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Abstract

A novel time-reversal symmetry breaking state is found theoretically in the Josephson junction

between the two-gap superconductor and the conventional s-wave superconductor. This occurs due

to the frustration between the three order parameters analogous to the two antiferromagnetically

coupled XY-spins put under a magnetic field. This leads to the interface states with the energies

inside the superconducting gap. Possible experimental observations of this state with broken time-

reversal symmetry are discussed.
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The complex behaviors of the superconductors beyond the BCS theory are now a focus of

condensed matter physics. Among them, the superconductivity characterized by more than

one order parameters, i.e., the multi-gap superconductors, is an intriguing and hot topic.

Historically, the inter-band mechanism of the pairing for such a case has been proposed long

ago1. A representative example of the multi-gap superconductor is MgB2
2 where the spe-

cific heat3, the tunneling4, and angle-resolved photoemission spectroscopy (ARPES)5 have

revealed the different gap energies for σ- and π-bands. The magnitudes of the gaps were

analyzed by the first-principles band structure calculation6 and are found to be strongly

momentum- and band- dependent. This two-gap behavior is attributed to the strong cou-

pling of the σ-band to the bond stretching phonon mode6.

The multi-gap structure should be common in the superconductors with the orbital de-

generacy and/or the many electron/hole pockets, which is the case for the newly found

high temperature superconductor iron pnictides7. In these compounds, there are two small

electron pockets around M-points and two hole pockets around Γ-point8. There are many

proposals for the gap pairing symmetry9, and one possibility is that a full gap opens for

each pocket, which is consistent with the recent ARPES in Ba0.6K0.4Fe2
10, although ARPES

cannot determine the relative sign of the order parameters. Therefore, the determination of

the relative sign of the order parameters on the pockets is now an important issue to fix the

microscopic mechanism for the superconductivity. A clue has been given by the resonant

magnetic scattering11 which is attributed to the triplet exciton in the superconducting state.

A comparison with the earlier theoretical analysis12 suggests that the relative sign of the

order parameter is minus in Ba0.6K0.4Fe2.

In this paper, we explore theoretically a novel phenomenon in the two-gap superconduc-

tors when coupled to another single-band superconductor by the Josephson effect. The two

bands are assumed to have separated Fermi surfaces in ~k-space and are coupled only through

electron-electron interaction. We shall assume for simplicity that the superconducting or-

der parameters on all Fermi surfaces have s-symmetry, although most of our results can

be generalized to order-parameters with other symmetries as well. We start with the phe-

nomenological Ginzburg-Landau (GL) free energy density of the two band superconductor.

F0(ψ1, ψ2) = α1(T )|ψ1|
2+K1| ~Dψ1|

2+β1|ψ1|
4+α2(T )|ψ2|

2+K2| ~Dψ2|
2+β2|ψ2|

4−J [ψ∗

1ψ2+ψ
∗

2ψ1]

(1)
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where ψ1(2) is the superconducting order parameter for band 1(2) and ~D = −i[∇−2ei ~A/~c].

In general the two superconducting bands are coupled by an internal Josephson-coupling

term ∼ J as a result of electron-electron interaction. Writing ψ1(2) = |ψ1(2)|e
iθ1(2) and

minimizing the energy with respect to θ1(2) in the absence of magnetic field it is easy to see

that ψ1 and ψ2 are of the same sign (θ1 = θ2(mod2π)) if J > 0, and are of opposite sign

(θ1 = θ2+π(mod2π)) if J < 0. The question is whether there exists any non-trivial physical

consequences associated with this relative sign, in particular when J < 0 and ψ1 ∼ −ψ2?

In the following we shall show that the spontaneous time-reversal symmetry breaking

occurs at the Josephson junction between the two-band superconductor and another single-

band s-wave superconductor when the sign of J is negative. To be concrete we assume that

the single-band superconductors is located at the left side (x < 0) of the Josephson junction,

and the two-band superconductor is located on the right (x > 0). The two superconductors

are weakly coupled by Josephson effect, and the total free energy density of the system is

F = F0θ(x) + Fsθ(−x) + FJ , where

Fs(ψs) = αs(T )|ψs|
2 +Ks| ~Dψs|

2 + βs|ψs|
4 (2)

is the usual Ginsburg-Landau free energy for the single-band s-wave superconductor, and

FJ = − (T1[ψ
∗

1ψs + ψ∗

sψ1] + T2[ψ
∗

2ψs + ψ∗

sψ2]) δ(x) (3)

is the Josephson coupling between the two superconductors. T1(2) represents the coupling of

the single-band superconductor to the two separate bands. We note that T1 and T2 are both

positive according to the perturbation theory in the tunnelling matrix elements between the

two superconductors. The relative sign between ψ1 and ψ2 is “unknown” to the single-band

superconductor in the Josephson effect.

The non-trivial effect associated with the Josephson junction can be seen by minimizing

the free energy of the system with respect to the phases of the superconductors, assuming

that the amplitudes of the order parameters are constants. In the absence of magnetic field

the GL free energy density with phase variables only is

F ∼ F̄ + θ(x)
(

−2J̃ cos(θ1 − θ2) + K̃1(∇θ1)
2 + K̃2(∇θ2)

2
)

(4)

−2δ(x)
(

T̃1 cos(θ1 − θs) + T̃2 cos(θ2 − θs)
)

+ K̃s(∇θs)
2

where F̄ is the part of free energy density which is independent of θ’s. θ̃1(2) is defined at

x ≥ 0 and θs is defined as x ≤ 0. J̃ = J |ψ1||ψ2|, T̃1(2) = T1(2)|ψs||ψ1(2)| and K̃ν = Kν |ψν |
2,
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FIG. 1: A schematic representation of canted state in the effective classical spin model for the

Josephson junction between a two band superconductor and another single-band superconductor.

The coupling between the two spins (θ1, θ2) are antiferromagnetic (J < 0) but they are both

coupling ferromagnetically to a magnetic field along x̂-direction (θs = 0)

ν = 1, 2, s. We shall take θs(x = 0) = 0 in the following. This is allowed because the overall

phase of the system is a pure gauge. First we note that for J > 0 the phase configuration

which minimizes the above free energy is simply θ1 = θ2 = θs = 0 and there is no non-

trivial effect associated with the Josephson junction. The situation becomes different for

J < 0 where the phases are “frustrated” because of sign difference between J and T1(2).

To see what could happen we note that the system is similar to a system of two classical

spins A and B that are antiferromagnetically coupled and are put under a weak magnetic

field in x̂ direction representing the Josephson coupling of the system to the single-band

superconductor. If the coupling of spin A to magnetic field is much stronger than that of

spin B (T1 >> T2), spin A will be allied to the magnetic field with spin B remaining anti-

parallel to spin A in the ground state, i.e. θ1 = 0, θ2 = π in the corresponding Josephson

junction problem. The converse (θ2 = 0, θ1 = π) is true if T2 >> T1. This is the first

possible state. Notice however that if the couplings of the two spins to the magnetic field

are similar, there will be no preferred spin to the magnetic field and a second type of state

where the two spins take angles θ1(2) ∼ ±π/2 ∓ δθ will be formed (see Fig.1).

The free energy (4) cannot be minimized exactly to obtain the two types of phase struc-

tures. We shall treat the free energy approximately in the following by writing θ1 = θ0 + θ̃1,

θ2 = θ0−π+ θ̃2 and expand the free energy to order θ̃21(2). The approximation can be justified

in the limit of weak-Josephson coupling as we shall see later.
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Minimizing the resulting approximate free energy F (θ0, θ̃) with respect to θ̃’s we obtain

J̃(θ̃1 − θ̃2) + K̃1∇
2θ̃1 = T̃1δ(x)(sin θ0 + cos θ0θ̃1), (5)

J̃(θ̃2 − θ̃1) + K̃2∇
2θ̃2 = −T̃2δ(x)(sin θ0 + cos θ0θ̃2),

K̃s∇
2θs = −δ(x)

(

T̃1(sin θ0 + cos θ0θ̃1)− T̃2(sin θ0 + cos θ0θ̃2)
)

.

Solving these equations at x 6= 0 we obtain θ̃1(2) = α1(2)e
−x/λ + β0x and θs = βsx where

K̃1α1 = −K̃2α2 and 1
λ2 = |J̃| (K̃1+K̃2)

K̃1K̃2
.

Matching the boundary condition at x = 0 we also obtain

J1 = K̃1(β0 −
α1

λ
) = T̃1(sin θ0 + cos θ0α1), (6)

J2 = K̃2(β0 −
α2

λ
) = −T̃2(sin θ0 + cos θ0α2),

K̃sβs = J1 + J2.

The first two equations give the tunnelling currents flowing from band one (two) to the single-

band superconductor, respectively. The third equation expresses total current conversation

across the Josephson junction.

We shall concentrate on the ground state solution where the Josephson junction does

not introduce any bulk energy cost. In this case there is no net current flowing through the

system and β0 = βs = 0. Solving Eq. (6) we find that only one solution cos θ0 = sgn(T̃1− T̃2)

exists at |T̃1 − T̃2| > σ1, where σ1 = λT̃1T̃2(K̃1+K̃2)

K̃2K̃1
whereas two possible solutions cos θ0 =

(

sgn(T̃1 − T̃2),
(T̃1−T̃2)

σ1

)

exist at |T̃1 − T̃2| < σ1. The true solution at |T̃1 − T̃2| < σ1 is the

one with lower energy. Comparing the energies F (θ0, θ̃) of the two states we find

cos θ0 = sgn(T̃1 − T̃2) (|T̃1 − T̃2| > σ) (7)

=
(T̃1 − T̃2)

σ1
(|T̃1 − T̃2| < σ)

where σ = min(σ1, σ2), σ2 =
λ(K̃2T̃1+K̃1T̃2)2

(K̃1+K̃2)K̃2K̃1
.

In the first case θ0 = 0 or π, which corresponds to the first type of solution in the classical

spin problem. The solution respects time-reversal symmetry and we shall call it TRI state

in the following.

There are two degenerate solutions in the second case corresponding to θ0 ≷ 0 which

are time-reversal pairs (ψ1(2) ⇋ ψ∗

1(2)). The solution breaks time reversal symmetry and we

shall call it the TRB state. The corresponding α1(2) is equal to zero in the TRI state, and
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is of order sin θ0T̃1(2)λ/K̃1(2) in the TRB state, which is much less than θ0 in the limit of

weak-Josephson coupling T̃1(2)λ/K̃1(2) << 1, justifying our approximate treatment of free

energy.

It is interesting to note that although the net Josephson current passing through the

tunnelling barrier is zero in the ground state, the currents J1 and J2 = −J1, which represent

current passing from band 1(2) of the two-band superconductor to the single-band super-

conductor, are nonzero in the TRB state. Correspondingly there is also a nonzero current

J12 ∼ J̃ sin(θ1 − θ2) passing from band one to band two in the TRB state.

Thus the TRB state is characterized by a novel current “loop” through the Josephson

function. A current flows from band one/two of the two-band superconductor to the single-

band superconductor through the Josephson junction, and flows back to band two/one of

the two-band superconductor. The current flow from band two/one to band one/two inside

the two-band superconductor to complete the current loop. The current loop we see here is

not a current loop circulating in real space, but a current loop in ~k-space, if we envision the

two bands as occupying different parts of the ~k-space.

It is also straightforward to see from Eq. (6) that the parameter space where the TRB

state exists is enlarged when there is a net current flowing across the Josephson junction

(β0, βs 6= 0). This is not surprising since a finite current through the system breaks time-

reversal symmetry. The current also removes the degeneracy of the two TRB solutions with

θ0 ≶ 0.

The presence of non-trivial phase structure leads to non-trivial electron surface states on

the surface of the Josephson junction. To study these surface states we consider the ground

state and analyze the corresponding Bogoliubov-de Gennes (BdG) equation,

ǫ(i)n u
(i)
n (~x) = Ĥ(i)

o u(i)n (~x) + ∆(i)(~x)v(i)n (~x) (8)

ǫ(i)n v
(i)
n (~x) = −Ĥ(i)

o v(i)n (~x) + ∆(i)∗(~x)u(i)n (~x)

where i = 1, 2 are the band indices, Ĥ
(i)
o gives the single-particle band structure for band i

and ∆(i)(~x) is the corresponding superconducting order parameter. We have assumed that

the two bands are independent of each other and are coupled implicitly only through the

superconductor order parameter in writing down Eq.(8). In particular, ∆(1) ∼ +(−)∆(2) in

the bulk superconductor if J > (<)0. The Josephson function can be modeled by supercon-

ducting order parameters of the form ∆(i)(~x) ∼ ∆
(i)
0 e

iθi(x) at x > 0 and ∆(x) = ∆s at x < 0,
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where ∆
(i)
0 and ∆s are real and positive. We shall show in the following that non-trivial

electronic surface state exists in the Josephson junction, with structures depending strongly

on the phases of the superconducting order parameters.

The BdG equations for electronic states close to the Fermi surface can be solved in the

WKBJ approximation13 where we write u(v)
(i)
n (~x) ∼ ei

~kF .~xũ(ṽ)
(i)
n (~x), where ũ(ṽ)

(i)
n (~x) are

slowly varying functions of ~x (on the scale of k−1
F ) satisfying the Andreev equations,

ǫ(i)n ũ
(i)
n (~x) = −i(~v

(i)
F .∇)ũ(i)n (~x) + ∆(i)(~x)ṽ(i)n (~x) (9)

ǫ(i)n ṽ
(i)
n (~x) = i(~v

(i)
F .∇)ṽ(i)n (~x) + ∆(i)∗(~x)ũ(i)n (~x),

where ~v
(i)
F is the Fermi velocity of the band i electrons with momentum ~k

(i)
F . We shall

consider the weak-Josephson coupling limit (θ̃1(2) << θ0) in the following, so that θ1(x) ∼ θ0

and θ2(x) ∼ θ0 − π. The bound states are given by solutions of form ũ(ṽ)n(~x) = ũ(ṽ)0e
−γ+x

for x > 0 and ũ(ṽ)n(~x) = ũ(ṽ)0e
γ
−
x for x < 0. Substituting these into Eq. (9), we obtain

the self-consistent equations

ǫ
(i)2
0 = ∆

(i)2
0 (1− x(i)2) = ∆2

s(1− y(i)2) (10)

ǫ
(i)
0 /∆

(i)
0 − ix(i)

ǫ
(i)
0 /∆s + iy(i)

= eiθi

where x(i) = ~v
(i)
F .x̂(γ

(i)
+ /∆

(i)
0 ) and y(i) = ~v

(i)
F .x̂(γ

(i)
−
/∆s). Notice that x(i) and y(i) must have

the same sign in this representation and changing sign of x(y)(i) corresponds to changing

~vF → −~vF .

It is easy to see that if x(i), y(i) is a solution of Eq. (10) with energy ǫ
(i)
0 , then −x(i),−y(i)

is a solution with energy −ǫ
(i)
0 . −x(i),−y(i) is also a solution with energy ǫ

(i)
0 with θi → −θi.

Therefore it is sufficient to consider the range π > θi > 0. Solving Eq (10) we find that solu-

tions where x(i) and y(i) have the same sign exists only when cos θi < min(∆
(i)
0 /∆s,∆s/∆

(i)
0 ),

with

x(i) =
∆s cos θi −∆

(i)
0

D(i)
sgn(ǫ

(i)
0 ), (11)

y(i) =
∆

(i)
0 cos θi −∆s

D(i)
sgn(ǫ

(i)
0 ),

ǫ
(i)
0 = ±

∆
(i)
0 ∆s sin θi
D(i)

.

where D(i) =

√

∆2
s +∆

(i)2
0 − 2 cos θi∆s∆

(i)
0 . Notice that there exists one solution for each
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value of Fermi momentum ~k
(i)
F = (k

(i)
Fx, k

(i)
Fy, k

(i)
Fz). Thus a finite density of states exist at the

Josephson junction in general.

We now analyze the solutions as a function of θi. First we note that bound state solutions

do not exist when θi = 0, i.e. when J > 0 and the system is not frustrated. For J < 0 and

θi = π, we find that bound state solutions with ǫ
(i)
0 = 0 exist at both x(y)(i) ≶ 0 channels. In

the corresponding Josephson junction problem, bound state solutions with zero energy exist

in the TRI state in the band which is out-of-phase with the single-band superconductor,

but there is no bound state solution for the band which is in-phase with the single-band

superconductor. Since time-reversal symmetry is preserved in the TRI state, the x(y)(i) ≶ 0

states have the same bound state energy ǫ
(i)
0 = 0.

The bound state structure is much richer in the TRB state which breaks time-reversal

symmetry. In this case, the structure of the bound states depend on the value of θ0 (Recall

θ1 ∼ θ0 and θ2 ∼ θ0 − π). First we consider θ0 < π/2. For small θ0 such that cos θ0 >

min(∆
(1)
0 /∆s,∆s/∆

(1)
0 ), bound state solutions exist only in band two. The bound states

exist in pairs with energies ±ǫ
(2)
0 6= 0, corresponding to time-reversal pairs x(y)(2) ≶ 0.

For larger θ0 such that cos θ0 < min(∆
(1)
0 /∆s,∆s/∆

(1)
0 ), bound state solutions exist in both

bands in time-reversal pairs with energies ±ǫ
(1,2)
0 6= 0. Similar results occur for θ0 > π/2

where bound states exist only in band one if − cos θ0 > min(∆
(2)
0 /∆s,∆s/∆

(2)
0 ) and exist in

both bands if − cos θ0 < min(∆
(2)
0 /∆s,∆s/∆

(2)
0 ).

Now the experimental observation of this bound state is discussed. First, the dI/dV curve

for the Josephson tunneling should show the peak at the bound state energy within the gap.

A zero-bias peak would exists in the TRI state, and is split into two peaks centered at finite

energies in the TRB state. The local probe such as the STS can also be used to detect

these bound states. The detection of the persistent Josephson current loop in ~k-space in the

TRB state will be a challenge. The standard prove for the time-reversal symmetry breaking

is the Kerr rotation. With the spin-orbit interaction, the finite spin density is expected at

the Josephson junction, but the details of the analysis depends on band structure which we

have not undertaken in this paper.

We emphasize that the effects discussed in this paper are general effects associated with

frustrated phase structures in superconductor Josephson junctions, and is not restricted to

s-wave superconductor, or Josephson junction involving single-band and two-band supercon-

ductors. This idea of the frustration can be generalized to single multi-band superconductors
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with three or more bands coupled via internal Josephson effect. In this case, we can con-

struct the effective XY-spin model with positive or negative exchange interactions between

pairs of the order parameters, and when there exists relative angle(s) different from 0 or π,

time-reversal symmetry is broken spontaneously. This mechanism is likely to be active in

the superconductors with rather complex band structure such as the heavy fermion systems,

where many sheets of the Fermi surface contribute to the pairing.

To summarize, we have studied the Josephson junction between the two-gap supercon-

ductor and the conventional s-wave superconductor. When the relative sign of the two

gaps are negative, the Josephson coupling introduces the frustration, which can lead to the

time-reversal symmetry breaking near the junction. This results in the bound state within

the gaps, which an be detected by the dI/dV characteristics or STS, which can offers an

experimental test of the relative phase of the two gaps.
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