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Abstract—This paper presents a circuit in which tungsten oxide
-based analog memristors are post-processed on a CMOS-based
Field-Programmable Analog Array Integrated Circuit (FPAA-
IC). FPAAs are powerful tools for rapid analog experimentation,
prototyping and power-efficient computing, and they allow cus-
tom analog circuits to be built and reconfigured. The primary
motivation for this work is to introduce and demonstrate the
operation of the FPAA/memristor hybrid circuit and the board-
level infrastructure, and to form a basis for subsequent empirical
work on analog memristive computing. The experiments shown in
this paper demonstrate a successful fabrication of memristors on
the FPAA substrate, and the usefulness of the hybrid computing
infrastructure in terms of experimentation with memristors. The
experiments suggest that a single state variable cannot capture
the adaptation of a memristor. To this end, a SPICE compatible
memristor model with two state variables is presented. Fur-
thermore, a memristor-based adaptive coincidence detector is
demonstrated on the FPAA/Memristor computing infrastructure.

Index Terms — Memristor, field-programmable analog

array (FPAA), hybrid integrated circuit, analog signal

processing

I. INTRODUCTION

Memristors are passive two-terminal circuit elements with

a resistance that varies as a function of charge or flux passing

through the device [1]; the theory of memristive devices can

be used to describe the change of the resistance [2]. In fact,

the theory of memristive devices can be used to capture the

characteristics of two-terminal memory elements that rely on

different mechanisms responsible for the actual change in

resistance, such as change of phase, magneto-resistive effect

or thin-film ionic transport [3].

In this paper we concentrate on memristors in which an

electric field across the device redistributes the ion con-

centration in a thin film, and thus changes the resistance.

Such devices based on various different technologies have

been reported for example in [4]–[7]. Memristive devices

can be either digital or analog depending on the resistance

switching characteristics [8]; in this work we concentrate on

the characterization and computing with the analog mem-

ristor originally reported in [9]. A natural way to fabricate

memristors is to form the devices into crossing points of
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Fig. 1. Conceptual illustration of the FPAA/memristor hybrid computing in-
frastructure. Memristors are fabricated on top of the FPAA-IC. The memristor
has a tungsten (W) bottom electrode, and a palladium (Pd) top electrode. The
FPAA-IC is placed on a circuit board that houses digital-to-analog converters
(DACs) and analog-to-digital converters (ADCs) that are used to control and
measure the circuit during the experiments. Memristors are connected to FPAA
pads with bond wires, and internal FPAA wirings are routed using floating-
gate (FG) switches.

perpendicular wires, which facilitates the related lithography.

Computation with passive devices such as memristors requires

them to be interfaced to active components. If the memristor

fabrication process is CMOS-compatible, for example in terms

of temperature and materials, memristors can be fabricated

on top of CMOS circuits. A CMOS-memristor hybrid circuit

has benefits especially with parallel computing architectures

that rely on local access to memory resources. Prior to this

work, fabricated CMOS/memristor hybrid circuits have been

presented for example in [10]–[12].

Algorithms that can be mapped to such parallel architectures

commonly have effective analog implementations. Examples

are high complexity, low accuracy computing tasks such as

analog filter banks and vector matrix multipliers. The primary

advantage in this type of computing is the potential for higher

energy efficiency as compared to digital signal processing [13].

The computing efficiency stems from mapping the algorithm

topographically to the circuit, operation on unquantized values,

and utilization of inherent device characteristics that originate

from device physics. A major downside with typical integrated

circuit realizations of analog computation is the amount of

design time and effort; usually a fabricated circuit cannot

be reconfigured, and changing the circuit requires a new

fabrication round.

Analog equivalents of Field-Programmable Gate Arrays

(FPGA), namely Field-Programmable Analog Arrays (FPAA),

make it possible to design and reconfigure analog circuits

repeatedly [14]. Circuit design is carried out by connecting
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Computational Analog Blocks (CAB) via switches and routing

fabrics. Here we consider integrating analog memristors on top

of a CMOS FPAA. Such an FPAA-memristor hybrid circuit

forms a powerful analog computing platform, combining accu-

racy and efficiency of Floating-Gate Transistor (FGT) -based

analog elements with the adaptation properties of a memristor;

using the FPAA architecture we can construct analog circuits

containing active CMOS components and passive memristors,

and reconfigure the circuits at will. It is significant to note

that memristor-based designs, be they intended for character-

isation or actual computation, immediately benefit from the

computing infrastructure developed for FPAAs.

In the work presented in this paper we have integrated

tungsten oxide -based analog memristors with FPAA In-

tegrated Circuits (FPAA–IC). Fig. 1 presents a conceptual

diagram of this hybrid circuit. The memristor has a tungsten

(W) bottom electrode and a palladium (Pd) top electrode

that are connected to the FPAA elements via floating-gate

switches. The hybrid circuit interfaces to a board-level FPAA

infrastructure (microcontroller, communication resources) via

on-board digital-to-analog converters (DACs) and analog-to-

digital converters (ADCs). In the following we describe the

FPAA/memristor hybrid circuit and computing infrastructure,

and use it to experiment with analog memristors. An overview

of the FPAA-memristor concept was given in [15] and this

paper extends the explanations, analysis and experimental

work. To the authors’ knowledge, this work is the first in which

an FPAA/memristor hybrid circuit is empirically demonstrated.

II. FPAA/MEMRISTOR HYBRID CIRCUITS

A. Field-programmable analog arrays

Field-programmable analog arrays are essentially a col-

lection programmable computational analog blocks and a

network of reconfigurable interconnects. As a FPAA is a

reconfigurable system, it facilitates testing, rapid prototyping,

or final implementation of analog circuits in a wide variety

of applications. FPAAs are capable of performing signal

processing functions such as filtering, matrix multiplication,

amplification, and current to voltage conversion entirely in the

analog domain [16], [17].

A CAB in the FPAA consists of circuit elements and

signal processing subcircuits of different levels of complexity,

including transistors, amplifiers, and multipliers. Similarly to

Flash memories, FPAAs are based on Floating-Gate (FG)

MOSFET technology. This technology relies on the ability to

control the amount of charge stored at the gate terminals of FG

transistors; as altering the gate charge changes the threshold

voltage of the floating-gate transistor, an FGT can act either

as a programmable, nonvolatile current source, or as a switch.

Fig. 2 illustrates that the FGT used in this work is a

transistor with two capacitors (Cin and Ctun) attached to the

gate. In Fig. 2(a) electrons are removed from the floating gate

using quantum tunneling by pulling Vtun to a high potential

while connecting Vin to ground (GND). If Ctun ≪ Cin, the

floating gate voltage Vfg remains close to GND, resulting in a

high voltage across capacitor Ctun. A sufficiently high voltage

yields a usable tunneling current through Ctun, as this current

depends exponentially on the voltage across the capacitor [18].
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Fig. 2. (a) FGT during tunneling. Electrons are removed from the FG through
Ctun. (b) FGT during hot electron injection, which is used to add electrons
to the FG. (c) CAB element OTA: operational transconductance amplifier
with programmable bias current. (d) CAB element OTA FG: operational
transconductance amplifier with programmable bias current and FGTs at
inputs to eliminate input offset voltages.

Electrons are added to the floating gate by hot electron

injection as shown in Fig. 2(b). In this method, the FGT is

biased with a high source–drain voltage while controlling the

current with Vin. The high electric field in the channel yields

high energy holes that impact ionize electrons in the drain-to-

channel depletion region. These electrons gain energy as they

enter the channel region and, with sufficiently large source-

drain voltages, they get injected through the gate insulator to

the gate [18].

Figs. 2(c) and (d) show two CAB elements used in this

paper. In the transconductance amplifier shown in Fig. 2(c), the

bias current is controlled by a FGT and is thus programmable.

The transconductance amplifier of Fig. 2(d) has FGTs also at

the inputs so that nonvolatile electrical trimming can be used to

eliminate the input offset voltage: an offset of opposite polarity

is programmed to the input FGTs to counteract the initial

offset [14]. The ability to mitigate mismatch effects facilitates

scaling of analog designs to CMOS technologies of smaller

line widths, and is useful in dealing with memristor mismatch.

An FPAA circuit board houses the FPAA along with a

microcontroller, communication links and data converters. It

should be noted that the low level programming mechanisms

(tunneling and injection) are handled by the FPAA infrastruc-

ture so that accurate FG programming requires just defining a

target value; the board, together with high level synthesis tools

and software routines form a complete infrastructure for exper-

imentation. For example, the tool set includes compilers from

netlist or SPICE definitions to object code, routing structure

viewers, and Matlab components, including a Simulink-based

tool for block-level designs [19]. The interface between the

PC and the FPAA is achieved with Matlab through the on-

board micro controller, and all communication is performed

in the digital domain. FPAA circuits, boards, and toolsets are

discussed in detail for example in [14] and [20].

B. Memristive devices

The memristive device considered in this paper is a tungsten

oxide -based analog memristor, originally presented in [9]. The

memristive behavior of the device is attributed to the migra-

tion of oxygen vacancies at the oxide–electrode interface. A
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structural diagram of this memristor is presented in Fig. 1.

In contrast to digital memristors with discrete conductance

states, the conductance of the analog memristor can be altered

on a continuous range by applying sufficiently large voltages

across it. A positive voltage increases the conductance of the

memristor, while a negative voltage decreases it. To measure

the conductance of the memristor, voltage pulses of short

duration and low amplitude should be used in order to avoid

unwanted programming. Ideally, a memristor is nonvolatile,

which means that its conductance does not change while the

device is unpowered. However, the considered tungsten-based

memristor is volatile: after the device has been programmed,

the memristor starts to return towards its equilibrium (relaxed)

state. In certain applications the relaxation process that causes

the volatility of a memristor may be useful, as discussed

in [21] and in Section V-B.

C. FPAA/memristor integration

The starting point of fabricating the FPAA/memristor hybrid

circuit was a wafer containing FPAA-ICs housing 84 CABs.

The wafer had gone through a 350 nm CMOS process and

had been cut to reticle-sized pieces before post-processing. It

is notable that FPAAs have already been used as a substrate

for fabricating devices on the wafers: integration of micro-

electromechanical system (MEMS) devices — MEMS micro-

phones and capacitive micromachined ultrasonic transducers

(CMUT) — with FPAAs was demonstrated in [22]. Here we

show that a similar approach can be used for memristors.

Chip planarization was performed prior to the fabrication

of memristor devices. A 500 nm SiO2 film was deposited

as a passivation layer on the top of the FPAA CMOS chip

by plasma enhanced chemical vapor deposition (PECVD).

Spin-on-glass (SOG) was then deposited, baked, and etched

back to create a planarized surface for memristor integration.

Fig. 3(a) shows a die photograph of the FPAA chip with the

post processed memristors.

The memristor device consists of a MIM structure with a

300 nm wide palladium (Pd) top electrode, a tungsten oxide

(WOx) switching layer and a 360 nm wide tungsten (W)

bottom electrode. Fig. 3(b) shows a microphotograph of one of

the fabricated memristors. The memristor was formed into the

cross section of the top and bottom electrodes. First, a 60 nm

thick tungsten film was deposited by sputtering at room tem-

perature on the platform. The bottom electrodes and contact

pads were patterned by e-beam lithography and reactive-ion

etching. Rapid thermal annealing in pure oxygen at 350◦C

for 1 minute was performed to form an approximately 30 nm

thick tungsten oxide layer. The Pd/Au top electrodes were then

patterned by e-beam lithography and lift-off to complete the

memristor structure in a crossbar geometry. After contact hole

opening, the electrodes of nine memristors were wire-bonded

to the I/O pads of the chip for access to FPAA resources.

III. EXPERIMENTS WITH THE FPAA/MEMRISTOR HYBRID

CIRCUIT

A. Transimpedance amplifier for measuring memristor current

Fig. 4(a) shows a transimpedance amplifier -based circuit

that was used to measure memristors’ currents. This circuit

(a) (b)

Fig. 3. (a) Die photo of the FPAA with postprocessed memristors. (b)
Microphotograph of a memristor; the location of the memristor on the FPAA
die is indicated by a red square in Fig. 3(a).

uses CAB elements OTA and OTA FG. As shown in Fig. 2,

the OTA uses an FGT for bias current, while the OTA FG

has FGTs also at the inputs for offset cancellation. The CAB

elements are wired together via the FPAA routing fabric

and FG switches. Transconductor OTA FG acts as a resistive

feedback element of the transimpedance amplifier as in [14].

The transimpedance amplifier keeps Vmem1 at virtual ground

level Vin1, assuming the voltage gain of the OTA is large

enough. Voltage Vin1 is driven by digital-to-analog converter

DAC1. The other terminal of the memristor is driven to Vin2 by

DAC2. To measure the current flowing through the memristor,

we use the transimpedance amplifier to transform the current

into analog voltage Vout, which is further converted into digital

domain using an analog-to-digital converter (ADC) on the

FPAA board.

Note that in Fig. 4(a) no FG switches are depicted; usually

the actual switch configuration does not affect the operation of

the circuit, and is thus abstracted away with the simulink-based

FPAA schematic editor. In reality the routing of the circuit

requires multiple switches. This is illustrated in Fig. 4(b)

that shows also the FG-switches. With the fabricated analog

memristors the switches do matter because the memristor

currents are in the order of 100 µA, while the ON-resistance

of an FG-switch is in the kilo-ohm range, making the switches

the dominant nonideality in the measurement. Also, a single

OTA FG cannot source or sink currents around 100 µA;

multiple OTA FGs are thus connected in parallel to reach

sufficient current levels.

The Simulink-based design tool generates an FPAA configu-

ration file, where the switches to be programmed are identified

by row and column coordinates. Because of the key role

of the switches, the number of switches in the current path

was reduced by manual routing optimization. The resulting

switch configuration is shown in Fig. 4(b), where the switch

transistors shown in the darker background (S5− S11) are in

the current path. In order to further mitigate the influence of

the high ON-resistances of the FG switches, several switches

were added in parallel to switches S5− S11.

We characterized the transimpedance amplifier using a

11.9 kΩ external resistor Rext, and used this measurement

to determine a relation between memristor current and Vout.

In order to determine the voltage Vmem across the memristor,
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the resistive voltage drop of FG switches S5 − S11 was

characterised by using another set of ADCs, not shown in

Fig. 4(b). Since memristor terminals Vmem1 and Vmem2 are not

bonded to the circuit board, they were routed to Vmem1’ and

Vmem2’ through switches S1−S3. Note that these voltages are

approximately equal to Vmem1 and Vmem2 since the ADCs have

high-impedance inputs (no DC current goes through switches

S1− S3). Therefore, the current through Rext is

IRext = (Vmem1’ − Vmem2’)/Rext = Vout/Rfb, (1)

where Rfb is the equivalent feedback resistance of the tran-

simpedance amplifier-based memristor characterization circuit.

A characterisation measurement to relate Vout and IRext was

carried out by sweeping Vin2 and monitoring Vmem1’, Vmem2’

and Vout. Resistor Rfb was found to be 13.1kΩ, and Imem can

be computed as Imem = Vout/Rfb.

It should be noted that using Rfb for memristor characterisa-

tion requires AD-conversion of three voltages (Vmem1’, Vmem2’

and Vout). However, the FPAA can perform measurements

at a higher speed, if only one AD-conversion is required.

In order to cope with one AD-conversion, voltages Vin and

Vout need to be related to memristor voltage. Given that the

input offset voltage of the transconductance amplifier can be

trimmed to zero by using the OTA FG, we define Vdrop as a

voltage that contains the resistive drop of the switches, as well

as fluctuation of the virtual ground due to finite gain of the

transimpedance amplifier,

Vdrop = Vin1 − Vin2 − Vmem. (2)

Vdrop is a nonlinear function of Vout since the PMOS-based

FG-switches are more resistive when they connect between

signals that are close to ground. Vdrop was related to Vout using

a fourth-order polynomial fit.

B. Characterisation of the fabricated memristors

Visual inspection of the nine memristors that were con-

nected to the FPAA I/O pads revealed that two memristors

had a broken wire in one of the terminals. Furthermore,

one of the memristors could not be measured because it

was connected to an I/O pad that was not accessible to

the internal routing structure of the FPAA. Three of the six

remaining memristors were open circuits, while three exhibited

memristive behaviour; these are referred to as M1, M2 and M3.

In the measurements of Sections III and IV, the virtual ground

level Vin1 was set to 1.9 V, while the operating voltage of the

FPAA was 3.4 V. Values of voltage Vin2 are given relative to

the virtual ground level.

Fig. 5 shows voltage-current hysteresis loops of memristors

M1 (a,b), M2 (c,d), and M3 (e,f) when programmed by

sinusoidal pulses. In Fig. 5(a,c,e), a 1.35 V voltage pulse with

a duration of 1 s was applied to Vin2 in order to program

the memristor into a high-conductance state. Then Vin2 was

driven with a full-wave rectified sinusoidal voltage of the form

Vin2 = AV | sin(2πft)| with amplitude AV = −1.35 V and

frequency f = 15.625 Hz for 0.16 s. The inset in Fig. 5(a)

shows the Vmem and Imem as a function of time; note that the

amplitude of Vmem is lower than that of Vin2 because of the

resistive drop (see Eq. 2). The red curves in (a) show the

initial I/V curves of memristor M1. During the measurements,

the I/V curves of M1 changed unintendedly, and the negative

currents (blue colour) scaled down by about a factor of three

(see discussion in Section V-C).

Figures 5(b,d,f) show an experiment in which a −1.35V

voltage pulse with a duration of 1 s was applied to Vin2 in

order to program the memristor into a low-conductance state.

After this, Vin2 was driven with the same rectified sinusoidal

voltage as above, but with amplitude AV = 1.35 V. This

positive sinusoidal input programs the memristor towards a

more conductive state. The voltage drop in the FG switches

limits the voltage across the memristor to approximately 1.2V.
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Fig. 5. Voltage–current hysteresis loops of fabricated memristors M1 (a,b),
M2 (c,d) and M3 (e,f). In (a,c,e) the memristor is initialized first into a
high-conductance state and then driven with a negative, full-wave rectified
sinusoidal voltage. The corresponding decrease in the conductance of the
memristor is visible in the hysteresis loops. The red curves in (a) show the
initial I/V curves of memristor M1. At some point the I/V curves of M1
changed unintendedly, and the negative currents (blue colour) scaled down
by about a factor of three (see Section V-C). In (b,d,f), the memristor is
programmed to a low-conductance state and then driven with a positive, full-
wave rectified sinusoidal voltage.

IV. MEMRISTOR MODEL

Our aim in the following is to create a SPICE compatible

functional simulation model that captures memristor relaxation

process (returning to an equilibrium state after stimulus) as

well as transient response. Such a model provides important

insight for a circuit designer, as the aim is to use the memristor

as an analog computing element. Memristor M2 was chosen

for additional characterization measurements in order to build

the model.

Figure 6 shows the I/V response of the memristor with

two sinusoidal voltages of different frequencies. The blue I/V

curve is measured with a 94 Hz sine, whereas the black curve

is measured with a 0.23 Hz sine. As expected, the black

lower frequency I/V curve reaches a higher positive current

as compared to the blue curve, since more adaptation takes

place at lower frequencies. Similar conclusions can be made

with negative voltages. It is worth noting that the amount of

hysteresis in the I/V curves remains about the same, even

if the frequency changes by a factor of 400. This is in

contrast to a flux controlled memristor, where the amount of
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94 Hz sine (modeled)

0.23 Hz sine (measured)
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Fig. 6. I/V response of the memristor with two sinusoidal voltages of different
frequencies. The blue I/V curve is measured with a 94 Hz sine, whereas the
black curve is measured with a 0.23 Hz sine. Also shown in the figure are
the modeled I/V curves corresponding to 94 Hz sine (red curve) and 0.23 Hz
sine (light blue curve).

hysteresis increases inversely proportional to the frequency.

Existing models like [9] work well on a particular timescale,

but cannot capture the characteristics correctly with such a

wide frequency range.

To overcome this limitation, we propose a model with two

states W1 and W2, whose rates of change are defined as

dW{1,2}

dt
=

{

α(V − Vth)
β Wmax

Wmax+W{1,2}
, if V − Vth > 0

−δ{1,2}(Vth − V )ηW{1,2}
γ , if V − Vth ≤ 0

(3)

where α, β, δ1, δ2, η and γ are model parameters, Wmax sets

a soft limit for W1 and W2, whereas Vth sets the threshold

voltage for conductance increase. When the voltage is below

Vth, the conductance decreases. The only difference between

W1 and W2 in Equation 3 is that δ1 >> δ2. Therefore, W2

decreases much slower than W1; W1 is responsible for the

rapid drop in the beginning of the relaxation process.

The threshold voltage Vth is not constant, but increases with

state W1 as

Vth = ρ+ ξ
logW1 − logWmin

logWmax − logWmin

(4)

so that the higher the state, the more voltage it takes to program

the device. ρ and ξ are threshold voltage parameters. We define

auxiliary state W as

W = κ(logW1 − logWmin)
µ + λ(logW2 − logWmin)

µ (5)

where κ, µ and λ are model parameters. Since W1 and W2

are related to the flux, W relates to the logarithm of the

flux. Note that Wmin keeps the auxiliary state W positive. If

states W1 and W2 fall below Wmin, the auxiliary state W
becomes negative (the model stops working). However, no

specific window function is used to limit the states, as the

rate of change of states (3) decreases with the states; with

small Wmin, it would take W1 and W2 a very long time to

reach Wmin.

https://www.researchgate.net/publication/216804213_Synaptic_behaviors_and_modeling_of_a_metal_oxide_memristive_device?el=1_x_8&enrichId=rgreq-0fcfe5a6-00d8-49cf-9bbe-f34fd485fd4b&enrichSource=Y292ZXJQYWdlOzI3MjQyOTI5MDtBUzoyNDA5MjY4OTUzNzQzMzlAMTQzNDQ1Mjg1NjQwOA==
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Fig. 7. Memristor relaxation curve measurement. The blue curve shows the
average of four measurements in which the memristor is first programmed to
high-conductance state, and then read with 200 µs, Vin2 = 0.7 V pulses of
exponentially increasing time intervals between read-pulses. The black curve
shows a modeled relaxation curve.

The current through the memristor is defined as

I =

{

νWV φ, if (V > 0)

−ψ(W + ζ)|V |φ, if (V ≤ 0)
(6)

where ν, φ, ψ and ζ are model parameters.

The proposed logarithmic memristor model can reproduce

the sinusoidal waveforms of Fig. 6. The red and light blue I/V

curves in Fig. 6 corresponding to 94 Hz sine and 0.23 Hz sine

are created with the memristor model. The model manages to

capture the adaptation correctly at varying time-scales.

According to [21] the relaxation process causing the volatil-

ity of a WOx -based memristor can be modeled by using a

stretched-exponential, also known as a Kohlrausch function

[23], which approximates an exponentially decaying process

with multiple time constants. This can be observed from Fig. 7

that shows a measurement demonstrating memristor relaxation

curve.

The measurement was performed by monitoring memristor

current after initialization to a high conductance state using a

1 s, Vin2 = 1.35 V pulse. After the initialization, 200 µs, 0.7

V read pulses were applied at exponentially increasing time-

intervals. The 0.7 V amplitude in the read voltage was a com-

promise between unwanted change in memristor conductance

and noise in the readout chain. Also, short pulse widths were

used to minimise unwanted programming. Between pulses,

the memristor voltage was set to zero. The measurement time

spans from 10−4 s to 1 s. The measurement was repeated four

times. The curve demonstrates a rapid decay in the beginning,

followed by a gradual slow-down. The black curve in Fig.

7 shows that the proposed memristor model can successfully

approximate the measured relaxation curve. The rapid drop in

the current is created with state W1, whereas W2 produces a

tail with a slower decay.

Fig. 8 illustrates the transient behaviour of the memristor

in an experiment in which memristor M2 was programmed

by pulses. The amplitudes of the pulses applied to Vin2 were

0.7 V (Vread) and 1.35 V (Vprog). Between pulses, the voltage

TABLE I
MEMRISTOR MODEL PARAMETERS.

α β δ1 δ2 η γ ρ ξ κ

1.08e5 6 1.5e5 20 3 2.2 0.2 0.6 0.6

ψ λ Wmin Wmax ν φ ζ µ

1.18e-6 0.35 1e-5 50 1.18e-6 3 5 1.5

was kept at zero volts. The memristor was first programmed

to a low conductance state by applying −Vprog to Vin2 for

one second. Next, a voltage waveform with Vin2 alternating

between Vread and Vprog as shown on top of Fig. 8 was

applied. The first Vread pulse yields a current of 5.5 µA.

Consequent Vprog pulses start to increase the conductance. It

can be observed that between the Vprog pulses, the conductance

decreases significantly. Even a 100 µs break in Vprog is enough

to cause such a decrease, as visible after the fourth Vprog pulse.

The fast volatility of the measured memristor is also appar-

ent after the sixth Vprog pulse which is immediately followed

by a Vread pulse. During the read pulse the current is 16 µA,

whereas the next Vread pulse, which does not immediately

follow the seventh Vprog pulse, results in a 11.5 µA current.

Also shown in Fig. 8 are memristor states W1, W2, auxiliary

state W , modeled memristor current, and threshold voltage Vth

(black curve in the top subfigure).

Fig. 9 shows an experiment similar to that of Fig. 8, except

that the time-scale was stretched from 16 ms to 640 ms. In

the beginning of the first, sixth and seventh read pulses, the

measured currents were 6 µA, 20 µA and 13 µA, respectively.

In Fig. 10 a related experiment was carried out with an

initialization to high-conductance state by applying a one-

second Vprog pulse. This was followed by a pulse train similar

to the one used in Fig. 8, but with the voltage polarities

reversed as shown in Fig. 10. The aim was to show that

the model manages to capture the transient behaviour with

negative pulsing. In the beginning of the first −Vread pulse,

the current is −14 µA, whereas during the last −Vread pulse,

the current is −6 µA.

Overall, characterising and modeling memristors with two

states as in the model introduced in Section IV is challenging,

since a single measurement of memristor current with a

particular read voltage reveals only the auxiliary state W ;

getting insight in the values of states W1 and W2 requires

recording a longer I/V history. In the transient measurements

of Figs. 8, 9 and 10, the model manages to reproduce the

transient currents quite similarly to the measurements.

Table IV shows the memristor model parameters that were

determined based on the measurements of memristor M2

shown in Figures 6-10. The same set of parameters was used in

all the simulations of this paper. Initially, optimization methods

such as binary search algorithm with threshold acceptance

were used to find the parameters. However, in the end,

optimization by manual iteration provided a parameter set that

gave the best balance between I/V characteristics, relaxation

curve and transient behaviour. Matlab was used to perform

the simulations of this paper since it allows more options

for parameter optimization as compared to SPICE. After the

optimization, it was verified that Matlab and SPICE give

https://www.researchgate.net/publication/51590162_Short-Term_Memory_to_Long-Term_Memory_Transition_in_a_Nanoscale_Memristor?el=1_x_8&enrichId=rgreq-0fcfe5a6-00d8-49cf-9bbe-f34fd485fd4b&enrichSource=Y292ZXJQYWdlOzI3MjQyOTI5MDtBUzoyNDA5MjY4OTUzNzQzMzlAMTQzNDQ1Mjg1NjQwOA==
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Fig. 8. 16 ms pulse programming experiment. Memristor M2 is initialized
to a low-conductance state with a one-second negative programming pulse,
followed by positive programming and read pulses that increase the conduc-
tance. In addition to measured current, memristor voltage Vmem, memristor
states W1, W2, auxiliary state W , modeled memristor current and threshold
voltage Vth (black curve in the top subfigure) are shown.
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Fig. 9. 640 ms pulse programming experiment. Memristor M2 is initialized
to a low-conductance state with a one-second negative programming pulse,
followed by positive programming and read pulses that increase the conduc-
tance. In addition to measured current, memristor voltage Vmem, memristor
states W1, W2, auxiliary state W , modeled memristor current and threshold
voltage Vth (black curve in the top subfigure) are shown.

similar results.

The SPICE code of the memristor model is listed below;

note that parameters W1INIT and W2INIT are used to set

the initial values of state variables W1 and W2.

.SUBCKT logristor P M W1 W2 W Vth PARAMS:

+alpha=1.08e5 beta=6 rho=0.2 xi=0.6

delta1=1.5e5 delta2=20 eta=3 gamma=2.2

kappa=0.6 mu=1.5 lambda=0.35 nu=1.18e-6

phi=3 zeta=5 psi=1.18e-6

W1INIT=1e-3 W2INIT=1e-3

WMIN=1e-5 WMAX=50
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Fig. 10. 16 ms memristor pulse programming experiment with negative
pulses. Memristor M2 is initialized to a high-conductanse state with a
one-second positive programming pulse, followed by negative programming
and read pulses. In addition to measured current, memristor voltage Vmem,
memristor states W1, W2, auxiliary state W , modeled memristor current and
threshold voltage Vth (black curve in the top subfigure) are shown.

* Threshold voltage Vth

Eth Vth 0 value = {rho+xi*(log(V(W1))-

log(WMIN))/(log(WMAX)-log(WMIN))}

*State variable W1

Gw1 0 W1 value= {alpha*
sign2(V(P,M)-V(Vth))*
pwr(V(P,M)-V(Vth),beta)*WMAX/(WMAX+V(W1))-

sign2(V(Vth)-V(P,M))* delta1*
pwr(V(Vth)-V(P,M),eta)* pwr(V(W1),gamma)}

Cw1 W1 0 1

.IC V(W1) {W1INIT}

*State variable W2

Gw2 0 W2 value= {alpha*
sign2(V(P,M)-V(Vth))*
pwr(V(P,M)-V(Vth),beta)*WMAX/(WMAX+V(W2))-

sign2(V(Vth)-V(P,M))* delta2*
pwr(V(Vth)-V(P,M),eta)* pwr(V(W2),gamma)}

Cw2 W2 0 1

.IC V(W2) {W2INIT}

* Auxiliary state W

Esv W 0 value = {

kappa*pwr(log(V(W1))-log(WMIN),mu)+

lambda*pwr(log(V(W2))-log(WMIN),mu)}

*Output

Gmem P M value= {sign2(V(P,M))*nu*
pwr(V(P,M),phi)*V(W) - sign2(V(M,P))*
psi*pwr(abs(V(M,P)),phi)*(V(W)+zeta)}

*Auxiliary function:

.func sign2(var) = {(sgn(var)+1)/2}

.ENDS logristor



V. COMPUTING WITH FPAA-MEMRISTOR HYBRID

CIRCUITS

A. Dividing Computing Tasks Between CABs and Memristors

A few remarks are in order with respect to mapping com-

puting tasks between the FPAA computational analog blocks

and memristors. A FGT has three terminals (four including

bulk) that can be used to alter the state (FG charge). The state

is available to other transistors simply by connecting the gate

to the FG, without having to perform a specific read cycle. The

programming methods (tunneling and injection) and retention

time are well defined; ignoring temperature, only the current

state and instantaneous voltages at the terminals affect the

programming sensitivity and retention time.

On the other hand, the state of a memristor has to be altered

with the same terminals that are used to read it, and the state

cannot be distributed to other devices without performing a

read cycle. Furthermore, the programming sensitivity depends

on recent history of stimuli in addition to instantaneous

terminal voltages, and the relaxation time (or retention time if

the memristor is nonvolatile) depends on the duration of the

programming [21]. The two-state memristor model introduced

in this paper is an effort to capture the temporal adaptation

properties of the fabricated analog memristor.

These differences have a great impact on the preferred use

of the devices. It is beneficial to use FGTs in tasks that require

accurate programming such as trimming in addition to signal

conditioning, amplification and driving within a hybrid circuit.

Although the use of a memristor as an analog memory with

separate read and write cycles is possible, a natural role of

memristors is to act as continuously adaptive elements in

the current path. Analog memristors have interesting temporal

dynamics in their I/V characteristics and relaxation processes

of the state(s). These qualities are obtained inherently with

the physics of the devices. Provided that computing tasks

can be mapped to utilise the physics, highly energy efficient

computing is possible.

B. Example: Adaptive Coincidence Detector

Fig. 11 shows a transimpedance amplifier circuit for detect-

ing coincidences of input pulses. The amplifier is adaptive so

that the gain increases with frequent coincident input pulses,

and decreases at periods of low coincident pulse activity. A

memristor is placed on the feedback path to make the gain of

the amplifier adapt with the inputs; input voltages Vin2, Vin3

and Vin4 connect to the virtual ground (sum) node through a

set of FG switches. The series combinations of the switches

act as resistances (denoted in Fig. 11 by R1, R2 and R3)

that are used to convert input voltages to currents. Let us first

assume that the OTA has a large enough voltage gain, and the

memristor be bypassed with a short circuit. In this case, the

circuit acts as a conventional transimpedance amplifier, where

the output voltage Vout relates to the input current Iin as

Vout = −
Iin

gm,OTA FG

(7)

When a memristor is added to the feedback path, it can

only affect the output current of the OTA FG through the

transistors at the output stage of the OTA FG. As long as these

transistors are in saturation (there is a small voltage across

the memristor), the output resistance of the OTA FG is high

and the memristor has little effect on the amplifier. When the

memristor has reached a low enough conductance state, and

Iin is large enough, the output transistors of the OTA FG fall

out of saturation, causing an abrupt reduction in gm,OTA FG and,

thus, increase in Vout as indicated by Equation (7).

Fig. 12 shows a measurement in which the circuit of Fig. 11

is used to detect coincidences of Vin2, Vin3 and Vin4 (three

topmost curves). The offset of the OTA FG is tuned so that

without input pulses, the memristor is at an intermediate

conductance level and the rest voltage of Vmem is about

0.4 V. A positive voltage pulse relative to a 1.5 V virtual

ground at one of the inputs causes a negative voltage across

the memristor. Note that memristor adaptation is a nonlinear

function of voltage (η in (3) is 3). With one or two coincident

input pulses, the magnitude of the memristor voltage stays

below 1 V. On the other hand, three simultaneous pulses

increase |Vmem| above 1 V, that is able to cause more significant

adaptation. The red horizontal line in the plot shows a possible

threshold for detected coincident pulses. As explained above,

the OTA FG is biased so that once the memristor has reached

a low enough conductance level, the transistors in the output

stage of the OTA FG fall out of saturation during coincident

pulses; any adaptation after that increases Vout significantly,

thus making coincident pulses easier to detect.

The first set of three coincident pulses is not enough to

cause Vout to reach the threshold level, neither do single pulses

or two coincident pulses. On the other hand, consecutive

occurrences of three coincident pulses increase the gain of the

transimpedance amplifier enough, as memristor conductance

gets reduced by the pulsing. Without pulsing activity, the

memristor voltage is at 0.4 V and the conductance increases

slowly until Vth reaches 0.4 V; a single occurrence of three

coincident pulses at the end of the experiment is not enough

to reach the threshold level at Vout.

Therefore, the sensitivity improves with the summed du-

ration of recently occurred three-pulse coincidences. On the

other hand, the sensitivity reduces with the time from previous

three-pulse coincidence. Thus, the detector filters out isolated

coincident activity.

C. Discussion

The fabricated memristor draws tens of microamps of

current at voltages above 1 V. For FPGA-based low power,

continuously adaptive circuits, it would be desirable to down-

scale the current. This way the finite on-resistance of the FPAA

routing switches would not degrade circuit performance, and

the FPAA could be biased to its inherent current regime. One

way to decrease memristor currents would be to make the area

and thus the number of parallel conducting filaments smaller.

However, the effect of device area on the current is not exactly

linear since the filament growth is affected by many factors.

The devices were measured over a period of several months

and they kept working consistently. As can be observed from

Fig. 5, there is significant device-to-device deviation in the I/V

https://www.researchgate.net/publication/51590162_Short-Term_Memory_to_Long-Term_Memory_Transition_in_a_Nanoscale_Memristor?el=1_x_8&enrichId=rgreq-0fcfe5a6-00d8-49cf-9bbe-f34fd485fd4b&enrichSource=Y292ZXJQYWdlOzI3MjQyOTI5MDtBUzoyNDA5MjY4OTUzNzQzMzlAMTQzNDQ1Mjg1NjQwOA==
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Fig. 11. Adaptive transimpedance amplifier. A memristor in the feedback
path makes the gain of the amplifier adapt with incoming currents.
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Fig. 12. Coincidence detection measurement with the adaptive tran-
simpedance amplifier.

curves of the three measured memristors. It is possible that

post-processing the devices on a CMOS substrate could have

increased the deviation. This could be due to many factors

such as insufficient planarization.

Consecutive measurements of a memristor gave consistently

quite similar curves, but with days and weeks between the

measurements there was some drift in the current levels. The

drift was in the order of ten percent with one exception:

the I/V curve of memristor M1 changed significantly; with

negative memristor voltages the currents reduced to one third.

The change in the characteristics occurred as a large negative

voltage was unintendedly applied across the memristor for

several minutes.

The proposed memristor model can rather faithfully capture

the I/V characteristics of the measured memristor. However,

this is not to say that the model is a complete description

of the memristor. Furthermore, it is not a model where the

different terms would have a direct link to device physics.

Rather, it is a tool for a circuit designer to get an insight

on the characteristics of an analog memristor for purposes of

circuit design.

In upcoming FPAA-memristor fabrication experiments, the

emphasis is on improving device homogenity, aiming at lower

memristor currents, and considering memristor crossbars in

addition to single devices.

VI. CONCLUSIONS

We presented a hybrid circuit which interfaces a field-

programmable analog array with tungsten-based memristors.

We described the architecture of this hybrid circuit, the

integration of memristors to the FPAA, and a method of

measuring memristors using the FPAA. Furthermore, current-

voltage characteristics and relaxation curve measurements of

the memristor were presented. Based on the measurements, a

SPICE-compatible two-state circuit model that can capture the

transient and relaxation curve of the memristor was developed.

Finally, an adaptive coincidence detector using a memristor as

a feedback element was demonstrated. The presented consid-

erations form a basis for future work on analog computing

using FPAA/memristor hybrid circuits.
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