of them in turn.

The dot-dot correlation is,

Odd =
∑

λ

m2
〈

Xλλ
〉

=
2

3
=

8

3
Xdd. (C11a)

The dot-lead correlation is,

Odα = 2
∑

kλλ′

mm′
〈

c†αkλcαkλX
λ′λ′

〉

.

Similarly to Xdα, Odα can be expressed in terms of P1

and P2, eqs. (C7b) and (C7c), as

Odα = 16
(

P1 − P2

)

=
8

3
Xdα. (C11b)

Finally, the lead-lead correlation gives,

Oαα′ =
∑

kk′λλ′

mm′
〈

c†αkλcαkλc
†
α′k′λ′cα′k′λ′

〉

.

Similarly to Xαα′ , Oαα′ can be expressed in terms of

K1αα′ and K2αα′ , eqs. (C7e) and (C7e), as

Oαα′ = 8
(

K1αα′ −K2αα′

)

=
8

3
Xαα′ . (C11c)

Combining equations (C10) and (C11), we get χ‖

in the form,

χ‖ =
µ2
B

T

(

g2spin
4

+
2g2spin
3

)

×

×
{

1 + 4N
(

P1 − P2

)

+

+N
∑

αα′

(

K1αα′ −K2αα′

)

}

. (C12)

Eqs. (C12) and (C8) prove eq. (C4).

2. Proof of equations (C7b) and (C7c)

In order to prove eq. (C7b), we prove that two

expected values, Gλλ and Gλ′λ′ , are equal one to an-

other,

Gλλ =
〈

c†αkλcαkλX
λλ
〉

,

Gλ′λ′ =
〈

c†αkλ′cαkλ′Xλ′λ′

〉

, (C13)

where λ 6= λ′. Let, for the brevity, enumerate the

quantum states of the quantum dot in such a way

that λ = 1 and λ′ = 2. The expected value Gλ′λ′ is

invariant with respect to any unitary transformations,

cαkλ′ →
∑

λ′′

Uλ′λ′′cαkλ′′ , c†αkλ′ →
∑

λ′′

c†αkλ′′Uλ′′λ′ ,

Xλ′λ′ →
∑

λ′′λ′′′

Uλ′λ′′

Xλ′′λ′′′

Uλ′′′λ′

,

where Uλ′λ′′ is a unitary N×N matrix. In particular,

it is invariant with respect to the transformation given

by the matrix,

U =







0 1 0

1 0 0

0 0 Î10






,

where Î10 is the 10 × 10 identity matrix. Applying

this transformation to the expected value Gλ′λ′ , we

get the expected value Gλλ, so that Gλλ = Gλ′λ′ .

In order to prove eq. (C7c), we consider two ex-

pected values, Gλλ′ and Gλλ′′ , are equal one to an-

other,

Gλλ′ =
〈

c†αkλcαkλX
λ′λ′

〉

,

Gλλ′′ =
〈

c†αkλcαkλX
λ′′λ′′

〉

, (C14)

where λ 6= λ′, λ 6= λ′′ and λ′ 6= λ′′. Let, for the

brevity, enumerate the quantum states of the quantum

dot in such a way that λ = 1, λ′ = 2 and λ′′ = 3. The

expected value Gλλ′′ is invariant with respect to any

unitary transformations,

cαkλ →
∑

λ1

Uλλ1
cαkλ1

, c†αkλ →
∑

λ1

c†αkλ1
Uλ1λ,

Xλ′′λ′′ →
∑

λ1λ2

Uλ′′λ1Xλ1λ2Uλ2λ
′′

,
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where Uλ′λ′′ is a unitary N×N matrix. In particular,

it is invariant with respect to the transformation given

by the matrix,

U =













1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 Î9













,

where Î9 is the 9 × 9 identity matrix. Applying this

transformation to the expected value Gλλ′′ , we get the

expected value Gλλ′ , so that Gλλ′′ = Gλλ′ .
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