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Electron scattering off an Anderson impurity immersed in the bulk of a 3D topological insulator is
studied in the strong coupling regime, where the temperature T is lower than the Kondo temperature
TK . The system displays either a self-screened Kondo effect, or a Kondo effect with SO(3) or
SO(4) dynamical symmetries. Low temperature Kondo scattering for systems with SO(3) symmetry
displays the behavior of a singular Fermi liquid, an elusive property that so far has been observed
only in tunneling experiments. This is demonstrated through the singular behavior as T → 0 of
the specific heat, magnetic susceptibility and impurity resistivity, that are calculated using well
known (slightly adapted) conformal field theory techniques. Quite generally, the low temperature
dependence of some of these observables displays a remarkable distinction between the SO(n=3,4)
Kondo effect, compared with the standard SU(2) one.

PACS numbers: 71.10.Pm, 73.43.-f, 72.15.Qm, 73.23.-b

I. INTRODUCTION

In this work we continue our study of a system com-
posed of an Anderson impurity d immersed in a 3D topo-
logical insulator (3DTI) with an “inverted-Mexican-hat”
band dispersion around the Γ-point1–6. For the sake of
self-consistency let us very briefly recapitulate the pecu-
liar feature of the pertinent system: Due to the special
band structure, the ensuing Kondo effect (KE) is pro-
foundly distinct from its metallic analog in normal met-
als, because in addition to the original Anderson impurity
d, there is an in-gap bound state (henceforth denoted as
an f impurity), that is formed as a result of potential
scattering1,2. The d and f impurities form a “compos-
ite quantum impurity” (CQI) that turns the pertinent
Kondo physics much richer. The reason for that is as fol-
lows: When isolated, the CQI can host two electrons that
are found in singlet or triplet states with corresponding
energiesES andET . Due to hybridization of the localized
electrons in the CQI with the band electrons, the levels
ES and ET are renormalized with decreasing bandwidth
albeit with different rates2. As a result, there is either
a self-screened KE, or a KE with SO(3) or SO(4) dy-
namical symmetry (depending on whether at the end of
renormalization, ET lies above, below or coincides with
ES

1,2.

In our previous work2, we have analyzed the pertinent
Kondo physics in the weak coupling regime using pertur-
bative RG analysis techniques. The goal of the present
work is to perform an analysis of the Kondo scattering
with SO(3) and SO(4) dynamical symmetry in the strong
coupling regime T < TK . The main physical motivation
is to elucidate the occurrence of singular Fermi liquid in
the SO(3) symmetric sector, that is exposed only in the

strong coupling regime. More than a decade ago it has

been shown that the traditional classification of quantum
impurity models into Fermi liquids and non Fermi liquids
should be modified in such a way that one has to distin-
guish between regular Fermi liquids and singular Fermi
liquids (SFL)11–13. The former case is exemplified by the
standard SU(2) Kondo model where electrons are scat-
tered from a magnetic impurity of spin S = 1

2 and at zero
temperature the impurity is fully screened. This makes
it possible to describe the system in terms of Nozières
Fermi-liquid picture. On the other hand, it was shown in
Ref.13 that when the impurity is under-screened, the cor-
responding Fermi liquid is singular. Practically, it implies
that the density of states is (logarithmically) singular at
the Fermi energy.

As is already stressed, this manifestation of SFL oc-
curs only at low temperature T < TK , and that re-
quires the calculations to be carried out in the strong
coupling regime, where perturbation theory is not ap-
plicable. One need to resort to other approaches, such
as Bethe ansatz or conformal field theory (CFT, that
is employed here). Calculated experimental observables
for SO(3) and SO(4) symmetric Kondo effect include the
impurity contribution to the temperature dependence of
the specific heat, magnetic susceptibility and resistivity.
Comparing these results with those of the standard SU(2)
Kondo effect, we indeed elucidate the remarkable SFL
nature of the KE for the SO(3) symmetric sector.

Experimentally, under-screened Kondo effect (USKE)
has been observed in tunneling transport measurements
through molecular transistors14–16. It is shown therein
that the tunneling conductance G approaches the uni-
tary limit when the temperature T tends to zero, but
the derivative dG/dT is divergent. The possibility of de-
tecting USKE in Kondo scattering in the bulk of metals
is hampered by the fact that quantum impurities with
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high spin give rise to Coqblin-Schrieffer type of Kondo
scattering which eventually flows to a regular Fermi liq-
uid fixed point18. In this work we overcome this obsta-
cle and demonstrate the feasibility of observing USKE
in bulk materials employing the occurrence of composite
impurities.
The organization of the paper is facilitated by the fact

that the model and the relevant starting Kondo Hamil-
tonian as well as the Kondo temperature have already
been derived in our previous work (starting from the sin-
gle impurity Anderson Hamiltonian). Therefore, in Sec.
II we start right away by writing down the Kondo Hamil-
tonian HK describing low-energy exchange scattering of
the band electrons by the d and f impurities as well as
an exchange interactions between the d and f impurities.
The Hamiltonian HK possesses different dynamical sym-
metries, SO(3) or SO(4), within various energy domains.
The local density of states (DOS) of the TI with magnetic
impurity immersed in it is calculated in Sec. III. Kondo
Interaction of the ”dressed” Fermi liquid (formed by the
band electrons and the d impurity) with the f -impurity
is discussed in Sec. IV. In Sec. V we study and calculate
the temperature dependence of the impurity contribution
to the specific heat, while the magnetic susceptibility of
the impurity is considered in Sec. VI. Sec. VII is devoted
to the calculations of electric resistivity. The results are
then summarized in Sec. VIII. Some technical details
are relegated to the Appendices. In Appendix A1 we
describe the ground state of the isolated composite im-
purity. Weak coupling renormalization of the exchange
interaction strength of the f -impurity with the band is
considered in Appendix A2.

II. KONDO HAMILTONIAN

As it is shown in our previous work2, the lowest-energy
states of the isolated CQI are the singlet and triplet states
with one electron on the d-level and a second electron on
the f -level. Electron tunneling between the d-level and
the band modifies the number of electrons in the CQI.
Integrating out high energy states from the band edges
renormalizes the singlet and triplet levels until charge
fluctuations are quenched and one arrives at the local mo-
ment regime. In this regime, the Schrieffer-Wolff trans-
formation is used to map the Anderson Hamiltonian onto
an effective Hamiltonian H = H0 + HK . Here the first
term, H0, describes electrons in the bulk of the TI,

H0 =
∑

νσk

νεkγ
†
νkσγνkσ, (1a)

where ν = ±1 denotes the conduction and valence band.

εk =
√

M2
k + (~vk)2, Mk = mv2 −B~

2k2, (1b)

is the band dispersion. Accordingly, εk is gapped and the
insulator is topological for Bm > 0. For Bm > 1/2 (as-
sumed hereafter), the band dispersion has an “inverted-

Mexican-hat” form with dispersion minimum at a surface
of nonzero wave-vector q’s, with

εq =
v2

B

√

Bm− 1

4
, q =

v

~v

√

Bm− 1

2
, (2)

where q = |q|.
The Kondo Hamiltonian HK assumes the following

form2:

HK = Jd
(

Sd · s
)

+ Jf
(

Sf · s
)

+ Jdf
(

Sd · Sf

)

, (3)

where Sd or Sf is the localized spin of the d- or f -
impurity, s is the spin operator of the band electrons,

s =
1

2

∑

νkσ,ν′k′σ′

(

γ†νkστσσ′γν′k′σ′

)

,

τ̂ = (τ̂x, τ̂y, τ̂z) is the vector of the Pauli matrices. The
couplings JK , Jf and Jdf are explicitly given as2,

Jd ∼ 2V 2
d

ǫF − ǫd
, Jf ∼

Jdβ
2
f

4
, (4a)

Jdf ∼ β2
f∆f

(

1− 2V 2
d ρc
∆f

√
D0 −

√

|ǫf |√
ε0

)

, (4b)

where

βf =

√
2 Vdf
∆f

, ∆f = ǫf − ǫd + Uf .

Here ǫd and ǫf are single electron energies of the d- and
f -impurities, Vd is hybridization rate of the d-impurity
and the band and Vdf is the hybridization of the d- and
f -impurities [see Fig. 6 below], and Uf is the Coulomb
blockade parameter for the f -impurity. The Coulomb
blockade Ud of the d-impurity is assume to be infinity2.
Notice that, generally, Jf ≪ Jd

2,3.
The low-energy physics of the model depends on Jdf .
More concretely, there are three different regimes for Jdf
determining the different ground states (GS)2,10:

• When Jdf = 0, the impurities are decoupled,
and Kondo scattering of the band electrons is de-
termined mostly by the hybridization of the d-
impurity with the band, whereas the f -impurity
can be considered as an isolated magnetic moment
(i.e., it is not coupled to the band or to the d-
impurity). In this case, there is standard Kondo ef-
fect with full screening of the spin of the d-impurity.
The exchange interaction of the f -impurity with
the band manifests itself just at temperature below
Kondo temperature. Therefore, Jf enters into con-
sideration only for temperatures below the Kondo
temperature.

• When Jdf < 0 with |Jdf | ≫ Jd, the ground state of
the CQI is a triplet and the singlet state is highly
excited. In this case, band electrons are scattered
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from a CQI with spin S = 1, and there is an
USKE of the magnetic impurity. Since the mag-
netic moments of the d- and f -impurities in the
triplet ground state are parallel to one another, the
exchange interaction strength Jf of the f -impurity
with the lead gives rise to slight modification of Jd

2,
(that is the exchange interaction strength of the d
impurity with the band electrons). Therefore we
assume Jf = 0 in this regime.

• When Jdf > 0 with Jdf ≫ Jd, the ground state
of the CQI is singlet and the triplet state has high
excitation energy. In this case, there is no Kondo
effect.

Before presenting our calculations pertaining to physi-
cal observables in our system, let us recapitulate the na-
ture of the GS, specific heat and magnetic susceptibility
for the ordinary case of a magnetic impurity immersed
in an ordinary metal [7]. For the fully screened (FS) and
the under screened (US) cases of the KE they are listed
in the table below. Recall that the GS of the FSKE is a
Fermi a liquid (FL) while that of the USKE turns out to
be a SFL. Explicitly,

KE GS CV χ

FS FL ∼ T ∼ T−1
K

US SFL ∼ T ln4
(

T
TK

)

∼ T−1 ln−2
(

T
TK

)

In the following, we will consider physical properties of
the system in the strong coupling regime (when the tem-
perature is below the Kondo temperature) for the cases
Jdf < 0 and Jdf = 0, in turn.

III. DENSITY OF STATES

In this section we apply the already known Bethe
ansatz expression for the scattering phase shift and write
down the density of states (DOS) that is peculiar to the
system of spin S CQI immersed in a material with inverse
Mexican hat band structure. Specifically, we focus on the
low-energy spectrum of the system where it is justified to
approximate the dispersion (1b) by linear expressions in
k − ki (i = 1, 2), where k1 and k2 are two solutions of
the equation εk = ǫF (see Fig. 1). The DOS NS(ω) of
the Fermi gas near the impurity position is expressed in
terms of the phase shift δS(ω) through the Friedel sum
rule13,

NS(ω) =
1

π

dδS(ω)

dω
, (5)

where S = 1
2 or 1 is the impurity spin. Calculations

based on the Bethe anzats13 applied for the full screened
S = 1

2 and the under-screened S = 1 Kondo effect, yield

ΕF+Υ1Hk-k1L ΕF+Υ2Hk-k2L

k1 q k2
k

Εq

ΕF

Ε0

Ε

FIG. 1: (Color online) Dispersion εk, Eq. (1b). ki (i = 1, 2) are
two solutions of the equation εk = ǫF . vi = vki

are the Fermi
velocities at the inner or outer Fermi surfaces (k = k1 or k2).

the following expression for the phase shift,

δS(ω) =
π

2
+

1

2i
ln

(

Γ
(

S + 1
2 + i

π
ln
(

ω
TK

))

Γ
(

S + 1
2 − i

π
ln
(

ω
TK

))

)

+

+
1

2i
ln

(

Γ
(

S − i
π
ln
(

ω
TK

))

Γ
(

S + i
π
ln
(

ω
TK

))

)

. (6)

For S = 1
2 , the above expression takes the form,

δ 1

2

(ω) =
π

2
− arctan

( ω

TK

)

, (7)

whereas for S = 1 and ω ≪ TK , δS(ω) has the asymptotic
expression,

δ1(ω) =
π

2

{

1 +
1

2 ln
(

TK

ω

)

}

. (8)

Note that δ1(ω) demonstrates a singular behavior near
the point ω = 0, whereas δ 1

2

(ω) is regular. Differentiating

δS (6) gives the following expression for the DOS13:

NS(ω) =
1

2πω
Re

[

β

(

S +
i

π
ln

ω

TK

)

]

. (9)

Here S = 1/2 or 1 is the spin of the impurity, and the
function β(x) is defined as

β(x) =
1

2

{

ψ

(

x+ 1

2

)

− ψ

(

x

2

)

}

, (10)

where ψ(x) is the digamma function,

ψ(x) =
d ln Γ(x)

dx
=

Γ′(x)

Γ(x)
.

The DOS Eq. (9) is shown in Fig. 2 for S = 1
2 and

S = 1. It is seen that the DOS for S = 1 is singular. As
a result the conventional Fermi liquid expansion of the
phase shift can not be carried out13. The origin of this
singularity is the non-analytic behavior of the phase shift
δ1(ω), eq. (6), near the point ω = 0.
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S =
1

2

S = 1

0.0 0.5 1.0 1.5 2.0
Ω�TK0.0

0.2

0.4

0.6

0.8

1.0

1.2

TKNS

FIG. 2: (Color online) DOS Eq. (9) for the SO(4) KE (blue curve)
and the SO(3) KE (red curve).

IV. KONDO INTERACTION OF THE FERMI
LIQUID WITH THE f-IMPURITY

When |Jdf | ≪ TK4
[where TK4

is the Kondo temper-
ature for the SO(4) KE, see Ref. 2 and Eq. (A8) in
Appendix A 2], the d-impurity and the conduction band
electrons form a singlet state, and the system composed
of the d-impurity and the band electrons forms a local
Fermi liquid that can be described within Nozières Fermi
liquid theory17. The f -impurity is coupled to this local
Fermi liquid through an effective exchange Hamiltonian,

H
(2)
K = J̃f

(

Sf · s
)

, (11)

where

J̃f =
Jdf (TK4

)

ρ0
. (12)

The density of states of the local Fermi liquid is,

ρ̃(ǫ) =
TK4

(

ǫ− ǫF
)2

+ T 2
K4

. (13)

The dimensionless coupling j̃f is,

j̃f = J̃f ρ̃(ǫF ) ∼ jfεq
TK4

∼

∼ jf
εq
Dii

exp

(

1

jd

)

, (14)

where we take into account that ρc ∼ 1/εq. The scaling

equation for j̃f is,

∂j̃f
∂ lnD

= −j̃2f . (15)

The initial value j̃f (TK4
) of j̃f (D) is given by eq. (14).

The solution of the scaling equation (15) is,

j̃f (D) =
1

ln

(

D

T
(2)
K

) , (16)

where the scaling invariant, the second Kondo tempera-
ture, is

T
(2)
K = TK4

exp

{

− 1

jf

Dii

εq
exp

(

− 1

jd

)

}

. (17)

For ǫd = −80ǫq, ε0 = 24εq, ǫF = 2εq, j = 0.08 and

jf = 0.025, we get TK4
= 0.15εq and T

(2)
K = 0.0021TK4

.
Having set up the calculation framework we turn now

to elucidate numerous physical observable. These include
specific heat, magnetic susceptibility and impurity resis-

tivity. Since T
(2)
K is very small, we shall restrict our-

selves to the temperature regime T ≫ T
(2)
K in the fol-

lowing. For the SO(4) KE, the temperature is in the

range TK4
> T ≫ T

(2)
K . For the SO(3) KE, we consider

T < TK3
, where TK3

and TK4
are the Kondo tempera-

tures for the SO(3) and SO(4) KE, respectively2. For the
SO(3) KE, we employ CFT techniques, whereas for the
SO(4) KE, we will apply CFT techniques for the inter-
action between the d-impurity and the conduction band
electrons, and then we employ poor man’s scaling for-
malism to take into account the interaction between the
local Fermi liquid and the f -impurity.

V. SPECIFIC HEAT

The first observable to be calculated is the specific heat
of the TI within which the CQI is immersed. Its defini-
tion reads,

C
(0)
V =

∂

∂T

∫

dǫ ǫf(ǫ)NS

(

|ǫ− ǫF |
)

, (18)

where f(ǫ) is the Fermi function. Noting that

∂f(ǫ)

∂T
=

ǫ− ǫF

4T 2 cosh2
(

ǫ−ǫF
2T

) ,

we have

C
(0)
V = 4T

∞
∫

0

NS(2Tx) x
2 dx

cosh2(x)
. (19)

For the SO(3) KE, the specific heat is CV = C
(0)
V [given

by Eq. (19)]. For the SO(4) KE, there is contribution to
the specific heat due to the f -impurity. This contribution
can be written as,

δCV =
3π2

4
j̃4f (T ), (20)

where j̃f (T ) is given by Eq. (16). The total specific heat

for the SO(4) KE is CV = C
(0)
V + δCV .

The ratio CV /T [where CV is the specific heat (19)]
is shown in Fig. 3 for the SO(4) and SO(3) KE. In this
case, the Kondo temperature is TK4

. For comparison, the
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FIG. 3: (Color online) Ratio CV /T [where CV is the specific heat
(19)] for the SO(4), SO(3) and SU(2) KE (solid blue, solid red and
dashed blue curves). Here TK = TK4

for the SO(4) and SU(2) KE
or TK3

for the SO(3) KE.

specific heat for the SU(2) KE ( i.e., for the case when
the f -impurity is absent), is shown as well. It is seen that
for the SU(2) KE, CV /T saturates to constant as T → 0,
in agreement with the prediction of Fermi liquid theory.
The ratio CV /T for the SO(4) KE is close to that for
the SU(2) KE for T close to TK4

. For low temperatures,
CV /T for the SO(4) and SU(2) KE deviate substantially
from one another. This is result is due to the exchange
interaction of the f -impurity with the local Fermi liquid.
For the SO(3) KE, the ratio CV /T diverges indicating
the feature of a SFL behavior13.

VI. MAGNETIC SUSCEPTIBILITY

When Jdf < 0 and the ground state of the isolated CQI
is S = 1, the magnetic susceptibility is,

χ(T ) = 2µ2
B

∫

dǫ N1

(

|ǫ − ǫF |
)

(

− ∂f(ǫ)

∂ǫ

)

, (21)

where N1(ǫ) is given by Eq. (9) with S = 1. Taking into
account that

− ∂f(ǫ)

∂ǫ
=

1

4T cosh2
(

ǫ−ǫF
2T

) , (22)

we can write,

χ(T ) =
2χ0TK
T

∫

N1(|ǫ − ǫF |) dǫ
cosh2

(

ǫ−ǫF
2T

) , (23)

where

χ0 =
µ2
B

TK
. (24)

For the case Jdf = 0 (see Eq. (4)), the susceptibility is
calculated in the following way: First, we employ the
CFT technique to calculate the susceptibility for j̃f = 0
(see Eq. (16)). Within this approximation, the CQI splits
into two noninteracting impurities, one of them is coupled
to the band electrons, and the other is fully decoupled.

In this case, the susceptibility is given by,

χ(0)(T ) = 2µ2
B

∫

dǫ N 1

2

(

|ǫ− ǫF |
)

(

− ∂f(ǫ)

∂ǫ

)

+

+
µ2
B

T
, (25)

where N 1

2

(ǫ) is given by Eq. (9) with S = 1
2 . The sec-

ond term, µ2
B/T , is the susceptibility of the f -impurity.

Taking into account Eq. (22), we can write,

χ(0)(T ) =
2χ0TK
T

∫ N 1

2

(

|ǫ − ǫF |) dǫ
cosh2

(

ǫ−ǫF
2T

) +
µ2
B

T
, (26)

where χ0 is given by Eq. (24). The contribution to the
susceptibility due to the interaction of the local Fermi
liquid with the f -impurity is,

δχ(T ) = −χ0TK
T

j̃f (T ), (27)

where j̃f (T ) is given by Eq. (16). The total susceptibility
for the SO(4) KE is

χ(T ) = χ(0)(T ) + δχ(T ). (28)

The functions Tχ(T ) for the SO(3), SU(2) and SO(4)

FIG. 4: (Color online) The quantity Tχ(T ) for the SO(3), SU(2)
and the SO(4) KE is displayed as a function of temperature. The
saturation as T → 0 for the SU(2) and SO(4) KE is reminiscent of
the Curie law. On the other hand, for the SO(3) KE, Tχ(T ) → 0.

KE are shown in Fig. 4. The SU(2) KE corresponds to
the case when the f -impurity is absent. For this case, the
Kondo temperature is TK4

. It is seen that for the SU(2)
or SO(4) KE, Tχ(T ) → TKχ0 for T → 0. For the SO(3)
KE, Tχ(T ) vanishes as ln−2(T/TK) when T → 0, which
is a manifestation of a singular Fermi liquid fixed point.

VII. IMPURITY RESISTIVITY

In this section we will calculate the impurity contribu-
tion to the resistivity. Here, the peculiar band structure
of the TI plays a central role. The calculation method
of the impurity contribution to the resistivity depends
on the underlying symmetry. The CFT technique used
above to derive the specific heat and magnetic field will
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be employed to derive the resistivity of the KE with the
SO(3) symmetry. On the other hand, for the KE with
the SO(4) symmetry, we apply a somewhat different ap-
proach: First, we apply the CFT technique to derive the
resistivity for the case j̃f = 0 (see Eq. (16)). In the next
step, we apply the perturbative RG (poor man’s scaling
approach) to get the correction to the resistivity due to
the interaction of the f -impurity with the local Fermi
liquid.
For j̃f = 0, the impurity resistivity can be written as18

ρ(0)(T ) =
1

σ(0)(T )
. (29a)

Here the conductivity σ(0)(T ) is

σ(0)(T ) =
2e2

3

∫

d3k
(

2π
)3

[

− ∂f(ǫk)

∂ǫk

]

v2kτtr(k), (29b)

where f(ǫ) is the Fermi-Dirac distribution, and vk = |vk|
is the group velocity,

vk =
1

~

∂ǫk
∂k

=
1

~
k̂
∂εk
∂k

.

For the dispersion (1b), vk is given explicitly by,

vk =
ε0
εk

(

2Bm− 1
)

(

k2

q2
− 1

)

~k

mv
, (30)

where

ε0 = mv2.

The resistivity is directly related to the inverse of the
transport relaxation time τtr(k) that is expressible in
terms of the phase shifts ηl(k) (corresponding to angular
moment l) appearing in the partial wave expansion of the
electron scattering from the impurity [see Eq. (2.20) in
Ref.18]. Explicitly,

1

τtr(k)
=

2cimp

π~ν(k)

∞
∑

l=1

l sin2
[

ηl(k)− ηl−1(k)
]

, (31)

where ν(k) is the bare density of states (DOS),

ν(k) =
1

L3

∑

k′

δ(ǫk − ǫk′), (32)

δ(ǫ) is the Dirac delta function and L is the linear size of
the bulk. For the dispersion (1b), the DOS is

ν(k) = ν1(ǫk) + ν2(ǫk), (33a)

ν1(ǫ) = ϑ(|ǫ| − ǫq) ϑ(ǫ0 − |ǫ|) ρc|ǫ|g1(ǫ)
2
√

ǫ2 − ǫ2q

, (33b)

ν2(ǫ) = ϑ(|ǫ| − ǫq)
ρc|ǫ|g2(ǫ)
2
√

ǫ2 − ǫ2q

, (33c)

where

ρc =
v

4π2B2~3

√

Bm− 1

2
, (33d)

gi(ǫ) =

√

√

√

√1 +
(

− 1
)i

√

ǫ2 − ǫ2q
ǫ20 − ǫ2q

, (33e)

i = 1, 2. Here g1(ǫ) and g2(ǫ) correspond to the two
solutions of the equation ǫk = ǫ.
For pure s wave scattering, η0(k) = δS(|ǫk − ǫF |) and

ηl = 0 for l 6= 0. Then Eq. (31) can be written as,

1

τtr(k)
=

2cimp

π~ν(k)
sin2 δS(|ǫk − ǫF |). (34)

The scattering phase δS(ω) is given by Eq. (6). For
ω = |ǫ − ǫF | ≪ TK , δS(ω) is given by eq. (7) for S = 1

2
and by eq. (8) for S = 1.
Zero temperature resistivity: As T → 0 we can write

− ∂f(ǫ)

∂ǫ
= δ(ǫ − ǫF ). (35)

Substituting Eq. (35) into Eq. (29b) and taking into
account Eqs. (30), (6) and (33), we get

σ(0)(0) =
πe2

3nimp

∫

d3k
(

2π
)3 δ(ǫk − ǫF ) v

2
k ν(k).

When the Fermi energy is constrained according to

εq < ǫF < ε0,

the equation εk = ǫF has two solutions, k = k1 and k =
k2, (see Fig. 1). The equation for the zero-temperature
resistivity then takes the form,

ρ(0)(0) =
1

σ(0)(0)
, σ(0)(0) = σ

(0)
1 (0) + σ

(0)
2 (0),

σ
(0)
i (0) =

πe2ν2i (ǫk)v
2
ki

3cimp
, i = 1, 2. (36)

Finite temperature resistivity: When the tempera-
ture is below the Kondo temperature TK , the conductiv-
ity (29b) can be written as,

σ(0)(T ) =
e2

3π2

q
∫

0

k2dk

4T cosh2( ǫk−ǫF
2T )

v2kτtr(k) +

+
e2

3π2

∞
∫

q

k2dk

4T cosh2( ǫk−ǫF
2T )

v2kτtr(k).

Substitute into each of integrals a factor unity,
∫

dǫ δ(ǫ− εk)=1, and taking into account that for k < q
or k > q, the equation εk = ǫ has a single solution, k1(ǫ)
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or k2(ǫ) (see Fig. 1 for illustration), we can write

σ(0)(T ) =
2e2

3

ǫ0
∫

ǫq

ν1(ǫ)v
2
1(ǫ)τtr(k1(ǫ))dǫ

4T cosh2( ǫ−ǫF
2T )

+

+
2e2

3

∞
∫

ǫq

ν2(ǫ)v
2
2(ǫ)τtr(k2(ǫ))dǫ

4T cosh2( ǫk−ǫF
2T )

, (37)

where

vi(ǫ) ≡ vki(ǫ), ki(ǫ) = qgi(ǫ), i = 1, 2,

and the functions gi(ǫ) are given by Eq. (33e). Tak-
ing into account Eqs. (34) and (33a), we can write the
conductivity (37) as,

σ(0)(T ) =
π~e2

3cimp

ǫ0
∫

ǫq

ν21(ǫ)v
2
1(ǫ) sin

−2
(

δS(|ǫ − ǫF |)
)

dǫ

4T cosh2( ǫ−ǫF
2T )

+

+
π~e2

3cimp

∞
∫

ǫq

ν22(ǫ)v
2
2(ǫ) sin

−2
(

δS(|ǫ − ǫF |)
)

dǫ

4T cosh2( ǫ−ǫF
2T )

.

(38)

The integrands on the right hand side of Eq. (38) have
a factor cosh−2( ǫ−ǫF

2T ) which is equal to 1 for ǫ = ǫF and
rapidly vanishes for ǫ− ǫF ≫ T . The behaviour of the
other factors, ν2i (ǫ) and v

2
i (ǫ) (i = 1, 2), depends on the

ratio (ǫF − εq)/T . When T ≪ ǫF − εq, then ν2i (ǫ) and
v2i (ǫ) change slowly within the interval |ǫ − ǫF | . T and
can be safely replaced by ν2i (ǫF ) and v2i (ǫF ). In what
follows, we will assume the inequality TK ≪ ǫF − εq.

2

Then for T < TK the conductivity (38) takes the form,

σ(0)(T ) = σ(0)(0)

∞
∫

−∞

sin−2
[

δS(|ǫ|)
]

dǫ

4T cosh2( ǫ
2T )

. (39)

(The limits of the integration can safely be changed to
∓∞). Finally, the impurity resistivity is,

ρ(0)(T ) = ρ(0)(0)







∞
∫

−∞

sin−2
(

δS(|ǫ|)
)

dǫ

4T cosh2( ǫ
2T )







−1

, (40)

where ρ(0)(0) = 1/σ(0)(0) is the zero temperature impu-
rity resistivity, see Eq. (36).
Contribution of j̃f to the resistivity: The impurity
resistivity for the KE with the SO(3) symmetry is given
by Eq. (40). That for the KE with SO(4) symmetry
is contributed also by the interaction of the f -impurity
with the local Fermi liquid. In order to derive this con-
tribution, we apply the perturbation poor man’s scaling
technique,

δρ(T ) =
3R0

4
j̃2f (T ), (41)

where j̃f (T ) is given by Eq. (16). The constant R0 is,

R0 =
3πcimp

~e2ρ2c

1

v21 + v22
, (42)

where

vi = vki
, i = 1, 2,

ki are two solutions of the equation εk = ǫF , see Fig. 1.
Hence, the resistivity for the SO(4) KE reads,

ρ(T ) = ρ(0)(T ) + δρ(T ), (43)

where ρ(0)(T ) is given by Eq. (40). The resistivity (40)

FIG. 5: (Color online) Resistivity (40) as a function of temperature
for the SO(3) and SU(2) symmetries (solid red and dashed blue
curves), and the resistivity (43) for the SO(4) KE (solid blue curve).

as a function of temperature is shown in Figure 5 for
the SO(4), SO(3) and SU(2) symmetries. Recall that as
T ≪ TK , the resistivity for the SU(2) symmetry is given
by,

ρ(0)(T ) ≈ ρ(0)(0)

{

1− π2T 2

3T 2
K

+O

(

T 4

T 4
K

)

}

. (44)

This behaviour is typical for the Fermi liquid zero tem-
perature fixed point. Deviation from Eq. (44) in the
curves for the SU(2) and SO(4) KE is due to the Kondo
interaction between the f -impurity and the local Fermi
liquid. The temperature dependence of the resistivity
for the SO(3) symmetry is rather distinct. Indeed, for
T ≪ TK , we can write

ρ(0)(T ) ≈ ρ(0)(0)

{

1− π2

16 ln2
(

TK

2T

) +

+O

(

ln−3

(

TK
T

)

)}

. (45)

The singular temperature dependence of the resistance
is the result of the singular energy dependence of the
scattering phase (6).

VIII. CONCLUSIONS

The present work is motivated by the quest to elu-
cidate the elusive SFL behavior within bulk materials.



8

This property, associated with USKE, has so far been
observed only in electron tunneling experiments through
quantum dots14–16, where it is demonstrated that the
tunneling conductance G approaches the unitary limit
as T → 0, but the derivative dG/dT diverges logarithmi-
cally. Elucidating SFL in metals based on the USKE (e.g
iron immersed in cupper) is not obvious because magnetic
impurities with high spin give rise to Coqblin-Schrieffer
type of scattering which falls on a regular Fermi liquid
fixed point18. Here we achieved this goal by analyzing
Kondo scattering of electrons off an Anderson impurity
in a 3D topological insulator with an “inverted Mexican
hat” band dispersion. We used the fact that the inter-
play between the Anderson impurity and its induced in-
gap bound state results in self-screened Kondo effect or in
the Kondo effect with SO(4) or SO(3) dynamical symme-
tries. Using the conformal field theory technique, we have
calculated the low temperature (T ≪ TK) dependence
of the specific heat, the magnetic susceptibility and the
electric resistivity of the impurity for both screened and
under-screened Kondo effect. Physical properties of the
impurity for the under-screened case demonstrate zero
temperature singularity which corresponds to a singu-
lar Fermi liquid phase. In addition to the SFL behavior
exposed here, this system exposes an interesting screen-
ing mechanism where the impurity f is screened by the
quasi-particles of the Fermi sea that is formed when the
band electrons and the d impurity form a singlet state at
T < TK .

Acknowledgements: We acknowledge support by
HKRGC through grant HKUST03/CRF09. The research
of I.K., T.K. and Y.A. is partially supported by grant
400/12 of the Israel Science Foundation (ISF).

Appendix A: Anderson Model and Scaling Equations

Part of the material presented in this appendix has al-
ready been developed in our previous paper2 where we
analyzed the same system in the weak coupling regime.
It is included here for the sake of self-consistency. In the
first part we write down the bare Anderson model and
specify the peculiarities resulting from the special form
of the band structure. In the second part we elaborate
on the scaling equations and RG flow for the SO(4) dy-
namical symmetry.

1. Anderson Model

The system considered here is schematically displayed
in Fig. 6a. It consists of a topological insulator whose en-
ergy band has the “inverted mexican hat” structure, and
an Anderson impurity immersed in its bulk (denoted as
d-impurity). Potential scattering of electrons on the im-
purity result in the formation a mid-gap localized energy
level2, denoted hereafter as an f -impurity. The effective

Hamiltonian of the system is,

H = H0 +Hc +Ht. (A1)

Here the first term, H0, is the Hamiltonian (1a) describ-
ing electrons in the bulk of the TI.
The second term on the right hand side of eq. (A1) is

the Hamiltonian of the isolated CQI, composed of the d-
and f -levels,

Hc = Hd +Hf +Hdf . (A2a)

Here Hd and Hf are the (atomic) Hamiltonians of the
d- and f -impurities, and Hdf describes the hybridization
between them,

Hd = ǫd
∑

σ

ndσ + Udnd↑nd↓, (A2b)

Hf = ǫf
∑

σ

nfσ + Ufnf↑nf↓, (A2c)

Hdf = Vdf
∑

σ

(

f †
σdσ + d†σfσ

)

, (A2d)

where ǫd or ǫf is the d- or f -impurity energy level and
Ud or Uf is the interaction between electrons on the im-
purity. Here ndσ = d†σdσ, nfσ = f †

σfσ, d
†
σ or dσ is the

creation or annihilation operator of electron on the d-
level, f †

σ or fσ is the creation or annihilation operator of
electron on the f -level.
The last term on the right hand side of eq. (A1), Ht, is

the hybridization between the Anderson impurity d and
the band electrons,

H
(0)
t = Vd

∑

k,ν,σ

(

γ†νkσdσ + d†σγνkσ

)

. (A3)

Note that hybridization prevails only between the band
electrons and the d impurity. The f -level is formed as a
result of the potential scatering of the conduction band
electron on the d-impurity2. Therefore, hybridization of
f -impurity and the band electrons is absent.
Energy scales: Few words about energy scales are in
order: Unless otherwise specified, we shall assume that
Ud → ∞ and

ǫF −D0 < ǫd ≪ ǫf < ǫF < ǫf + Uf ≪ ǫF +D0, (A4)

where D0 (the initial bandwidth) is the highest energy
cutoff, and ǫF is the Fermi energy (see Figure 6). In the
calculations below we use ǫF = 2εq, ǫf ≈ −εq, Uf = 5εq
and ǫd = −80εq.
The eigenstates of Hc, equation (A2a), are specified
by the configuration numbers (Nd, Nf) indicating the
number of electrons on the levels d and f . With en-
ergy scales specified in Eq. (A4), the ground state (GS)
has Nd = Nf = 1 and there are four possible states,
a spin-singlet state |S〉 and three spin-triplet states |Tm〉
(m = 0,±1). The singlet energy is modified when Vdf 6= 0
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(a)

(b)

FIG. 6: (Color online) Panel (a): Illustration of the Anderson
model consisting of a band, d- and f -impurities. The hybridization
rates of the d-impurity with the band and the f -impurity are Vd and
Vdf , respectively. Panel (b) Energy dispersion (1b), and energy
levels ǫd and ǫf . Here ǫF denotes the Fermi energy. All the energy
levels of the band below the Fermi energy are occupied (green area),
whereas the white area above ǫF denotes unoccupied levels.

while the triplet energy is unaffected. Explicitly,

|S〉 =
{

αS√
2

(

d†↑f
†
↓ − d†↓f

†
↑

)

− βff
†
↑f

†
↓

}

|0〉, (A5a)

|T1〉 = d†↑f
†
↑ |0〉, |T−1〉 = d†↓f

†
↓ |0〉,

|T0〉 =
1√
2

{

d†↑f
†
↓ + d†↓f

†
↑

}

|0〉,
(A5b)

where

εS = ǫd + ǫf −
2V 2

df

∆f

, εT = ǫd + ǫf ,

αS =
√

1− β2
f , βf =

√
2Vdf
∆f

,

∆f = ǫf − ǫd + Uf .

In the absence of hybridization of d-electron with the
band electrons (i.e., when Vd = 0), εS < εT : As expected,
the singlet state has lower energy than the triplet state.

2. Scaling Equations for the SO(4) Dynamical
Symmetry

In order to perform the RG analysis considered in
Sec. IV [see Eq. (15)], we need the effective coupling
jf (TK4

) at the effective bandwidth equal to TK4
. To de-

rive jf (TK4
), we apply the weak coupling RG analysis for

the SO(4) KE. In the the weak coupling regime, the scal-
ing equations for the dimensionless couplings jd = Jdρ0

and jf = Jfρ0 must proceed to third order in these
parameters18, that is,

∂jd
∂ lnD

= −j2d + jd
(

j2d + j2f
)

, (A6a)

∂jf
∂ lnD

= −j2f + jf
(

j2d + j2f
)

. (A6b)

The initial values of jd and jf at D −Dii are Jdρc and
Jfρc, where Jd and Jf are given by Eq. (4a). Scaling of

FIG. 7: (Color online) Scaling of jd and jf .

jd and jf is shown in the flow diagram, Fig. 7. The red
dot denotes the two-channel fixed point j∗d = j∗f = 1/2.
We are interested in the solution of these equations under
the following inequalities:

jf (Dii) ≪ jd(Dii) ≪ 1,

so that we are far away from the two-channel fixed point.
In this case jd(D) increases when D decreases, whereas
jf (D) decreases and goes to zero when D vanishes. The
solution of the scaling equation (A6a) can be approxi-
mated as,

jd(D) =
1

ln

(

D

TK4

) , (A7)

where the scaling invariant, the Kondo temperature TK4
,

is

TK4
= Dii exp

{

− 1

Jdρc

}

. (A8)

The solution (A7) is valid just for D ≫ TK4
. A more

satisfactory approximation is given in Ref.18,

jd(D) =

√

8

3π2

√

√

√

√

√

√

√

√

1−
ln

(

D

TK4

)

√

ln2
(

D

TK4

)

+
3π2

4

. (A9)
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The solution of the scaling equation (A6b) is,

jf (D)

jf (Dii)
= exp

{

−
Dii
∫

D

dǫ

ǫ
j2d(ǫ)

}

. (A10)

Taking into account eq. (A9), we get

jf (D)

jf (Dii)
= exp

{

8

3π2

(

F(Dii)− F(D)

)

}

,

where

F(D) =

√

ln2

(

D

TK4

)

+
3π2

4
− ln

(

D

TK4

)

.

When D approaches TK4
, jf (TK4

) can be approximated
as

jf (TK4
) = jf

(

Dii

)

exp

{

− 4√
3π

}

≈

≈ 0.5jf
(

Dii

)

, (A11)

where we take into account that Dii ≫ TK4
.
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