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And we know today – how little we know. There is never an observation made
but a hundred observations are missed in the making of it; there is never a
measurement but some impish truth mocks us and gets away from us in the
margin of error.

H. G. Wells, Men Like Gods (1923)

Exact transcription from Men Like Gods, by H. G. Wells,
as published by The Macmillan Company, New York, 1923.
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Preface

In writing this book, we address several groups of readers who require an under-
standing of measurement, and of uncertainty in measurement, in science and
technology.

Undergraduates in science, for example, should have texts that set out the con-
cepts and terminology of measurement in a clear and consistent manner. At present,
students often encounter texts that are mutually inconsistent in several aspects. For
example, some texts use the terms error and uncertainty interchangeably, whilst
others assign them distinctly different meanings. Such inconsistency is liable to
confuse students, who are consequently unsure about how to interpret and commu-
nicate the results of their measurements.

Until recently, a similar lack of consistency affected those whose primary
occupation includes measurement, the evaluation of uncertainty in measurement,
instrument and artefact calibration and the maintenance of standards of measure-
ment – that is, professional metrologists. International trade, for example, requires
mutual agreement among nations on what uncertainty is, how it is calculated and
how it should be communicated; for a global economy to work efficiently, lack of
such agreement cannot be tolerated. In the mid 1990s, international bodies, charged
with the definition, maintenance and development of technical standards and stan-
dards of measurement in a variety of fields, published and disseminated the Guide to

the Expression of Uncertainty in Measurement – the ‘GUM’. These bodies included
the Bureau International des Poids et Mesures (BIPM) or International Bureau of
Weights and Measures, the International Standardisation Organisation (ISO) and
the International Electrotechnical Commission (IEC). The GUM is being adopted
worldwide by organisations representing a diversity of disciplines, such as calibra-
tion and testing laboratories in the physical and engineering sciences, in chemical
and biochemical analytic work and related specialised areas of medical testing, in
the certification of reference materials and, at the highest metrological level, in
national measurement institutes.

xi



xii Preface

Despite its prominence in all fields of measurement, the GUM is (in 2005) largely
unknown amongst university and college academics. One of our goals in writing
this book is to introduce the GUM and its essential statistical background to an
undergraduate audience. We believe that adopting the methods described in the
GUM at undergraduate level will confer improved clarity and consistency on the
teaching and learning of errors and uncertainty, and on their expression. As use
of the GUM grows in industrial and commercial laboratories, new generations of
graduating students will require a working knowledge of its methods and vocabulary
as well as of the statistical principles that underpin them. In this book we have
attempted to anticipate and address these needs.

We include introductory material in the early chapters, the level of which is con-
sistent with first-year university courses. However, the book as a whole is likely to
be of greater benefit to second-year students who have already had some exposure
to laboratory work as well as a first-year course in calculus and some basic statis-
tics. When dealing with statistical relationships, we have not attempted the rigour
normally found in mathematical statistical texts, but have preferred to introduce
them in an intuitively plausible way, often by means of figures and graphs.

We have made some use of Monte Carlo simulation (MCS) in the text. One
reason is that the GUM, which advocates as a standard practice the law of prop-
agation of uncertainties involving first-order derivatives of the inputs, nonetheless
recognises the need for ‘other analytical or numerical methods’ (when a compli-
cated relationship exists between a measurand and its inputs). One such method is
MCS, and therefore some exposure to MCS is desirable. Another important reason,
in an educational context, is that MCS can make a statistical process, summarised
by a theoretical equation, ‘transparent’ to the reader in a way that a standard the-
oretical approach does not. MCS bears much the same relationship to theoretical
statistics as experimental physics does to theoretical physics, and can be a valuable
and accessible teaching tool, since all it requires is a personal computer, random-
number-generating software and some programming or spreadsheet experience.

As part of the text we have also introduced and described in some detail particular
undergraduate experiments. The ‘real’ data from these experiments are analysed
using the methods described in this book. These experiments might be suitable for
adaptation to courses that deal with measurement and uncertainty. Anticipating this,
we have included some suggestions on how the experiments might be developed
or enhanced.

The need for an exposition of the GUM extends beyond the universities. An
equally important group towards whom this book is directed consists of profes-
sionals who are not necessarily involved in making measurements or assessing
uncertainties on a day-to-day basis, but who must nevertheless be familiar with
contemporary international guidelines relating to measurement and uncertainty.



Preface xiii

Specialist publications that deal with uncertainty and the GUM often assume that
the reader is, or will become, a practising metrologist, and are therefore written at
an advanced level. We hope that this book, with its combination of general prin-
ciples and specific examples, will aid those readers who wish to know something
of current guidelines, but who are less inclined to consult such publications. We
have, however, included in several places some slightly more advanced material;
the reason is that there occur, not uncommonly, situations where simple formulas
as presented in introductory texts become invalid, and to understand why, this more
advanced material is needed.

The calculation and expression of uncertainty constitute only one aspect of
measurement. The subject also includes the detection, description, analysis and
minimisation of errors. The minimisation of errors, moreover, can be achieved in
aesthetically pleasing ways that are often pioneered at national measurement insti-
tutes. We have, therefore, included some discussion of these topics. Since in any
attempt at accurate measurement there is likely to be a variety of potential sources of
error, a broad familiarity with several branches of science is desirable in metrology.
The best metrologists, in fact, tend to be scientific ‘all-rounders’. We have given
some examples of the need for this professional versatility, which contributes to the
fascination and challenge of measurement in science and technology.

One of the great rewards of writing a book is the amount learned by the author or
authors along the way. ‘To teach is to learn’ is ancient wisdom. This is certainly true
for us, and we acknowledge many people who have helped us clarify our thinking.
We are grateful for the assistance we have received in our attempt to bridge the
gap between a textbook written by an academic for an academic audience and a
specialist text written for practising metrologists by a professional in metrology.

We warmly acknowledge the contribution of our colleagues and peers who have
suggested examples, problems and topics for inclusion in the text. We thank, from
the National Measurement Institute of Australia (NMIA) in Sydney, Errol Atkinson,
Mark Ballico, Robin Bentley, Noel Bignell, Nick Brown, Ilya Budovsky, Henry
Chen, Jim Gardner, Åsa Jämting, John Peters, Steve Quigg, Brian Ricketts and
Greig Small; from the University of Technology, Sydney (UTS), Nick Armstrong,
Sherran Evans, Matthew Foot, Jim Franklin, Suzanne Hogg, Walter Kalceff, Geoff
McCredie and Greg Skilbeck; from the Stunt Agency, Jennifer Fenton and, from
Cambridge University Press, Simon Capelin and Vince Higgs. We also thank Alan
Johnston for advice on cover design, and Avril Wynne for her daring flight. We also
gratefully acknowledge the love, support and forbearance of our families throughout
the writing of this book.

Les Kirkup and Bob Frenkel, May 2005





1

The importance of uncertainty in science and technology

We live with uncertainty every day. Will the weather be fine for a barbecue at

the weekend? What is the risk to our health posed by a particular item of diet or

environmental pollutant? Have we invested our money wisely?
It is understandable that we would like to be able to eliminate, or at least reduce,

uncertainty. If we can reduce it significantly, we become more confident that a

desirable event will happen, or that an undesirable event will not. To this end we

seek out accredited professionals, such as weather forecasters, medical researchers

and financial advisers.

However, in science and technology uncertainty has a narrower meaning, created

by the need for accurate measurement. Accurate measurement, which implies the

existence of standards of measurement, and the evaluation of uncertainties in a mea-

surement process are essential to all areas of science and technology. The branch

of science concerned with maintaining and increasing the accuracy of measure-

ment, in any field, is known as metrology.1 It includes the identification, analysis

and minimisation of errors, and the calculation and expression of the resulting

uncertainties.

Whether or not a measurement is regarded as ‘accurate’ depends on the context.

Supermarket scales used for weighing fruit or vegetables need not be better than 1%
accurate. By contrast, a state-of-the-art laboratory balance is able to determine the

value of an unknown mass of nominal value one kilogram2 to better than one part

in ten million. These figures, 1% in one case and one part in ten million in the other,

are numerical measures of the degree of accuracy: low in the first case and high in

the second, but each of them fit for its particular purpose. Evidently, accuracy and

1 This word derives from the Greek ‘to measure’. It should not be confused with meteorology, the study of climate
and weather. The need for accurate measurement, and for standards of length, weight and volume (for example),
was recognised in many ancient societies with relatively primitive technology and hardly any ‘science’ in the
modern sense.

2 A ‘nominal’ value is the ideal or desired value of a particular quantity. Thus the nominal value of the mass of
an object might be 1 kilogram, implying that its accurately measured value is close to 1 kilogram.

1



2 The importance of uncertainty

uncertainty are inversely related: high accuracy implies low uncertainty; and low

accuracy implies high uncertainty.

When we say that the result of a measurement has an associated uncertainty, what,

exactly, are we uncertain about? To begin to answer this question, we acknowledge

that the result of a measurement is usually a number expressed as a multiple of

a unit of measurement. As in the example of the laboratory balance above, we

should refer to a number that results from a measurement as a value. For example, a

person’s mass may have a value of 73 kilograms, meaning that the mass is 73 units,

where each unit is one kilogram. Similarly, the temperature of coffee in a cup may

be 45 degrees Celsius, the length of a brick 231 millimetres, the speed of a car

60 kilometres per hour, and so on. The value that expresses the given quantity

therefore depends on the unit. The same speed of the car, for example, could be

expressed as 17 metres per second. There are cases where the value is independent

of the unit. This happens when a quantity is defined as a ratio of two other quantities,

both of which can be measured in terms of the same unit. The units then ‘cancel

out’. For example, the coefficient of static friction, µs, is defined as the ratio of two

forces and therefore µs is a dimensionless number; for glass on glass, µs ≃ 0.94.

A measurement whose result is characterised by a value holds more information

than a measurement whose result is not characterised in this way. In the latter

case we might hesitate to call the result a ‘measurement’; it would be more in

the nature of an opinion, judgment or assessment. In fact, this is how we tend to

function in everyday life. When parking a car in a busy street, the driver estimates

the available space in most – though not all – cases quite adequately without a

rule or tape-measure. We may think a person handsome or beautiful, but it would

be rash to attempt seriously to attach a numerical value to this. (If we drop the

word ‘seriously’, then it is possible. A ‘millihelen’ may be defined as the amount

of beauty required to launch exactly one ship!3)

The information-rich use of a value to characterise the result of a measurement

comes at a price. We should also consider – particularly in pure and applied science,

in medicine and in engineering – how ‘uncertain’ that value is. Is the length of the

brick 231 millimetres, or more like 229 millimetres? What is the most appropriate

instrument for measuring the length of the brick, and how can we be sure of the

accuracy of the instrument? How, in any case, do we define the ‘length’ of a brick,

which may have rough or uneven edges or sides? How much ‘leeway’ can we afford

to allow for the length of a brick, before we must discard it as unusable?
This book considers measurement, uncertainty in measurement and, in particular,

how uncertainty in measurement may be quantified and expressed. International

3 This refers to a story from ancient Greece, as recounted by Homer in the Iliad around the eighth century BC.
The beautiful Helen of Sparta, in Greece, had been taken to Troy (in what is now Turkey), and that started the
ten-year Trojan War. The Greeks launched a fleet of one thousand ships to reclaim her.
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guidelines exist to assist in these matters. The guidelines are described in the Guide

to the Expression of Uncertainty in Measurement, published by the International

Standardisation Organisation (corrected and reprinted version in 1995), abbreviated

as ‘the GUM’. Before discussing and illustrating these guidelines in detail, we

highlight the importance of measurement and uncertainty by considering some

examples.

1.1 Measurement matters

Just how important are measurement and uncertainty? Careful measurement with

properly identified and quantified uncertainties could lead to a new discovery and

international recognition for the scientist or scientific team that made the discovery.

To the engineer it may lead to improved safety margins in complex systems such

as those found on the space shuttle, and to the police it could contribute to the

successful prosecution of a driver who exceeds the speed limit in a motor vehicle. In

biochemical metrology, accurate measurement is needed for the reliable estimation

of (for example) trace levels of food contaminants such as mercury in fish. In

medical metrology, high accuracy in blood-pressure measurements reduces the

risk of misdiagnosis. We now give some examples of advances in measurement

accuracy. At the end of this chapter we indicate where further information on these

topics may be found. We use the SI (Système International)4 units of measurement,

which include the metre (m) for distance, the kilogram (kg) for mass and the second

(s) for time.

1.1.1 Measurements of the fundamental constants of physics

Theories of the physical world incorporate fundamental constants such as the speed

of light, c, the Planck constant, h, the fine-structure constant, α, and the gravitational

constant,5 G. As far as we know, these are true constants: they do not change with

time or location and have the same values on Earth as anywhere else in the Universe.

In many cases their numerical values are accurately known, and in a few cases

the constants have been exactly defined. For example, the speed of light, c, in a

vacuum is defined as c = 299 792 458 m · s−1. The Planck constant, h, which is

the ratio of the energy of a photon of radiation to its frequency, is accurately known:

h = 6.626 069 × 10−34 J · s (joule-second) with an uncertainty of less than one part

in a million.

4 The French acronym is universally used in recognition of the central role played by France, during the late
eighteenth century and later, in introducing and establishing the uniform system of units of measurement that
came to be known generally as the ‘metric’ system and that later evolved into the SI.

5 ‘Big G’ is not to be confused with g, ‘little g’, which is the acceleration due to gravity near the Earth’s surface
and varies with location.
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The gravitational constant, G, appears in the equation that describes the inverse-

square law of gravitation discovered by Isaac Newton in the seventeenth century:

F = Gm1m2/r2, where F is the gravitational force of attraction between two

masses m1 and m2 a distance r apart. To calculate the force using this equation, we

must know the value of G. With the practically available masses in a laboratory

this force is tiny because G is very small: about 6.68 × 10−11m3 · kg−1 · s−2. For

example, two uniform spherical bodies, each of mass 200 kg, whose centres are sep-

arated by 1 m (these could be two solid steel spheres each of approximate diameter

36 cm) would attract each other with a gravitational force of about 2.7 × 10−6 N.

This is roughly one-tenth the weight of a small ant (mass ≃3 mg).

We have a healthy respect for the Earth’s gravitational force, but this is largely

due to the enormous mass of the Earth, about 6 × 1024 kg (this mass has to be

inferred from a known value of G). In measuring G, the tiny gravitational forces

that exist between bodies in a laboratory make an accurate measurement of G

very difficult. These tiny forces must somehow be measured against a background

of competing gravitational forces, including the much larger ordinary gravity due

to the Earth as well as the gravity exerted by the mass of the scientist doing the

experiment! At the time of writing (2005), the accepted fractional uncertainty in G

is about one part in ten thousand. This is much larger than the fractional uncertainty

with which other fundamental constants are known. Previous attempts to measure

G made in the 1990s yielded results that were mutually discrepant by several parts

per thousand, even though much smaller uncertainties were claimed for some of

the individual results.6 Experiments to measure G accurately are evidently beset

by subtle systematic errors (systematic errors will be discussed later in this book).

When G or any other particular quantity is measured, it is important to know

the uncertainty of the measurement. If two values are obtained for the same par-

ticular quantity, and these values differ by significantly more than the uncertainty

attached to each value, then we know that ‘something is wrong’: the quantity has

perhaps undergone some change in the interval between the two measurements, or

systematic errors have not been properly accounted for. The latter interpretation is

evidently the more likely one with respect to the determination of G.

Painstaking measurements of G, and of other fundamental constants, yield new

insights into our physical world. In applied physics and engineering, seeking reasons

for discrepancies often leads to better understanding of materials or of laboratory

techniques. In the case of G, where several experiments have been based on the

twisting of a strip of metal (a ‘torsion strip’) in response to the gravitational field

of nearby masses, it has been found that such torsion strips are not perfectly elas-

tic (that is, the amount of twist is not exactly proportional to the torque), and the

6 Figure 4.2 in chapter 4 illustrates this.
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amount of this so-called ‘anelasticity’ is significant. This finding is a contribution to

knowledge in its own right. In theoretical physics, high-accuracy measurements of

G will eventually contribute usefully to current speculation as to whether there may

be some small but detectable violation of the inverse-square law over laboratory

distances and even at the sub-millimetre level. Such violations would have pro-

found implications for our understanding of the Universe. It is only through careful

measurement and realistic estimates of uncertainty that we can have confidence in

any conclusions drawn from results of studies designed to establish a value for G.

1.1.2 Careful measurements reveal a new element

At the end of the nineteenth century, Lord Rayleigh showed the benefits that accrue

from close scrutiny of the results of measurements that appear at first glance to be

consistent and to contain nothing very surprising. Rayleigh used two methods to

measure the density of nitrogen.7 In one method, the nitrogen was obtained wholly

from the atmosphere, by passing air over red-hot copper that removed all the oxygen.

In the other method, the nitrogen was obtained by bubbling air through ammonia

and then passing the air–ammonia mixture through a red-hot copper tube. This

also removed the oxygen (which combined with hydrogen from the ammonia to

form water), but partly ‘contaminated’ the nitrogen from the air with nitrogen from

the ammonia itself. The nitrogen obtained by the second method (the ‘chemical’

method) was about 0.1% less dense than that given by the first method (the ‘atmo-

spheric’ method). Despite the close agreement, Rayleigh was uncomfortable with

the 0.1% discrepancy and resisted his instinct to find ways to downplay or ignore the

difference. Instead, he undertook a detailed study in which he tried to exaggerate

the difference by varying the experimental conditions. He replaced the air in the

chemical method by pure oxygen, so that all the collected nitrogen originated from

the ammonia. This modified chemical method now provided nitrogen that was

0.5% less dense than that obtained by the atmospheric method. Thus Rayleigh had

strong evidence that nitrogen derived from the atmosphere had a (very slightly)

greater density than nitrogen derived from ‘chemical’ sources (for example,

ammonia).

The inescapable conclusion of Rayleigh’s careful measurements was that his

atmosphere-derived ‘nitrogen’ was in fact nitrogen mixed with another gas. The

gas that Rayleigh had discovered was argon, a new element, and for this discovery

Rayleigh was awarded the Nobel prize in physics in 1904. While 78% of the

atmosphere is nitrogen, only about 1.2% is argon, but argon is denser than nitrogen

7 Rayleigh measured a mass of nitrogen. Since this was done at a standard temperature and pressure, the volume
of nitrogen was fixed, so effectively its density was measured.
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by a factor of about 1.4. So atmosphere-derived nitrogen, containing unidentified

argon, appeared to be denser than chemical-derived nitrogen.

Rayleigh’s original measurements of the collected mass of nitrogen were made

with an uncertainty of about 0.03% or less. A larger uncertainty might easily

have obscured the small (0.1%) systematic discrepancy that compelled him to

pursue the matter further. This story illustrates the need for accurate measurement,

the benefit gained by measuring a quantity in more than one way and the importance

of explaining any discrepancy thereby revealed.

Since Rayleigh’s time, experimental methods and instruments have advanced

significantly so that, for example, instruments under computer control can gather

vast amounts of data in a very short time. With respect to measurement and uncer-

tainty, this brings its own challenges.

1.1.3 Treat unexpected data with caution

In 1985 scientists doing atmospheric research in Antarctica announced that the

ozone layer over the South Pole was being depleted at quite a dramatic rate. Their

conclusion was based on ground measurements of ultraviolet radiation from the

Sun that was absorbed by the atmosphere. For several years prior to this, other

scientists had been ‘looking down’ on the ozone layer using satellites, though they

had reported no change in the depth of the layer. A contributory factor to the

inconsistency between the ground-based and satellite-based data could be traced to

the processing of the satellite data. Natural variation in values of the thickness of the

ozone layer was well known. Therefore it appeared reasonable, when processing

the satellite-based data, to discard ‘outliers’ – that is, data that appeared not to

conform with that natural variation. The problem with this approach was that, if

the ‘natural’ variation were itself changing, one risked discarding the very data

that would reveal such a change. When the satellite data were reanalysed with the

outliers included, the conclusion of the Antarctica scientists was supported. The

effect of this prominent work was to fuel international debate among scientists,

industry and governments on the causes, consequences, extent and treatment of

ozone depletion in the atmosphere.

Quantifying ozone depletion by investigating the absorption of ultraviolet radi-

ation by the Earth’s atmosphere is an example of the application of optically based

measurement. Optically based methods of measurement are widely used, and many

rely on that most versatile of devices, the laser.

1.1.4 The laser and law-enforcement

The laser (‘light amplification by stimulated emission of radiation’), invented and

developed in the early 1960s, offers very high accuracy in length measurement in
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research and industry. Laser interferometry is a standard technique used in industry

to measure length to sub-micrometre precision. This is made possible by the

monochromatic (‘single-colour’) nature of laser light, implying a single wavelength

and therefore a natural ‘unit of length’. The red light from an iodine-stabilised

helium–neon laser has a wavelength of 632.991 212 58 nm (nanometres or 10−9 m),

with an uncertainty of the order of a few parts in 1011. A measurement of length

can, therefore, be ‘reduced’ to counting wavelengths: more precisely, the counting

of interference fringes that result from the interference of the beam of laser light

with a similar reference beam.

Applications of lasers even extend to law-enforcement. The speed of a vehicle

can be established by aiming a narrow beam of pulsed infra-red radiation emitted

by an instrument containing a laser (the ‘speed-gun’) at the body of the moving

vehicle. The pulses are emitted at an accurately known rate of the order of 100 pulses

every second. The radiation is reflected by the body and returns to the instrument.

If the vehicle is moving towards the speed-gun, the interval between successive

reflected pulses is less than the interval between successive transmitted pulses. This

difference is small, of the order of nanoseconds (or billionths of a second), but can

be accurately measured. This difference and the known value of the speed of light

enable the speed of the vehicle to be determined. Speeds recorded well in excess

of the speed limit can lead to instant licence disqualification in some countries, and

an appearance in court. Identifying and understanding the complications that may

affect the value measured for the vehicle speed is the starting point for estimating

the uncertainty of the measurement of speed. Such complications include the exact

angle of the speed-gun relative to the direction of the vehicle, interfering effects of

bright light sources and whether the speed-gun has been accurately calibrated and

is not significantly affected by variations in ambient temperature. It is only when

the uncertainty in the speed is known that it is possible to decide whether a vehicle

is very likely to be exceeding the speed limit.

1.1.5 The Global Positioning System (GPS)

A GPS receiver can determine its position on the Earth with an uncertainty of less

than 10 metres. This is made possible by atomic clocks carried on satellites orbiting

the Earth with an approximate half-day period and at a distance of about 20 000

kilometres. The atomic clocks are stable to about one part in 1013 (equivalent to

gaining or losing one second in about 300 000 years). Atomic clocks of this degree

of stability evolved from research by Isador Rabi and others in the 1930s and

later on the natural resonance frequencies of atoms. The receiver contains its own

clock (which can be less stable) and, by comparing its own clock-time with the

transmitted satellite clock-times, the receiver can calculate its own position. The

comparison of clock-times must take into account the first-order Doppler shift, of
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about one part in 105 in the case of the GPS, of the frequency of a clock moving

towards or away from a fixed clock.8 A further requirement for the accuracy of

the GPS is the relativity theory of Albert Einstein. Two of the relativistic effects

that must be taken into account are the slowing (time-dilation) of satellite clocks

moving transversely relative to fixed clocks (this is also known as the second-

order Doppler shift) and the speeding up of clocks far from the Earth’s surface

due to the weaker gravitational field. These two effects act in opposition and have

magnitudes of about one part in 1010 and five parts in 1010, respectively. So two

major branches of theoretical physics have made possible timekeeping metrology of

extremely high accuracy and have revealed subtle properties of time and space. As

a result, inexpensive devices that accurately determine the location of aircraft, ships

and ground vehicles, and help with the safety of explorers and trekkers, are now

available.

1.1.6 National measurement institutes, international metrology

and services to industry

It is obvious that industrial products must perform reliably. This implies something

that is perhaps not so obvious: the relevant physical properties of their components

must be certified against local and, ultimately, international standards of measure-

ment. Such standards are very precisely and meticulously manufactured objects,

for example steel rules and tape-measures, standard weights, standard resistors and

standard lamps. If component A of a motor-vehicle (for example) must fit or be

compatible with component B, this certification will ensure that, if A is made in

country X and B in country Y, A will fit B in country Z where the motor-vehicle

is assembled. International certification depends on the existence of standards of

measurement in every field of science and technology. Research into, and the devel-

opment and maintenance of, standards of measurement at the highest possible level

of accuracy are the function and responsibility of a country’s national measurement

institute (NMI).

For a physical property of a component to be certified, it must be compared

with or calibrated against the relevant standard. If the component is (for example)

a 1000-� resistor, its resistance will be compared with a local 1000-� standard

resistance, which may, however, be of relatively low accuracy. This standard, in

turn, must be calibrated against a higher-accuracy standard, generally maintained

by industrial calibration laboratories, and so on until the top of the comparison chain

is reached. This would normally be the national standard of resistance maintained

8 This first-order Doppler effect is familiar to us in its acoustic analogue as the raised pitch of the sound made by
an approaching object, and the lowered pitch when it recedes.
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by an NMI, and would itself be validated by frequent international comparisons

by various NMIs of such national standards (or of very stable and highly accurate

standards directly traceable to such national standards). The degree to which the

participating NMIs’ standards ‘agree with one another’ or, more formally, have

the essential property of ‘mutual equivalence’ is a decision made by the BIPM

(Bureau International des Poids et Mesures, or International Bureau of Weights

and Measures, in Paris). Such international comparisons are a routine feature of

international metrology, and serve to maintain the reliability and underpin the

quality control of a huge variety of industrial products in day-to-day trade and

commerce.9

Progress in metrology – namely, permanently improved standards and reduced

uncertainties – is usually made by an NMI, although occasionally by other in-

stitutions. This happens through a major change in method inspired by a novel

application of existing knowledge, or by use of an advance in physics or other

science. There are many such examples; two will be described here, while other

cases will be mentioned later in the book.

1.1.6.1 Standards of electrical resistance and capacitance

The history of the standard of resistance provides a good example of the kind of

research, often in seemingly unrelated areas, that informs progress in metrology. For

about the first half of the twentieth century the ‘international ohm’ was defined as the

resistance of a specified length and volume of mercury at a specified temperature.

The complicating factors here are the inevitable uncertainties in the measurements

of the length, volume and temperature of the mercury, and uncertainty regarding

its purity.

Another metrological route towards a standard of resistance could be found if a

standard of capacitance could be defined. These are two quite different electrical

quantities measured in different units, but there is a simple relationship between

them. Unfortunately, a capacitance, C , is normally physically constructed as two

metal plates separated by an insulating gap (assumed here to be a vacuum), and so

is calculated using an expression of the form C = ǫ0 A/d, where ǫ0 is the constant

permittivity of free space (or vacuum),10 A is the area of the capacitor plates and

d is their separation (figure 1.1(a)). The uncertainty in C will now result from the

considerable uncertainties in the measurements of A and d.

9 To maintain standards (of performance as well as measurement) private and government laboratories, and
NMIs themselves, undergo regular review by assessors. Successful review is followed by accreditation of the
laboratory for its particular area of expertise. The NMIs are accredited through international comparisons and
by means of peer-review by visiting experts from other NMIs.

10 The value of ǫ0, a natural constant, in SI units to eight significant figures is 8.854 187 8 × 10−12 F · m−1.
Ordinary capacitors as used routinely in electronics have insulating material (a ‘dielectric’), rather than a
vacuum, between the plates. The effective permittivity is then larger than ǫ0.
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It is important to note that ǫ0 in the expression C = ǫ0 A/d has units farad per

metre. The product ǫ0 A/d consequently has units (farad per metre) × metre2/metre,

or farad, equal to the units of C . A major advance in capacitance and resistance

metrology would therefore result if a geometry could be found in which C was

given simply as ǫ0 multiplied by a distance, since this product would also have the

units of a capacitance: farad per metre × metre gives farad. In effect, the nuisance

of having to measure an area and a length would be replaced by the convenience of

measuring only a length.

Using both mathematical analysis (starting from Maxwell’s equations of elec-

trostatics) and experimental verification, such a geometry was found in 1956 by

A. M. Thompson and D. G. Lampard of the National Standards Laboratory of Aus-

tralia (now known as the National Measurement Institute). This discovery became

known as the Thompson–Lampard Theorem of Electrostatics. The most common

practical realisation of this theorem is shown in figure 1.1(b) and has come to

be known as the ‘calculable capacitor’. Four identical circular cylinders A, B,

C and D, each centred at the corner of a square, are enclosed within a circular

earthed shield E and are separated from one another and from the shield by nar-

row insulating gaps. There are two earthed central bars. Only one of these (F) is

shown, and F is movable perpendicular to the plane of the diagram. If F is moved

a distance d , it can be shown that the resulting change, C , in capacitance (‘cross-

capacitance’) between A and C (with B and D earthed) or between B and D (with

A and C earthed) is given by C = ǫ0[(log 2)/π ]d . This is a small change, approxi-

mately 2 pF per metre. The distance d can be very accurately measured using laser

interferometry.

We therefore note the crucial geometry-independent property of the calculable

capacitor: the capacitance depends only on d, not on (for example) the diameters

of the cylinders. Figure 1.1(b) could be scaled up or down in the plane of the

diagram by any factor, and C would still be given as stated above.11 In electrical

metrology, geometry-independence is a prized attribute of any measurement that

strives towards the highest accuracy.

Standard resistors of nominal value 1 � can be calibrated against the calcula-

ble capacitance C by means of well-established procedures. The calculable ca-

pacitor has, therefore, provided a realisable ‘absolute’ ohm, a primary standard

much superior to the ‘international’ ohm mentioned previously. The uncertainty

of the resistances is of the order of a few parts in a hundred million, and these

form the primary standards for disseminating the practical unit of resistance

throughout the research and industrial communities.

11 Figure 1.1(b) is a particular case of a more general configuration involving four surfaces separated by narrow
gaps. For this general case, C is given by a formula that still involves only a single distance measurement d
and that reduces to C = ǫ0[(log 2)/π ]d for figure 1.1(b).
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Plate area A

Plate separation d

(a)

Figure 1.1. (a) Capacitance C given by C = ǫ0 A/d . (b) The calculable capacitor.
Four identical cylinders A, B, C and D are centred at the corners of a square with
narrow gaps between neighbours. E is an earthed shield and F is a central bar
movable perpendicular to the plane of the diagram. If F is moved by a distance d ,
the change in cross-capacitance, C , (between A and C, or B and D) is given by
C = ǫ0[(log 2)/π ]d .

1.1.6.2 The cryogenic radiometer

Many applications require an accurate measurement of the intensity of optical

radiation. One way to measure the intensity is by absorbing it and measuring the

resultant rise in temperature of the absorber. The temperature rise is compared

with the temperature rise when the radiation is blocked and the absorber is heated

electrically by means of a current I in a resistor R. The power dissipated in R is I 2 R

and is accurately measurable. In principle, this is therefore also the radiative power

absorbed by the absorber when its temperature rise upon exposure to the radiation

equals that caused by the electrical heating. So this ‘electric substitution principle’

relates optical power to electrical power. A schematic diagram of a radiometer

based on this principle is shown in figure 1.2.

A ‘room-temperature’ radiometer has an accuracy of the order of 0.1%, which

is sufficient for many industrial purposes. However, higher accuracy is needed

for establishing the SI base unit of luminous intensity, the ‘candela’,12 for ac-

curate measurements of black-body radiation and for space applications such as

measurements of solar radiation and reflected radiation from the Earth. In 1985,

T. J. Quinn and J. E. Martin of the National Physical Laboratory of the UK de-

scribed the operation of a radiometer at cryogenic temperatures. The main pur-

pose was of this work was the determination of the Stefan–Boltzmann constant,

which relates the temperature of a black body to the amount of radiation it

12 Definitions of the base units of the SI, the ‘Système International’, are listed in chapter 2.
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Figure 1.2. A schematic diagram of a radiometer with electric substitution. The
absorbing coating is a black paint on the inner surface of a copper cavity (not
shown). PB denotes background radiation. Uncertainties are reduced by a factor
of between 10 and 50 when the instrument is operated at cryogenic temperatures
(courtesy of Metrologia).

emits.13 In cryogenic radiometers, the working temperature is commonly about

6 K (−267 ◦C). The absorber is a special black paint over a copper surface and

the copper is shaped as a cylindrical cavity (not shown in figure 1.2), with a small

aperture through which the radiation enters.

Cryogenic operation confers the following advantages.14 The leads to the resistor

R (a rhodium–iron alloy) can be made of a metal, such as niobium, which becomes

a superconductor (with exactly zero resistance) at low temperatures. The electrical

heating is then concentrated in R and there is a negligible amount of ‘background’

heating. Because of the lowered specific heat of copper at cryogenic temperatures,

the thermal diffusivity of copper is about a thousand times higher than its room-

temperature value. This means that a rise in temperature at any point in the copper

very quickly diffuses to the rest of the copper and can be detected by the sensor. In

turn this means that the cavity can be large, increasing its efficiency as an absorber

of radiation, yet a short response time (of the order of a few minutes) to both optical

and electrical heating is obtained. A short response time permits fast optical and

electrical cycling. Furthermore, at low temperatures radiative heat loss is reduced

and, since the entire apparatus is operated in a vacuum, there is no convective heat

loss to the environment. Background radiation (denoted PB in figure 1.2) is also

reduced at low temperatures. The accuracy of the cryogenic radiometer is in the

range 0.002% to 0.01%, and this makes it a primary standard for the measurement

of intensity of optical radiation.

13 According to the Stefan–Boltzmann law for a black body, the amount, W , of radiation in watts per square
metre is related to the absolute temperature, T , by W = σ T 4. The approximate value of σ is 5.7 ×
10−8 W · m−2 · K−4.

14 Instrumentation used in the space applications referred to is calibrated against a ground-based cryogenic
radiometer.
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1.2 Review

Measurement affects our lives by alerting us to the speed at which we are driving,

the amount of luggage we can carry onto an airplane and even the amount of time

required to boil an egg. For scientists and engineers accurate measurement is a

habitual preoccupation. Metrology is the name given to the science of accurate

measurement and of estimation of measurement uncertainties. Metrology, directed

by a country’s national measurement institute (NMI), underpins the reliability and

quality control of industrial products. Careful measurement may mean, for example,

that an accepted theory is in need of revision, or that a new design is required in

some critical component of an aircraft.

In order to communicate the results of measurements effectively and efficiently,

scientists and engineers must agree upon a system of units in which to measure

mass, time, length and other physical quantities. A convenient and widely adopted

system of units is the SI, and it is this system that we will focus upon in the next

chapter.

Further reading

Several measurement topics were discussed in this chapter. The interested reader

will find more information in the following references. The references are numbered

according to the section in which the topic was mentioned.

(1) D. Kind and H. Lübbig (2003), ‘Metrology – the present meaning of a historical

term’, Metrologia, 40, 255–257.

(1.1) R. Myors, S. Askey and L. Mackay (2004), ‘An isotope dilution mass spectrometer

method for mercury in fish’, Proceedings of the Metrology Society of Australia,

March, 167–170.

M. J. Turner, B. A. Baker and P. C. Kam (2004), ‘Effects of systematic errors in
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distance needs to be measured. There are cases in electrical metrology where
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are the Josephson effect as used for voltage standards, the quantum Hall effect as

used for resistance standards and the so-called cryogenic current comparator for

measuring ratios of direct currents (‘dc’). These are described, respectively, in the

following three articles:

C. A. Hamilton, C. Burroughs and K. Chieh (1990), ‘Operation of NIST Josephson

array voltage standards’, Journal of Research of the National Institute of Science and

Technology, 95, 219–235.

B. Jeckelmann and B. Jeanneret (2001), ‘The quantum Hall effect as an electrical resis-

tance standard’, Reports on Progress in Physics, 64, 1389–1441.

I. K. Harvey (1976), ‘Cryogenic a.c. Josephson effect emf standard using a supercon-

ducting current comparator’, Metrologia, 12, 47–54.

(1.1.6.2) T. J. Quinn and J. E. Martin (1985), ‘A radiometric determination of the

Stefan–Boltzmann constant and thermodynamic temperatures between −40 ◦C

and +100 ◦C’, Philosophical Transactions of the Royal Society, 316, 85–181.

N. P. Fox (1995–1996), ‘Radiometry with cryogenic radiometers and semicon-
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The analogous electric substitution principle for comparing constant (direct-
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Measurement fundamentals

Lord Kelvin, a renowned scientist born in Ireland in the nineteenth century, recog-

nised the importance of measurement and spoke about it in passionate terms:

When you can measure what you are speaking about and express it in a number, you

know something about it; but when you cannot measure it, when you cannot express it in

numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the beginning

of knowledge, but you have scarcely in your thoughts advanced to the state of science . . .

(Lecture given to the Institution of Civil Engineers, 3 May 1883)

Measurement is essential to science. Without measurement, scientific models and

theories cannot be rigorously tested or challenged. Ambitious scientific and tech-

nical endeavours such as the exploration of the surface of Mars, medical diagnosis

using magnetic-resonance imaging (MRI) and the evaluation of renewable energy

sources would not be possible. Measurement is no less critical in areas such as

international trade, with the global economy becoming ever more pervasive.

In this chapter we consider matters key to measurement and the communication

of the results of measurement. These include the system of units, scientific notation

and significant figures.

2.1 The system of units of measurement

To measure the length of a particular object and have the result of that measurement

recognised and understood by other people, there must be mutual agreement on a

basic unit of length. Over past centuries many units have been adopted as the basis

of length measurement in different parts of the world. Some of those units, like

the metre, the mile and the fathom, are still in use today. Other units of length

such as the barleycorn and the ell are extinct. In order to simplify the measure-

ment of length and to avoid the need to remember factors needed to convert, say,

a distance expressed in miles to a distance expressed in metres, it seems sensible

15
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(for the science and engineering communities at least) to agree to use a single unit

for length measurement. This permits clear communication of results of measure-

ments of length. Equally, simplification and standardisation in measurement bring

economic gains when products and services that rely on length measurement are

traded between states and countries.

Length is only one of several characteristics of an object that we might wish to

quantify – that is, attach a numerical value to. Others include the object’s mass,

temperature and electrical resistance. To quantify these as well as other character-

istics, we need a system of units that allows for the measurement of any physical

quantity. Specifically, we require a system of units that is

� comprehensive,
� internationally accepted and adopted,1

� coherent and convenient to use and
� regularly reviewed and revised.

The most common system of units used worldwide in science and technology is

the Système International – commonly referred to as the SI.

2.1.1 The SI

The origin of the SI can be traced back to the late eighteenth century in France when

the metre was specified as the distance between two marks on a platinum bar.2 The

kilogram was defined as the mass of water filling a cube one-tenth of a metre on

a side and, like the metre, was constructed as a platinum artefact. Together with

the unit of time, the ‘second’, defined as 1/86 400 of the mean solar day (in 1960

it was redefined in terms of a tropical year), these three units were the earliest of

the system of seven base units now known as the SI. With advances in science, the

definitions of the metre and of the second have changed (see table 2.1).

The Metre Convention, signed in Paris in 1875 by representatives of 17 nations,

established three international bodies in metrology. These are (with their French

acronyms) the General Conference on Weights and Measures (CGPM), the Inter-

national Committee for Weights and Measures (CIPM) and the BIPM. The CGPM

1 A few centuries ago, units of measurement were variable and inconsistent to a degree that would now be
considered intolerable. The ‘ell’, a unit of length roughly that of the adult human outstretched arm, was about
20% shorter in Scotland than in England (Klein 1989). As late as the 1850s the ‘Pfund’, a unit of mass, was
almost 1.6% larger in Berne than in Zurich (Barnard 1872).

2 This was not an arbitrary distance. In 1791 the metre was defined as one ten-millionth of the meridian distance
between the North Pole and the equator, passing through the cities of Dunkirk and Barcelona, whose latitudes
were accurately known. The approximately 1100-km distance between the cities was measured by J. Delambre
and P. Méchain in a monumental project that lasted from 1792 to 1799, and carried the additional hazard of
coinciding with the French Revolution. Nevertheless, the value obtained for the pole–equator distance was only
about 0.02% different from the currently agreed value (Alder 2002).
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Table 2.1. SI base units, symbols and definitions

Quantity Unit Symbol Definition

Mass kilogram kg The kilogram is equal to the mass of
the international prototype of the
kilogram. (The prototype kilogram
is made from an alloy of platinum
and iridium and is kept under
carefully controlled environmental
conditions near Paris.)

Time second s The second is the duration of
9 192 631 770 periods of the
radiation corresponding to the
transition between the two
hyperfine levels of the ground state
of the cesium-133 atom.

Length metre m The metre is the length of the path
travelled by light in a vacuum
during a time-interval of
1/299 792 458 of a second.

Thermodynamic
temperature

kelvin K The kelvin is the fraction 1/273.16
of the thermodynamic temperature
of the triple point of water.

Electric current ampere A The ampere is that current which, if
maintained in two straight parallel
conductors of infinite length, of
negligible cross-section and placed
one metre apart in a vacuum,
would produce between these
conductors a force of 2 × 10−7

newton per metre of length.
Luminous
intensity

candela cd The candela is the luminous
intensity, in a given direction, of a
source that emits monochromatic
radiation of frequency 540 × 1012

hertz and that has a radiant
intensity in that direction of 1/683
watt per steradian.

Amount of
substance

mole mol The mole is the amount of substance
of a system which contains as
many elementary entities as there
are atoms in 0.012 kilogram of
carbon 12.
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is the ultimate custodian of the SI. Research in metrology performed at the BIPM

and other NMIs around the world is reported to the CIPM through a system of con-

sultative committees of experts drawn from NMIs. Any improvements or changes

to the SI, or changes to the as-maintained units that might follow from fundamental

research reported to the CIPM, are decisions made by the CGPM. Thus, for exam-

ple, the as-maintained unit of electromotive force or electric potential, the volt, was

changed on 1 January 1990 (by about eight parts per million) as a consequence of

painstaking ‘absolute’ measurements of the volt (that is, measurements of the force

of electrostatic attraction generated by a voltage).3 At present (2005) 51 nations are

signatories to the Metre Convention.

2.1.2 Base and derived units

The SI consists of seven base units. These units, their symbols and their definitions

are shown in table 2.1. It should be noted that the speed of light in a vacuum, c, has

a defined quantity, 299 792 458 m · s−1, with zero uncertainty.

Other units, created by combining SI base units, are referred to as derived units.

As an example, the average speed, v, of a body is related to the distance, d , travelled

by a body in a time, t , through the equation

v =
d

t
. (2.1)

Replacing each quantity on the right-hand side of equation (2.1) by its unit gives

unit of speed =
m

s
, which may also be written as either m/s or m · s−1.

The unit of speed does not have a special name, but there are derived units, such as

those of force and energy, that do. Table 2.2 contains examples of SI derived units

that have special names.

The units of other quantities, such as latent heat, are usually expressed as a

combination of derived units, with special names, and base units. Examples of such

combinations are shown in table 2.3. While it is often convenient to use derived

units with special names when indicating the units of a quantity, all units may be

expressed in terms of base units.

Example 1

Show that the derived unit N/m (which is the unit of, for example, surface tension)

can be expressed in base units as kg · s−2.

3 See section 4.1.3 and footnote 6 in chapter 4.
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Table 2.2. Examples of derived units with special names

Unit of quantity
Quantity Derived unit Symbol expressed in base units

Frequency hertz Hz s−1

Force newton N kg · m · s−2

Pressure pascal Pa kg · m−1 · s−2

Energy, work joule J kg · m2 · s−2

Power watt W kg · m2 · s−3

Potential difference, volt V kg · m2 · s−3 · A−1

electromotive force (emf)
Electrical charge coulomb C s · A

Electrical capacitance farad F kg−1 · m−2 · s4 · A2

Electrical resistance ohm � kg · m2 · s−3 · A−2

Electrical conductance siemens S kg−1 · m−2 · s3 · A2

Magnetic flux density tesla T kg · s−2 · A−1

Magnetic flux weber Wb kg · m2 · s−2 · A−1

Inductance henry H kg · m2 · s−2 · A−2

Absorbed dose gray Gy m2 · s−2

Reaction rate katal kat mol · s−1

Table 2.3. Examples of other derived units incorporating units with special names

Unit of quantity
Quantity Derived unit Symbol expressed in base units

Specific heat joule per (kilogram kelvin) J/(kg · K) m2 · s−2 · K−1

capacity

Thermal watt per (metre kelvin) W/(m · K) kg · m · s−3 · K−1

conductivity

Latent heat joule per kilogram J/kg m2 · s−2

Electric field volt per metre or newton V/m or kg · m · s−3 · A−1

strength per coulomb N/C

Molar entropy joule per (mole kelvin) J/(mol · K) kg · m2 · s−2 · mol−1 · K−1

Radiance watt per (square metre W/(m2 · sr) kg · s−3

steradian)

Electrical ohm metre � · m km · m3 · s−3 · A−2

resistivity

Answer

From table 2.2, N = kg · m · s−2, so

N

m
=

kg · m · s−2

m
= kg · s−2.
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Table 2.4. Prefixes used with the SI

Factor Prefix Symbol Factor Prefix Symbol

10−24 yocto y 101 deka da

10−21 zepto z 102 hecto h
10−18 atto a 103 kilo k
10−15 femto f 106 mega M
10−12 pico p 109 giga G
10−9 nano n 1012 tera T
10−6 micro µ 1015 peta P

10−3 milli m 1018 exa E

10−2 centi c 1021 zetta Z
10−1 deci d 1024 yotta Y

Exercise A

With the aid of table 2.2, write the following units in terms of base units only:

(a) F/m, (b) W/m2, (c) J/m3, (d) J/K, (e) � · m, (f) �/m2, (g) C/kg,

(h) Wb/A, (i) C2/(N · m2), ( j) N · m, (k) N/A2, (l) W/(m2 · K4)

The SI units have the great advantage of being coherent. This means that any

theoretically derived equation relating physical or chemical quantities is automati-

cally satisfied numerically if all the quantities are simultaneously expressed in the

SI units of table 2.1 or the derived units such as those in tables 2.2 and 2.3. For

example, the equation for kinetic energy E of a mass m, moving at velocity v, is

given by E = 1
2
mv2. If m is given as a value in kilograms and v in metres per

second, then E is automatically the correct value for the kinetic energy in joules.

2.1.3 Prefixes

A quantity, such as a time interval, may span many orders of magnitude. At one ex-

treme we might need to consider the time interval taken for an electromagnetic wave

to travel the distance equal to the diameter of the nucleus of hydrogen. At the other

extreme, we might require an estimate of the age of the Universe. These and other

time intervals between these extremes may be expressed by multiplying the unit of

time, i.e. the second, by an appropriate power of ten. This is indicated succinctly by

attaching a prefix to the unit. For example, one thousandth of a second is expressed as

1 ms, where m stands for milli, equivalent to 1/1000. The SI uses prefixes that repre-

sent multiplying factors covering the range 10−24 to 1024. Table 2.4 includes the pre-

fixes currently used in the SI. Some prefixes are better known and more frequently

used than others. The more frequently used prefixes are indicated in bold in table 2.4.
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In practice, some prefixes are seldom used in conjunction with particular units.

For example, while the centimetre (cm) is regularly used as a unit of length, the

centinewton (cN) is rarely encountered. Similarly, while electrical resistance is

often expressed in megohms (M�), it is rare to find time expressed in megaseconds

(Ms). It should be emphasised here that ‘kilogram’, although it has the prefix ‘kilo’,

is an SI base unit and is the only SI base unit with a prefix. As a cautionary note, the

coherence of the SI units, referred to above, does not automatically extend to the

case where the units have prefixes (with the exception of the kilogram). Thus, for

E = 1
2
mv

2, if m were measured in grams or v in kilometres per second, E would

not be automatically obtained in joules.

Example 2

Express the following values with the aid of SI prefixes:

(a) 3.4 × 10−3 A, (b) 6.4 × 10−5 m2/s, (c) 7.5 × 108 �, (d) 1.8 × 1010 Pa,

(e) 3.5 × 105 � · m

Answer

Although there are no restrictions on the use of prefixes, it is usual (and rational)

to choose a prefix similar in magnitude to the value being considered:

(a) 3.4 mA, (b) 64 mm2/s, (c) 0.75 G�, (d) 18 GPa, (e) 0.35 M� · m

Exercise B

Express the following values using the most appropriate SI prefixes:

(a) 7.7 × 10−9 C, (b) 0.52 × 10−10 J, (c) 7834 V, (d) 1.3 × 107 m/s, (e) 3.5 ×
10−4 Pa · s

2.2 Scientific and engineering notations

Many values are conveniently expressed using a number, a prefix and an SI unit. For

example, the mass of a small body may be expressed as 65 mg. The same value can

be expressed using powers-of-ten notation. In fact, in situations in which prefixes

are unfamiliar, it is perhaps preferable to adopt ‘powers-of-ten’ notation. As an

example, few would immediately recognise 0.16 aC as the magnitude of the charge

carried by an electron. By contrast, expressing the same value as 1.6 × 10−19 C is

likely to bring a nod of recognition from many working in science.

A value of length, such as l = 13 780 m, is expressed in scientific notation using

the following steps. Separate the first non-zero digit from the second by a decimal

point, such that 13 780 becomes 1.3780. Now multiply this number by ten raised to

the appropriate power in order to return the number back to its original magnitude.
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In this example this is 104. The value is now written (not forgetting to include the

unit) as

l = 1.3780 × 104 m

Exercise C

Write the following values using scientific notation:

(a) 0.0675 N, (b) 3000 kg, (c) 160 zC, (d) 755 mV, (e) 0.0035 kat, (f) 982.1 MW

Engineering notation differs from scientific notation in that the powers of ten that

follow the multiplication sign are limited to 3n where n = 0, ±1, ±2 etc. For

example, the value l = 13 780 m would be written in engineering notation as

l = 13.780 × 103m.

Exercise D

Express the values in exercise C in engineering notation.

2.3 Rounding and significant figures

When a number has too many significant figures for a particular purpose, the number

of significant figures can be reduced by a simple procedure known as ‘rounding’.

For example, if a distance has been measured as 1.1451 m, that is to five significant

figures, but three significant figures are considered sufficient, that value can be

rounded to 1.15 m. We note that 1.14 m would be incorrect rounding, since 1.15 is

closer to 1.1451 than 1.14 is. If 1.1451 m is to be rounded to two significant figures,

this gives 1.1 m.

The following question arises: what if the original figure ends in ‘5’? The rec-

ommended rounding advice is as follows: choose the even round value. Thus we

have, for example,4

3.05 is rounded to 3.0

3.15 is rounded to 3.2

3.25 is rounded to 3.2

3.35 is rounded to 3.4

3.45 is rounded to 3.4

and so on. This has the advantage that dividing both unrounded and rounded values

by 2 still gives the correct relationship; for example, dividing 3.05 by 2 gives 1.525,

which rounds to 1.5.

4 For more detail and discussion, see Australian Standard AS2706-2003, ‘Numerical values – rounding and
interpretation of limiting values’ (Sydney, Standards Australia, 2nd edn, 2003).
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When measurements are made, how many figures should be reported? Modern

instruments are capable of displaying values to many figures. As an example, a

5 1
2
-digit digital multimeter (DMM) on its 2-V d.c. range can indicate any value

between −1.999 99 V and +1.999 99 V. While it is often prudent to record all

the figures supplied by an instrument, in many cases the particular quantity be-

ing measured may vary to such an extent as to make some of the figures almost

meaningless.

Let us consider the situation in which a 5 1
2
-digit voltmeter is used to measure

the output of an optical transducer. At one instant the voltmeter displays a value of

1.675 43 V and a half-second later the display indicates 1.652 13 V. In the absence

of a statistical analysis on many repeat values, such as that discussed in chapter 5,

we might decide to round the voltages to 1.68 V and 1.65 V in recognition of the

fact that the last three figures in the display were unreliable and of little use. Then

1.68 V and 1.65 V are values expressed to three significant figures. The fact that a

statistical analysis was not carried out in order to assess the uncertainty in the value5

means that to a certain extent the rounding to three significant figures was arbitrary

and represents the experimenter exercising ‘common sense’. When experimental

values with varying numbers of significant figures are brought together, there are

several simple rules that allow us to quote answers to a defensible number of

significant figures. It is emphasised that, although these rules are helpful, they are

not a substitute for the detailed calculation of uncertainty to be described in the

following chapters (specifically, chapters 7 onwards). Such a calculation indicates

how many figures should be used when quoting a value.

Rule 1

In the absence of any explicit statement about the uncertainty of a quoted value, the

approximate uncertainty in a value can be estimated as half the possible range of

the values with an extra decimal place that are all consistent, after rounding, with

the quoted value.

Suppose that a distance, d, is quoted as 25.1 m. This implies a possible distance

anywhere in the approximate interval 25.05 m to 25.15 m. This interval comprises

an infinite number of values, all of which (except for the first and last, following

the rounding advice above) would be ‘rounded’ to the quoted 25.1 m and so are

consistent with 25.1 m. The interval containing these values is (25.15 − 25.05) m =
0.10 m. Half this interval is 0.05 m. So we infer from the quoted value of distance

d = 25.1 m that the uncertainty is 0.05 m. The proportional uncertainty is then

0.05/25.1 or about five parts in 2500 or 0.2%.

5 Such an analysis is to be preferred, since it leads to a clearer decision as to how many figures to retain.
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Rules 2 and 3 say, essentially, that the proportional uncertainty in the result of a

calculation is dominated by the least accurate component in the calculation.

Rule 2

When values are multiplied or divided, quote the answer to the number of significant

digits that implies a proportional uncertainty closest to the greater of the component

proportional uncertainties.

For example, suppose that we require the value of a speed v when the distance

d = 25.1 m and the time taken is t = 3.4 s. The distance d is quoted to one part in

500 (0.2%) as discussed above, and the time t to roughly five parts in 300 or one

part in 60 (1.7%). We write, provisionally,

v =
d

t
=

25.1 m

3.4 s
= 7.382 353 m/s.

The greater of the component proportional uncertainties is evidently one part in 60

or 1.7%. It is useful to make up a table of possible quoted values and the resulting

implied proportional uncertainties:

Quoted value Implied proportional uncertainty

7.38 m/s 5 parts in 7000 or 0.07%
7.4 m/s 5 parts in 700 or 0.7%
7 m/s 5 parts in 70 or 7%

Of these possibilities, we should choose 0.7% as closest to the required 1.7%, and

so we quote the speed as 7.4 m/s.

Rule 3

When numbers are added or subtracted, quote the answer to the number of sig-

nificant digits that implies a proportional uncertainty closest to the greater of the

component proportional uncertainties.

As an example, if the mass of a copper container filled with water is given

as mCu+H2O = 1.5778 kg and the mass of the empty copper container is given

as mCu = 0.562 kg, then the mass of the water in the container, mH2O, is

given by

mH2O = mCu+H2O − mCu = 1.5778 kg − 0.562 kg = 1.0158 kg.

The mass quoted as 1.5778 kg implies a proportional uncertainty of about five

parts in 160 000 or 0.003%. The mass quoted as 0.562 kg implies a proportional
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uncertainty of roughly five parts in 6000 or 0.08% and is the higher of the two propor-

tional uncertainties. We therefore require the mass of water, 1.0158 kg, to be quoted

with an implied proportional uncertainty as close as possible to 0.08%. Here is a

table of possible quoted values and the resulting implied proportional uncertainty:

Quoted value Implied proportional uncertainty

1.0158 kg 5 parts in 100 000 or 0.005%
1.016 kg 5 parts in 10 000 or 0.05%
1.02 kg 5 parts in 1000 or 0.5%
1.0 kg 5 parts in 100 or 5%.

It is clear that 0.05% proportional uncertainty is the closest to the required 0.08%,

and so we quote the mass of water as 1.016 kg.

Rule 4

When a quantity with proportional uncertainty p is raised to the power n, the

resultant proportional uncertainty is |np| and the quoted number of significant

figures should reflect this.

For example, the formula for the volume V of a sphere of diameter D is V =
1
6
π D3. Suppose that D is given as 50.1 mm. This implies a proportional uncertainty

of five parts in 5000 or 0.1%. The calculated value of V is 65 843 mm3 and should

be quoted with significant digits implying 0.3% proportional uncertainty. We have

the following table:

Quoted value Implied proportional uncertainty

6.584 × 104 mm3 5 parts in 66 000 or 0.008%
6.58 × 104 mm3 5 parts in 6600 or 0.08%
6.6 × 104 mm3 5 parts in 700 or 0.7%
7 × 104 mm3 5 parts in 70 or 7%

The proportional uncertainty closest to 0.3% is 0.7%, implying a quoted value for

the volume of 6.6 × 104 mm3. We note that writing this as 66 000 mm3 implies

too low an uncertainty, in view of the zeros. Finally, it is worth noting that, if n is

between −1 and 1, implying a fractional power, the proportional uncertainty in the

result will be less than that in the original data. This would arise, for example, if

we calculated the diameter of a sphere when given its volume.
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Exercise E

Apply rules 1, 2 and 3 to give the outcomes of the following calculations to an

appropriate number of significant figures:

(a) 2.343 m/s ×1.52 s, (b)
2.3 × 10−16 J

1.602 × 10−19 C
, (c) 1.5751 g + 10.27 g,

(d)
1.22 × 10−20 J

1.38 × 10−23J/K × 273.15 K

Where there are several steps in a calculation, it is prudent not to round intermediate

results, since premature rounding introduces unnecessary error that will propagate

through to the final answer. If in doubt, use all the figures available at each step in

a calculation. Once the final answer has been obtained, review the calculations to

determine which values are given to the least number of significant figures, then

round accordingly.

2.4 Another way of expressing proportional uncertainty

Proportional uncertainties are often expressed as percentages, as in the examples

in Section 2.3. When very accurate measurements are made, the uncertainties may

be expressed in parts per million or even parts per billion. An error of, say, 3

micrometres when 1 metre is being measured is expressible as three parts per

million. It is often advantageous to retain information on the physical quantity

being measured, so we may express three parts per million in the measurement of a

metre as 3 µm/m. Similarly, if a constant voltage of 2 V is being measured with an

uncertainty of 5 µV or 2.5 parts per million, this may be expressed as an uncertainty

of 2.5 µV/V.

2.5 Review

In order to communicate the result of a measurement we must assign a number and

a unit to values emerging from an experiment. In this chapter we have considered

units of measurement with particular emphasis on the SI. To express very large and

very small values, it is convenient to use prefixes, such as giga and micro, or to adopt

scientific or engineering notation. We introduced rules for presenting numbers to a

plausible number of significant figures, although these rules can be set aside once

a complete error analysis such as that indicated in chapter 10 has been undertaken.

Analysis of errors requires that we use some terms that have an ‘everyday’

meaning, such as accuracy and precision. With a view to clarifying the situation,

the next chapter focusses on frequently used terms in measurement.
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Terms used in measurement

For the newcomer, unfamiliarity with the specialist vocabulary of scientific disci-
plines like physics and chemistry can act as an obstacle to learning those disciplines.
What can be even more challenging is that science employs many words such as
force and energy that are used in various ways in everyday language. The science
of measurement, in particular, has many terms, such as error, uncertainty and accu-
racy, that also occur in day-to-day use in contexts far removed from measurement.
In this chapter we consider terms used in measurement, including those with an
everyday or popular meaning such as error, and we clarify their meaning when
used in the context of measurement.1

3.1 Measurement and related terms

3.1.1 Measurement

Measurement is a process by which a value of a particular quantity such as the
temperature of a water bath or the pH of a solution is obtained. In the case of
length measurement, this might involve measuring the atomic-scale topography
of a surface using an instrument such as an atomic-force microscope (AFM), or
measuring the length of a pendulum using a metre rule. Values obtained through
measurement form the foundation upon which we are able to

� test both new and established scientific theories;
� decide whether a component, such as a resistor, is within specification;

1 Because it is important to define terms clearly in order to avoid ambiguity, the International Standardisation
Organisation (ISO), representing the international measurement community, has published a document called
International Vocabulary of Basic and General Terms in Metrology, known as the VIM for short (www.iso.org).
Here we focus on terms in the VIM that are most commonly used.

27
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� compare values obtained by workers around the world of a particular quantity, such as
the thickness of the ozone layer of the atmosphere;

� quantify the amount of a particular chemical species, such as the amount of steroid in a
sample of urine taken from an athlete; and

� establish the proficiency of laboratories involved with the testing and calibration of
equipment.

3.1.2 Measurands

A particular quantity determined through measurement is called a measurand. Often
a value of a measurand can be established directly with an instrument. For example,
the period, T , of a pendulum, can be measured using a stopwatch. Determining the
period of the pendulum may be an end in itself, or it may be used in the determination
of another measurand. For example, by combining the period with the length of the
pendulum, l, the acceleration caused by gravity, g, when a body falls freely can be
determined by means of the equation

g =
4π2l

T 2
.

Though g is not obtained directly, in the sense that an instrument does not indicate
its value, it too is a measurand.

Some care is required when describing a measurand. For example, the purpose
of a measurement may be to determine the density of a metal such as platinum.
The density of any metal sample depends on the purity of the metal as well as on
its temperature. Unless the description of the measurand includes specification of
purity as well as temperature, reported values of densities of samples of platinum
are likely to vary significantly from one observer to the next.

3.1.3 Units and standards

A properly defined unit allows quantities of the same kind to be compared. While
there are several systems of units in existence, the most widely used system in
science and engineering is the SI.

For example, if we have a rule that is one metre long, then any length can
be compared with that rule and can be expressed as a multiple of one metre.
For some comparisons it is important that a ‘standard’ rule be used that is
as accurate and stable as possible. One of the duties of NMIs is to house,
safeguard and maintain the highest-quality standards, referred to as primary

standards.
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Figure 3.1. The Australian 1-kilogram standard, copy 44 of the BIPM 1 kilogram.
The material is a platinum–iridium alloy and the cylinder has diameter equal to
its height, each about 39 mm. The material is about 2.7 times denser than steel,
implying a small volume for 1 kg and therefore a small buoyancy correction.
The alloy has high resistance against corrosion and good electrical and thermal
conductivities (Davis 2003).

The kilogram is the only SI base unit2 that is realised by means of an artefact.3

This primary standard is made of a platinum–iridium alloy and is kept under very
tightly controlled conditions, together with several copies, at the BIPM in Paris.
Other copies are held at NMIs around the world; the Australian kilogram standard
is Copy No. 44 of the BIPM kilogram (see figure 3.1) and is kept at the National
Measurement Institute of Australia in Sydney.

All other SI base units are defined through constants of nature, so that any well-
equipped NMI in the world can realise the base unit. For example, the realisation of
the metre is accomplished using a laser whose light has a precise frequency, f , that

2 The kilogram may eventually be defined in terms of natural constants. One method would be to define it as the
mass of a specified number of atoms of a particular isotope of an element. There is considerable progress along
this route, which involves the fabrication of very accurate spheres of pure silicon of accurately known diameter.
The lattice spacing of silicon atoms in this structure is well known (from X-ray-crystallographic measurements)
and, since the volume is also well known (given the diameter and the accurate sphericity), the number of atoms
can in principle be counted. Since the relative proportions of the three stable isotopes of silicon can be measured
accurately, this number of atoms then determines the total mass. Another method, also well advanced, would
assign a defined value to the Planck constant h. This would have the effect of defining the kilogram. Both
methods and their metrological consequences are discussed in Mills et al. (2005).

3 ‘Artefact’, in this context, has a different meaning from ‘artefact’ with a negative connotation that describes an
‘artificial’ or anomalous value, affected by some extraneous influence, in a series of measured values.
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Figure 3.2. A 1-� standard resistor and its protective case (courtesy B. J. Pritchard,
National Measurement Institute of Australia).

is determined by atomic processes, is largely independent of human intervention,
and can be measured in terms of the second as defined in table 2.1 of chapter 2.
Using the defined and uncertainty-free value for the speed of light c, the metre can
then be defined as a multiple of the wavelength, λ, inferred from f through the
relation λ = c/ f.

3.1.4 Calibration

In order that an instrument or artefact should accurately indicate the value of a
quantity, the instrument or artefact requires calibration. This procedure is essential
for establishing the traceability of the instrument or artefact to a primary standard
(see section 3.1.5).

There is no hard-and-fast distinction between ‘instrument’ and ‘artefact’, but in
general an instrument measures a quantity, whereas an artefact provides a quantity.
For example, a digital multimeter (DMM) is an instrument that measures voltage,
resistance or current and displays it as a number. An instrument may also measure
a quantity by means of the position of a pointer on a dial.4 By contrast, standard
weights and gauge blocks are artefacts, also known as artefact standards or stan-
dard artefacts. Figure 3.2 shows a very stable standard of electrical resistance: a

4 The position of a pointer on a dial may be regarded as an ‘analogue’ display, in contrast to a digital display,
which is usually more accurate. When quickness of reading is more important than accuracy, analogue displays
are preferred. This is why vehicle speedometers are usually analogue displays.
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1-� standard artefact, with low temperature coefficient of resistance, which was
designed and manufactured at the National Measurement Institute of Australia
(Pritchard 1997).

During calibration, a value measured by an instrument or provided by an artefact
is compared with that obtained from a standard instrument or artefact. If there is
a discrepancy between the value as indicated by the instrument or artefact and
the corresponding standard, then the difference between the two is quoted as a
correction to the instrument or artefact. This process is referred to as calibration,
and the correction always has a stated associated uncertainty. Over time it is possible
for the values indicated by an instrument or provided by an artefact to ‘drift’.
This makes recalibration necessary. Manufacturers often advise that calibration be
carried out at regular intervals (say every 12 months).

3.1.5 Traceability

The result of a measurement is said to be traceable if, through an unbroken chain
of comparisons often involving working and secondary standards, the result can be
compared with a primary standard. Any instrument or artefact used as part of the
measurement process must recently have been calibrated by reference to a standard
that is traceable to a primary standard. A requirement of traceability is that the chain
of comparisons be documented. The consequences of lack of traceability, in some
instances, can be severe. For example, if a component manufacturer cannot satisfy
a regulatory authority that results of measurements on its components can be traced
back to a primary standard, then that manufacturer may be prohibited from selling
its products in its own country or elsewhere.

3.1.6 Value

The process of measurement yields a value of a particular quantity. As examples,

� the value of the period of a pendulum, T = 2.37 s;
� the value of the length of a pendulum, l = 1.35 m; and
� the value of the mass of a steel ball, m = 67.44 g.

A value may be regarded as the product of a number and the unit in which the
particular quantity is measured.

3.1.7 The true value and best estimate of the true value

Through careful measurement we seek to estimate the true value of a quantity. An
experiment might be devised to find the amount of charge carried by an electron.



32 Terms used in measurement

Evidence indicates that every electron carries the same amount of charge – but what
is its value? In this case (and many others) we assume that there is an ‘actual’ or
true value of a quantity, such as the value of the charge of an electron. It is the
true value that we would like to establish through measurement. We are forced to
admit that instruments, no matter how sophisticated or expensive, are imperfect.
Sometimes the quantities that we measure may vary slightly over the period of the
measurement. Outside influences such as fluctuations in temperature may affect
the measuring instruments and the measurand. These factors conspire to prevent us
from finding the true value of a quantity that we seek through measurement.

Though we are unable to find the true value of a quantity through measurement,
we are able to obtain an estimate of the true value. When only random sources act
to influence the values obtained, the best estimate of the true value is usually taken
to be the mean, x̄ , of n values, where

x̄ =

n
∑

i=1
xi

n
(3.1)

and xi is the i th value obtained through measurement.

3.1.8 Error (in measurement), including random and systematic error

The term error is arguably a greater source of confusion than any other term en-
countered when discussing measurement. In everyday language it is commonly
used to refer to a mistake or a blunder. In the context of measurement, error is
defined as the difference between the measured value and the true value:

error = measured value − true value. (3.2)

The true value of the quantity being measured cannot be known, so it follows that the
error as defined by equation (3.2) is also unknowable. It is recognised that sources
of error fall into two categories, depending upon how they affect measurement.

In some cases the influences that affect the measurement process, or the quantity
being measured, cause values to be randomly distributed above and below the true
value. The errors caused by such influences are termed random errors. Consider
the time measured ‘by hand’ for an object to fall freely through a fixed distance.
Sources of errors include the inconsistent synchronisation of starting the stopwatch
as the ball is released and stopping the stopwatch as the object reaches the ground.
If the object is released many times and values for the time of fall are accumulated,
it is likely that a pattern in the values will emerge. The point here is that some values
will lie above the true value and others below. From equation (3.2) this indicates
that an error could have a positive or negative sign, with neither sign being favoured.
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Pursuing the example of the timing of a falling object a little further, it is possible
that the stopwatch has developed a minor fault such that it consistently indicates
that the time of fall is slightly greater than the true value. In this case the error, as
calculated using equation (3.2), would be consistently positive. This type of error
is referred to as systematic, since it causes all measured values to be consistently
under- or over-estimated.

To a greater or lesser degree, random and systematic sources of error affect all
measurements, but whether it is random or systematic errors that dominate in any
given situation is sometimes difficult to establish.

3.1.9 Accuracy and precision

A value obtained through measurement may or may not be close to the true value.
In situations where we believe that the measured value is close to the true value,
we say that the measured value is accurate.

Since we cannot know whether a value is close to the true value, it is impossible
to quantify accuracy. Nevertheless, it is reasonable to assess the methods used to
measure a particular quantity and judge one method capable of better accuracy than
another. As an example, the determination of the time interval between two events
using an automatically triggered electronic counter is likely to be more accurate
than measuring the same time interval with a hand-held stopwatch.

When values obtained by repeat measurements of a particular quantity exhibit
little variability, we say that those values are precise. Precision, like accuracy, is a
qualitative term. It is used to convey a sense of the scatter of values when repeat
measurements of a particular quantity are made. Values that exhibit little scatter
may, owing to the influence of systematic error, be far from the true value. Care must
be exercised when measurements are precise since, if a systematic error has not
been accounted for, all the values could be misleading. We note that high accuracy
implies high precision, but the reverse does not hold: high precision does not imply
high accuracy if there exists a significant systematic error.

3.1.10 Uncertainty

Errors are key and unavoidable ingredients of the measurement process. Their net
effect is to create an uncertainty in the value of a measurand. As with the word
‘error’, the word ‘uncertainty’ is used widely in everyday language, such as ‘There
is some uncertainty as to whether it will rain today.’ When used in the context of
measurement, uncertainty has a number and (most often) a unit associated with it.
More specifically, measurement uncertainty has the same unit as the measurand.
The manner by which an uncertainty is calculated depends on the circumstances, but
it is usual to apply established statistical methods in order to calculate uncertainty.
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A convenient way of expressing the best estimate of the particular quantity as
well as the uncertainty in measurement is as follows. Suppose that the best estimate
of the period of a pendulum is 2.25 s and the uncertainty is 0.05 s. We write

Period of the pendulum = (2.25 ± 0.05) s.

It is inferred from the way the period is written that the true value of the period
has a ‘good chance’ or high probability of lying in the interval between 2.20 s and
2.30 s. In chapter 10 we will consider in some detail the use of the ± sign and what
is meant by ‘good chance’.

3.1.11 Repeatability

In many circumstances, measurements are made under (as far as is possible) iden-
tical conditions. When this happens, it is possible for the values obtained to exhibit
little variation or scatter. In such cases we speak of measurements being repeatable.

3.1.12 Reproducibility

Experimenters at different locations around the world need to compare their mea-
surements with other experimenters. If the measurand is well defined there is an ex-
pectation that, wherever a measurement is made and whatever techniques are used,
the same value should be obtained for the measurand irrespective of who makes the
measurement and which instrument is used. If there is consistency between values
obtained by different experimenters, we say that the value is reproducible.

3.2 Review

In this chapter we have introduced some of the more common terms used when dis-
cussing measurement. We need others, most especially when we wish to clarify and
quantify uncertainty in measurement. To this end the GUM introduces several new
terms, including standard uncertainty, coverage factor and expanded uncertainty.
We will define and use these terms in forthcoming chapters.
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Introduction to uncertainty in measurement

In this chapter we describe how consistency and clarity may be brought to the

calculation and expression of uncertainty in measurement.

The goal of any measurement is to establish a numerical value for the measurand.

Depending on the accuracy that we wish to claim for the numerical value, the

procedure that gives us the value may be relatively simple and direct, involving

no more than a tape-measure, for example. In other situations the process may be

more complicated, with several intermediate stages requiring the resources of a

well-equipped laboratory. Thus, if the measurand is the width of a table, the tape-

measure is all that is needed. On the other hand, if the measurand is the accurate

mass of an object, we need to know the value of the buoyancy correction (since the

weight of the object is less by an amount equal to the weight of the volume of air

that it displaces). This in turn requires knowledge of the volume of the object and

of the density of air (which is a function of temperature, pressure and composition)

at the time of measurement.

There are three components of a measurement: the measurand itself; the measur-

ing instrument (which can be a stand-alone instrument such as a thermometer, or

a complex system that occupies a whole laboratory); and the environment (which

includes the human operator). The environment will, in general, affect both the

measurand and the measuring instrument.

4.1 Measurement and error

4.1.1 Specifying measurand and environment

Error is the difference between the measured value of a measurand and the true

value of the measurand. The true value cannot be known; it is an unreachable ideal

in an imperfect world. However, we can regard it as the value close to the value that

we would obtain if we could specify both the measurand and its environment in

35
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very great detail, and if we possessed a measuring instrument of very high accuracy

that was traceable to international standards.

If we do not specify the measurand in sufficient detail, then it is not fully defined,

and so two people, measuring what they think is the same measurand, may actually

make measurements under slightly different conditions, obtaining different values

for this reason alone. As an example, the task might be to measure the diameter

of a cylindrical brass rod. Here the diameter is the measurand. Although the rod

may look cylindrical to the eye, its diameter will actually vary slightly, because

of imperfections in the lathe that was used to turn the rod. As part of the process

of fully specifying the measurand, we would therefore need to specify where the

diameter should be measured – say, at the mid-point of the rod.

Similarly, if we do not specify the environment in sufficient detail, we are in effect

neglecting the possibility that the measurand may be sensitive to the environment.

In the above example, since brass expands or contracts with a rise or drop in

temperature, we would need to specify the temperature of the environment in order

to specify the measurand. By contrast, we note that, in attempting to estimate the

true value of the measurand, we should not have to specify the instrument to be

used (for example, its type, manufacturer or model), except for demanding that the

instrument should have a certified very high accuracy.

The true value is, then, the value we would obtain for a completely specified

measurand if we could use an ideal instrument in a completely specified environ-

ment. So we expect an error when we measure the measurand in an imperfect but

more practically realisable manner.

Next we recognise that errors come in two flavours: ‘random’ and ‘systematic’.

4.1.2 Random errors

The distinction between random and systematic errors is best seen by considering

the notion of ‘repeating the measurement under unchanging conditions’, or as

closely as we can arrange such conditions. By ‘unchanging conditions’ we mean a

well-defined measurand, a tightly controlled environment and the same measuring

instrument. Often when we repeat the measurement in this way, we will obtain a

different value.1 The reason for this lack of perfect repeatability is that the instrument

we use or the measurand, or both, will be affected by uncontrollable and small

changes in the environment or within the measurand itself. Such changes may be

due, for example, to electrical interference, mechanical vibration or changes in

temperature. So if we make the measurement ten times, we are likely to get ten

1 We may obtain exactly the same value simply as a result of the limited resolution of the instrument – for example,
if a digital instrument displays only two or three digits.
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Table 4.1. Voltage values as displayed by a DMM

and difference from the mean voltage of 2.889 µV

DMM indication (µV) Differences from mean (µV)

2.87 −0.019
2.91 +0.021
2.89 +0.001
2.88 −0.009
2.87 −0.019
2.88 −0.009
2.86 −0.029
2.95 +0.061
2.88 −0.009
2.90 +0.011

values that, although similar, vary by a small amount. When our intention is to

obtain a single value for the measurand, we interpret such variations as the effect

of errors. The errors fluctuate, otherwise we would see no variation in our values.

Errors that fluctuate, because of the variability in our measurements even under what

we consider to be the same conditions, are called random errors. In brief, random

errors arise because of our lack of total control over the environment or measurand.

The first column of table 4.1 contains ten values in microvolts (millionths of

a volt, symbol µV) recorded by a digital multimeter (DMM) once a second in a

temperature-controlled laboratory. The values were obtained during the calibration

of a source of constant voltage of nominal value 1 V. The small values of voltage

are the differences in voltage that the DMM indicates between the source and a

known and very stable value of a voltage standard. The mean of these ten values

is 2.889 µV. The second column shows the ten differences between the measured

values and this mean value, which is the measurand.

The differences sum to exactly zero (as all differences from a mean value must

do), so both plus and minus signs must be present. These differences are scattered

over a 0.090-µV range extending from −0.029 µV to +0.061 µV. This scatter, or

‘dispersion’, creates an uncertainty in the value obtained for the measurand.

This lack of total control over the environment, creating random errors, also af-

fects cases where we make intentional changes to the environment. For example, the

electrical resistance of a conducting material varies with temperature. To measure

its temperature coefficient of resistance, we measure the resistance at intention-

ally different temperatures. When the resistance is a very stable and accurately

known resistance making up what is known as a ‘standard resistor’,2 we require

2 A standard resistor is an example of an artefact standard (see section 3.1.4 and figure 3.2).
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Figure 4.1. Random errors when measuring the temperature coefficient of a resis-
tor (courtesy of the National Measurement Institute of Australia).

the distribution of temperature over its surface to be as uniform as possible. It is

therefore immersed in a tank of stirred oil that can be set to various temperatures.

We cannot fully control the temperature, however; nor its distribution over the body

of the resistor. There may also be small fluctuations in the indication of the mea-

suring instrument, possibly because the connecting wires pick up electromagnetic

interference (from power-line and TV transmissions, for example). In brief, the

environment has a basic randomness or ‘noise’ that we are unable to eliminate

completely. So if we plot the measured resistance against temperature, as in figure

4.1, we are likely to observe a scatter of random errors around the ‘line of best fit’

that gives us the temperature coefficient of resistance. In this example, the resistor

has a ‘nominal’ value of 1500 � and is wound from a special type of wire with a

very low temperature coefficient. Several measurements have been taken at each of

four selected temperatures. The temperature coefficient in figure 4.1, namely the

slope of the line of best fit in the figure, is about +0.071 µ�/� (◦C)−1 and, as will

be discussed in section 5.2.3, the scatter of the points about this line can be given

a quantitative value, namely 0.59 µ�/�.

A sequence of reasonably stable measurements suggests a possible general way

in which we might obtain the true value of a measurand. We make as many measure-

ments as possible under the same conditions and calculate their mean. It is often

correct that, in calculating the mean, the random errors will tend to cancel out,

and their cancellation will yield a net error that we can claim with high confidence
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to be very nearly zero if there is a very large number of measurements. Making

many measurements is in fact generally preferable to making only a few – time and

resources permitting. This applies also to cases where intentional changes are made,

as in the values shown in figure 4.1; the greater the number of measurements, the

more precisely we might expect to establish the value of the temperature coefficient.

However, it is often pointless to take very many measurements to ascertain the true

value of the measurand. The reason is the probable existence of the other flavour

of error: a systematic error.

4.1.3 Systematic errors

During any measurement, there will probably be an error that remains constant

when the measurement is repeated under the same conditions. An example of such

an error is a constant offset in a measuring instrument. Unlike random errors, such

systematic errors cannot be reduced by repeating the measurements and taking their

mean; they resist statistical attack. The DMM in the above example (see table 4.1)

might consistently – but unknown to us – have an offset, so that it indicates 1 µV too

high no matter how many measurements we make. This systematic error will then

be transferred to the value of voltage that we finally calculate for the voltage source.

On the other hand, we might expect a measurement of temperature coefficient, as

in figure 4.1, to be less susceptible to the effect of an offset. As may be checked, a

constant offset in the temperature values or resistance values will shift the line in

figure 4.1 left or right or up or down, but will not affect its slope.

An instrument may have a systematic error other than an offset. An offset, as

commonly understood, is an additive (or subtractive) systematic error, as in the case

of the DMM that reads 1 µV too high. A systematic error may also be multiplicative.

In the case of a DMM, such an error is often called a ‘gain error’; for example, the

DMM may read three parts per million too low over a particular range of voltages,

so that when it displays (for example) 2.000 000 V, the actual value of voltage is

2.000 006 V. In the case of the temperature-coefficient measurement in figure 4.1,

such a multiplicative systematic error will affect the slope.

A systematic error may be revealed by one of two general methods. In the fol-

lowing discussion, we use the term ‘device’ to refer to either an instrument or an

artefact. We may look up previously obtained information on the devices used in a

measurement. This information may take the form of specifications by a manufac-

turer or supplier, or look-up tables of physical constants of materials, and previously

reported measurements against higher-accuracy devices. We note especially the lat-

ter resource: any device, particularly if used in an accurate measurement, should

have been calibrated recently. There are laboratories that perform calibrations and

issue a calibration report for a specified device. The devices of higher accuracy used
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in the calibration are themselves calibrated against devices of yet higher accuracy.

In this manner, all devices are traceable to the ‘top of the food chain’ – the interna-

tional primary standard for the particular quantity. We may call this general class

of information ‘specific information’, since it is specific to the actual measurand

that is of immediate concern. Any discrepancy between this specific information

and the result of the present measurement suggests that there is a systematic error

in the present measurement.

The other method of identifying a systematic error is by changing the experi-

mental set-up. The change may be intentional in order to seek out any systematic

error, or may occur for other reasons, with the systematic error being discovered

‘by accident’ as a result of the change. The change may also take place as a slow

natural process, generating an increasing and significant systematic error, which,

however, remains unsuspected for a prolonged period. In high-accuracy electri-

cal measurements, the slow deterioration in the insulating property of materials,

permitting increasing leakage currents, is such a process.

Here are four examples of intentional change that may uncover a systematic

error.

1. In high-accuracy electrical measurements of voltage, swapping the electrical leads con-

necting a source of constant voltage to a high-accuracy DMM can reveal the systematic

errors arising from the DMM’s ‘zero-offset’ and from small thermal voltages caused by

the Seebeck effect. The zero-offset error is a non-zero DMM reading when it should be

exactly zero (as when a short-circuiting wire is connected across the input terminals),

and is due to imperfections in the DMM’s internal electronics. The Seebeck effect creates

small voltages at junctions between different metals at different temperatures.3

2. Exchanging one instrument for another that is capable of the same accuracy and prefer-

ably made by a different manufacturer.

3. Having a different person perform the measurement. Thus the exact position of a marker

on a scale or of a pointer on a dial will be read differently by different people (a case

of so-called ‘parallax’ error, caused by differences in the positioning of the eye relative

to an observed object). In high-accuracy length measurements, using gauge blocks of

standard thicknesses, the blocks must often be wrung together to form a stack, and the

wringing process, which will determine the overall length of the stack, varies with the

operator.

4. An established method of measurement and a novel method that promises higher accuracy

may give discrepant results, which will be interpreted as revealing a systematic error in

the older method.

An example of such a novel method occurred in high-accuracy measurements of

voltage in the early 1970s. Until then, a standard of voltage was provided by banks of

3 These systematic errors are usually no larger than several microvolts when copper wiring is used for the electrical
connections. In section 6.2 these errors are discussed in greater detail.
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standard cells. These are electrochemical devices containing mercury and cadmium

and their sulfates in sulfuric acid, which were developed by Edward Weston in the

1890s, and provide a stable voltage of about 1.018 V at room temperatures (Vinal

1950). However, in 1962 Brian Josephson predicted an effect in superconductors

that radically changed the situation.4 The prediction was that a constant (‘direct-

current’ or ‘dc’) voltage, V , would exist across a very narrow gap of the order

of nanometres (a ‘Josephson junction’) between two superconductors,5 if the gap

was irradiated by microwaves at frequency f . Crucially for electrical metrology,

the relation V = n[h/(2e)] f would be obeyed. The Planck constant, h, and the

electron charge, e, are constants of nature, n is a known integer selected by the

experimenter, and a frequency, f , can be measured with extremely high accuracy.

So this was potentially, and turned out to be in practice, a much superior method

of maintaining a standard of voltage compared with the use of standard cells. In

many countries the as-maintained unit of voltage was changed as a result of the

new method; in the case of Australia, this amounted to a change of about half a

part per million introduced in January 1973. Later, in January 1990, all countries

that based their voltage standards on the Josephson effect made a further and larger

change of about eight parts per million, as a result of absolute measurements of

voltage.6

In this fourth category we may also include measurements of fundamental con-

stants where there can be no established method and where, because the measurand

is a fundamental constant, any variation in results is attributed to experimental error

with a strong systematic component. The extremely challenging measurements of

the gravitational constant, G, constitute a prime example. Figure 4.2 summarises

measurements (Quinn et al. 2001) made between 1997 and 2001 of G, which has

an approximate value 6.68 × 10−11 m3 · kg−1 · s−2. The horizontal ‘error-bars’ in

figure 4.2, some of which do not overlap, indicate the difficulty of assigning an

uncertainty to the measured value of G.

Random and systematic errors have contrasting natures. Random errors can be

revealed when we repeat the measurement while trying to keep the conditions con-

stant. Systematic errors can be revealed when we vary the conditions, whether

4 Josephson’s paper with this discovery is cited, and practical voltage standards based on the Josephson effect are
described, in the paper by Hamilton et al. cited at the end of chapter 1.

5 As used in voltage standards, these superconductors are metals (for example, niobium) cooled to temperatures
near absolute zero. At low temperature these metals have zero electrical resistance and are therefore known as
superconductors.

6 ‘Absolute’ electrical measurements, which are invariably complex and demand major laboratory resources,
are those made by direct reference to the ‘mechanical’ standards of mass, length and time. The mercury-
electrometer project was such a measurement. It involved defining a voltage through the measurement of the small
elevation (a fraction of a millimetre) of a liquid-mercury surface when attracted upwards by a high voltage. The
density of mercury and the acceleration due to gravity needed to be accurately known, and a major engineering
feat in this experiment was the successful isolation of the system from mechanical vibration (Clothier et al.
1989).
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Figure 4.2. Measurements of G by various groups between 1997 and 2001 (cour-
tesy T. J. Quinn, National Physical Laboratory, UK).

deliberately or unintentionally. Varying the conditions can be done in a relatively

minor way, as in the lead-swapping example above, or it may amount to a major

change in the experimental method and system. In general, the bigger the change,

the greater the chance of uncovering systematic errors. Deliberately varying the

conditions is more troublesome and time-consuming than simply repeating a mea-

surement; this is one reason why systematic errors can remain hidden and unsus-

pected for prolonged periods.

We see that, even though the existence of standards of measurement is funda-

mental to metrology, diversity of methods and procedures is a powerful defence

against systematic errors. Indeed, the richness of metrology derives in part from

the continuing interplay of these two apparently discordant principles.

Both methods of revealing systematic errors – specific information and changes

to the experimental set-up – require a good grasp of the science underlying the

measurement. Since any attempt at accurate measurement is potentially or actually

beset by systematic errors from many sources – awareness of this is part of the mental

atmosphere of metrology – it is useful to have some familiarity with scientific areas

apart from the area of immediate relevance to the measurement. As an example,

the elaborate experiment mentioned above to measure the ‘absolute volt’, using a

carefully designed mercury electrometer, demanded expertise not only in electricity

and magnetism, but also in optics, the physics and chemistry of liquids, metallurgy

and other disciplines.

No sharp distinction is to be made between the two ways in which systematic

errors are revealed. Specific information can be obtained from the calibration report

on an instrument, and the procedure of calibration itself involves a change in the

experimental set-up. Nevertheless, the two-way classification serves as a useful

reminder of the practical methods by which constant vigilance against systematic

errors can be maintained.
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After the existence and cause of a systematic error have been established, an ex-

perimental routine can often be developed that automatically takes it into account

and eliminates it from the final result. Since the magnitude of the systematic error

cannot be known exactly, this process of elimination must itself leave an uncertainty.

An example of such an experimental routine, which readily lends itself to statistical

analysis, concerns the systematic error caused by DMM offset and by a thermal volt-

age, as mentioned above and as will be described more fully in chapter 6. In other

cases, we have to remove the systematic error through an actual calculation that cor-

rects for it. For example, if scales consistently overestimate a nominal 1-kilogram

mass by 9 grams, then a value of, say, 989 grams should be corrected to 980 grams.

The correction itself is likely to be known only approximately. Errors must

therefore be associated with the correction, and we can regard them as random

errors scattered around the correction. We note that looking up specific information

is hardly a usefully repeatable exercise, and it is generally impracticable to vary

the experimental conditions more often than, say, twice. However, just as in the

previous case of usefully repeatable measurements with their ‘visible’ or explicit

scatter, the uncertainty of the correction can be estimated as representing notionally

the implicit scatter of its associated random errors. So, whether or not we have

usefully repeatable measurements, the measurand is measured with an uncertainty

that is described as follows.

4.2 Uncertainty is a parameter that characterises the dispersion of values

The dispersion of data is characterised numerically by a standard deviation (defined

in section 4.3). From this standard deviation, it is common practice to obtain a ‘±’

figure. This figure describes the range of values that is very likely to enclose the

true value of the measurand. The number following the ‘±’ is normally about

twice the standard deviation of the measurand and can be loosely referred to as the

‘uncertainty’ attaching to the measurand. As will be discussed in chapter 10, this

uncertainty is referred to in the GUM as the ‘expanded’ uncertainty, expressing

the ‘expansion’ by that factor of about two from the standard deviation of the

measurand.

If a value of a mass is given as (1.24 ± 0.13) kg, the actual value is asserted

as very likely to be somewhere between 1.11 kg and 1.37 kg. The uncertainty is

0.13 kg and we note that uncertainty, like standard deviation, is a positive quantity.

By contrast, an error may be positive or negative.

4.2.1 Type A and Type B categories of uncertainty

These do not differ in essence, but are given these names in order to convey the

notion that they are evaluated in different ways.
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4.2.1.1 Type A uncertainties are evaluated by statistical methods

In a common situation, a sequence of repeated measurements giving slightly differ-

ent values (because of random errors) is analysed by calculating the mean and then

considering individual differences from this mean. The scatter of these individual

differences is a rough indication of the uncertainty of the measurement: the greater

the scatter, the more uncertain the measurement.

The calculation of the mean, by summing the values and then dividing this sum

by the number of values, is perhaps the simplest example of statistical analysis. The

scatter around the mean contributes a Type A uncertainty to the uncertainty of the

mean. In a more complicated example requiring statistical analysis, a quantity may

change with time, so that the rate of change, commonly called ‘drift’, is of interest.

Often this drift is partially or almost completely obscured by random scatter, as in

the case of measurements of climate where a long-term change in temperature may

be masked by day-to-day fluctuations. To tease out the value of temperature drift

from this background ‘noise’ is a matter for statistical analysis. The numerical value

of drift then has an uncertainty determined by the amount of scatter. This again will

be a Type A uncertainty. In exactly the same way, the value of the temperature

coefficient in figure 4.1 has an uncertainty determined by the scatter (about the

best-fit line) of the 18 measurement points.

4.2.1.2 Type B uncertainties are evaluated by non-statistical methods

A Type B uncertainty may be determined by looking up specific information about

a measurand such as that found in a calibration report or data book. When the

specific information consists of the calibration report on a device, the value of the

measurand is stated in the report – this is the ‘calibrated value’. The calibration

report also includes the estimated uncertainty in the value of the measurand. The

calibrated value can tell us how much systematic error would exist if we ignored

the calibration report, and obtaining this information is the primary purpose of

calibrating a device. The uncertainty of the calibrated value is always Type B, from

our point of view as reader and user of the report. The reason is that no statistical

analysis can or needs to be done when reading the report; unlike in the typical case

of Type A uncertainty discussed in section 4.2.1.1, reading the report several times

will give exactly the same result!
The values summarised in the report were presumably obtained from repeated

measurements with an associated Type A uncertainty. The calibration is likely to

have entailed repeated measurements in order to cancel out as much as possible

any random fluctuations and to check the stability of the instrument or artefact.

In the calibration report the measurements are summarised and the uncertainty of

the result is estimated using statistical methods. This uncertainty will therefore

have a Type A component. Suppose that – unrealistically but as an illustration –
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the measurements made by the calibrating laboratory have no Type B component

of uncertainty. The uncertainty, which was wholly Type A as determined by the

calibrating laboratory, is a Type B uncertainty from the point of view of the reader

of the report. The act of writing the report ‘fossilises’ a Type A uncertainty into a

Type B uncertainty. If the reader of the report now uses the reported value in some

subsequent application of the instrument or artefact, the uncertainty that was stated

in the report is Type B.

When the specific information consists of manufacturer’s specifications, the con-

tents of tables of physical properties or the like, it often happens that no associated

uncertainties are stated. The information provided by these sources will remove the

systematic error that would be present if we used only an approximate value. How-

ever, we then have to estimate the associated uncertainty ourselves, without benefit

of either statistical analysis or a reported uncertainty. As discussed in section 2.3,

this Type B uncertainty can often be estimated from the stated number of decimal

places.

4.2.2 Combining Type A and Type B uncertainties

Specific information or changing the conditions of an experiment, whether de-

liberately or accidentally, may reveal an unsuspected systematic error. This error

must itself have an associated uncertainty. After the error has been corrected for,

this uncertainty may be Type A or Type B and is then combined with the Type A

uncertainty evaluated from random errors. Depending on the particular circum-

stances, both the Type A and the Type B uncertainties may or may not be reported

separately. However, what is always reported is the uncertainty formed from the

combination of the Type A and Type B components. From the point of view of the

user of the report, this combined uncertainty is wholly Type B.

Figure 4.3 illustrates the relationships among the errors and uncertainties.

4.3 Standard deviation as a basic measure of uncertainty

If there are n values of a quantity, x1, x2, . . ., xn , the standard deviation, s, of these

n values is given by7

s =

√

∑n
i=1(xi − x̄)2

n − 1
, (4.1)

where x̄ is the mean of the n measurements, defined as x̄ = (1/n)
∑n

i=1 xi .

7 Strictly this is an approximate estimate of the standard deviation. This is considered in more detail in sections
5.1.3 and 5.1.4.
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Figure 4.3. The relationship between Type A and Type B uncertainties.

The value of s in the example of small voltage differences in table 4.1 is about

0.026 µV. We note that this is substantially less than the overall range (0.090 µV)

by a factor of roughly 3.5. The standard deviation is often less than the overall range

of the values (or of the random errors) by a factor between 3 and 4.

The square of s, s2, is known as the unbiased variance of the xi (i = 1, 2, . . ., n),

or more exactly the unbiased estimate of the variance of the entire population of

the x’s of which our n values form a sample. The variance s2 of the population is,

then,8

s2 =
∑n

i=1(xi − x̄)2

n − 1
. (4.2)

The spread of values is a source of uncertainty in the final result. Since the standard

deviation is a measure of the spread, the name given in metrology to the standard

deviation is ‘standard uncertainty’. The symbol frequently used for standard un-

certainty is a lower-case u, so that u(x) is the standard uncertainty of a quantity x .

Similarly, u2(x) denotes the variance of x .

8 Section 5.1.3 discusses the reason for the presence of n − 1 rather than n in the denominator of equation (4.2).
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Table 4.2. Number of airborne

particles in a fixed volume

in a cleanroom

Number of particles

137
114
88

102
95

102

Example 1

Six successive measurements of the number of airborne particles within a fixed

volume of air within a clean room are made. Table 4.2 show the values obtained.

Use these data to calculate (a) the variance and (b) the standard uncertainty in the

number of particles.

Answer

(a) Calculation of the variance using equation (4.2) is best accomplished using an electronic

calculator or a spreadsheet package, such as Excel. Such a calculation gives s2 = 300.3

= u2(x), where x represents the number of particles.

(b) Since u2(x) = 300.3, the standard uncertainty in the number of particles is u(x) =√
300.3 = 17.3.

Exercise A

(1) Ten samples of an oxide of nominally the same mass are heated in an oxygen-rich

atmosphere for 1 hour. The mass of each sample increases by an amount shown in

table 4.3. Using the data in table 4.3, calculate the variance and the standard uncertainty

of the mass gain.

(2) The thickness of an aluminium film deposited onto a glass slide is measured using a pro-

filometer. The values obtained from six replicate measurements are shown in table 4.4.

Using these data, calculate the variance and standard uncertainty in the film thickness.

The standard uncertainty, u(x̄), of the mean x̄ = (1/n)
∑n

i=1 xi may be expected

to be less than s. This is correct if the values xi (i = 1, 2, . . ., n) are uncorrelated.9

If they are uncorrelated, then

u(x̄) = s/
√

n for uncorrelated measurements. (4.3)

9 This is discussed more fully in chapters 5 and 7.
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Table 4.3. Mass gained

by samples of oxide

Mass gain (mg)

12.5
11.2
11.8
11.8
12.1
11.5
11.0
12.1
11.7
12.8

Table 4.4. Thickness of

aluminium film

Thickness (nm)

420
460
400
390
410
460

In the case of the voltage differences in table 4.1, where s = 0.026 µV, the overall

correlation among the ten measurements may be shown to be low and the value of

u(x̄) is 0.026/
√

10 µV ∼ 0.008 µV.

u(x̄) is sometimes called the experimental standard deviation of the mean

(ESDM). (In some books this is referred to as the ‘standard error’ of the mean.)

The ESDM when obtained using equation (4.3), with a divisor
√

n, should be used

with caution. Equation (4.3) is valid only for uncorrelated values; if, for example,

the values exhibit a steady drift in time, then this high correlation implies that the

ESDM is not significantly less than s and in fact is closely equal to it. This topic

will be discussed further in section 7.2.2.

Example 2

Calculate the mean, x̄ , and standard uncertainty in the mean, u(x̄), for the values

in table 4.2.
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Answer

The mean of the values of the number of airborne particles in table 4.2 is x̄ = 106.3.

u(x̄) is given by equation (4.3). Here, s = 17.3 and the number of values is n = 6,

so u(x̄) = 17.3/
√

6 ≃ 7.1.

Exercise B

(a) Using the data in table 4.3, calculate the mean mass gain and standard uncertainty in

the mean.

(b) Using the data in table 4.4, calculate the mean thickness of the aluminium film and the

standard uncertainty in the mean.

We can see intuitively why, when the values are uncorrelated, the standard uncer-

tainty, u(x̄), of the mean is less than the standard deviation, s, of the scatter. When

the mean is calculated, the random errors tend to cancel out. This follows from the

fact that the measured values are summed for calculating the mean, and the random

errors come with both positive and negative signs.10 However, the cancellation is

itself an uncertain process; this is why the reduction from s to u(x̄) is not by a factor

of n, but only by a factor of
√

n. So, if we go to the trouble of taking not 10 but 100

uncorrelated measurements, the standard uncertainty of the mean will be reduced

further only by a factor of about three.

4.4 The uncertainty in the estimate of uncertainty

If the standard uncertainty is denoted by s and its own uncertainty by u(s), then11

u(s) ∼
s

√
2ν

. (4.4)

where ν is the number of ‘degrees of freedom’.12 ν is equal to the number of values,

n, minus the number of quantities determined using the values. In the case where

the mean is the only quantity determined using the values, ν = n − 1.

Expressed as a percentage uncertainty, we can write equation (4.4) as

u(s)

s
× 100% ∼

1
√

2ν
× 100%. (4.5)

If ν is as low as 4, then u(s)/s is high at about 35%, and ν has to reach 50 to give

a 10% uncertainty in the uncertainty.

Equation (4.5) is particularly useful for the Type B category of uncertainty.

Owing to the tentative nature of the estimation of Type B uncertainties, it is good

10 As shown in the voltage-measurement example in section 4.1.2.
11 Equation (4.4) is discussed further in section 9.3.1.
12 We will consider degrees of freedom more fully in section 5.1.5.
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Table 4.5. Minimum force

required to move a glass block

Force (N)

5.6
5.7
5.2
5.5
5.8
5.7
5.4

to have some numerical indicator of the reliability which we think attaches to a

Type B estimate. Often the value of ν for a Type B uncertainty will not exceed 10,

implying a reliability in the estimated uncertainty of no better than about 20%.

Equation (4.5) may be used to determine the uncertainty in a Type A uncertainty.

For example, for the data in table 4.1, s = 0.026 µV, and ν = n − 1 = 9. On sub-

stituting these values into equation (4.5) we find that the percentage uncertainty in

s is surprisingly high at almost 25%. The percentage uncertainty in the standard

uncertainty in the mean, u(x̄), is also 25%. Since u(x̄) = 0.008 µV, the uncertainty

in u(x̄) is about 0.002 µV.

Exercise C

Table 4.5 shows repeat measurements of the minimum force required to cause a

glass block to move when it is resting on a smooth metal plate. Using these data,

determine

(a) the mean minimum force to move the glass block,

(b) the standard uncertainty in the mean and

(c) the uncertainty in the standard uncertainty.

4.5 Combining standard uncertainties

A measurand may be measured indirectly, through the measurement of so-called

‘input quantities’. If y is the measurand and x1, x2, . . . , xn are the input quantities,

then y is a function y = f (x1, x2, . . . , xn) of the x’s. The standard uncertainty,

u(y), in y resulting from standard uncertainties u(x1), u(x2), . . . , u(xn) in the input

quantities is calculated using the equation

u2(y) =
(

∂y

∂x1

)2

u2(x1) +
(

∂y

∂x2

)2

u2(x2) +
(

∂y

∂x3

)2

u2(x3) + · · · +
(

∂y

∂xn

)2

u2(xn).

(4.6)
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Equation (4.6) may be written more compactly:

u2(y) =
n

∑

i=1

(

∂y

∂xi

)2

u2(xi ). (4.7)

Equation (4.6) is valid only if the xi are mutually uncorrelated. A correlation

exists if, for example, two or more of the xi have been measured using the

same instrument that has a systematic error with a significant associated uncer-

tainty. The generalisation of equation (4.6) for the correlated case is discussed in

section 7.2.

The standard uncertainties of the inputs, namely the u’s on the right-hand side

of equation (4.6), may be either Type A or Type B uncertainties. No distinction

between Type A and B is made when evaluating the standard uncertainty of the

measurand, y.

Example 3

The velocity of a wave, v, is written in terms of the frequency, f , and the wavelength,

λ, as

v = f λ. (4.8)

An ultrasonic wave has f = 40.5 kHz with a standard uncertainty of 0.15 kHz

and λ = 0.822 cm with a standard uncertainty of 0.022 cm. Assuming that there is

no correlation between errors in f and λ, calculate the velocity of the wave and its

standard uncertainty.

Answer

The velocity v = f λ is given by v = (40.5 × 103) × (0.822 × 10−2) = 332.9 m/s.

Writing equation (4.6) in terms of v, f and λ gives

u2(v) =
(

∂v

∂ f

)2

u2( f ) +
(

∂v

∂λ

)2

u2(λ). (4.9)

Using equation (4.8), we have

∂v

∂ f
= λ,

∂v

∂λ
= f. (4.10)

Substituting in values gives

u2(v) = (0.822 × 10−2)2× (0.15 × 103)2+ (40.5 × 103)2× (0.022 × 10−2)2 (m/s)2,

(4.11)

hence u2(v) = 80.9 (m/s)2, so that u(v) = 9.0 m/s.
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Exercise D

(1) The flow rate of blood, Q, through an aorta is found to be 81.5 cm3/s with a standard

uncertainty of 1.5 cm3/s. The cross-sectional area, A, of the aorta is 2.10 cm2 with a

standard uncertainty of 0.10 cm2. Find the flow speed of the blood, v, and the standard

uncertainty in the flow speed using the relationship13

Q = Av. (4.12)

(2) The velocity, v, of a wave on a stretched string is given by

v =

√

F

µ
, (4.13)

where F is the tension in the string and µ is the mass per unit length of the string.

Given that F = 18.5 N with a standard uncertainty of 0.8 N and µ = 0.053 kg/m

with a standard uncertainty of 0.007 kg/m, calculate the velocity of the wave and

its standard uncertainty.

Historical note. It used to be the common practice, before the introduction of

the GUM, for measurement and testing laboratories to report uncertainties as so-

called ‘errors’. It was also common to report separately the random and systematic

errors in the measurand. This often created the complication that, in any subsequent

use of the report by others, a single number for the uncertainty, though desirable,

was not immediately apparent. There was no consensus regarding the measure of

uncertainty: whether this should be the standard deviation or a small multiple of

this. Instead of the root-sum-square rule, errors and/or uncertainties were often

simply summed linearly. This linear sum applies strictly to perfectly positively

correlated input quantities, and if there is little or no correlation the linear sum

gives a needlessly pessimistic estimate of the uncertainty in the measurand.

4.6 Review

While errors are conveniently categorised as random or systematic, the GUM intro-

duces the new terms ‘Type A’ and ‘Type B’ to categorise uncertainties. Type A and

Type B uncertainties are not related directly to random and systematic errors, but

reflect the way in which uncertainties are evaluated. In the next chapter we will turn

our attention to useful statistical methods that allow us to summarise key features

of experimental data.

13 Equation (4.12) is often referred to as the ‘continuity equation’.
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Some statistical concepts

Random errors arise from uncontrollable small changes in the measurand, instru-

mentation or environment. These changes are evident as variations in the values

obtained when we carry out repeat measurements. In this chapter we shall consider

methods of quantifying these variations: that is, describing them numerically using

statistical methods. Some basic statistical concepts will therefore be introduced and

discussed.

5.1 Sampling from a population

In statistics, the term population refers to the number of possible, but not necessar-

ily actual, measured values. In some situations a population consists of an infinite

number of values. In practice, we can measure only a sample drawn from a pop-

ulation, since time and resources are always limited. We hope and expect that the

sample is representative of the population. In almost every case of measurement we

sample a population, and the quantities of interest obtained from the sample (some-

times called sample statistics) should reliably represent corresponding parameters

in the population (the population parameters). An example of such a quantity of

interest, which quantifies the amount of scatter in values, is the standard deviation

of the values.

There are cases where a sample may, in fact, be the entire population. Thus

the examination results of a class of 30 students can be analysed statistically in

order to determine, for example, the mean mark and the range of marks, with no

attempt at generalising. The teacher of the class may be interested simply in that

particular class. But normally, when measurements are made, a sample is implicitly

understood to be representative of the underlying population; if it were not, the

measurements made by a particular person in a particular laboratory would be of

little interest to anybody else!

53
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5.1.1 The expectation value of a continuous random variable

Most often we routinely measure quantities, such as temperature and time, that are

continuous, by which we mean that the quantities can take on any value between

physically prescribed limits. It is convenient mathematically to represent such a

quantity by a variable like x or z (often referred to as a continuous random variable).

We define the expectation, E(z), of a variable, z, as the mean of that variable over

its entire population. The expectation function has the following properties.1

(a) The expectation of a constant is that constant. If C is a constant, then E(C) = C .

(b) The expectation of the product of a constant and a variable is the product of the constant

and the expectation of the variable: E(Cz) = C E(z).

(c) The expectation of the sum of variables z1, z2, . . . is the sum of the expectations of

those variables: E(z1 + z2 + · · · ) = E(z1) + E(z2) + · · ·.

If we give the constant in (b) the value −1, then (c) implies that the expectation of

the difference between two variables is the difference between their expectations:

E(z1 − z2) = E(z1) − E(z2).

(d) The expectation of the product of variables z1, z2, . . ., zn is the product of the expec-

tations if, and only if, the variables z1, z2, . . ., zn are mutually uncorrelated.2 Then we

have E(z1z2 . . . zn) = E(z1)E(z2) . . . E(zn).

If the expectation of a sample statistic is the value of the corresponding population

parameter, the sample statistic is said to be an unbiased estimate of the population

parameter.

5.1.2 The mean of a sample and the mean of the population

Let n denote the sample size. If xi (i = 1, 2, . . ., n) are the measured values that

make up the sample, the mean, x̄ , of the sample is given by

x̄ =
∑n

i=1 xi

n
. (5.1)

It is conventional to denote the population mean by the symbol µ. From the defini-

tion of expectation, we have, for all xi (i = 1, 2, . . ., n),

E(xi ) = µ. (5.2)

Equation (5.2) may be understood as follows: for each xi in the sample (i =
1, 2, . . ., n), the expectation of that particular xi is the same as the expectation

1 For more information on expectation, see Devore (2003).
2 Correlation will be discussed in section 5.3.
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of any other x j in the sample ( j = 1, 2, . . ., n), and each is equal to µ. Therefore

there is no suffix i on the right-hand side of equation (5.2).

It is instructive to find the expectation of the mean, x̄ , of the sample. From

equation (5.2) and properties (b) and (c) above of the expectation function, we have

E(x̄) = E

(
∑n

i=1 xi

n

)

=
E

(
∑n

i=1 xi

)

n
=

∑n
i=1 E(xi )

n
=

∑n
i=1 µ

n
=

nµ

n
= µ.

(5.3)

Equation (5.3) indicates that the expectation of the sample mean is the population

mean. The sample mean, calculated using equation (5.1), is therefore an unbiased

estimate of the population mean.

5.1.3 The variance of a sample and the variance of the population

Another important property of a sample is the range, where range = (maximum

value − minimum value). The range is roughly proportional to, and often about

three to four times larger than, the standard deviation, which will be discussed in

the next section. It is convenient from a theoretical point of view to consider first

the square of the standard deviation, known as the variance.

We denote the variance of a sample by s2
b , defined as

s2
b =

∑n
i=1(xi − x̄)2

n
. (5.4)

(The squared symbol, s2
b , anticipates the definition of the standard deviation, sb,

and the subscript, b, indicates that s2
b will be a biased estimate of the population

variance.)

If the population size is represented by N , the population variance, denoted by

σ 2, may be written as

σ 2 =
∑N

i=1(xi − µ)2

N
(5.5)

and equation (5.5) is equivalent to

σ 2 = E[(xi − µ)2] (5.6)

since the expectation of any quantity is the mean of that quantity over the whole

population.

It may be shown that3

E
(

s2
b

)

= σ 2 n − 1

n
. (5.7)

3 See, for example, chapter 8 in Wilks (1962).
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Since E(s2
b ) �= σ 2, s2

b is said to be a biased estimate of σ 2. However, if we define a

new quantity, s2, as

s2 =
n

n − 1
s2

b =
∑n

i=1(xi − x̄)2

n − 1
(5.8)

then

E(s2) = [n/(n − 1)]E
(

s2
b

)

= [n/(n − 1)][(n − 1)/n]σ 2 = σ 2. (5.9)

So the variance defined in equation (5.8), with the divisor n − 1, is the unbiased,

and therefore preferred,4 estimate of σ 2.

We note that s2 is slightly greater than s2
b (although, for large sample sizes, the

difference between s2 and s2
b is small). This can intuitively be seen to be reasonable.

In equation (5.4), s2
b is defined as the mean of squared differences between the

sample values, xi (i = 1, 2, . . ., n) and the sample mean, x̄ . However, x̄ is not a

fixed quantity; it varies from sample to sample, in contrast to the fixed population

mean, µ. Also, x̄ is positively correlated with the values xi (not surprisingly, since

x̄ is their mean!5) and so the deviations xi − x̄ are slightly shrunken measures of

the range of variability of the values xi . Dividing by the slightly smaller number

n − 1, rather than by n, exactly compensates for this shrinking.

If we expand the right-hand side of equation (5.6), we obtain

σ 2 = E
(

x2
i + µ2 − 2µxi

)

= E
(

x2
i

)

+ E(µ2) − 2µE(xi ). (5.10)

Since µ is a constant (the population mean), E(µ2) = µ2; and since E(xi ) = µ,

equation (5.10) gives

σ 2 = E
(

x2
i

)

+ µ2 − 2µ2 = E
(

x2
i

)

− µ2. (5.11)

The term E(x2
i ) is the mean of the squares of the measured values xi . Equation

(5.11) therefore states that the population variance may be regarded as the mean

square of the values minus the square of the mean of the values.6 The mean square

of a set of numbers is always equal to or greater than their squared mean, so the

variance is always zero or a positive quantity.

4 Although the divisor in equation (5.8) is n − 1, the summation is over all n terms as indicated in the numerator
of equation (5.8).

5 The smaller the sample size n, the larger the positive correlation between x̄ and any xi (i = 1, 2, . . . , n).
6 When the values are very similar except for several least-significant digits, this simple formula may give serious

round-off errors. It is better in such cases to take differences from the mean of the set. For example, if the
set consists of the three similar values 1000.013, 1000.021 and 1000.002 with mean 1000.012, the differences
from the mean are +0.001, +0.009 and −0.010 (summing to zero, as a check). The variance of these three
differences is the same as the variance of the three original values, but the simple formula can now safely be
used on the differences. Alternatively, the common amount ‘1000’ can be subtracted from each value, leaving
+0.013, +0.021 and +0.002, and the simple formula can equally safely be used on these three values.
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Table 5.1. Values of pH

of river water

pH

6.8
7.3
6.9
6.9
7.2
7.0
7.1

5.1.4 The standard deviation of a sample and the standard

deviation of the population

The standard deviation, sb, of a sample is the square root of equation (5.4):

sb =

√

∑n
i=1(xi − x̄)2

n
. (5.12)

We can now define the estimated standard deviation, s, of the population as the

square root of the unbiased estimate, s2, of the population variance, σ 2:

s =

√

∑n
i=1(xi − x̄)2

n − 1
. (5.13)

This is only an approximately unbiased estimate of the population standard devia-

tion. Although E(s2) = σ 2 as in equation (5.9), it does not follow that E(s) = σ .

However, the standard deviation as defined in equation (5.13) is the accepted mea-

sure of the amount of variation of some quantity in its population, as inferred from

a sample.

We note that (as is shown by, for example, equations (5.5), (5.8) and (5.13) and

implied by footnote 6), variance and standard deviation, whether of a sample or of a

population, are location-independent; that is, the variance and standard deviation of

a set of values remain unaffected if we add the same arbitrary constant to each value.

Such location-independence is an essential attribute of any reasonable measure of

variability of values. On the other hand, if each value is multiplied by an arbitrary

constant, the standard deviation will be multiplied by the same constant, and the

variance by the square of that constant.

Exercise A

1. As part of a study on the quality of river water, seven repeat measurements were made

of the pH of the water. Table 5.1 shows the values obtained. Determine sb and s using

equations (5.12) and (5.13).
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2. (a) Writing the percentage difference between sb and s as

%diff =
(

s − sb

s

)

× 100% (5.14)

show, using equations (5.12) and (5.13), that

%diff =

(

1 −
√

n − 1

n

)

× 100%. (5.15)

(b) For what value of n (rounded up to the nearest whole number) does the percentage

difference given by equation (5.15) equal (i) 20%, (ii) 5% and (iii) 1%?

5.1.5 Residuals and degrees of freedom

Another way of looking at equations (5.8) and (5.13), with more general applica-

bility, is in terms of so-called ‘residuals’. Suppose that we calculate the mean, x̄ , of

n values xi , i = 1, 2, . . ., n. Using the mean, we calculate the n resulting residuals,

ǫi (i = 1, 2, . . ., n), where

ǫi = xi − x̄ (i = 1, 2, . . ., n). (5.16)

In general, for a sample of size n,

n
∑

i=1

ǫi = 0. (5.17)

To show that equation (5.17) must always hold, we sum equation (5.16) over all

values of i from i = 1 to i = n:

n
∑

i=1

ǫi =
n

∑

i=1

xi −
n

∑

i=1

x̄ . (5.18)

x̄ does not contain the index, i , so

n
∑

i=1

x̄ = x̄ + x̄ + · · · + x̄ = nx̄ . (5.19)

Hence equation (5.18) may be written

n
∑

i=1

ǫi =
n

∑

i=1

xi − nx̄ (5.20)

and substituting equation (5.1) into equation (5.20) gives equation (5.17).

Since the residuals are linked through equation (5.17), the residuals are not

independent. If we are given the values of any n − 1 of the residuals, then the value
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of the remaining one is determined by equation (5.17). This is why we say that the

n residuals have degrees of freedom, ν, given by

ν = n − 1. (5.21)

We next note that the standard deviation in equation (5.13) may be written as

s =

√

∑n
i=1 ǫ2

i

n − 1
=

√

∑n
i=1 ǫ2

i

ν
, (5.22)

and the variance, s2, is given by

s2 =
∑n

i=1 ǫ2
i

ν
. (5.23)

In the next section we discuss least-squares fitting, of which the estimation

of a population mean is the simplest example, and we shall see how residuals

and measures of their scatter such as equations (5.22) and (5.23) occur more

generally.

5.2 The least-squares model and least-squares fitting

5.2.1 The mean as a least-squares fit

After a sequence of measurements, we often need to estimate one or more parame-

ters that characterise or summarise the values obtained. Often only one parameter is

sought. Using least-squares estimation, this parameter turns out to be the ‘average’

or mean, as will now be shown. This is the simplest example of a least-squares

fit. The procedure of least-squares fitting is very commonly used when parameters

(such as the mean) are to be estimated.

The least-squares model that forms the basis of this procedure is, very generally,

as follows:

measured values= (function of one or more parameters to be estimated)+scatter.

(5.24)

The right-hand side of equation (5.24) may also include known constants or vari-

ables that are assumed to be error-free. These variables are sometimes known as

‘explanatory’ or ‘predictor’ variables, and some examples will be given in section

5.2.3. The ‘scatter’ in equation (5.24) describes the random variations or fluctuations

that are generally present when measurements are made. They are distinguished

conceptually from the parameters that we are fitting to the measured values. In

electronic engineering, equation (5.24) is often reformulated as data = signal +
noise.
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We now consider a numerical example of a case of least-squares fitting. Suppose

that we have collected six small pieces of fruit dropped by a palm tree. We weigh

them and find the values in grams: 4.1, 4.3, 4.4, 4.2, 4.3, 3.9.

These values, constituting our sample, are to be summarised by a single statistic

that characterises the whole population of the fruit from the palm tree (so we have to

be careful that our sample is representative). We know in advance that this statistic

is the mean of the six values, namely 4.20 g. But suppose that we were unsure

how to summarise the six values, and decided to use least-squares to obtain a best

estimate.

We denote the single summarising statistic by m. We therefore have

4.1 = m + ǫ1,

4.3 = m + ǫ2,

4.4 = m + ǫ3, (5.25)

4.2 = m + ǫ4,

4.3 = m + ǫ5,

3.9 = m + ǫ6,

where ǫ1, ǫ2 etc. are measures of the ‘noise’.7 In the least-squares model, a common

term for the noise is ‘residuals’, the quantities ‘left over’ after we have fitted our

parameter or parameters.

There are six equations in equation (5.25), but seven unknowns: m and the six

ǫ’s. Since there are more unknowns than equations, we cannot find a unique solution

unless some extra condition is imposed. This is the least-squares condition, and we

impose it in the following way.

We sum the squares of the residuals, calling this sum, Q, where8

Q =
6

∑

i=1

ǫ2
i = ǫ2

1 + ǫ2
2 + ǫ2

3 + ǫ2
4 + ǫ2

5 + ǫ2
6 . (5.26)

Using equation (5.25), we may write equation (5.26) as

Q = (4.1 − m)2 + (4.3 − m)2 + (4.4 − m)2 + (4.2 − m)2

+ (4.3 − m)2 + (3.9 − m)2. (5.27)

The required value of m in equation (5.27) is the value of m that makes Q a

minimum; hence the name ‘least-squares’. This procedure therefore selects that

value of our unknown parameter m that minimises the sum of the squares of the

residuals (at this point the residuals have unknown values).

7 The noise has units of g (grams) in this example.
8 Q has units of g2 (gram-squared).
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Figure 5.1. The sum of squares, Q, as a function of m as given by equation (5.27).

Equation (5.27) gives Q as a function of m, and this function is a parabola, as

illustrated in figure 5.1.

What is the value of m for which Q is a minimum? The gradient of the graph

at that point must be zero (the tangent is horizontal), so the derivative of Q with

respect to m must be zero at that point. Differentiating Q with respect to m, using

equation (5.27), gives

dQ

dm
= −2(4.1 − m) − 2(4.3 − m) − 2(4.4 − m) − 2(4.2 − m)

− 2(4.3 − m) − 2(3.9 − m) (5.28)

and, since this is equal to zero when Q is a minimum, we have

−2(4.1−m)−2(4.3−m)−2(4.4−m)−2(4.2−m)−2(4.3−m)−2(3.9−m) = 0.

(5.29)

The −2’s cancel, giving

4.1 + 4.3 + 4.4 + 4.2 + 4.3 + 3.9 − 6m = 0. (5.30)

Therefore,

m =
4.1 + 4.3 + 4.4 + 4.2 + 4.3 + 3.9

6
= 4.20. (5.31)

The required value of m is the mean of the six results. Substituting this value of m

into equation (5.27) gives Q = 0.16 g2, the minimum value of Q. Figure 5.1 shows

that, at m = 4.20 g, Q = 0.16 g2 and is a minimum.

For a minimum value, the second derivative must be positive (so, as we approach

the minimum point from left to right, the first derivative (the gradient) becomes

continuously more positive). Differentiating Q with respect to m a second time
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gives, from equation (5.28),

d2 Q

dm2
= 2 + 2 + 2 + 2 + 2 + 2 = 12. (5.32)

This confirms that, when m = 4.20 g, Q is a minimum.9

Having obtained m, we can now go back to equation (5.25) and calculate the six

residuals, ǫ1, . . ., ǫ6. These are

ǫ1 = 4.1 − 4.20 = −0.10,

ǫ2 = 4.3 − 4.20 = +0.10,

ǫ3 = 4.4 − 4.20 = +0.20, (5.33)

ǫ4 = 4.2 − 4.20 = 0.00,

ǫ5 = 4.3 − 4.20 = +0.10,

ǫ6 = 3.9 − 4.20 = −0.30.

As noted previously, the six residuals must sum to zero and therefore have only

five degrees of freedom: ν = 5. We can now calculate the unbiased estimate of the

variance, s2, of the population from which this sample of residuals is drawn, using

equation (5.23):

s2 =
∑n

i=1 ǫ2
i

ν

=
(−0.10)2 + (+0.10)2 + (+0.20)2 + (0.00)2 + (+0.10)2 + (−0.30)2

5

=
0.16

5
= 0.032, (5.34)

so the standard deviation is s =
√

0.032 g = 0.18 g, roughly one-third of the range

of values (range = 4.4 g − 3.9 g = 0.5 g).

This standard deviation of the residuals is exactly the same as the estimated stan-

dard deviation of the population calculated using equation (5.13). In fact equation

9 What is ‘magic’ about least-squares – why not ‘least-fourth-powers’, for example? (‘Least-cubes’ is immedi-
ately unacceptable, since the sum of cubes of residuals could be zero even with large positive and large negative
residuals). Least-squares is particularly appropriate in the generally assumed case where the residuals have
an approximately bell-shaped or Gaussian distribution (see chapter 8). This is because, in the Gaussian case,
least-squares is equivalent to another fitting criterion called ‘maximum-likelihood’. Moreover if, in equation
(5.27), Q were the sum of fourth powers instead of squares, we would get, instead of m = 4.20, the plausible-
looking value m = 4.1631. However, unlike the mean, this is a biased estimate of the parameter with which
we intend to summarise the population. It may further be shown that, amongst all linear unbiased estimates
of this parameter, least-squares gives the estimate that is most stable against fluctuations in the original values
(the estimate is a ‘minimum-variance estimate’). See Seber (1977) for more information.
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(5.13) gives the standard deviation, s, in terms of differences from the mean, namely

in terms of the residuals indicated in equation (5.16). The definition of s as given by

equation (5.13) is equivalent to equation (5.23), where the residuals appear explic-

itly. By way of contrast, we shall now consider another instance of least-squares

fitting in which the standard deviation of the residuals can be significantly less than

the standard deviation of the original values.

5.2.2 Patterns obtained in repeated readings

Repeated readings made over time may reveal an overall pattern or trend even

though random errors are present. The experimenter must decide whether or not

there is an overall pattern and, if there is, whether or not it must be taken into

account. Deciding whether there is an overall pattern may be done ‘by eye’, as

when the results are plotted on a graph and the plot is then inspected for any steady

change or drift (for example). Testing for any overall pattern can also be done using

statistical methods. A pattern may be obvious over a short run of readings, but

disappear or lessen in significance over a longer run. If a pattern exists, the second

decision is then made as to whether it has any importance. This will depend on the

amount of information expected to be gleaned from a particular investigation; thus

a very obvious drift may be ignored if all that is required is the mean of the readings

or their overall range.

In the case that we illustrated in figure 4.1 of the temperature-coefficient mea-

surements on a standard resistor, the pattern is a general rise in the measured values

as the temperature is increased. There is a large scatter, but a general rise can be

discerned ‘with the naked eye’, and we are entitled to conclude that the resistance

increases with temperature; there is a temperature coefficient of resistance and it is

positive.

Figure 5.2 shows a plot of 30 readings of air temperature in degrees Celsius,

taken once a minute using a digital thermometer in a laboratory where the air

temperature is controlled at a nominal 20 ◦C. Here there is more variability; there is

no obvious pattern over the full half-hour of readings, although for briefer periods

some patterns can be seen, such as temporary steady increases in temperature.

5.2.3 Estimation of intercept and slope using least-squares fitting

We often need to estimate the degree of dependence of one quantity upon another.

As examples, we may wish to establish in what way

� the length of a metal rod increases as the temperature of the rod increases;
� the diameter of a crater in the Earth formed by a fast-moving object depends on the

kinetic energy of the object;
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Figure 5.2. Air-temperature readings of a digital thermometer with 0.01-◦C resolution.

� the amount of petrol consumed by a car depends on the distance driven; and
� the gravitational force exerted by an object depends on the mass of the object.

The dependence of one quantity upon another may be linear; that is, if we plot one

quantity against the other on a graph, the plotted points follow a straight line.10 We

shall consider here only linear dependences.

There will be an amount of random scatter or noise superimposed on any depen-

dence between two variables. Figure 4.1 shows the considerable scatter observed in

a particular case where the temperature coefficient of a standard resistor was being

measured. In other cases the scatter may be so large that it effectively obscures any

dependence of one variable on another.

When quantities like resistance and temperature are paired, it is common to

refer to one quantity as the explanatory or predictor variable. For example, the

change in temperature ‘explains’ the change in resistance, and any particular value

of temperature (within the range of measurements) ‘predicts’ the likely value of

resistance at that temperature. The other variable is the response variable. When

graphs are drawn, the explanatory or predictor variable is normally plotted along

the x-axis, and the response variable along the y-axis. We note that the presence of

one explanatory variable by no means precludes other explanatory variables. For

10 Such is always the case if we are considering only small changes in the quantities, and this is just another way
of saying that a section of any curve is approximately a straight line if the section is short enough.
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Table 5.2. Variation of voltage with time

for a voltage standard

t (years) V (µV/V)

0.79 2.2

1.89 2.5

3.17 2.8

4.62 3.2

5.96 3.5

example, the amount of petrol consumed by a car depends not only on the distance

driven but also on its weight, age and engine efficiency. We shall consider only

single explanatory variables.

We assume that the scatter affects only the response variable and that the ex-

planatory variable can be measured without significant error. This is often, but not

always, the case. If the explanatory variable is elapsed time, then, because there are

very accurate ways of measuring time, we can usually be confident that the mea-

surement of elapsed time has negligible error. When the explanatory variable is

some other quantity, such as temperature, we should take care to minimise the

errors in it, in order that the following analysis remain valid.

Consider a situation in which we have five measurements of voltage of a nom-

inal 10-V voltage standard. This is a type of portable artefact often used in the

electronics industry, and is calibrated against references traceable to the primary

national standard of voltage.11 Ideally a voltage standard should be perfectly sta-

ble, but in practice a slow drift and a random scatter are always observed. The

five values span an approximately five-year period, and are shown in table 5.2,

with time as the explanatory variable and voltage as the response variable. Time,

ti (i = 1, 2, . . ., 5), is given in years, starting from 1 January 1998 as year 0.

The voltage, Vi (i = 1, 2, . . ., 5), is given in parts per million above 10 V, or

equivalently in µV/V above 10 V. Figure 5.3 shows the plot of voltage against

time.

There is a positive drift with time, and we estimate it by fitting a straight line

to the points using the least-squares condition. The slope of the line will equal the

drift. We write the equation describing the straight line as

V = V0 + bt, (5.35)

11 This is based on the Josephson effect in superconductors (Rose-Innes and Rhoderick 1977). A brief description
is given in section 4.1.3.
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Figure 5.3. Dependence of voltage on time.

where V0 and b are the two parameters that specify a straight line on a plane. Equa-

tion (5.35) may be recognised as having the commonly written form y = a + bx

describing a straight line, where a is the intercept on the y-axis and b is the slope.

Here we have a = V0. The intercept of the line is V0 on the vertical (V ) axis (when

drawn so as to intersect the horizontal (t) axis at t = 0) and b is the slope, which is

the drift in µV/V per year (µV/V (yr)−1). The least-squares condition allows both

V0 and b to be estimated, although in this case b is the parameter of greater interest.

Using a similar procedure to that in section 5.2.1, and following equation (5.35),

we write the values in table 5.2 as

2.2 = V0 + 0.79b + ǫ1,

2.5 = V0 + 1.89b + ǫ2,

2.8 = V0 + 3.17b + ǫ3, (5.36)

3.2 = V0 + 4.62b + ǫ4,

3.5 = V0 + 5.96b + ǫ5,

which are five equations with seven unknowns, V0, b, and ǫ1, . . ., ǫ5. The least-

squares condition enables a unique solution for V0 and b to be found. The sum of

squares, Q, of the five residuals is

Q = ǫ2
1 + ǫ2

2 + ǫ2
3 + ǫ2

4 + ǫ2
5

= (2.2 − V0 − 0.79b)2 + (2.5 − V0 − 1.89b)2 + (2.8 − V0 − 3.17b)2

+ (3.2 − V0 − 4.62b)2 + (3.5 − V0 − 5.96b)2. (5.37)
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The required values of V0 and b are such as to make Q a minimum. To accomplish

this the partial derivatives of Q with respect to V0 and with respect to b are both to

be set equal to zero. We have, therefore,

∂ Q

∂V0

= −(2.2 − V0 − 0.79b) − (2.5 − V0 − 1.89b) − (2.8 − V0 − 3.17b)

− (3.2 − V0 − 4.62b) − (3.5 − V0 − 5.96b) (5.38)

= 0

or

5V0 + b(0.79 + 1.89 + 3.17 + 4.62 + 5.96) = 2.2 + 2.5 + 2.8 + 3.2 + 3.5,

(5.39)
leading to

5V0 + 16.43b = 14.2, (5.40)

our first equation.

Also,

∂ Q

∂b
= −0.79(2.2 − V0 − 0.79b) − 1.89(2.5 − V0 − 1.89b)

− 3.17(2.8 − V0 − 3.17b) − 4.62(3.2 − V0 − 4.62b)

− 5.96(3.5 − V0 − 5.96b)

= 0, (5.41)

which simplifies to

16.43V0 + 71.111b = 50.983. (5.42)

This is the second equation for V0 and b. Equations (5.40) and (5.42) are two

equations with two unknowns, V0 and b, and have solutions

V0 = 2.010 58 µV/V, b = 0.252 41 µV/V (yr)−1. (5.43)

These values would normally be reported to fewer decimal places, for example

b = 0.25 µV/V(yr)−1, but to avoid round-off error it is worth keeping the extra

decimal places for the calculations that follow. Figure 5.4 is a repeat of figure 5.3,

but with the line of best fit included. The slope of the line, 0.252 41 µV/V (yr)−1,

indicates a positive drift of about one part per million in four years, and a quick

inspection of the original measured values shows this to be a plausible result.
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Figure 5.4. A straight line fitted to the data in table 5.2.
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Figure 5.5. The sum of squares, Q, as a function of drift, b, and intercept, V0.

The second derivatives ∂2 Q/∂V 2
0 and ∂2 Q/∂b2 obtained from equations (5.38)

and (5.41) are both found to be positive, confirming that the values obtained for V0

and b make Q a minimum.12

Figure 5.5 is a three-dimensional counterpart to figure 5.1. In figure 5.5, the sum

of squares, Q, is displayed as a function both of drift, b, and of the intercept, V0.

The shape is a paraboloid, whose bottom is at a height 0.001 133 above the (b, V0)

plane. This minimum height can be determined by substituting the values for b and

V0 shown in equation (5.43) into equation (5.37).

12 An extremum value (maximum or minimum) exists if (∂2 Q/∂V 2
0 )(∂2 Q/∂b2) > [∂2 Q/(∂V0 ∂b)]2. It may be

checked that ∂2 Q/∂V 2
0 = 5, ∂2 Q/∂b2 ∼ 71.11 and ∂2 Q/(∂V0 ∂b) ∼ 16.43, so the inequality is satisfied. A

positive value of ∂2 Q/∂V 2
0 therefore implies a positive value of ∂2 Q/∂b2, and both indicate a minimum.
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By substituting the values in equation (5.43) into equation (5.36), we can deter-

mine that the residuals have the following values, in µV/V:

ǫ1 = −0.009 98,

ǫ2 = +0.012 36,

ǫ3 = −0.010 72, (5.44)

ǫ4 = +0.023 28,

ǫ5 = −0.014 94.

Again, these sum to zero:

ǫ1 + ǫ2 + ǫ3 + ǫ4 + ǫ5 = 0 (5.45)

and it may be checked that this is guaranteed by equation (5.38). However, the

residuals are also linked by a second constraint, which follows from equation (5.41).

In fact, it is easily checked that

0.79ǫ1 + 1.89ǫ2 + 3.17ǫ3 + 4.62ǫ4 + 5.96ǫ5 = 0. (5.46)

Since the five residuals are now constrained by equations (5.45) and (5.46), the

residuals have 5 − 2 = 3 degrees of freedom. Whenever a straight line is fitted by

least-squares, the residuals have two degrees of freedom fewer than the number of

original values, so in contrast to equation (5.21) we now have

ν = n − 2. (5.47)

Using the values of the residuals in equation (5.44), and also equation (5.23), the

unbiased estimate of the variance, s2, of the population from which this sample of

residuals is drawn is (in (µV/V)2)

s2 =
(−0.009 98)2 + (+0.012 36)2 + (−0.010 72)2 + (+0.023 28)2 + (−0.014 94)2

3
.

(5.48)

Thus

s2 =
0.001 132

3
= 0.000 377 5. (5.49)

The standard deviation, s, is therefore
√

0.000 377 5 µV/V = 0.019 µV/V. An

alternative name for s is the ‘root-mean-square’ or rms residual, or ‘rms scatter’.

The value of s is a measure of the ‘closeness of fit’, since the more accurately the
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measured points (in figure 5.3) follow a straight line, the smaller are the residuals

about that line.13

Exercise B

Show that the standard deviation of the voltage values in table 5.2 is 0.522 µV/V.

The above results lead us to the following general equations for fitting a straight

line. Suppose that there are n measured points (xi , yi ) (i = 1, 2, . . ., n). In the

above example, the xi were values of time and the yi were values of voltage. The

straight line to be fitted may be described as

y = a + bx, (5.50)

where a is the intercept of the line on the y-axis and b is the slope of the line. It

is straightforward to check (using, for example, the numerical values above) that

a and b are given by the following formulas. We first define the quantity D, as

follows:

D = n

n
∑

i=1

x2
i −

(

n
∑

i=1

xi

)2

. (5.51)

Then

a =
∑n

i=1 yi

∑n
i=1 x2

i −
∑n

i=1 xi yi

∑n
i=1 xi

D
(5.52)

and

b =
n

∑n
i=1 xi yi −

∑n
i=1 xi

∑n
i=1 yi

D
. (5.53)

The residuals, ǫi (i = 1, 2, . . ., n), are calculated as

ǫi = yi − a − bxi (i = 1, 2, . . ., n) (5.54)

and their root-mean-square value as

s =

√

∑n
i=1 ǫ2

i

n − 2
. (5.55)

13 We note that this scatter about the line of best fit is much less than the standard deviation of the original
voltages in table 5.2. This is in sharp contrast to the previous example where only the mean was estimated. In
that example the standard deviation of the residuals, or the rms scatter, was identical to the standard deviation
of the original values.
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Table 5.3. Concentration-versus-area data for

analysis of sodium chloride by HPLC

Concentration (x) (ppm) Area (y) (arbitrary units)

1.028 1.59 × 104

2.056 3.10 × 104

5.141 6.34 × 104

7.711 9.91 × 104

10.282 1.27 × 105

15.422 2.01 × 105

25.704 3.83 × 105

Example 1

High-performance liquid chromatography (HPLC) is used to establish the con-

centration of an analyte, such as sodium chloride, in solution. To accomplish

this, an HPLC instrument is first calibrated using known concentrations of the

analyte. Table 5.3 shows the response of an instrument (which is the area

under an absorption peak detected by the instrument) for various concentrations

(in parts per million, ‘ppm’) of sodium chloride. Assuming that equation (5.50)

applies to these data, use least-squares to determine the intercept, a, and the

slope, b.

Answer

In order to calculate the intercept and slope we need to determine the sums in

equations (5.51)–(5.53), i.e.

n
∑

i=1

xi = 67.344,

n
∑

i=1

yi = 920 400,

n
∑

i=1

xi yi = 15 420 448.7,

n
∑

i=1

x2
i = 1095.426 546.

Substituting these sums into equation (5.51) (and noting that n = 7) gives

D = 7 × 1095.426 546 − (67.344)2 = 3132.771 486.

Now, using equations (5.52) and (5.53), we have

a =
920 400 × 1095.426 546 − 15 420 448.7 × 67.344

3132.771 486
= −9654.1,

b =
7 × 15 420 448.7 − 67.344 × 920 400

3132.771 486
= 14 670.6 ppm−1.
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Table 5.4. Variation of the acceleration

due to gravity with height

Height (x) (km) Acceleration (y) (m/s2)

10.0 9.76
20.0 9.73
30.0 9.70
40.0 9.68
50.0 9.64
60.0 9.58

The estimates of intercept and slope calculated in this example are given to

an excessive number of significant figures, but until the standard uncertainty in

each has been determined, it is not possible to decide how many figures should be

displayed.

Exercise C

The acceleration due to gravity, g, near the Earth’s surface depends on several

factors including the height above the Earth’s surface at which the measurement is

made. Table 5.4 contains values of g obtained at several heights above the Earth’s

surface.

(1) Assuming that equation (5.50) is valid for the data in table 5.4, determine

(i)

n
∑

i=1

xi , (ii)

n
∑

i=1

yi , (iii)

n
∑

i=1

xi yi , (iv)

n
∑

i=1

x2
i

(2) Use the summations in part (1) to determine the best estimate of the intercept and slope

of a straight line through the (x, y) data.

Calculations of the summations in equations (5.51)–(5.53) are most efficiently

accomplished using a computer-based spreadsheet, such as Excel by Microsoft.

This spreadsheet has built-in functions that allow direct fitting by least-squares.

Many scientific calculators possess equivalent built-in functions.

5.2.4 Standard uncertainties of estimates

Using the rms value, s, of the residuals as in equations (5.23) and (5.55), we

can calculate the standard uncertainties of the estimates themselves. The standard
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uncertainty, sx̄ , of the mean, for n mutually uncorrelated values is given by14

sx̄ =
s

√
n
. (5.56)

sx̄ is, therefore, less than s by a factor
√

n. In the example in section 5.2.1 of the six

pieces of fruit, where s = 0.18 g, we therefore have sx̄ = 0.18 g/
√

6 = 0.073 g.

Whereas the standard deviation or standard uncertainty of the original values, s,

changes little whether we take few or many measurements, the standard uncertainty

in the mean, sx̄ , decreases with the number of (uncorrelated) measurements. This

is the statistical underpinning of our intuitive notion (which is not always correct!)
that the more measurements we take, the more accurate the result. We note the

square-root dependence; thus taking 50 measurements instead of 5 should reduce

the standard uncertainty of the mean by a factor of only
√

10 ≃ 3. Notably, if the

dominant error in our measurements is a systematic error, there will be little or no

benefit to be gained by taking many measurements.

In using equation (5.56), an important proviso is that the n residuals should

be uncorrelated. This will be satisfied if the values are independent. As a test

of independence, the values should be examined to check whether they follow a

pattern, for example a drift or oscillation. If they do, they are not independent values

and the effective n in equation (5.56) may be less than the number of measured

values. If there is a perfectly steady drift, the effective n in equation (5.56) is 1, and

in such a case15 it would be more appropriate to use n = 1 in equation (5.56), or

alternatively to fit a straight line, as described in section 5.2.3. The case of correlated

readings will be discussed further in section 7.2.

When a straight line is fitted to data, the standard uncertainties of the intercept,

a, and slope, b, are16

sa = s

√

∑n
i=1 x2

i

D
(5.57)

and

sb = s

√

n

D
, (5.58)

where s and D are given in equations (5.55) and (5.51), respectively.

14 This was discussed in section 4.3.
15 This also applies to cases where there is some scatter about an obvious drift.
16 See, for example, Bevington and Robinson (2002).
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Example 2

Using the data in table 5.3, show that the standard uncertainties in the intercept and

slope are given by sa = 8070 and sb = 645 ppm−1.

Answer

From the solution to example 1, we have

n
∑

i=1

x2
i = 1095.426 546, D = 3132.771 486.

In order to determine s, we use equation (5.55) with n = 7 and ǫi given by

ǫi = yi − (−9654.1) − (14 670.6)xi (i = 1, 2, . . ., n).

This gives s = 13 646.7. Now substituting
∑n

i=1 x2
i = 1095.426 546, D =

3132.771 486 and s = 13 646.7 into equations (5.57) and (5.58) gives

sa = 13 646.7

√

1095.426 546

3132.771 486
= 8070

and

sb = 13 646.7

√

7

3132.771 486
= 645.

Exercise D

Using the data in table 5.4, calculate the standard uncertainties in the intercept and

slope of the best-fit line through the data.

Returning to the data in table 5.2, we can use equations (5.57) and (5.58) to

show that the standard uncertainties in the the intercept, sV0
, and drift, sb, are given,

respectively, by sV0
= 0.017 71 µV/V and sb = 0.004 70 µV/V (yr)−1.

The standard uncertainty, sb, of the drift (that is, the slope) is much smaller (in

absolute magnitude) than the drift, b, itself. In fact, the ratio b/sb is 0.252/0.00 470

or about 54. We can therefore conclude that (as figure 5.4 indicates) there is a very

easily observable drift, or, expressing this in another way, the random scatter in the

measurement, although it evidently exists, is much too small to obscure the drift.

In statistical language we say that the drift is highly significant.

In the example of the temperature variation of the resistance of a standard resistor,

shown in figure 5.6, a much larger scatter about the line of best fit is observed. Here

we have s = 0.59 µ�/�, b = 0.071 µ�/� (◦C)−1 and sb = 0.037 µ�/� (◦C)−1.

The temperature coefficient of resistance is only about twice its standard uncertainty.

Although the temperature coefficient is significant, this significance evidently is
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Figure 5.6. The variation with temperature of the resistance of a standard resistor.

more provisional than in the case of the measurement of the drift of the voltage

standard.

Like sx̄ , both sV0
and sb tend to decrease as the square root of n. Again, the proviso

is that the residuals should be uncorrelated, and they will be uncorrelated if they are

independent. Any pattern among the residuals will imply a lack of independence,

and equations (5.57) and (5.58) will not hold. We might then consider fitting a

higher-order curve, say a quadratic parabola y = a + bx + cx2, to the original

values. The coefficients, a, b and c, can be determined by least-squares using

a similar procedure to that described in section 5.2.3 for a and b; as might be

expected, the relation between the number of degrees of freedom ν and number

of points, n, is now ν = n − 3. There are also cases where a polynomial is not

appropriate, and where we should try to fit an exponential relationship. Thus, if

a variable decays in time with a ‘time-constant’ τ (a frequent case in electronics,

where the variable may be the voltage across a capacitor) or with a ‘half-life’

th (referring to a radioactive isotope), the response variable in question varies as

y = y0e−t/τ or y = y0e−(t log 2)/th . The technique of least-squares can be adapted to

suit these and similar cases.17

5.2.5 Further remarks on least-squares fitting

The least-squares approach allows us to extract estimates of one or more parameters

from the data (thus, for linearly related data, we can find best estimates of the slope

and intercept of a line through the data). More complicated cases of least-squares

17 For a comprehensive guide to fitting by least-squares, refer to Kutner et al. (2004).
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fitting would include, for example, fitting an intercept, slope and rate of change

of slope; this would amount to fitting a quadratic parabola to the data. Random

errors are assumed to affect only the response variable; the explanatory variable is

assumed to be error-free.18

In every case, it is understood that the size of the sample, n, exceeds the number,

q , of parameters that we wish to fit to the data. The difference between n and q is

the number, ν, of degrees of freedom of our least-squares fit: ν = n − q . Having

performed the least-squares fit, we are left with n residuals, and from these we can

calculate an unbiased estimate of the variance of the population of the residuals.

This variance is estimated as indicated in equation (5.23): the sum of squares of all

n residuals, divided by the number of degrees of freedom. The standard deviation

of the fit, or ‘root-mean-square’ residual (rms residual), is the square root of this

variance. When q = 1, the single estimate is the mean, and the standard deviation

of this fit is none other than the ordinary standard deviation as defined in equation

(5.13), with ν = n − q = n − 1 in the denominator.

The smaller the number of degrees of freedom, the less reliable our least-squares

fit. Imagine an extreme case where the sample size is only two (n = 2), and we

wish to fit an intercept and drift (q = 2) to these two values. In this case the number

of degrees of freedom is zero (ν = n − q = 0), implying a totally unreliable fit.

This makes sense: we cannot hope to fit a straight line with credible slope and

intercept to just two points. In fact, with two points it is always possible to draw a

straight line through both of them exactly, giving what might naively be imagined

to be a perfect fit. However, there is no ‘redundancy’ here.19 For a reliable fit, more

than two points are required, and the more points the better, giving more degrees

of freedom. We need, in other words, more ‘redundancy’; the greater the number

of points, the better our protection against inevitable random errors (and we are

also better able to assess their influence on our results). If the size of the sample

is no greater than the number of parameters we wish to fit to it, we are completely

exposed to the effect of random errors, and the fit will be useless. Equation (5.23)

expresses this unfortunate situation as the indeterminate quantity zero divided by

zero; the numerator in equation (5.23) is zero since all the ǫi are zero (the fit being

‘perfect’), but so is the denominator,20 ν.

18 A more complicated procedure, sometimes called total least-squares, may be used when the explanatory
variables also have random errors. For more information about fitting in such cases, see Macdonald and
Thompson (1992) and Balsamo et al. (2005).

19 In statistics and metrology ‘redundant’ does not mean ‘useless’ or ‘unnecessary’, but rather something akin to
‘generous’.

20 However, there are exceptional cases. If a quantity is measured only twice, at the beginning and end of
an interval, and if we know from prior evidence that the uncertainty in each measurement is much less
than the magnitude of the change in the quantity, then we may have confidence in the measured amount of
change.
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Two types of estimation have been involved in the least-squares fitting to a

sample of n values of data. We first estimate the parameters, by minimising the sum

of squares of the residuals. After the parameters have been determined, and therefore

also the residuals, we can calculate the unbiased estimate, s2, of the variance of the

population of the residuals, using equation (5.23) with ν = n − q . This is the second

type of estimation. In fact both types of estimation provide unbiased estimates; for

example, E(x̄) = µ as stated in equation (5.2), and it can also be shown that the

expectation values of intercept and slope are the values of intercept and slope for

the population from which the sample was drawn.

From the unbiased estimate, s2, of variance and its square root, we can estimate

the standard uncertainty of the estimated parameters themselves. This standard

uncertainty is of the order of
√

n less than s, as expressed by, for example, equations

(5.56)–(5.58), provided that the residuals are uncorrelated. (For a single estimated

parameter, the mean, this proviso is equivalent to the original sampled values being

uncorrelated).

5.3 Covariance and correlation

Suppose that there is a significant linear dependence of y on x , so that in the fit-

ted equation of a straight line, y = a + bx , the value of b is significant (meaning

that b is considerably greater in absolute magnitude than its own standard uncer-

tainty). Then, as might be expected, x and y have a significant mutual correlation.

The linear correlation coefficient, r , is defined as follows. If there are n pairs

xi , yi (i = 1, 2, . . ., n), we first define the covariance of x and y, as estimated for

the populations of x and of y, as

covariance(x, y) =
∑n

i=1(xi − x̄)(yi − ȳ)

n − 1
, (5.59)

where x̄ and ȳ are the means of the x’s and y’s, respectively. We now express r as

follows:

r =
covariance(x, y)

√
variance of x × variance of y

(5.60)

or, more simply,

r =
covariance(x, y)

standard deviation of x × standard deviation of y
, (5.61)
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where the variances and standard deviations are taken as estimated over the popu-

lation.21 The variance of x is given by

variance of x =
∑n

i=1(xi − x̄)2

n − 1

and similarly for the variance of y.

We can therefore define r as

r =
∑n

i=1 [(xi − x̄)(yi − ȳ)]
√

[
∑n

i=1(xi − x̄)2
][

∑n
i=1(yi − ȳ)2

]

. (5.62)

The same equation would be obtained if the covariance were defined with the divisor,

n, and similarly the standard deviations. Whether n or n − 1 is chosen is immaterial

when calculating the correlation coefficient. Equation (5.62) also implies that the

correlation between x and y is identical to that between y and x .

r is a dimensionless quantity, since equation (5.62) shows that its dimensions are

x × y divided by
√

x2 × y2. It may be shown that r must lie between −1 (perfect

negative correlation) and +1 (perfect positive correlation).22 A positive slope of

the line of best fit implies a positive correlation, r , and conversely a negative slope

implies a negative r . The greater the scatter around the line of best fit, the closer r

will approach zero. If this scatter is zero, r will then equal +1 or −1, depending,

respectively, on whether the slope is positive or negative, but independently of the

actual value of the slope (unless the slope is exactly zero; for zero slope and scatter,

r is indeterminate).

There is a distinction between independence and zero correlation. It is possible

for two variables, x and y, to have zero mutual correlation, yet to be mutually

dependent. For example, if x and y are related by the equation x2 + y2 = 1, so that

x and y lie on the circumference of a circle of radius 1, it may be shown that the

correlation between x and y is zero. (Thus the four points with x , y coordinates

(1, 0), (0, 1), (−1, 0) and (0, −1) lie on this circle, and their mutual correlation

r = 0.) However, x and y are not mutually independent, since they are related by

the equation x2 + y2 = 1. In fact, independence implies zero correlation, but zero

correlation does not imply independence.

Equation (5.6) gives the population variance expressed as an expectation func-

tion. If we now take µx and µy as the means of the populations of the x’s and y’s,

respectively, the covariance between the populations can be written, analogously

to equation (5.6), as

covariance(x, y) = E[(xi − µx )(yi − µy)]. (5.63)

21 See, for example, equation (5.8).
22 See, for example, chapter 3 in Wilks (1962).
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Comparing equation (5.63) with equation (5.6) shows that the covariance of a

quantity with itself is simply the variance of that quantity.

Expanding the right-hand side of equation (5.63) gives

covariance(x, y) = E(xi yi ) − µy E(xi ) − µx E(yi ) + µxµy

= E(xi yi ) − µxµy (5.64)

since E(xi ) = µx and E(yi ) = µy . Equation (5.64) shows that a covariance may

be regarded as the expectation of a product, minus the product of the expectations.

This is analogous to the interpretation of a variance expressed by equation (5.11),

namely the mean square minus the squared mean.

If the two populations are uncorrelated, then23 equation (5.63) factorises into

E(xi − µx )E(yi − µy) and each factor is zero (see equation (5.3)). Uncorrelated

populations have zero covariance, and therefore (of course!) zero correlation.

In terms of expectation functions, r may be written as

r =
E[(xi − µx )(yi − µy)]

√

E[(xi − µx )2]E[(yi − µy)2]
. (5.65)

Using equations (5.6) and (5.63), equation (5.65) may be written as

r =
E

[

(xi − µx )(yi − µy)
]

σxσy

=
covariance(x, y)

σxσy

, (5.66)

so the correlation coefficient, a dimensionless quantity, may be regarded as a ‘nor-

malised covariance’, the term ‘normalised’ used here as implying that a quantity

has been scaled appropriately so as to be dimensionless. Here the scaling factor is

the product of the standard deviations of the two populations.

We have noted above that the covariance of a quantity with itself is the variance

of that quantity. Equation (5.65), in which a covariance is divided by the square

root of a product of the two variances, indicates that the correlation coefficient of

a quantity with itself is +1.

5.3.1 Correlation between two linearly related variables,

without random error

Equation (5.62) can be used to illustrate the correlation between variables x and y

when they are linearly related by y = a + bx , without any random error. Then, for

our sample of size n, it follows that

ȳ = a + bx̄, (5.67)

23 Using property (d) of the expectation function in section 5.1.1.
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where x̄ and ȳ are, respectively, the means of the x and y values. Then

yi − ȳ = (a + bxi ) − (a + bx̄) = b(xi − x̄). (5.68)

Equation (5.68) implies that

n
∑

i=1

(xi − x̄)(yi − ȳ) = b

n
∑

i=1

(xi − x̄)2, (5.69)

and equation (5.62) therefore reads

r =
b

∑n
i=1(xi − x̄)2

√

[
∑n

i=1(xi − x̄)2
][

b2
∑n

i=1(xi − x̄)2
]

= ±1, (5.70)

the sign being positive if the slope b is positive, and negative if b is negative.

Unless the slope is zero, therefore, x and y are perfectly mutually correlated

(whether positively or negatively). (For zero slope, r is not defined.)

5.3.2 Correlation between two linearly related variables, with random error

In section 5.3.1, we neglected random error. We now suppose that the relationship

between x and y is, more realistically, given by

yi = a + bxi + ǫi , (5.71)

where ǫ is the random error, which is assumed to be uncorrelated with x and with

y, and (without loss of generality) taken to have zero mean. Then ȳ = a + bx̄ as

before, but now we have

yi − ȳ = (a + bxi + ǫi ) − (a + bx̄)

= b(xi − x̄) + ǫi , (5.72)

which is to be compared with equation (5.68).

Equation (5.72) gives

n
∑

i=1

(yi − ȳ)2 =
n

∑

i=1

[b(xi − x̄) + ǫi ]
2

=
n

∑

i=1

b2(xi − x̄)2 +
n

∑

i=1

ǫ2
i + 2b

n
∑

i=1

ǫi (xi − x̄). (5.73)

We now assert that, in the third term on the right-hand side of equation (5.73),
∑n

i=1 ǫi (xi − x̄) is zero or very close to zero. This is reasonable if the ǫi are uncor-

related with the xi (and hence with xi − x̄), as has been assumed. We also have,
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with the aid of equation (5.72),

n
∑

i=1

[(xi − x̄)(yi − ȳ)] =
n

∑

i=1

{(xi − x̄)[b(xi − x̄) + ǫi ]}

= b

n
∑

i=1

(xi − x̄)2, (5.74)

using again the same assumption. Equations (5.73) and (5.74) inserted into equation

(5.62) give

r =
b

∑n
i=1(xi − x̄)2

√

∑n
i=1(xi − x̄)2

[
∑n

i=1 b2(xi − x̄)2 +
∑n

i=1 ǫ2
i

]

, (5.75)

and dividing the numerator and denominator of equation (5.75) by b
∑n

i=1(xi − x̄)2

gives

r =
1

√

1 +
∑n

i=1 ǫ2
i

b2
∑n

i=1(xi − x̄)2

. (5.76)

The additive constant a, in equation (5.72), does not appear in the expression for

r in equation (5.76). This illustrates a general rule: when calculating correlations,

the presence of an additive constant has no effect on the correlation.24

Equation (5.76) indicates that the greater the random error affecting a linear

relationship, the closer will be the approach of r to zero. Additionally, the smaller

the slope, b, for a given amount of random error, the closer will be the approach of

r to zero.

Example 3

The data in table 5.5 were obtained during the calibration of an atomic absorption

spectrometer using standard silver solutions of various concentrations. Assuming

that the relationship given by equation (5.50) is valid for the data in table 5.5,

calculate

(a) the intercept, a, and the slope, b, of the best line through the data; and

(b) the correlation coefficient, r .

24 Neither does a multiplicative constant. In general, if from prior knowledge the correlation coefficient between
x and y is r , then the correlation coefficient between Ax + K1 and By + K2 is also r . Here A, B, K1 and K2

are constants (A and B non-zero).
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Table 5.5. Variation of absorbance with concentration

for silver solutions

Concentration (x) (ng/mL) Absorbance (y) (arbitrary units)

0.00 0.002
5.03 0.131

10.10 0.255
15.07 0.391
20.11 0.502
25.06 0.622
30.12 0.766

Answer

(a) Upon applying equations (5.51)–(5.53), we obtain a = 0.003 431 and b = 0.025 07

mL/ng.

(b) Using equation (5.76), where ǫi = yi − (a + bxi ), we obtain r = +0.999 68.

Exercise E

Show for the data in table 5.2 that the correlation between voltage and time is

r = +0.999 48.

5.4 Review

In this chapter we have considered several concepts required when dealing with

variability in data such as expectation, variance, correlation and covariance. With

these concepts we are able to calculate standard uncertainties when the variability

in experimental data is due to random errors. In chapter 6 we turn our attention to

uncertainties resulting from systematic errors.
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Systematic errors

A systematic error causes a measured value to be consistently greater or less than

the true value. The amount by which the value differs from the true value may be a

constant. Such a situation would occur, for example, when using a micrometer that

has a ‘zero error’: the scale of the micrometer indicating a non-zero value when

the jaws of the micrometer are closed. In other circumstances, a systematic error

may be proportional to the magnitude of the quantity being measured. For example,

if a wooden metre rule has expanded along its whole length as a consequence of

absorbing moisture, the size of the systematic error is not constant but increases

with the size of the object being measured.

Systematic errors may be revealed in two ways: by means of specific information

or when the experimental set-up is changed (whether intentionally in order to iden-

tify systematic errors, or for some other reason). In both cases we need a good under-

standing of the science underlying the measurement. In general, statistical analysis

may or may not be involved in assessing the uncertainty associated with a system-

atic error, so this uncertainty may be Type A or B. When the effect of random errors

has been minimised, for example by taking the mean of many values, the influence

of systematic errors remains unless they too have been identified and corrected for.

Since a systematic error does not necessarily cause measured values to vary,

it often remains hidden (and may be larger than the random errors). Experienced

experimenters consistently review their methods in an effort to identify and quantify

systematic errors.

6.1 Systematic error revealed by specific information

All instruments and artefacts have a systematic error, which may or may not be sig-

nificant, depending on the particular application. When they are calibrated against

a standard (which, by definition, is a more accurate instrument or artefact for that

application), the systematic error will be revealed, and the analysis of the cal-

ibration will also provide an estimate of the uncertainty to be associated with

83
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Table 6.1. An extract from the calibration report on an aneroid barometer

Instrument reading (mbar) True pressure (mbar) Instrument correction (mbar)

960.33 960.00 −0.33
970.36 970.00 −0.36
980.37 980.00 −0.37
990.36 990.00 −0.36

1000.38 1000.00 −0.38
1010.37 1010.00 −0.37
1020.35 1020.00 −0.35
1030.40 1030.00 −0.40
1040.28 1040.00 −0.28
1050.37 1050.00 −0.37

The aneroid barometer was compared against a standard pressure balance, over a baro-
metric pressure range from 960 to 1050 mbar, with the results shown in the table. The
instrument was not adjusted. The temperature of the test was 20.3 ◦C (±0.3 ◦C). When
the sign of the correction is positive (+), the correction should be added to the observed
reading to give the correct pressure; and, when it is negative (−), subtracted from the
reading. The corrections in table 6.1 are given to the nearest 0.01 mbar with an uncertainty
of ±0.08 mbar.

that systematic error. After calibration, the systematic error is effectively removed

through the procedure of applying the relevant correction to the indicated reading.

What remains, after this correction has been applied, is the uncertainty associated

with the systematic error.

An instrument that displays a more positive reading than it should is convention-

ally regarded as having a positive systematic error, equal to the difference between

the displayed and correct readings. The correction that cancels out the systematic

error then has a negative sign. A similar convention applies to the value provided

by an artefact.

The two central items of information are, therefore, the systematic error and

the uncertainty associated with this error. A calibration report on the instrument

or artefact issued by an accredited calibrating authority will invariably state both

items. The uncertainty is Type B, since the act of reading the report involves no

statistical analysis. This is the most straightforward case of a systematic error and

its associated Type B uncertainty.

6.1.1 An example of assessing uncertainty using a calibration report

Table 6.1 shows an extract from a calibration report on an aneroid barometer.1

(A mbar (millibar) is a unit of atmospheric pressure equivalent to 1 hPa (one

1 The report was issued by, and an extract is printed here by courtesy of, the National Measurement Institute of
Australia.
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Figure 6.1. (a) Variation of battery voltage with time. (b) Using higher resolution,
and revealing a systematic error in the 3 1

2
-digit DMM.

hectopascal or 100 pascals)). If the barometer reads, say, 990.1 mbar and we ig-

nore the calibration report, the consequent systematic error will be +0.36 mbar (we

interpolate, to sufficient accuracy, between the tabulated instrument readings of

980.37 mbar and 990.36 mbar). After we have applied the correction of −0.36 mbar,

obtaining 989.74 mbar as the corrected value of the barometer reading, the un-

certainty of the value 989.74 mbar is 0.08 mbar, as stated in the report.2 The ±
symbol indicates that the actual value is likely to be somewhere within the range

(989.74 − 0.08) mbar to (989.74 + 0.08) mbar, that is 989.66 mbar to 989.82 mbar.

The uncertainty is Type B from our point of view.

Exercise A

The aneroid barometer discussed in this section indicates a pressure of 1035 mbar.

Using the data in table 6.1, apply the appropriate correction to this value and state

the uncertainty in the corrected value.

6.1.2 The example of correction to values displayed by a

digital multimeter (DMM)

The procedure of calibration of an instrument or artefact usually involves both a

Type A and a Type B estimation of uncertainty. We illustrate this by considering

the calibration of the 3 1
2
-digit DMM in figure 6.1(a) set on its 20-V range against

the much more accurate 8 1
2
-digit DMM in figure 6.1(b). These values are obtained

simultaneously, with a battery of nominal emf equal to 9 V connected to both

DMMs. This procedure reveals that, when measuring a voltage around 9 V, the

3 1
2
-digit DMM reads about 54 mV too high. The correction to be applied to its

2 Strictly, the 0.08-mbar uncertainty in this example should be termed an expanded uncertainty. Expanded uncer-
tainty will be considered in detail in chapter 10.
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value is therefore −54 mV, the minus sign dictating that 54 mV must be subtracted

from the indicated value to obtain the corrected value. After this correction has

been applied, the 3 1
2
-digit DMM may be considered calibrated for reading 9 V,

and the user will reduce its future value by 54 mV to eliminate the systematic

error.

The uncertainty of this correction is partly attributable to the variation in the val-

ues indicated by the 8 1
2
-digit voltmeter, after these values have settled. This settling

time, in figure 6.1(b), is about 150 s. After this time, the eight remaining values still

fluctuate slightly, and the standard deviation of the eight values is approximately

1.1 µV. The mean of the eight values is 9.495 773 4 V. Subtracting the mean from

9.55 V gives −54 mV as the correction (to sufficient decimal places) to be applied

to the 3 1
2
-digit DMM, with a standard uncertainty of 1.1 µV.

The question which next arises is whether these eight values can be assumed

to be uncorrelated, as discussed in section 5.2.4. If the eight values are scattered

independently of one another, we can assign a standard uncertainty of 1.1/
√

8 µV ≃
0.4 µV to the mean, and this 0.4 µV is then the standard uncertainty of the −54-mV

correction. Since, however, only eight values are taken and, more importantly, since

they appear to exhibit a small positive drift – possibly the initial stage of a slow

oscillation – it would be prudent to conclude that their lack of correlation has not

been established and that a more conservative (that is, more cautious) estimate of

the standard uncertainty of the correction is the standard deviation 1.1 µV of the

fluctuations. We therefore have a standard uncertainty of 1.1 µV (about one part in

107) associated with the correction −54 mV to be applied to the 3 1
2
-digit voltmeter

when it is used for measurements around 9 V. This standard uncertainty is Type A,

since statistical analysis was used for estimating it.

This Type A standard uncertainty should be combined, by root-sum-squares,

with the standard uncertainty that is quoted in the latest available calibration report

(not shown) on the 8 1
2
-digit DMM when reading 9 V. (This calibration report also

states the required corrections to be applied to values indicated by the 8 1
2
-digit

DMM, and these are assumed to have been applied already to the readings plotted

in figure 6.1(b)). The calibration report on the 8 1
2
-digit DMM states the standard

uncertainty as 1 µV, a Type B uncertainty from our point of view, and combining

it with the Type A standard uncertainty of 1.1 µV gives a combined standard

uncertainty of
√

1.12 + 12 µV ≃ 1.4 µV associated with the −54-mV correction to

the values of the 3 1
2
-digit DMM. The 1.4 µV has therefore a Type A (1.1 µV) and

a Type B component (1 µV). Since the value of 1.4 µV is now a reported value to

be used subsequently as the standard uncertainty in the correction to the 3 1
2
-digit

DMM, we classify it as Type B. We note that 1.4 µV is a negligible uncertainty to

the corrected values obtained using the 3 1
2
-digit DMM, and naturally so, since it

has been calibrated against a much more accurate DMM.
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Table 6.2. Comparison of values displayed by a 3 1
2
-digit DMM

and a 5 1
2
-digit DMM

Value displayed by 3 1
2
-digit DMM (V) Value displayed by 5 1

2
-digit DMM (V)

1.502 1.497 83
1.502 1.497 88
1.502 1.497 69
1.502 1.497 77
1.502 1.497 81
1.502 1.497 68

Vo DVMZo i

Figure 6.2. The loading effect of a DMM.

Exercise B

A 3 1
2
-digit DMM is to be calibrated by comparison with a 5 1

2
-digit DMM. Both

DMMs are connected simultaneously to a stable voltage source. Table 6.2 shows

the values obtained using both DMMs.

(a) Using the data in table 6.2, determine the best estimate of the correction that must be

applied to the voltage displayed by the 3 1
2
-digit DMM.

(b) Assuming that the values displayed by the 5 1
2
-digit DMM are mutually indepen-

dent, calculate the standard uncertainty of the mean of the values displayed by this

DMM.

(c) Given that the calibration report on the 5 1
2
-digit DMM states that the standard uncer-

tainty in voltage is 15 µV, calculate the combined standard uncertainty in the correction

estimated in part (a).

In the following examples, there is a more obvious need for a good understanding

of the scientific background when identifying possible systematic errors.

6.1.3 An example of systematic error due to loading

The voltage output, Vo, of a voltage source with output impedance, Zo, is measured

using a DMM with input impedance Z i, as indicated in figure 6.2. The DMM

terminals are connected to the voltage source.3 The voltage, Vd, displayed by the

3 The symbol for the voltage source represents a constant (‘direct-current’ or ‘dc’) voltage, but the systematic
error described here applies also to a varying (‘alternating-current’ or ‘ac’) voltage.
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DMM is given by

Vd = Vo

Z i

Z i + Zo

. (6.1)

Very commonly Z i is much greater than Zo (by many orders of magnitude), so that

equation (6.1) may be approximated as

Vd = Vo

[

1 −
(

Zo

Z i

)]

. (6.2)

Vd is, therefore, less than Vo. Our measurement of Vo has a systematic error

−Vo(Zo/Z i); and the correction to be applied to the DMM reading is +Vo(Zo/Z i).

An ‘ideal’ voltage source would have zero output impedance, Zo = 0, and this

systematic error would then be zero. All practical voltage sources, however, have

a non-zero output impedance.4 Familiarity with the ‘loading’ effect of a voltage

source, as described by equations (6.1) and (6.2), is needed.

The value of Z i is normally stated in the DMM manufacturer’s specifications.

We also need to know the value of Zo of the voltage source, and this is also nor-

mally stated in its manufacturer’s specifications. It may also happen that Zo is

not given but must be measured separately. The values of both Zo and Z i form

our specific information for estimating the systematic error of the measurement

of Vo. For high-quality DMMs Z i ∼ 1010 � and Zo ∼ 1000 � when Vo ∼ 1 V,

so that the correction in this case is about +1 part in 107 (0.1 µV/V). For high-

accuracy measurements at the 1-V level, therefore, we must add 0.1 µV/V to the

DMM’s indicated reading. The uncertainties in Zo and Z i determine the uncer-

tainty remaining after this correction of +0.1 µV/V is applied, and this uncer-

tainty will be generally estimated without benefit of statistical analysis as a Type B

uncertainty.

A further source of systematic error in this electrical example was stated in

section 4.1.3: the zero-offset voltage of a DMM, and the small thermal voltages

caused by the Seebeck effect. This will be discussed further in section 6.2.

Exercise C

A 3 1
2
-digit DMM is used to measure the output of a voltage source that has an output

impedance of Zo = 100 k�. Assume that the input impedance Z i of the DMM is

Z i = 10 M�. If the value indicate by the DMM is 1.544 V, what correction must

be applied to this value to account for the DMM’s finite internal impedance?

4 There exist superconducting voltage sources called Josephson junctions, which have zero output resistance.
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Figure 6.3. Nineteen standard weights, ranging from 1 kg to 1 mg (courtesy of the
National Measurement Institute of Australia).

6.1.4 Systematic error in weighing due to buoyancy

There are cases where, for the sake of simplicity and convenience, no correction

is made for a known small systematic error. On the contrary, the systematic error

is tolerated (except when very high accuracy is required), and the quantity that

contains it may be given a special name to distinguish it from the corresponding

error-free quantity.

An example of this approach occurs when objects are weighed. The relevant

standards are mass standards or ‘standard weights’, shown in figure 6.3, and the

mass of an object is determined by comparing its weight with a standard weight

using a balance or scales. High-accuracy mass standards are generally made of non-

magnetic stainless steel. At the top of the chain of mass comparisons is the world’s

primary mass standard defined 5 as having a mass of 1 kg, which is made of a very

dense platinum–iridium alloy and kept (with six copies) at the Bureau International

des Poids et Mesures (BIPM) in Paris.6 Immediately below this level are copies of

these standards kept in individual NMIs; the Australian copy (‘no. 44’) is shown

in figure 3.1. Secondary and working mass standards are derived from these and

serve the day-to-day needs of scientific research, industry and commerce.

5 See table 2.1 in section 2.1.2.
6 See footnote 2 in chapter 3.
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The dominant systematic error that arises during weighing is the effect of buoy-

ancy. Since it is not practical to weigh objects in a vacuum, they must be weighed in

air. The weight of an object of mass m is then not mg (g being the acceleration due to

gravity) but is reduced by the weight of the volume of air that the object displaces.7

If the object has density ρ, its volume is m/ρ, equal to the volume of displaced air;

and if the air has density ρa, the weight of this volume is (m/ρ)ρag = m(ρa/ρ)g.

So the weight of the object is not mg but

mg − m(ρa/ρ)g = mg[1 − (ρa/ρ)].

If the object is balanced against a mass standard of mass ms and density ρs, we

have, on equating weights,

msg[(1 − (ρa/ρs)] = mg[1 − (ρa/ρ)]. (6.3)

In equation (6.3), ms and m are the ‘true’ masses of the standard and object, respec-

tively. At the cost of introducing a small systematic error, equation (6.3) may be

simplified to an equation directly relating two masses, without any buoyancy terms

such as those in square brackets. This simplification makes use of the facts that (as

mentioned above) ρs is often the density of steel and is therefore near 8 g · cm−3;

and ρa, the density of air, is often near 0.0012 g · cm−3 (at 20 ◦C and near sea-level).

These two numerical values are used as standard values in the following definition.

Corresponding to m, the ‘true mass’, we define a ‘conventional mass’ mconv by the

relation

mconv[1 − (0.0012/8)] = m[1 − (0.0012/ρ)], (6.4)

where the density, ρ, is expressed in g · cm−3.

Equation (6.4) states essentially that, for every true mass m of arbitrary density

ρ, a conventional mass can be defined as the mass of steel that balances it in air. It

is not necessary to specify here whether the mass of steel is the true or conventional

mass of steel, because equation (6.4) shows that for a steel object these are equal.

Equation (6.4) may be written as

mconv =
m[1 − (0.0012/ρ)]

1 − (0.0012/8)
=

m(ρ − 0.0012)

0.999 85ρ
. (6.5)

It is easily checked that, if an object is made of denser material than steel, equation

(6.5) implies that its conventional mass will be greater than its true mass. If the

object is less dense than steel, its conventional mass will be less than its true mass.

7 This is Archimedes’ principle; see Young and Freedman (2003).
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There is an old brain teaser: which is heavier, a ton of bricks or a ton of hay?
Of course the required answer is that they are equally heavy. On the other hand,

the notion of conventional mass accords better with our intuition: the conventional

mass of the hay is very much less than the conventional mass of the bricks!
With ρa ≃ 0.0012 g · cm−3 as the density of air and ρs ≃ 8 g · cm−3 as the density

of steel, equations (6.3) and (6.4) together give

mconv = ms. (6.6)

In equation (6.6), ms is the mass of the steel object of density ρs ≃ 8 g · cm−3.

Equation (6.6) restates equation (6.4): the conventional mass of an object is equal to

the mass of the steel standard that balances it in air. The simplicity of this relationship

compensates adequately, in most cases, for the generally small systematic error that

it introduces.

The proportional systematic error, δ, in the mass of an object which is introduced

by the use of the conventional mass is, from equation (6.5),

δ =
(mconv − m)

m
=

0.0012(ρ − 8)

8ρ
= 0.000 15[1 − (8/ρ)]. (6.7)

For an aluminium object, with ρ ≃ 2.7 g · cm−3, equation (6.7) implies that there

is a systematic error of δ = −294 parts per million in its reported mass.

Exercise D

Find the proportional error for a brass standard of density 8.6 g · cm−3.

6.1.5 Some sources of systematic errors in temperature measurement

Temperature is an important quantity that is controlled or measured in many exper-

iments. This is due to the fact that many processes and quantities, such as the rates

of chemical reactions and the specific heat capacities of solids, are temperature-

dependent. Accurate temperature measurement is a challenging pursuit, and many

sources of systematic error lie in wait to trap the unwary. If we consider a familiar

situation in which the temperature of fluid in a vessel (for example, water) is mea-

sured in an open laboratory using a liquid-in-glass thermometer, then the immersed

length of the thermometer affects the temperature indicated by the thermometer.

The sign of the systematic error depends on whether the fluid is at a higher or lower

temperature than the ambient temperature of the laboratory. The magnitude of the

error depends on several quantities, including the immersed length and the effective

diameter of the thermometer (Nicholas and White 2001). If the temperature of the
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fluid is changing, the time constant of the thermometer may introduce a significant

systematic error. The time constant of a liquid-in-glass thermometer depends on

several quantities: the diameter of the thermometer bulb, the heat capacity of the

liquid in the thermometer and the heat-transfer coefficient for heat transfer between

the thermometer and the fluid in which it is immersed. In situations in which the

time constant of a thermometer has been established, it is possible to apply a cor-

rection to temperature values to account for the time constant. For example, where

a thermometer of time constant τ is used to measure the temperature of a water

bath where the rate of temperature rise in the bath is constant at R ◦C/s, then the

lag error L , is given by

L = −τ R. (6.8)

In order to account for the finite time constant of the thermometer, the value

indicated by the thermometer should be corrected by an amount +τ R.

Exercise E

A liquid-in-glass thermometer with a time constant of 8 s is used to measure the

temperature of a water bath. The rate of temperature rise of the water bath is

2.5 ◦C/minute. At a particular moment, the thermometer indicates that the temper-

ature of the water is 52.5 ◦C. What is the corrected value for the water temperature

which accounts for the time constant of the thermometer?
The extent of the influence of sources of systematic error on measured values of

temperature can often be established by changing the conditions of the experiment,

and, in general, changing the conditions is an effective means of detecting the

existence of a systematic error.

6.2 Systematic error revealed by changed conditions

Accurate measurements are generally made using formally prescribed methods.8

However, there exists a possible risk when prescribed methods are used for pro-

longed periods without variation: a systematic error may exist or develop, yet remain

unsuspected. An effective way of uncovering (and, therefore, correcting for) a sys-

tematic error is to vary the method by means of an intentional change that does not

immediately entail a reduction in accuracy.9

8 These are prescribed by a country’s accreditation bodies, which after inspection of a laboratory and its per-
formance have the power to grant it accreditation for a specified category of measurements. In the USA, the
National Institute of Standards and Technology (NIST) operates a Voluntary Laboratory Accreditation Program
(VLAP); in the UK accreditation is granted by the UK Accreditation Service (UKAS), while in Australia the
accrediting body is the National Association of Testing Authorities (NATA).

9 For example, replacing an instrument with one of lower accuracy is not the kind of change envisaged here.
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Quite small changes in the way a measurement is made can reveal the

existence of a large systematic error. For example, varying the immersion depth of

a liquid-in-glass thermometer used to measure the temperature of water in a beaker

can reveal the extent to which the immersion depth affects the temperature indicated

by the thermometer. Similarly, when measuring ambient air temperature with the

same type of thermometer, a radiation shield placed around the thermometer can

indicate the extent to which a hot or cold heat source in the vicinity of the ther-

mometer is losing heat to, or gaining heat from, the thermometer, thereby affecting

the value of temperature that it indicates.

We now examine a more detailed example, taken from electrical metrology, of

a change in conditions that reveals a systematic error but that also allows at least

partial cancellation of this error.

When a constant (‘dc’) voltage is intended to be measured with high accuracy

using a high-quality DMM, two possible sources of systematic error are the zero-

offset of the DMM and thermal voltages caused by the Seebeck effect. The zero-

offset is a non-zero voltage displayed by the DMM, due to small imperfections

in its electronic circuitry, when the voltage between its input terminals is exactly

zero. To achieve a good approximation to this zero voltage, the operator short-

circuits the input terminals, using a short length of thick copper wire. The resulting

voltage between the input terminals is then likely to be of the order of a few tenths

of a microvolt. The display of the DMM can then be ‘zeroed’ using a pushbutton

command. Ideally, this means that the zero offset has been exactly compensated for,

so that subsequent readings by the DMM will be free of this offset error. In practice,

however, the zero offset will change with time and temperature. The change with

temperature is related to the second source of systematic error, due to the Seebeck

effect.

The Seebeck effect occurs when dissimilar conductors or semiconductors are

joined at their ends to form a loop. A temperature-dependent voltage is gener-

ated across each of the two junctions. If the junctions are at exactly the same

temperature, the voltages will be equal and opposite and there will be zero net

voltage around the loop. If the junctions are at different temperatures, a non-zero

net voltage results. To minimise these thermal voltages, copper wiring and termi-

nals are used in high-accuracy electrical metrology, and the copper may be plated

with gold or silver to inhibit oxidation (since copper oxides generate relatively

large thermal voltages relative to copper). Since small temperature differences will

exist between neighbouring terminals even in a temperature-controlled laboratory,

particularly immediately after the act of connecting wires to terminals, thermal

voltages of the order of tenths of a microvolt or less will still exist. The lead-

reversal (or lead-swapping) procedure can eliminate some of these error voltages, as

follows.



94 Systematic errors

DMM

DMM

0

0

A

A

B

B

C

C

D

D

'

'

(a)

(b)

Z

Z

Figure 6.4. Reversal of connections to eliminate some systematic error voltages.

Figures 6.4(a) and (b) illustrate the voltages just mentioned, in a circuit where

a DMM is connected to a source of voltage, V0. The DMM is represented by a

zero-offset voltage, VZ, at the output of an ‘ideal DMM’ whose zero-offset voltage

is exactly zero. Small circles represent the accessible output terminals of both the

DMM and the voltage source. A pair of copper wires (which could in practice be a

pair of twin wires within a shielded cable) connects the voltage source to the DMM.

Junctions at slightly different temperatures in the internal circuitry of the voltage

source produce net thermal voltages VA and VB at the external terminals (these

voltages may have the opposite sign to that shown). Similarly, at the terminals of

the DMM the thermal voltages between the terminals and wires are denoted by VC

and VD. In this ‘forward’ measurement (figure 6.3(a)), therefore, the voltage V
(f)

DMM

displayed by the DMM is

V
(f)

DMM = V0 + VA − VB − VC + VD − VZ. (6.9)

There are therefore five unwanted voltages (VA, VB, VC, VD and VZ) included in the

DMM display. We can eliminate some of them by reversing the leads at the DMM

terminals, as shown in figure 6.4(b). Since the connections at the terminals of the

voltage source are not touched, the same thermal voltages VA and VB are assumed to

exist there after the reversal. However, since the connections at the DMM terminals

have been changed, and heat has been generated by the act of screwing wires to these

terminals, the thermal voltages at the DMM terminals are likely to be different, and

are now denoted by V ′
C and V ′

D. In this ‘reverse’ measurement, the voltage V
(r)

DMM

displayed by the DMM is

V
(r)

DMM = −V0 − VA + VB − V ′
C + V ′

D − VZ. (6.10)
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Subtracting equation (6.10) from equation (6.9) gives

V0 =
V

(f)
DMM − V

(r)
DMM

2
+ (VB − VA) +

VC − V ′
C

2
−

VD − V ′
D

2
. (6.11)

The zero-offset voltage VZ has therefore been eliminated. If enough time (perhaps

a minute or so) has been allowed after reversal of the leads to enable the heat

generated by the reversal to dissipate, it is likely that VC is approximately equal to

V ′
C and that VD is approximately equal to V ′

D. Then the last two terms in equation

(6.11) will be close to zero. The uncancelled thermals are VA and VB, but these can

be minimised by maintaining the voltage-source terminals as closely as possible

at the same temperature. This is sometimes achieved by enclosing the terminals in

(but insulating them from) a small metal box.

Lead-swapping as just illustrated is a change in experimental conditions that

takes place over seconds or minutes. Other systematic-error-revealing changes in

conditions can take place at intervals of months or years. Laboratory conditions are

sometimes intentionally changed at intervals for the express purpose of uncovering

systematic errors. Regular calibration of all key instruments is an example of an

effective change in conditions, and can be conveniently scheduled.

We note also that a systematic error may be uncovered by a change in experimen-

tal conditions that occurs ‘by accident’ or through the passage of time. As noted

previously, the intentional exchange of one instrument for another in the same accu-

racy class is one means of revealing a systematic error. Such an exchange can occur

for other reasons. If the readings differ, one or other of the instruments, or both,

must be disbelieved. It may then be difficult to trace the history of the systematic

error.

The passage of time may create a change in conditions, producing a systematic

error that may be significant and yet remain hidden for a prolonged period. For

example, the leakage of electric current from a circuit to earth (in practice, the

metal enclosure at or close to earth potential in which most electronic instruments

are housed) should normally be as low as possible, to correspond to a resistance

of about 1010 � or more. This resistance is provided by (among other materials)

the plastic insulation around wiring such as polyethylene or polyvinyl chloride.

With the passage of time these and other insulators are affected by humidity and

absorb various contaminants from the atmosphere. The resulting lower insulation

resistance may act like an effective increased loading to a voltage source, creating

a significant systematic error.

As an example, in section 6.1.3 a voltage standard of output impedance 1000 �

was measured using a DMM with input impedance 1010 �. The systematic error was

approximately 0.1 µV/V. Suppose that, over a year, the input impedance gradually

decreased to 3 × 109 �. The systematic error would increase to about 0.3 µV/V, but
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we might incorrectly attribute the reduced reading of the DMM to a real negative

drift of the output of the voltage standard.

6.3 Review

In this chapter we have considered several sources of systematic error and how

the effect of those errors can be minimised, or accounted for. We have shown

that systematic errors can be quantified through Type A or Type B evaluations of

uncertainty, or sometimes using a combination of both types of evaluation. Next

we consider in more detail how uncertainties are calculated, and how they may be

combined.
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Calculation of uncertainties

Random errors, evaluated using statistical methods, create a Type A uncertainty.
A known systematic error in a measured value should be corrected for, and after
the correction has been made, the uncertainty in the correction contributes to the
uncertainty in that value. The uncertainty in the correction, and hence in the value,
may be Type A or Type B, depending on how the uncertainty is evaluated. The
finally reported uncertainty of a measurand, called the combined uncertainty, is
likely to have both Type A and Type B components, but becomes wholly Type B
when subsequent use is made of it.

In this chapter we consider how to evaluate the combined uncertainty of a mea-
surand. The procedure to be described makes no distinction between Type A and
Type B uncertainties. It may appear then as if we have gone to unnecessary trou-
ble in assigning types to uncertainties, but this classification is desirable since it
emphasises the different methods by which they are evaluated. It is also useful as
a reminder that, whereas an ‘error’ can be random or systematic, ‘uncertainty’ is
a separate concept whose two types are distinguished from each other by different
names, ‘Type A’ and ‘Type B’. However, once uncertainties have been classified,
Type A and Type B uncertainties are treated identically thereafter.

7.1 The measurand model and propagation of uncertainties

from inputs to measurand

A measurand, which by definition is the particular quantity to be determined, often
cannot be measured directly. Instead, we measure the input quantities that determine
the value of the measurand.1

1 Input quantities are sometimes referred to as influence quantities, since they ‘influence’ the measurand.

97
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If there are n input quantities, x1, x2, . . ., xn , we describe their relationship to
the measurand, y, by the functional relationship

y = f (x1, x2, . . ., xn). (7.1)

Equation (7.1) is our measurand model. In some situations, x1, x2, . . ., xn rep-
resent values of the same quantity obtained through repeated measurements. In
other cases, x1, x2, . . ., xn represent different types of quantities. For example, in a
situation in which y depends on three input quantities, x1 might represent a length,
x2 a temperature and x3 a thermal conductivity.

Equation (7.1) is the relationship between the estimates, x1, x2, . . ., xn and the
resulting estimate, y, of the measurand. This relationship between estimates is the
experimentally feasible counterpart to the corresponding relationship usually ex-
pressed in upper-case symbols as Y = f (X1, X2, . . ., Xn). Here X1, X2, . . ., Xn are
the values (‘actual’ or ‘true’ values) of the inputs, and Y is the value (‘actual’ or
‘true’ value) of the measurand. There is, therefore, a useful conceptual distinction
between ‘estimate’ (short for ‘estimate of value’) and ‘true value’. However, in
practical applications of the propagation formula to be derived below (equation
(7.14)), it is convenient to use upper-case or lower-case symbols to represent es-
timates in accordance with existing notational convention for physical quantities;
for example, estimates of volume or voltage will be denoted by upper-case V .

A small change, δy, in y, is related to small changes, δx1, δx2, . . ., δxn , in
x1, x2, . . ., xn respectively, by

δy =
∂y

∂x1
δx1 +

∂y

∂x2
δx2 + · · · +

∂y

∂xn

δxn, (7.2)

where ∂y/∂x1, ∂y/∂x2, . . ., ∂y/∂xn are the first-order partial derivatives of y with
respect to x1, x2, . . ., xn respectively.

Equation (7.2) can be seen to be plausible by considering the case of a single
input, x , and its effect on y. Figure 7.1 shows the response of y to x , and we
now examine the effect of a small change, δx , in x from its initial value, x0.
The point (x0, y0) is labelled P in figure 7.1. If δx is small, the response of y

is linear. This straight-line portion of the curve near x0, namely the arc PQ, may
be approximated by the equation, y = A + Bx , where A and B are constants. The
derivative or gradient, dy/dx , at x = x0 is therefore dy/dx = B. At x = x0, we
have y = y0 = A + Bx0. When the input, x , changes to x0 + δx , y changes to
y0 + δy = A + B(x0 + δx). This point, (x0 + δx, y0 + δy), is labelled Q in figure
7.1. Therefore δy = A + B(x0 + δx) − A − Bx0 = Bδx = (dy/dx)δx . Equation
(7.2) is a generalisation for several inputs, xi , of this linear approximation of the
response of the measurand to its inputs.
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Figure 7.1. Demonstration of equation (7.2) for a single input x .

As an example of the application of equation (7.2), we may wish to determine
the density, ρ, of an object of mass M and volume V . Here the measurand is ρ,
and the two input quantities are M and V . The relationship between the measurand
and the input quantities (sometimes called the measurand model) is

ρ =
M

V
. (7.3)

Since neither M nor V can be known exactly, each must have an associated uncer-
tainty. It follows that ρ will also have an uncertainty. We speak of the uncertainties
in the inputs M and V as ‘propagating’ into ρ and causing a corresponding uncer-
tainty in ρ. To see in detail how uncertainties propagate, we consider the following
argument and keep in mind that, while error may be positive or negative, uncertainty
is a positive quantity.

If ρ = M/V , then the differential, δρ, represents a small increase or decrease
in ρ. Using equation (7.2), δρ is given by

δρ =
∂ρ

∂ M
δM +

∂ρ

∂V
δV . (7.4)

Since (using equation (7.3)) ∂ρ/∂ M = 1/V and ∂ρ/∂V = −M/V 2, equation (7.4)
becomes2

δρ =
1

V
δM −

M

V 2
δV . (7.5)

2 It is helpful to check the dimensional consistency of all the terms in the expression for the differential, so that
any mistake in the expression can be identified and corrected.
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In equation (7.5), we identify δρ, δM and δV as the random errors in ρ, M and
V , respectively. The values M and V are best estimates of mass and volume,
respectively. Best estimates are taken to be the means of values. These means
may be regarded as reference points, closely approximating the ‘true’ values of
mass and volume, deviations from which constitute the random errors, δM and
δV . Corresponding to M and V we have the value of density, ρ, calculated using
ρ = M/V , with its corresponding random error, δρ.

We note that δρ, δM and δV are random, not systematic, errors; this is because
we assume that systematic errors have been corrected for. Thus suppose that the
measurement of mass, M , involves a systematic error, +m, with an uncertainty
s(m) in this systematic error.3 We accordingly replace the measured value M by
M − m, and the quantity M − m then has a component of uncertainty s(m), as well
as a component determined from the scatter of values of M .

With the understanding that M and V on the right-hand side of equation (7.5)
represent the mean values of mass and volume, respectively, we may write

δM = Mk − M. (7.6)

The index, k, on the right-hand side of equation (7.6) expresses explicitly the fact
that δM is not a single random error but represents a set of N random errors, where
N is the very large or infinite population of random errors.4 Thus k = 1, 2, . . ., N .
Similarly, δV = Vk − V and δρ = ρk − ρ. In all three cases we may consider k

as running from 1 to the same very large or infinite number, N . The quantity ρ

represents the mean value of density.5

Equation (7.5) may now be written, for each random error ρk − ρ, Mk − M and
Vk − V , as

ρk − ρ =
1

V
(Mk − M) −

M

V 2
(Vk − V ). (7.7)

If we sum equation (7.7) over all k (from k = 1 to k = N ),

N
∑

k=1

(ρk − ρ) =
1

V

N
∑

k=1

(Mk − M) −
M

V 2

N
∑

k=1

(Vk − V ), (7.8)

we obtain zero for each of the three terms, since
∑N

k=1 ρk = Nρ,
∑N

k=1 Mk = N M

and
∑N

k=1 Vk = N V and ρ, M and V are the mean values of density, mass and
volume.

3 As in chapter 6, we take the correction for a systematic error to have the opposite sign to the systematic error.
4 In a real experiment, we sample the population by making n measurements, where n ≪ N .
5 We note that, if the errors δM occur independently of the errors δV , then (following rule (d) in section 5.1.1),

we have ρ = M/V as the relation obeyed by the mean values of ρ, M and V .
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If we square each side of equation (7.7), we have

(ρk − ρ)2 =
1

V 2
(Mk − M)2 +

M2

V 4
(Vk − V )2 −

2M

V 3
(Mk − M)(Vk − V ), (7.9)

and summing over all k from 1 to N and dividing by N gives
∑N

k=1(ρk − ρ)2

N
=

1

V 2

∑N
k=1(Mk − M)2

N
+

M2

V 4

∑N
k=1(Vk − V )2

N

−
2M

V 3

∑N
k=1 [(Mk − M)(Vk − V )]

N
. (7.10)

The term on the left-hand side of equation (7.10) is the variance of the density in its
population or, equivalently, the squared standard uncertainty, u2(ρ), of the density.
Similarly we have

u2(M) =
∑N

k=1(Mk − M)2

N
,

(7.11)

u2(V ) =
∑N

k=1(Vk − V )2

N
.

We now examine the third term on the right-hand side of equation (7.10). The
errors, δM = Mk − M and δV = Vk − V , are unlikely to exhibit any degree of
mutual dependence, since M and V are measured using completely different in-
struments (for example, scales for the mass, M , and vernier calipers for the length
measurements used to determine the volume, V ). We say that the measurements of
M and of V are likely to be uncorrelated; a positive error δM is likely to be asso-
ciated just as often with a negative error δV as with a positive error δV . Similarly,
a negative error δM is likely to be associated just as often with a positive error δV

as with a negative error δV . This implies that the product of each instance of error
δM = Mk − M with a corresponding instance of error δV = Vk − V will be zero
on average. The quantity

∑N
k=1 [(Mk − M)(Vk − V )] is therefore zero. Equation

(7.10) simplifies to

u2(ρ) =
1

V 2
u2(M) +

M2

V 4
u2(V ). (7.12)

In metrology, the notation u2(x) is most commonly used for the variance of a
quantity, x , in its population, and u(x) denotes the square root of the variance,
namely the standard deviation or standard uncertainty of x .

The law of propagation of uncertainties as expressed by equation (7.12) is written
in terms of variances, namely the squared standard uncertainties. The variance of a
quantity has the dimensions of that quantity squared; thus u2(ρ) has the dimensions
of density squared, and it may be verified that the three terms in equation (7.12) have
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the same dimensions. From equation (7.12) it follows that the combined standard
uncertainty, u(ρ), in ρ is given by

u(ρ) =
√

1

V 2
u2(M) +

M2

V 4
u2(V ). (7.13)

Suppose that V = 3.930 cm3 and M = 10.601 g, so that ρ = 2.697 g · cm−3. If the
standard uncertainty, u(V ), in V is 0.002 cm3 and the standard uncertainty, u(M),
in M is 5 mg, it may be confirmed that u(ρ) ≃ 1.9 mg · cm−3.

We should note that inputs may exhibit a mutual non-zero correlation. In the
particular case above, suppose that δM and δV did have some degree of mutual
dependence. For example, if, whenever δM was positive, so was δV , and whenever
δM was negative, so was δV , then M and V would exhibit mutual positive corre-
lation. The summation in the third term on the right-hand side of equation (7.10)
would then give a positive result, and (because of the minus sign in front) that
third term would be negative. Similarly, δM and δV would exhibit mutual negative
correlation if, whenever δM was positive, δV was negative, and whenever δM was
negative, δV was positive. The third term on the right-hand side in equation (7.10)
would then be positive. Correlations between inputs will be considered further in
section 7.2.

When y depends on an arbitrary number of input quantities, as expressed by
equation (7.1), the uncertainties u(xi ) (i = 1, 2, . . ., n) propagate into y according
to

u2(y) =
(

∂y

∂x1

)2

u2(x1) +
(

∂y

∂x2

)2

u2(x2) + · · · +
(

∂y

∂xn

)2

u2(xn) (7.14)

provided that the xi (i = 1, 2, . . ., n) are mutually uncorrelated.

Exercise A

(1) The frequency, f , of a waveform is related to the period, T , of the waveform by the
relationship

f =
1

T
.

Given that T = 21.5 ms and u(T ) = 2.4 ms, calculate f and u( f ).
(2) The gain, G, of a non-inverting amplifier is expressed as a ratio of two resistances, R1

and R2, given by

G = 1 +
R2

R1
.
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If R1 = 1053 �, u(R1) = 12 �, R2 = 12 350 � and u(R2) = 95 �, calculate the gain
of the amplifier and the standard uncertainty in the gain.

(3) The velocity, v, of a wave on a stretched string may be written as

v =

√

T

µ
,

where T is the tension in the string and µ is the mass per unit length of the string.
Assume that T = 2.51 N, u(T ) = 0.05 N, µ = 1.032 g/m and u(µ) = 0.012 g/m.
Determine
(a) expressions for ∂v/∂T and ∂v/∂µ, and
(b) the velocity of the wave and the standard uncertainty in the velocity.

(4) The focal length, f , of a thin lens is related to the distance, p, from an object to the
lens, and the distance, q, from the image to the lens, by the relationship

1

f
=

1

p
+

1

q
.

Assume that p = 12.5 cm, u(p) = 0.5 cm, q = 42.5 cm and u(q) = 1.5 cm. Determine
(a) expressions for ∂ f /∂p and ∂ f /∂q, and
(b) f and u( f ).

7.1.1 Sensitivity coefficients

The partial derivatives in equation (7.14) are sometimes called sensitivity coeffi-

cients, and are represented by the symbol, c. Thus the degree of sensitivity, ∂y/∂x1,
of y to x1, in equation (7.14), may be called c1 (so that the coefficient of u2(x1)
in equation (7.14) is c2

1). The c notation is useful as a shorthand when a table of
uncertainty contributions from various inputs is being drawn up.

If the measurand is the sum of the inputs,

y = x1 + x2 + · · · + xn, (7.15)

then ci = ∂y/∂xi = 1 for all i (i = 1, 2, . . ., n), and equation (7.14) gives

u2(y) = u2(x1) + u2(x2) + · · · + u2(xn)

or

u(y) =
√

u2(x1) + u2(x2) + · · · + u2(xn). (7.16)

Equation (7.16) shows that u(y) is the ‘root-sum-square’ of the u(x)’s. Combining
standard uncertainties, whether Type A or Type B, by root-sum-squares is the
correct procedure when the x’s (or, more precisely, their errors) are uncorrelated.
This contrasts with the past (and no longer recommended) practice of simply adding
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the uncertainties, which pessimistically gives a larger u(y) and neglects the fact that
uncorrelated errors are likely to exert some degree of mutual cancellation.

If the measurand, y, is proportional to a single input, x , so that

y = K x, (7.17)

where K is a constant, we have c = ∂y/∂x = K , and equation (7.14) gives6

u2(y) = K 2u2(x). (7.18)

Bearing in mind the above definition of the sensitivity coefficients, ci , as ci =
∂y/∂xi , we see that equation (7.14) may be written in a form that is a generalisation
of equation (7.16):

u(y) =
√

c2
1u2(x1) + c2

2u2(x2) + · · · + c2
nu2(xn). (7.19)

Equation (7.19) shows, essentially, that all the Type A standard uncertainties can
be combined by root-sum-squares to give a ‘net’ Type A component, and similarly
for all the Type B components. We now have the prescription for obtaining the
combined standard uncertainty due to several inputs: it is the root-sum-square of
the Type A and Type B components.

Exercise B

For the following equations, determine the sensitivity coefficients, c1 = ∂y/∂x1,
c2 = ∂y/∂x2, etc.

(a)

y =
x2

1 x2

x3
.

(b)

y =
√

x1

2x2
.

(c)

y = x1 exp x2.

(d)

y =
sin x1

sin x2
.

6 Equations (7.17) and (7.18) are obtained here in the context of uncertainty in measurement, but they also
constitute an elementary but fundamental result in statistics. If two variables x and y are related by y = K x ,
with K constant, then the variance of y is K 2× variance of x .
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7.1.2 Use of least-squares with the measurand model

To be able to apply the measurand model given by equation (7.1) and leading to
the propagation equation (7.14), we need the best estimate of each input quantity
and the standard uncertainty in that estimate. Very often, the technique of least-
squares is used to establish best estimates of input quantities and of their associated
standard uncertainties. Owing to the similarity in the nomenclature used, it is quite
easy to confuse the x’s used in the measurand model and those used when applying
least-squares.

In the measurand model (equation (7.1)), xi represents the best estimate of the i th
input quantity and u(xi ) is its standard uncertainty to be inserted into equation (7.14).
Each xi may represent a different physical quantity with different dimensions. By
contrast, xi in ordinary least-squares normally denotes the i th value of the predictor
(or ‘explanatory’) variable. All the xi in the ordinary least-squares model are values
of the same physical quantity with the same dimensions, and they are all assumed
to be error-free and therefore to have no uncertainty. It is the parameters within the
least-squares model (such as the mean, or slope and intercept) that are estimated
and these, together with their associated standard uncertainties, become inputs to
the measurand model.

As the simplest and very common example, one (or more) of the xi in the
measurand model might be the mean of several values obtained through repeated
readings. As discussed in section 5.2.1, the calculation of the mean is the simplest
case of a least-squares fit. Thus an input, x1 (for example), in the measurand model
would then be calculated as

x1 = (x11 + x12 + · · · + x1q)/q,

where x11, x12, . . ., x1q are the q values for the first input, x1. If these values have
an unbiased variance, s2, calculated in the usual way as

s2 =
∑q

i=1(x1i − x1)2

q − 1
,

and if the readings are uncorrelated, we have

u(x1) =
s

√
q

, (7.20)

which restates equation (5.56). The squared value, u2(x1) = s2/q , is then the correct
entry on the right-hand side of equation (7.14).

Similarly, one of the inputs may be the estimated value, b, of a drift in time,
determined by a least-squares fit of a response variable to q points in time t1,
t2, . . ., tq as in section 5.2.3. Then sb given by equation (5.58) is expressed in the
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new notation as u(b), given by

u(b) = s

√

q

D
, (7.21)

where s is the rms residual about this line and D is given by D = q
∑q

i=1 t2
i −

(
∑q

i=1 ti
)2

(see equation (5.51)). The squared value, u2(b), is then the correct entry
for the squared standard uncertainty of the drift input on the right-hand side of
equation (7.14).

In general, least-squares (including the simple case of calculating a mean) is
the technique by which we estimate our Type A uncertainties of the inputs on the
right-hand side of equation (7.14). Type B uncertainties, which are not evaluated
using statistical analysis, refer to single values of the inputs, since repeated readings
are usually not available. However, the single value is nevertheless the mean in the
sense of a best estimate. This is why, in the example leading to equation (7.12), M

and V were called the mean mass and volume, respectively, with u(M) and u(V )
as the measures of the uncertainties in these means created by the population of
errors, Mk − M and Vk − V .

Example 1

A current, I , is calculated using Ohm’s Law: I = V/R. V is the measured value of
voltage. The resistance, R, is not measured directly, but is found with the assistance
of the temperature coefficient of resistance of R, as obtained from a calibration
report. Specifically, R is found using the relationship

R = R0 + α(t − t0), (7.22)

where R0 is the resistance at a fixed reference temperature, t0, and α is the usual
symbol for the temperature coefficient7 at t0. We can measure the temperature, t ,
with standard uncertainty, u(t). The calibration report states R0, u(R0), α, u(α) and
t0. From equation (7.22) we have

∂ R

∂ R0
= 1, (7.23)

∂ R

∂α
= (t − t0), (7.24)

∂ R

∂t
= α, (7.25)

so that

u2(R) = u2(R0) + (t − t0)2u2(α) + α2u2(t). (7.26)

7 The form of equation (7.22) implies that α has units of ohms per degree. This simplifies the following analysis,
but in practice α is more likely to be given in proportional parts of resistance per degree – for example,
(µ�/�) · ◦C−1.
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Equation (7.14) becomes

u2(I ) =
1

R2
u2(V ) +

V 2

R4
[u2(R0) + (t − t0)2u2(α) + α2u2(t)], (7.27)

where R = R0 + α(t − t0)
The standard uncertainties, u(R0) and u(α), in the calibration report are likely

to have been determined from a linear least-squares fit similar to that described in
section 5.2.3.8

In this example, V is measured using a DMM. If several repeated measurements
are made of V , the standard deviation of the mean voltage is the Type A component
in u(V ). The Type B component is, for example, the standard uncertainty of the
correction to be applied to the readings of the DMM.9 The standard uncertainty,
u(V ), is the root-sum-square of the Type A and Type B components.

The other terms in equation (7.27) are also known: the values of R0, α, t0, u(R0)
and u(α) are stated in the calibration report on the resistor, and we can measure the
temperature, t , of the resistor at the time of the experiment.

Exercise C

Assume that V = 1.32 V, u(V ) = 0.02 V, R0 = 1032 �, u(R0) = 23 �, t =
32.5 ◦C, u(t) = 0.5 ◦C, t0 = 25 ◦C, α = 4.35 �/◦C and u(α) = 0.03 �/◦C.

Use I = V/R together with equations (7.22) and (7.27) to calculate R, I and
u(I ).

Example 2

Equation (7.14) can be applied to the common case where the inputs, xi (i =
1, 2, . . ., n), are n repeated and mutually uncorrelated values of the same quantity,
and the measurand, y, is the mean of the inputs:

y =
x1 + x2 + · · · + xn

n
. (7.28)

Since ∂y/∂xi = 1/n for all i , equation (7.14) gives

u2(y) =
1

n2

[

(u2(x1) + u2(x2) + · · · + u2(xn)
]

. (7.29)

8 By rewriting the relationship R = R0 + α(t − t0) in the form R = R0 + αt ′, where t ′ is defined as the deviation
from the fixed and known temperature t0, we see that the relationship between R and t ′ is the same as that
between voltage, V , and time, t , in equation (5.35). Equations (5.57) and (5.58) give the standard uncertainties,
sa and sb , of intercept and slope, respectively, and these are equivalent to u(R0) and u(α), respectively, in this
example.

9 This correction, which itself depends on the voltage, and its standard uncertainty are usually available from the
calibration report on that DMM.
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Table 7.1. Thickness of

aluminium film

Thickness (nm)

320
330
315
330
325
315

We need an estimate of each u2(xi ). An estimate of each u2(xi ) is the variance, s2,
as calculated using equation (5.23). It follows that all the u2(xi ) on the right-hand
side of equation (7.29) are equal and we write u2(xi ) = s2 = u2(x). So equation
(7.29) gives

u2(y) =
1

n2
[nu2(x)] =

u2(x)

n
(7.30)

or

u(y) =
u(x)
√

n
. (7.31)

This result in a different notation was stated in equations (4.3) and (5.56).

Exercise D

The thickness of a thin film of aluminium deposited onto a glass slide is measured
at several points using a profilometer. The values obtained are shown in table 7.1.

Calculate the mean of the values in table 7.1 and the standard uncertainty in the
mean, assuming that measurement errors are uncorrelated.

Example 3

Suppose that each input, xi , to a measurand is the mean of ni values obtained by
repeat measurement. We write the ni values as xi1, xi2, . . ., xini

. The mean, xi , of the
i th input is given by xi = (xi1 + xi2 + · · · + xini

)/ni , and the standard deviation,
si , of these ni values is

si =

√

(xi1 − xi )2 + (xi2 − xi )2 + · · · + (xini
− xi )2

ni − 1
. (7.32)
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Table 7.2. Focal lengths of

objective and eyepiece

lenses

fo (cm) fe (cm)

30.3 5.6
30.7 5.5
30.5 5.2
30.6 5.5
31.1 5.4
30.2
30.4
30.4

If the ni values are uncorrelated, the standard deviation of the mean, xi , is given by
si/

√
ni . In the notation of the measurand model, we have u(xi ) = si/

√
ni .

Exercise E

The magnification, m, of a refracting telescope is equal to the ratio of the focal
length of the lenses in the telescope:

m =
fo

fe
,

where fo is the focal length of the objective lens and fe is the focal length of the
eyepiece lens. Repeat measurements of the focal length of each lens are made.
These are shown in table 7.2.

Use the data in table 7.2 to find

(a) the mean focal length of each lens;
(b) the standard uncertainty in the mean focal length of each lens;
(c) the best estimate of the magnification of the telescope; and
(d) the combined standard uncertainty in the magnification, assuming that errors in fo and

fe are uncorrelated.

7.2 Correlated inputs

The expression
∑N

k=1 [(Mk − M)(Vk − V )]/N , in the third term on the right-hand
side of equation (7.10), was assumed to be zero, expressing the lack of mutual corre-
lation between the errors, Mk − M and Vk − V . This expression may be recognised
as the covariance of M and V . Just as u2(x) denotes the variance of x , a convenient
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symbol for the covariance of two quantities, x and y, is u(x, y). We may write that
covariance as u(M, V ), in which case equation (7.10) becomes10

u2(ρ) =
1

V 2
u2(M) +

M2

V 4
u2(V ) −

2M

V 3
u(M, V ). (7.33)

The standard uncertainty, u(x), of x , is the square root of the variance. Expressed
in our present notation, the correlation coefficient, r , between variables x and y,
is11

r (x, y) =
u(x, y)

u(x)u(y)
. (7.34)

Equation (7.33) can now be written

u2(ρ) =
1

V 2
u2(M) +

M2

V 4
u2(V ) −

2M

V 3
r (M, V )u(M)u(V ), (7.35)

where r (M, V ) denotes the correlation coefficient between M and V . We note
that, if small changes in variables (like M and V ) are being considered and these
variables are said to be correlated, this is equivalent to saying that the errors (like
δM = Mk − M and δV = Vk − V ) in those variables are correlated.

For correlated inputs, equation (7.35) suggests that the general form of equation
(7.14) should be

u2(y) =
(

∂y

∂x1

)2

u2(x1) +
(

∂y

∂x2

)2

u2(x2) + · · · +
(

∂y

∂xn

)2

u2(xn)

+ r (x1, x2)
∂y

∂x1

∂y

∂x2
u(x1)u(x2) + r (x1, x3)

∂y

∂x1

∂y

∂x3
u(x1)u(x3) + · · ·

+ r (xi , x j )
∂y

∂xi

∂y

∂x j

u(xi )u(x j ) + · · ·, (7.36)

where r (xi , x j ) is the correlation coefficient between inputs xi and x j .
There are n(n − 1) ‘product’ terms in equation (7.36). This can be seen by noting

that

x1 is associated with the n − 1 other terms x2, x3, . . ., xn;
x2 is associated with the n − 1 other terms x1, x3, x4, . . ., xn;

and so on for all n terms, each being associated with the product of the
n − 1 other terms. Since, for example, r (x1, x2)(∂y/∂x1)(∂y/∂x2)u(x1)u(x2) =

10 The dimensions of a covariance such as u(M, V ) should be noted: they are, in this case, mass × volume, so in
general the dimensions of the covariance, u(x, y), are the product of the dimensions of x and of y.

11 See equation (5.60) for a definition of r .
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r (x2, x1)(∂y/∂x2)(∂y/∂x1)u(x2)u(x1), the n(n − 1) product terms come in 1
2 n(n −

1) pairs, in each of which the two terms are identical. In equation (7.10), for ex-
ample, the coefficient −2M/V 3 of the third term on the right-hand side is the
sum

∂ρ

∂ M

∂ρ

∂V
+

∂ρ

∂V

∂ρ

∂ M
.

It follows that equation (7.36) may be written

u2(y) =
(

∂y

∂x1

)2

u2(x1) +
(

∂y

∂x2

)2

u2(x2) + · · · +
(

∂y

∂xn

)2

u2(xn)

+ 2r (x1, x2)
∂y

∂x1

∂y

∂x2
u(x1)u(x2) + 2r (x1, x3)

∂y

∂x1

∂y

∂x3
u(x1)u(x3) + · · ·

+ 2r (xi , x j )
∂y

∂xi

∂y

∂x j

u(xi )u(x j ) + · · ·, (7.37)

where now the second suffix, j , is always greater than the first suffix, i .
When the measurand, y, is the mean of uncorrelated inputs (such that r (xi , x j )

= 0 for i �= j) obtained as a time-sequence of repeated readings x1, x2, . . ., xn , we
have the result u(y) = u(x)/

√
n, as in equation (7.31). We now consider how this

result is modified when (for example) all the xi ’s are perfectly mutually correlated,
with a correlation coefficient of +1.

7.2.1 Increase in uncertainty in the measurand due to correlated inputs

A correlation coefficient between two populations is defined through a one-to-
one correspondence between their respective elements. A high positive correlation
between them exists when high values in one population are associated with high
values in the other or when low values in one population are associated with low
values in the other.

For the particular case of repeated readings of the same quantity, it is not imme-
diately obvious how two such populations can arise when we have only a single
sequence of values obtained by repeat measurements. Unless mentioned otherwise,
we shall assume that the sequence is a time-sequence, its terms having been obtained
at successive instants of time separated by equal intervals. The two populations are
generated conceptually by regarding the single actual sequence as representative of
many possible sequences. The two populations are, then, the populations formed
by (for example) the first and second terms (or any pair of terms) in each of the
possible sequences. It is essential to regard a sequence (whether actual or possible)
as ordered; its terms cannot be shuffled.
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An example of high positive correlation between any two of the n inputs x1,
x2, . . ., xn occurs if they constitute a set of values, obtained at equal time intervals,
of the same quantity that exhibits a steady drift in time. Thus suppose that, because
of a steady drift in time, our n inputs have the sequentially obtained values (for
simplicity) x1 = 1, x2 = 2, . . ., xn = n. We now imagine that we immediately take
another sample of n values – in other words, a second actual sequence – and (because
we assume that the same drift still exists) we now obtain n + 1, n + 2, . . ., 2n. A
third sample gives 2n + 1, 2n + 2, . . ., 3n. So, if we draw up columns of (say) first
and second inputs in each round, the entries will look like this:

1 2
n + 1 n + 2
2n + 1 2n + 2
3n + 1 3n + 2

. . . . . .

exhibiting perfect positive correlation between the two inputs. The same perfect
positive correlation exists between the first and third inputs, between the second
and third inputs, and indeed between any pair of inputs. This imaginary exercise
shows that, in our single actual sequence with a steady drift, the values have perfect
mutual positive correlation (r = +1).

We now calculate the mean, y, of the inputs obtained as our single set of n

repeated readings:

y =
x1 + x2 + · · · + xn

n
, (7.38)

so that ∂y/∂xi = 1/n for all i . With r (x1, x2) = +1 and all the u(x1) = u(x2) =
· · · = u(xn) = u(x), equation (7.36) gives

u2(y) =
1

n2
[nu2(x)] + 1

1

n

1

n
n(n − 1)u2(x). (7.39)

In the second term in equation (7.39), +1 is the correlation coefficient, the next
two factors, each 1/n, are (as shown immediately after equation (7.38)) the two
partial derivatives for the product terms in equation (7.36), and the factor n(n − 1) is
present because there are n(n − 1) such identical product terms in equation (7.36).
Equation (7.39) therefore gives

u2(y) = u2(x)

(

1

n
+

n − 1

n

)

= u2(x). (7.40)

We conclude that the standard deviation of the mean remains the same as the
standard deviation of the distribution of the x values.



7.2 Correlated inputs 113

7.2.2 The experimental standard deviation of the mean (ESDM)

and the divisor
√

n

Equation (7.40), which can be written u(y) = u(x) and applies to the case of per-
fectly correlated readings, contrasts with equation (7.31), u(y) = u(x)/

√
n, for un-

correlated readings. The standard uncertainty, u(y), of the mean of repeated values
is often called the experimental standard deviation of the mean (ESDM).12 In this
section we discuss the validity of the formula u(y) = u(x)/

√
n for the ESDM.

We describe, in general terms, some of the tools available for treating those cases
where, because of correlations, the ESDM is not derived from the standard deviation
simply by dividing by

√
n.

Although perfect correlation is rarely seen, nevertheless, if repeated readings
exhibit a significant drift in time, we should be cautious about claiming that the
uncertainty of the mean is reduced by a factor of

√
n compared with the uncertainty

of the individual values. Ideally we should take the drift into account, by fitting
a straight line to data using least-squares. If this is not practicable, we should
state u(y) = u(x) as implied by equation (7.40), so that the standard uncertainty
in the mean is simply the standard deviation of the values. This non-reduction in
uncertainty is intuitively acceptable for this case of drift, if we remember that the
purpose of taking repeated readings is to cancel out random errors.13 However, a
drift that gives us successive readings that differ systematically is not like a random
error: the drift pushes the overall mean increasingly one way.

A similar argument implies that any pattern in our readings, not necessarily one
manifested as a steady drift, should make us wary of claiming a reduction by

√
n

from the standard uncertainty of each value to the standard uncertainty of their mean.
Correlation between values in a sequence is measured by a number called the

autocorrelation14 and denoted by R. Unlike ordinary correlation, autocorrelation
is a function of the separation of terms in a sequence of values. The terms in the
sequence are assumed to have been obtained at equal intervals. We may call R(1) the
autocorrelation between the populations represented by the following two columns
which have been derived from a single sequence of values:

‘x’ ‘y’
first term second term

second term third term
third term fourth term

. . . . . .

12 We have encountered ESDM previously in the notation sx̄ = s/
√

n (equation (5.56)) or u(x̄) = s/
√

n (equation
(4.3)). The ESDM is also referred to in many statistical texts as the standard error of the mean.

13 See the last paragraph in section 4.1.2.
14 A sequence with significant autocorrelation is sometimes described as serially correlated or having serial

correlation.
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Similarly, R(2) is the autocorrelation between the following two populations:

‘x’ ‘y’
first term third term

second term fourth term
third term fifth term

. . . . . .

and so on for R(3), R(4), etc. This two-column arrangement of terms was shown
in section 7.2.1. In general, R(k), for k > 0, is the autocorrelation between terms
separated by k − 1 intervening terms.

Note that R(0) is always +1, since each row consists of identical values, thus

‘x’ ‘y’
first term first term

second term second term
third term third term

. . . . . .

If the terms in a sequence fluctuate in a manner known as ‘white noise’,15 the
autocorrelation is zero (or close to zero) for all R(k) where k > 0.

Figure 7.2(a) shows a white-noise sequence of 1000 values. They were drawn
from a population with mean 0 and standard deviation 1. Figure 7.2(b) is a graph
of the autocorrelation for this sequence: it is 1 for zero time-separation (R(0) in
the notation above), but immediately reduces to negligible values for non-zero
time-separation. Sequences with this property do obey the u(x)/

√
n rule for the

ESDM, and the ESDM for a large number of readings can accordingly be negligibly
small.

Some time sequences of values do not contain white noise and have significant
autocorrelation between widely separated terms. Figure 7.3(a) shows a sequence of
170 readings of air temperature, taken once every 15 seconds, in one location in a
temperature-controlled laboratory where the air temperature is permanently main-
tained at a nominal 20 ◦C. The readings were obtained using a platinum resistance
thermometer, the temperature being indicated indirectly through the measurement
of the temperature-sensitive resistance of a coil of platinum wire. The temperature
was read to a precision of tenths of a millidegree. Although the air temperature was
controlled, nevertheless, over 40 or so minutes, drift and oscillation over a range of
slightly less than 0.2 ◦C were observed. The mean temperature was 20.065 ◦C and
the standard deviation was 0.051 ◦C. In this case the ESDM is not (0.051/

√
170) ◦C.

15 The name ‘white noise’ indicates that the spectrum of frequencies making up the noise is extremely broad; this
is analogous to the colour ‘white’, which is composed of all the colours of the visible spectrum.
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Figure 7.2. (a) 1000 uncorrelated readings from a Gaussian population: mean 0,
standard deviation 1. (b) Autocorrelation of readings in (a). (c) The Allan deviation
of readings in (a).

The reason can be seen when we plot the corresponding autocorrelation curve; it
is shown in figure 7.3(b). Autocorrelation plots often follow this oscillation pat-
tern from high positive to zero and then small negative values, followed by a slow
return to zero. Here autocorrelation is significant (about +0.3 or higher) for time-
separations up to about 9 minutes. If our readings had been taken at intervals of 15
minutes rather than 15 seconds, and n such readings had been collected, then the
ESDM would have been reliably less than the standard deviation by a factor of

√
n.

It is assumed that the temperature-control would have continued to operate over
this much longer period.

In calculating autocorrelations by taking the ‘x’ and ‘y’ values from a single
sequence, we have assumed that the sequence has the so-called ‘ergodic’ property
(Bendat and Piersol 2000). The ergodic property implies, in general, that, if not just
one but an ensemble of similar sequences is available for the same measurement
procedure and under the same conditions, then mean values and autocorrelations
over the entire ensemble at a particular time equal mean values and autocorrelations
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Figure 7.3. (a) 170 readings of air temperature taken every 15 seconds. (b) Auto-
correlation of readings in (a). (c) The Allan deviation of readings in (a). (d) The
first 100 points from (a). (e) Autocorrelation for the first 100 points. (f) The last
100 points from (a). (g) Autocorrelation for the last 100 points.



7.2 Correlated inputs 117

over one sequence over all times. For example, by calculating the autocorrelation,
say R(4) of one sequence between terms that are separated by three intervening
terms (between first and fifth, second and sixth, etc.), the assumed ergodic property
says that, if we were able to amass very many similar sequences (under the same
conditions) and calculated the correlation of only the second and sixth terms (say) in
each one, we would obtain the same result. Also the mean of one actual sequence,
over all times, would be equal to the mean over all the possible sequences at a
particular instant of time. The ergodic property says essentially that our single

obtained sequence is faithfully representative of all the sequences we might have
obtained.

We note that a sequence that presents a steady drift is not ergodic with respect
to its mean value, since this obviously changes from one sequence to the next.
However, the sequence is ergodic with respect to autocorrelations, and, in view
of the perfect positive correlation for the case of a steady drift, equation (7.40) or
u(y) = u(x) holds for such a sequence.

Ergodic sequences belong to the class of stationary sequences, which can be
described, roughly, as those sequences whose mean and autocorrelation do not
depend strongly on our choice of starting or finishing points. The sequence of
temperature measurements in the temperature-controlled laboratory shown in figure
7.3(a) is only roughly stationary. Thus, if we take only the first 100 points in
figure 7.3(a), we have the graph of figure 7.3(d) with its autocorrelation shown in
figure 7.3(e). If we take only the last 100 points in figure 7.3(a), we have the graph
of figure 7.3(f) with its autocorrelation shown in figure 7.3(g). In the former case
the autocorrelation remains significant for about 4 minutes, whereas in the latter
the corresponding time is about 6 minutes.

Another way to characterise a sequence of values is by calculating the so-called
‘Allan variance’ and its square root, the Allan deviation (Allan 1987) (alternative
names are the two-sample variance and two-sample standard deviation). In this pro-
cedure, we essentially gather together a group of successive readings in a sequence
(the individual readings being separated by equal intervals), calculate their mean,
and compare this mean with the mean of the next adjacent group of the same length.
For this comparison, the squared difference of the means is calculated. The sum of
all such squared differences between adjacent groups in the sequence, divided by
twice the number of all such groups, is the Allan variance.

The Allan variance is, therefore, a function of the length of each group. If the
sequence is a white-noise sequence, we expect the Allan variance to be inversely
proportional to the length of each group. This is because, for uncorrelated read-
ings as in white noise, the variance of their mean is inversely proportional to
the length of the group (see, for example, equation (7.30)). Thus the longer the
group, in a white-noise sequence, the smaller will be the (squared) differences
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Figure 7.4. (a) A plot of 4096 successive voltage measurements made with an
Agilent 34420A DMM with the input short-circuited. (b) A plot of the same data
after grouping measurements into successive sets of four points and replacing the
four points by the average value. Trace (c) is obtained by grouping the points in
(b) into successive sets of four points and replacing the four points by the average
value. Trace (d) is obtained by similar averaging of the points in (c) by sets of
four. For white noise, we would expect that averaging by sets of four points would
decrease the standard deviation of each plot with respect to that above it by a factor
of two. The calculated ratios of successive standard deviations are given to the right
of the plot. It can be seen that the ratios are slightly smaller than two (courtesy
T. J. Witt, BIPM).

Figure 7.5. (a) A plot of 4096 successive voltage measurements of the difference
between the 10-V outputs of two Zener-diode-based electronic voltage standards
(Fluke 732B). The measurements were made with the same Agilent 34420A DMM
as was used to gather the data appearing in figure 7.4. Trace (b) is a plot of the same
data after grouping measurements into successive sets of four points and replacing
the four points by the average value. Trace (c) is obtained by grouping the points
in (b) into successive sets of four points and replacing these four points by the
average value. Trace (d) is obtained by similarly averaging the points of (c) by
sets of four. For white noise, we would expect that averaging by sets of four points
would decrease the standard deviation of each plot with respect to that above it by
a factor of two. In this case the noise is a mixture of 1/ f noise and white noise
and averaging by sets of four points reduces successive standard deviations by a
factor of only about 1.4. The persistence of an irregular ‘skeleton’ of fluctuations
is an indication of 1/ f noise (courtesy T. J. Witt, BIPM).
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between the means of such adjacent long groups. The Allan deviation of a white-
noise sequence will, therefore, be inversely proportional to the square root of the
length of the group. Figure 7.2(c) shows the Allan deviation as a function of the
length (in this case, the length of time spanned by each group) for the same se-
quence of white-noise readings as in figure 7.2(a). Apart from the small fluctua-
tions, the overall curve, in figure 7.2(c), has an inverse square-root dependence on
time.

By contrast, figure 7.3(c) shows the Allan deviation for the highly correlated
sequence of room-temperature readings of figure 7.3(a). There is a roughly linear
increase in the Allan deviation, accompanied by oscillations of increasing ampli-
tude.

In electronic circuits, white noise as in figure 7.2(a) is the natural variation in
voltage across a resistance created by random thermal motion of electrons and
known as ‘Johnson noise’. Over a range of detected frequencies, or the ‘passband’,
fpass, the standard deviation, σJ, of this noise in volts is σJ =

√

4kT R fpass, where k,
T and R are the Boltzmann constant (k ≃ 1.38 × 10−23 J/K), absolute temperature
and resistance, respectively. Thus for R = 10 000 � and T = 293 K (approximately
room temperature) σJ ≃ 13 nV over 1 Hz of bandwidth. We note that, if we, say,
double the passband, we also double the variance, σ 2

J , of the detected noise. This
is a characteristic of white noise.

Another type of noise is also common in electronic circuits. This is so-called
1/ f noise, which, as the name implies, increases as the frequency is lowered and
is roughly inversely proportional to it. A plot of voltage readings against time, for
1/ f noise, shows autocorrelations and, once again, the ESDM cannot be obtained
from the standard deviation by division by

√
n. This spectrum of noise is ob-

served in voltage standards based on Zener diodes (Witt and Reymann 2000) and in
superconducting devices known as SQUIDs (superconducting quantum interfer-
ence detectors), which are used as sensitive detectors of tiny magnetic fields (Cantor
and Koelle 2004). No increase in stability is observed when a group of individ-
ual readings is replaced by their mean, nor when such a process of averaging is
repeated. The Allan deviation of 1/ f noise when plotted against time is a hor-
izontal line and so is somewhere intermediate between the cases illustrated in
figures 7.2(c) and 7.3(c). Figures 7.4 and 7.5 show the effects of successive aver-
aging applied to white noise and to a mixture of white and 1/ f noise, respectively
(Witt 2000).

When a sequence exhibits autocorrelations, a simple and safe option is to char-
acterise the ESDM as equal to the standard deviation. There exists a range of
more complicated procedures. Among the simplest of these is the use of ‘binary
grouping’ or ‘binary blocking’ of a sequence of n readings where n is a power of
2 (Flyvbjerg and Petersen 1989).
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7.2.3 Testing for autocorrelation in a short sequence of readings

Very often readings of the same quantity are obtained manually, rather than by means
of automated instruments. Unless the experimenter has much time and patience,
only a few values are obtained. We therefore consider the question of detecting the
presence or absence of autocorrelation in a short sequence of n readings, and in
particular whether dividing the standard deviation by

√
n, to obtain the ESDM, is

justifiable.
The presence of any pattern in the readings, not necessarily a steady drift, may

indicate autocorrelation. Such a pattern may be, for example, a steady drift, a
quadratic (or higher-order) dependence on time, or part or whole of a sinusoid. With
any pattern, the successive readings might not be independent; they may present
a mutually ‘sticky’ quality, such that it becomes possible, having taken, say, ten
or so successive readings, to discern a rough trend and so to predict with some
accuracy where the next reading is likely to be in relation to them. Although a lack
of independence does not imply the presence of correlation (whereas independence
does imply zero correlation),16 nevertheless, in most practical cases, if we observe
that a reading depends to some extent on previous readings, we may assume that
autocorrelation exists. It is usually not possible with short sequences to quantify
this autocorrelation reliably. Moreover, manual readings are often obtained without
particular regard for the need to have at least roughly equal intervals. A safe practice
if correlation is suspected, which avoids the risk of an unrealistically small standard
uncertainty in the mean, is to use equation (7.40), which implies taking the standard
deviation of the readings as the ESDM.

Short sequences are often not pure time-sequences but may also be sequences in
space or some other variable that is deliberately varied. In measuring the temper-
ature coefficient of some physical property, for example (like length or electrical
resistance), that property is measured several times at intentionally different temper-
atures. The profilometer readings in exercise D in section 7.1.2 involve a sequence
not only in time but also in space. If, to take a hypothetical case, a profile forms
a slope, the spatial analogue of a steady drift in time, it is plain that, just as for
a drift with its high positive autocorrelation, the mean thickness of the slope can
be assigned a standard uncertainty equal to the standard deviation of the thickness
over the measured range, with no reduction by

√
n.

When a sequence reveals a pattern, we may choose to fit parameters to it by
least-squares. When the pattern is a simple one such as a slope or smooth curve,
the results of the fit are generally more informative than the standard deviation of
the raw readings. The rate of drift, b, of a quantity can be estimated (see equation
(5.53)), and any random fluctuations superimposed on the drift will contribute to

16 An example of the difference between independence and zero correlation was given in section 5.3.
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the standard uncertainty in b. Using u(b) to represent the standard uncertainty in b,
we have

u(b) = s

√

n

n
∑n

i=1 x2
i −

(
∑n

i=1 xi

)2 , (7.41)

where s is the root-sum-square residual and the xi (i = 1, 2, . . ., n) are the assumed
error-free predictor or explanatory variables. Equation (7.41) may also be written

u(b) = s

√
n

n × standard deviation of x
. (7.42)

We know that s is relatively insensitive to the number, n, of readings.17 For a given
set of values of x (which is the explanatory variable whose error-free values we
can choose), equation (7.42) therefore shows that u(b) varies as

√
n/n = 1/

√
n,

just like the ESDM of uncorrelated readings. Such a 1/
√

n dependence is a general
characteristic of the standard uncertainty of least-squares estimates, of which the
mean is the simplest example. Ideally, fitting parameters by least-squares should
remove the autocorrelation that creates a pattern and should yield uncorrelated
residuals, thereby restoring the reduction by

√
n in going from the root-mean-

square residual, s, to the standard uncertainty of the fitted parameters. If a pattern
can still be discerned among the residuals to a least-squares fit, the particular least-
squares model is inadequate; for example, a higher-order model may need to be
considered rather than a linear fit.18

7.2.4 Reduction in uncertainty of measurand due to correlated inputs

Correlations between inputs can also work to our advantage in reducing the un-
certainty in the measurand. Suppose that there are two inputs, x1 and x2, and that
they are highly positively correlated. More precisely, as previously mentioned, this
means that the errors in the inputs are highly positively correlated. We can then take
r (x1, x2) = +1 to a good approximation. Let the measurand, y, be the difference
between the two inputs:

y = x1 − x2. (7.43)

Since ∂y/∂x1 = 1 and ∂y/∂x2 = −1, equation (7.37) gives

u2(y) = u2(x1) + u2(x2) − 2u(x1)u(x2). (7.44)

17 For example, if we double the number of points on the graph, we do not expect to find twice the amount of
scatter as before. The standard deviation of a set of readings has a similar property of low sensitivity to the
number of readings (from the same population).

18 Tests for autocorrelation are discussed in Draper and Smith (1981).
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Figure 7.6. A gauge-block comparator (courtesy J. E. Decker and J. R. Pekelsky
(1996), National Research Council of Canada).

Since the right-hand side is a perfect square,

u(y) = u(x1) − u(x2). (7.45)

If, therefore, x1 and x2 are measured using the same instrument, and are of sim-
ilar magnitude, so that u(x1) and u(x2) are likely to be approximately equal,
equation (7.45) implies that

u(y) ∼ 0. (7.46)

Examples of uncertainty-reducing high correlation are quite common. If a person
monitors his or her weight on the same set of bathroom scales, and x1 and x2 are the
weights at two different times, then the fact that the scales may have a systematic
error is scarcely important: they will correctly register any loss or gain in weight
between these two times. We observe here another interpretation of a systematic
error: it may be regarded as a random error with a much longer time-constant than
the repetition interval of measurements.

The low uncertainty offered by difference measurements between highly posi-
tively correlated inputs is exploited in many fields of metrology. Figure 7.6 shows
a schematic diagram of a gauge-block comparator as used in length metrology. The
measured length is that recorded between the opposing styli, which penetrate to a
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Figure 7.7. (a) Measurement of V by DMM; (b) measurement of R by DMM.

small extent (a few tens of nanometres) into the material of the gauge block (often
tungsten carbide or steel). This penetration affects the accuracy of the measurement
of the thickness of the gauge block. However, the comparison of different gauge
blocks, of the same material and therefore undergoing similar amounts of stylus
penetration, is relatively insensitive to the penetration depth. For similar reasons,
such a comparison is relatively insensitive to small changes in ambient temperature
arising during the comparison.

Suppose that we wish to measure with high accuracy a current, I , passing through
a resistance, R. To do this we measure the voltage, V , across the resistor and use
Ohm’s Law: I = V/R. Here I is the measurand, and V and R are the input quanti-
ties. Uncertainties in V and in R will propagate into I , creating an uncertainty in I .
We have ∂ I/∂V = 1/R and ∂ I/∂ R = −V/R2, so that, if V and R are uncorrelated,
we may use equation (7.14) to obtain the standard uncertainty, u(I ), of the current
in terms of the standard uncertainties, u(V ) and u(R), in V and R, respectively.
Equation (7.14) then gives

u2(I ) =
1

R2
u2(V ) +

V 2

R4
u2(R). (7.47)

However, we need to discuss whether there is likely to be any correlation between
V and R. We assume that the electric circuit for measuring V is as shown in
figure 7.7(a), and that the circuit for measuring R is as shown in figure 7.7(b). The
instrument is a digital multimeter or DMM that can measure resistance and current
as well as voltage. In this application, the DMM is required to measure voltage
and resistance. High-quality DMMs can measure voltages of the order of 1 V and
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resistances of the order of 100 � with a proportional uncertainty of a few parts per
million. The resistance, R, is shown as a four-terminal resistance, with two outer
‘current’ terminals and two inner ‘potential’ terminals. If a current I is fed to the
current terminals, so that I enters at one current terminal and exits at the other
current terminal, the value of the resistance R is defined as R = V/I , where V

is the resultant potential difference measured between the two potential terminals.
The use of four terminals, with current and potential terminals deliberately kept
separate, avoids the uncertainty of location of the two potential points in a two-
terminal resistor.19 Many DMMs are able to measure four-terminal resistances and
have therefore two pairs of terminals for this purpose, as shown in figures 7.7(a)
and 7.7(b).

In figure 7.7(a), where the DMM measures V , a voltage source, VS, with output
resistance RS, passes current, I , through R, and the DMM displays the value of V .
Only one of the two pairs of DMM terminals is needed for this measurement. In
figure 7.7(b), the DMM measures R. To do so, the other pair of DMM terminals
provides a standard current, I ′, through R, whereupon the DMM measures the
resultant V ′ and displays (using an internal algorithm) the value of R as R = V ′/I ′.
The required value of the measurand I is then given by I = V/R.

Suppose that the standard current, I ′, is roughly equal to I . Then V and V ′ will
also be roughly equal. If the same DMM is used in figures 7.7(a) and 7.7(b), the
errors δV and δV ′ are therefore likely to be of the same sign and roughly equal.
In figure 7.7(b), the displayed value of R is given by R = V ′/I ′, so the error, δR,
in R is given by δR = δV ′/I ′ ∼ δV/I ′. In practice there will be an additional
uncertainty in the standard current I ′, but this argument shows that, if the same
DMM is used in figures 7.7(a) and 7.7(b), then δR and δV are likely to be highly
positively correlated. If the correlation coefficient r (V, R) ∼ +1, equation (7.37)
gives

u2(I ) =
1

R2
u2(V ) +

V 2

R4
u2(R) −

2V

R3
u(V )u(R) (7.48)

and the right-hand side is now a perfect square, so that equation (7.48) gives

u(I ) =
1

R
u(V ) −

V

R2
u(R). (7.49)

So, by using the same DMM in figures 7.7(a) and 7.7(b), we can, in principle,
achieve

u(I ) ∼ 0 (7.50)

19 In electrical metrology, four-terminal connections are needed when high accuracy is required, such as in the
case of the 1-ohm standard resistor in figure 3.2.
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so long as u(V )/V = u(R)/R, so that the proportional uncertainty in the displayed
voltage V (in figure 7.7(a)) equals the proportional uncertainty in the displayed
resistance R (in figure 7.7(b)). In this electrical example, the advantage afforded by
the high positive correlation lies in the fact that the error in a ratio cancels out to zero
if both the numerator and the denominator of that ratio have the same proportional
error.20

We see that a positive correlation between two inputs to a measurand generally
arises when the same instrument is used in measuring the values of both inputs.
An additional condition (not always necessary) for a positive correlation is that the
inputs have very roughly comparable values (say to within an order of magnitude).
The instrument is then likely to be used in the same measuring range for both
measurements, and consequently any systematic error in the instrument is likely to
have the same value for both measurements.

7.3 Review

In this chapter we have considered how uncertainties propagate in situations where
the errors in input quantities are uncorrelated as well as when errors are correlated.
Irrespective of whether uncertainties are evaluated through statistical analysis (and
hence are Type A uncertainties) or have been evaluated by other means (and are
therefore Type B uncertainties), the method for combining them makes no distinc-
tion between types. In the next chapter we consider the probability of a particular
value occurring when we make a measurement and how, in many cases, the distribu-
tion of values obtained in an experiment can be well described by a very important
theoretical distribution, known as the ‘Gaussian’ or ‘normal’ distribution.

20 This statement would not be correct if the word ‘error’ were replaced by ‘uncertainty’. It is the errors, not
the uncertainties, that are highly positively correlated. We see again the usefulness of the distinction between
‘error’ and ‘uncertainty’.



8

Probability density, the Gaussian distribution and

the central limit theorem

After measurement, we assign an estimated value to a measurand as well as an

accompanying uncertainty. The uncertainty is usually expressed as an interval

around the estimated value. With any such interval we associate a probability that

the actual or true value of the measurand falls within that interval.1 Measurands

are usually continuous quantities such as temperature, voltage and time. However,

when discussing probabilities in the context of measurement it is convenient first

to consider ‘experiments’ in which the outcomes are discrete, for example tossing

a coin, where the outcome is a head or a tail.

8.1 Distribution of scores when tossing coins or dice

A fair coin falls heads up with probability 1
2

and tails up also with probability 1
2
.

A fair coin is an idealised object (since all real coins have a slight bias towards

either heads or tails) and presents the simplest case of a ‘uniform’ probability

distribution. When a probability distribution is uniform, the possible outcomes of

an experiment (tossing a coin in this case) occur with equal probability. We will

show how non-uniform probabilities emerge as soon as two or more fair coins

are considered. These non-uniformities tend to a characteristic pattern called a

Gaussian (or ‘normal’) probability density distribution.2 For the sake of brevity we

shall usually refer to the ‘Gaussian probability distribution’ as simply the ‘Gaussian

distribution’. Likewise we shall usually refer to the ‘uniform probability density

distribution’ as the ‘uniform distribution’.

Given a coin, it is convenient to assign a score to the result of each toss: +1 for

heads and −1 for tails. If only one coin is tossed, the possible scores will be +1,

1 Thus if the measurand is the diameter of a metal rod and is estimated to be 25.37 mm with an uncertainty quoted
as ±0.06 mm, we infer that there is a high probability, commonly 95%, that the diameter lies in the interval
25.31 mm to 25.43 mm. We shall see in chapter 10 that an uncertainty expressed in this way, with a ± sign, is a
so-called expanded uncertainty.

2 Named after Karl-Friedrich Gauss (1777–1855).
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with probability 1
2
, and −1, also with probability 1

2
. These probabilities3 sum to 1,

meaning that it is certain that we shall get one or other of these mutually exclusive

scores.4

If two coins are tossed, the outcomes and scores are (where H represents a head

and T a tail)

HH +2

HT 0

TH 0

TT −2

Of the four possible outcomes (22 = 4), a score of zero appears twice and so

has probability 2
4

= 1
2
. The score of +2 appears only once and therefore has a

probability of 1
4
. Similarly for the score of −2. The sum of the three probabilities

is 1
2

+ 1
4

+ 1
4

= 1. Again, it is certain that we shall obtain one of these mutually

exclusive scores.

If three coins are thrown, the outcomes and scores are

HHH +3

HHT +1

HTH +1

HTT −1

THH +1

THT −1

TTH −1

TTT −3

Out of eight outcomes (23 = 8), the score of +1 appears three times and so has

probability 3
8
. Similarly for a score of −1. The less likely scores of +3 and −3 each

have a probability of 1
8
. The sum of the four probabilities is 3

8
+ 3

8
+ 1

8
+ 1

8
= 1.

It is straightforward, if rather tedious, to go through a similar procedure for

finding the possible scores and their probabilities for four or more coins. With n

coins, there are 2n outcomes. If there are h heads in any one of these, the score, S,

for that outcome is

S = 2h − n, (8.1)

3 The probability, P , of an event is always a positive number between 0 and 1. The larger P , the more probable
the event. P = 0 for an impossible event, and P = 1 for an event that is certain. P is often expressed as a
percentage, thus P = 0.95 (a highly probable event) may be written as P = 95%.

4 Since it is not possible to have as an outcome both a head and a tail on a single toss of a coin, these outcomes
are said to be mutually exclusive. (We ignore the very small probability that the coin might land and balance on
its edge!)
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and the probability, P(S), of that score is

P(S) =
1

2n

n!

h!(n − h)!
. (8.2)

The symbol ! represents the factorial of a positive integer: the product of that integer

and all smaller integers down to 1. Thus, for an integer m, m! = m × (m − 1) ×
(m − 2) · · · × 2 × 1. For example, 5! = 5 × 4 × 3 × 2 × 1 = 120. The expression

P(S) is a particular case of the binomial distribution.5

The situation is depicted in figure 8.1 for 1, 2, 3, 5, 8 and 20 coins. The ‘envelope’

of the array of probabilities approaches more and more closely the typical ‘bell-

shape’, otherwise known as the ‘Gaussian’ or ‘normal’ shape, as the number of

coins is increased. This shape does not depend on our arbitrary choice of scores of

+1 for heads and −1 for tails; any other choice shifts the whole shape left or right

(so that its peak would no longer be at zero), and may change its scale (width and

height). However, the essential ‘bell-shape’ would remain. This general shape is

shown in figure 8.5.

If, instead of coins, we have six-sided fair dice, the probability distribution gives

a faster approach to the Gaussian shape as the number of dice increases. This is

illustrated in figure 8.2 for throws of 1, 2, 3 or 4 dice, where scores are calculated

in the conventional way as the sum of the number of dots on the uppermost faces.

As players of dice-based board games know, the score of 7 is the most common

score when two dice are used, because 7 can be obtained in more ways than any

other score (6 + 1, 1 + 6, 5 + 2, 2 + 5, 4 + 3, 3 + 4). So 7 is the peak value in

figure 8.2(b), occurring with a probability 6
36

= 1
6
. (The total number of outcomes

with two six-sided dice is 62 = 36.) Just as in figure 8.1, the sum of the probabilities

in each of figures 8.2(a)–(d) is 1.

Exercise A

If ten fair coins are tossed, what are the probabilities of obtaining

(a) five heads and (b) fewer than three heads?

8.2 General properties of probability density

In the examples of the coins and dice, the score varies in discrete steps, and so

does the probability. However, most physical quantities vary continuously. In these

cases we need to consider a probability density rather than a probability. We have

5 The name ‘binomial’ expresses the fact that there are only two possible outcomes of a trial (in our example the
outcome is a head or tail) for each of n trials (the toss of a coin is regarded as a trial). The general binomial case

involves different probabilities p for success and 1 − p for failure; in our examples, p = 1
2

for a fair coin.
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Figure 8.1. Probability distributions of the scores obtained by tossing 1, 2, 3, 5, 8
and 20 coins.

previously denoted probability by an upper-case P; probability density will be

denoted by a lower-case p.

Figure 8.3 shows a possible form of a graph of the probability density, p(x),

of the continuous random variable x . The graph describes the probability density

distribution of x , or probability density function (pdf) of x . Briefer names are the

distribution or density distribution of x . The probability that x lies in the interval x
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Figure 8.2. Probability distributions for the sums of numbers appearing when 1,
2, 3 and 4 dice are rolled.
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Figure 8.3. A probability density curve.
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to x + δx is equal to the area of the narrow vertical strip under the curve in figure 8.3

between x and x + δx . This area is6 p(x)δx . The probability that x takes a value

between more widely separated points such as x0 and x1 is the area expressed as

the integral,
∫ x1

x0
p(x) dx . Since p(x) is largest at the peak of the probability density

curve, the probability of obtaining a value in a given interval of x is greater the

closer that interval is to the peak. By contrast, in a region where p(x) = 0, for

example at x < A, the probability of obtaining a value of x in that region is zero.7

Since p(x) is a probability density, the product of p(x) and a range of x is

a probability: it is a dimensionless number between 0 and 1. It follows that the

dimensions of a probability density p(x) are the inverse of the dimensions of x .8

A probability density generally describes a population rather than a sample.

Important attributes of any population are its mean and standard deviation. We

have encountered several alternative but equivalent expressions for each of these.

For example, µ, µx and E(x) have each been used to represent the population

mean of x . We now introduce another representation of the mean in terms of the

probability density, p(x).

We first note that
∫

p(x) dx = 1, where the integral is over the entire permitted

range of x (where p(x) �= 0). In figure 8.3, this is the range x = A to x = ∞. There

are cases, as in the Gaussian probability density distribution, where x can vary

anywhere between minus infinity and plus infinity; we then have

∫ +∞

−∞
p(x) dx = 1. (8.3)

Equation (8.3) can be taken to include the case of a finite permitted range, as in

figure 8.3, provided that p(x) is set equal to zero outside this permitted range.

Equation (8.3) then states that it is certain (the probability is equal to 1) that x must

lie somewhere within its permitted range. Equation (8.3) states, equivalently, that

the total area underneath the probability density curve must be 1.

The mean, µ, can now be written as

µ = E(x) =
∫ +∞

−∞
xp(x) dx . (8.4)

Equation (8.4) states that the mean of x is the sum of the possible values of x , each

weighted by the probability that x takes that value. The following example in terms

6 This assumes that the strip is rectangular, of height p(x) and width δx . In fact the strip is not rectangular, since
the lower edge is horizontal but the upper edge has a slope. However, the error involved is only second order
(involving (δx)2), and is negligible.

7 When x is a continuous variable, it is worth noting that the probability that x should take a particular value,
having in effect a zero associated interval, is zero; only intervals of x , whether small or large, can have non-zero
probabilities. The relationship between probability density and probability is analogous to that between ordinary
density and mass.

8 For example, if x represents a length, then the dimensions of the probability density would be (length)−1.
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of discrete probabilities (and a very small population) illustrates the soundness of

this method of determining the mean.

Suppose that a population consists of seven discrete values, 1, 1, 1, 1, 2, 2, 3.

The mean of these values is µ = 11
7

. The probability, P(1), of choosing the value 1

in the population is P(1) = 4
7
. Similarly, P(2) = 2

7
and P(3) = 1

7
. For this discrete

case, analogously to equation (8.4), we have

µ = E(x) = 1 × P(1) + 2 × P(2) + 3 × P(3)

= 1 ×
4

7
+ 2 ×

2

7
+ 3 ×

1

7
=

11

7
.

Equation (5.11) in chapter 5 expresses the variance, σ 2, of a population as the

mean square minus the squared mean, so we may write

σ 2 =
∫ +∞

−∞
x2 p(x) dx −

(∫ +∞

−∞
xp(x) dx

)2

, (8.5)

and the standard deviation of the population is the square root of equation (8.5).

The first term on the right-hand side of equation (8.5) is E(x2), the mean value of

x-squared (analogous to equation (8.4) for the mean of x):

E(x2) =
∫ +∞

−∞
x2 p(x) dx . (8.6)

The counterpart to equation (8.6) in our discrete example above is

E(x2) = 12 × P(1) + 22 × P(2) + 32 × P(3)

= 1 ×
4

7
+ 4 ×

2

7
+ 9 ×

1

7
=

21

7
= 3.

This may be verified by squaring each of the seven values and taking the mean

of these squares. We finally have that σ 2 = E(x2) − (E(x))2 = 3 −
(

11
7

)2 = 26
49

, or

σ =
√

26
7

≃ 0.73.

Equation (5.5) in chapter 5, repeated here, may be shown to give the same result:

σ 2 =
∑N

i=1(xi − µ)2

N
,

and, with N = 7 in our example, we have

σ 2 =
1

7

[

(

1 −
11

7

)2

+
(

1 −
11

7

)2

+
(

1 −
11

7

)2

+
(

1 −
11

7

)2

+
(

2 −
11

7

)2

+
(

2 −
11

7

)2

+
(

3 −
11

7

)2
]

=
1

7

(

4 ×
16

49
+ 2 ×

9

49
+

100

49

)

=
1

7
×

182

49
=

26

49
,

agreeing with σ 2 obtained previously.
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Figure 8.4. A uniform or rectangular probability distribution.

Exercise B

(1) A population consists of ten discrete values: 3, 3, 5, 5, 5, 6, 7, 8, 8, 8. Find the mean,

standard deviation and variance of these values.

(2) A particular probability density can be written p(x) = Ax for the range 0 < x < 2 and

p(x) = 0 outside this range.

(a) Sketch the graph of p(x) versus x .

(b) Determine the constant, A.

(c) Calculate the probability that x lies between x = 1 and x = 1.5.

8.3 The uniform or rectangular distribution

The simplest example of a probability density is the so-called uniform or rectangular

probability density. In this case, the probability density is zero everywhere except in

a particular region, and in this region p(x) is a positive constant. Figure 8.4 illustrates

the case where p(x) is centred on x = b and has a constant value from x = b − a

to x = b + a. The shape of the distribution is rectangular, hence one of its names.

The ‘height’ of the distribution in figure 8.4 must be 1/(2a). This follows from

the condition expressed by equation (8.3) that the area enclosed by the rectangle

must be 1, and from the horizontal extent, 2a, of the rectangle. Thus the uniform

distribution is described as

p(x) =
{

1/(2a), b − a < x < b + a,

0, for all other values of x .
(8.7)

The symmetry of the distribution in figure 8.4 indicates that the mean, µ, is given

by µ = b. This can be shown more formally using equation (8.4) as follows:

µ =
∫ +∞

−∞
xp(x) dx =

1

2a

∫ (b+a)

(b−a)

x dx =
1

2a

[

1

2
x2

](b+a)

(b−a)

=
1

2a

1

2
[(b + a)2 − (b − a)2] =

1

4a
(4ba) = b. (8.8)
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Equation (8.6) gives

E(x2) =
∫ +∞

−∞
x2 p(x) dx =

1

2a

∫ (b+a)

(b−a)

x2 dx =
1

2a

[

1

3
x3

](b+a)

(b−a)

=
1

2a

1

3
[(b + a)3 − (b − a)3] =

1

6a
[6b2a + 2a3] = b2 +

1

3
a2. (8.9)

Thus substituting equations (8.8) and (8.9) into equation (8.5) gives the result for

the variance of the uniform distribution:

σ 2 = b2 +
1

3
a2 − b2 =

1

3
a2, (8.10)

or for its standard deviation:

σ = a/
√

3. (8.11)

A uniform distribution of ‘half-width’, a, therefore has a standard uncertainty

u = a/
√

3 (recalling that standard deviation and standard uncertainty are equiv-

alent). Sometimes the full-width, w = 2a, is more convenient, in which case the

standard uncertainty is expressed as u = w/
√

12. The standard uncertainty is inde-

pendent of the location, b, of the centre of the uniform distribution. In many cases

the uniform distribution is centred on zero, so that b = 0.

A uniform distribution in metrology arises more often as an expression of our

ignorance, rather than as a description of observable fact. A case in point arises

when a continuous variable, such as a voltage, is measured and displayed by a digital

multimeter (DMM). Suppose that the DMM displays only four decimal digits and

that the display is 3.571 V. Then the actual reading may be anywhere, and with

uniform probability, within the (approximate) interval 3.5705 V to 3.5715 V. We

accordingly have w = 0.001 V, or a = 0.0005 V. The standard uncertainty arising

from limited resolution is given by a/
√

3 ≃ 0.000 29 V or about 290 µV. In general,

when all we know about a quantity are its lower and upper bounds – as in the case

of a limited-resolution digital display – a uniform distribution between these two

bounds can legitimately be assumed and has theoretical backing.9

The distribution of the errors that make up a Type B uncertainty is sometimes

claimed to be uniform. The supporting argument is that, there being no statistical

treatment available such as would be provided by usefully repeated measurements,

all that is known are the end-points within which the quantity can plausibly vary;

hence it must be uniformly distributed between them. This argument is flawed when

the value of the quantity and its uncertainty are the subject of a calibration report or

9 Another case where the uniform distribution is generally assumed to be applicable is in microwave metrology,
when at high frequencies the phase shift of a reflected signal is unknown except for being limited to the range
0◦ to 360◦. Further discussion on the occurrence of the uniform distribution in metrology may be found in Cox
and Harris (2004).
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Table 8.1. Resolutions of

several instruments

Instrument Resolution

Thermometer 0.5 ◦C
Measuring cylinder 0.2 mL
Capacitance meter 10 pF
Stopwatch 0.01 s
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Figure 8.5. Gaussian probability density with mean µ = 0.8, standard deviation σ = 0.5.

have been determined from a look-up table; in such a case the quantity will have the

distribution observed or postulated by the compiler of the report or look-up table,

and this is likely to be Gaussian, or approximately so.

Exercise C

Table 8.1 includes several instruments together with their limits of resolution. The

‘limit of resolution’ was represented by the symbol w above. For each instrument

calculate the standard uncertainty due to the limit of resolution to two significant

figures.

8.4 The Gaussian distribution

8.4.1 Gaussian distribution of measurement errors

The most important and commonly observed distribution is the Gaussian. The

probability density distribution is shown in figure 8.5 and is recognisable as the
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envelope of the discrete probabilities for scores obtained with a large number of

coins or dice shown in figures 8.1 and 8.2. The particular case of a Gaussian shown

in figure 8.5 has a mean µ = 0.8 and standard deviation σ = 0.5.

The essential physical process that in metrology creates a Gaussian distribution of

errors can be discerned from the examples of the coins and dice in section 8.1. What

we called the ‘score’ in these examples corresponds to the error in a measurement.

The score is the arithmetical sum of more elementary constituents, such as the

face-up value of one particular coin among several tossed coins. The error in a

measurement is, similarly, the sum of many independent but simultaneously acting

random contributions from various sources.

In the case of a measurement, each error contribution may lie below the threshold

of observation. For the total error to be large and positive (or large and negative),

these contributions must act, fortuitously, all in the same direction. This will hap-

pen rarely, since the contributions act independently of one another. In this way

we can explain, at least qualitatively, the thinly populated ‘tails’ of the Gaussian

distribution. Thus in figure 8.1(f), referring to a throw of 20 coins, a score of +20

can happen only if all 20 coins fall heads; the probability of this is 1/220 ∼ 10−6.

Similarly, in figure 8.2(d) when four dice are thrown, the outcome may be a score

of 4, but for this to happen all four dice must fall with 1 face-up, and the probability

of this is 1/64 < 10−3. By contrast, the simultaneous independent contributions are

much more likely, at any given moment, to comprise both positive and negative con-

tributions in roughly equal numbers, creating a small net error. We therefore have

a qualitative explanation for the well-populated peak of the Gaussian distribution.

Intuitively, we may regard a Gaussian distribution as the natural distribution

of the observable combined outcome of additive, independently acting and not

directly observable influences of randomly varying sign. This is why the errors in

a measurement are often assumed by default to have a Gaussian distribution. It is

common to find experimentally that random errors, measured as the differences

between measured values and their mean, or more generally as residuals from a

least-squares fit, have the following properties:

(i) large values of random error, whether positive or negative, occur less frequently than

small values; and

(ii) positive and negative values of random error occur more or less equally often and are,

roughly, symmetrically disposed around zero.

Such a distribution has an approximate ‘bell-shape’, peaked at zero, and is gen-

erally considered to be an approximate real-world representation of the Gaussian

distribution.

A Gaussian distribution does not necessarily describe errors, in the metrologi-

cal sense of an unwanted presence that should be avoided or reduced as much as
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Figure 8.6. Cocos-palm fruit mass: mean 4.20 g, standard deviation 0.50 g.

possible. It may also describe the natural distribution of some attribute of a pop-

ulation (where ‘population’ may have its everyday meaning). The height of adult

humans of each sex and ethnic group follows an approximate Gaussian distribution,

governed by many influences that may be grouped broadly as genetic and environ-

mental. In chapter 5 we considered a sample of six pieces of fruit from a palm-tree.

In fact, 120 pieces were calculated and weighed; the distribution is shown as a

histogram in figure 8.6, which approximates a Gaussian shape.

The strong theoretical underpinning of the Gaussian distribution – briefly stated,

as the natural additive combination of small random influences – together with

this common experimental finding, explain the frequently used alternative term

‘normal’ distribution. We shall occasionally use the term ‘normality’ to refer to the

Gaussian property of a distribution.

In the example of the measurement of the temperature coefficient of resistance

of a standard resistor (figure 4.1), the scatter of the values at a given temperature

can be explained partly as the effect of electronic noise and electromagnetic in-

terference on the digital multimeter (DMM) used to measure the resistance (by

comparison with another standard resistor at a fixed temperature). This noise and

interference affect the display of the DMM and may be regarded as contributing

small random voltages to the DMM. Such contributions would, again, be relatively

unlikely mutually to reinforce one another, and more likely partially to cancel each

other.

The errors referred to above, and likened to the total score in throwing coins or

dice, are regarded as random errors. Section 4.2 defined ‘uncertainty’ as a measure

of dispersion of values, and in section 4.3 the standard deviation was recruited as a

measure of uncertainty and given the name ‘standard uncertainty’. It is now clear

that the standard deviation of the Gaussian distribution, depicted as an envelope to

the probabilities in figures 8.1 and 8.2, is a natural measure of the Type A standard

uncertainty created by random errors.
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When an uncertainty is estimated by Type B methods, the associated Type B

standard uncertainty can, in most cases, also be described by the standard deviation

of a Gaussian distribution. This is reasonable when we remember that a Type B

uncertainty is often an inherited (or ‘fossilised’) Type A uncertainty.

8.4.2 Mathematical description and properties of the Gaussian distribution

A Gaussian probability distribution is fully specified by two parameters: the mean,

µ, and the variance, σ 2 (or, equivalently, the standard deviation, σ ). If x is distributed

as a Gaussian variable, with mean µ and variance σ 2, the probability density, p(x),

of x has the form (Devore 2003)

p(x) =
1

σ
√

2π
e−(x−µ)2/(2σ 2). (8.12)

The factor 1/(σ
√

2π ) ensures that

∫ +∞

−∞
p(x) dx = 1. (8.13)

It may also be shown that

∫ +∞

−∞
xp(x) dx = µ (8.14)

and
∫ +∞

−∞
x2 p(x) dx − µ2 = σ 2. (8.15)

Equations (8.14) and (8.15) verify that µ and σ 2 are in fact the mean and variance,

respectively, of the Gaussian population.

We note the following features of the general shape in figure 8.5. The curve is

symmetric about its peak, but declines steeply as we move away from the peak.

The peak value is also the mean, in view of the symmetry of the curve about the

peak. One standard deviation (1σ ) away from the mean, to the right or left, is the

point of inflection of the curve, that is, where the rate of change of the gradient of

the curve is zero.

Between the two one-standard-deviation (1σ ) points, on either side of the peak,

is 68% of the total area under the curve. Between the two two-standard-deviation

(2σ ) points (more exactly, the 1.96σ points) is 95% of the total area of the curve.

This 95% fraction plays an important role in metrology, since we often speak

of a ‘level of confidence’ of 95% that the true value of a measurand lies be-

tween two stated limits, and these are, approximately, the ±2σ points. There is



8.5 Non-Gaussian distributions 139

0.726 0.728 0.730 0.732 0.734 0.736
0

5

10

15

20

F
re

q
u

en
cy

mass (g)

Figure 8.7. Mass (g) of steel metric M3 10-mm screws in a single batch: mean
0.731 g, standard deviation 0.002 g.
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Figure 8.8. Mass (g) of steel 5/16-inch nuts in a single batch: mean 4.786 g,
standard deviation 0.060 g.

no bound to the Gaussian distribution; it extends from minus infinity to plus in-

finity. However, beyond ±3σ from the mean, the area under the curve is small

(<0.3%).

8.5 Experimentally observed non-Gaussian distributions

Figures 8.7–8.10 illustrate likely cases of non-Gaussian distributions. In

figure 8.7, which shows the distribution of mass of steel screws packaged in one

box, the distribution is truncated so that masses above a particular value appear to

be missing. This could be a result of quality control following manufacture, when

sizes (and therefore masses) of screws above a predetermined value were automat-

ically discarded. In figure 8.8, the steel nuts appear to have been manufactured in

two lots (perhaps using different machines or by different personnel), although they

were all packaged in one box.
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Figure 8.9. Resistance (�) of 0.25-W, 10-k� metal-film resistors in a single batch:
mean 9965.47 �, standard deviation 17.23 �.
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Figure 8.10. BC107 transistor gain hfe: mean 209.4, standard deviation 66.9.

8.5.1 The lognormal distribution

Figures 8.9 and 8.10 show the observed distributions of samples of components

used in electronics: resistances of 0.25-W metal-film resistors, of nominal value

10 k�, in figure 8.9, and current gains of BC107 transistors in figure 8.10. The

shapes of these distributions suggest the so-called ‘lognormal’ shape, whose prob-

ability density distribution is illustrated in figure 8.11(a). This distribution is

characterised by a steep rise towards the peak, followed by a shallow, long and

exponentially decreasing tail. A variable, x , is said to have a lognormal distri-

bution if log x has a normal or Gaussian distribution; hence the name ‘lognor-

mal’, and the Gaussian distribution corresponding to figure 8.11(a) is shown in

figure 8.11(b).

The Gaussian distribution was described above as arising from the additive com-

bination of small random influences. The lognormal distribution arises from the

multiplicative combination of small random influences. Since the logarithm of

a product of terms is the sum of their logarithms, it can be shown that, if x is
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Figure 8.11. (a) A typical probability density distribution of lognormal variable
x . (b) The Gaussian density distribution of log x .

lognormal, being the net product of a number of influences, then log x is a sum of

a set of random influences and is Gaussian.

Many natural and artificial phenomena are distributed roughly lognormally:

growth of bacteria, frequency of rainfall, annual personal income, stockmarket

prices, corrosion in metal structures and variations in artefact standards used in

metrology.10

We now show how the multiplicative combination of small random influences

creates the steep rise to the peak and the long thinly populated tail of the lognormal

distribution. Suppose that three fair coins are tossed and that the scores (equivalent

to small influences) are 2 for heads and 1
2

for tails, and the total score is the product

of the three individual scores. Then the eight outcomes will be

HHH 8

HHT 2

HTH 2

HTT 1
2

THH 2

THT 1
2

TTH 1
2

TTT 1
8

Out of eight possible outcomes, a score of, for example, 2 is obtained three

times and so has probability 3
8

= 0.375. The eight probabilities are plotted in

figure 8.12(a), to be compared with the additive, Gaussian case of figure 8.1(c).

The case of five tossed coins with the same multiplicative scores is shown in

10 For further discussion on the lognormal distribution, see Limpert et al. (2001).
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Figure 8.12. (a) Three coins with multiplicative scores (H = 2, T = 1
2
). (b) Five

coins with multiplicative scores (H = 2, T = 1
2
).

figure 8.12(b), to be compared with figure 8.1(d). The steep rise to the peak and the

long ‘tail’ are already in evidence in figures 8.12(a) and 8.12(b).

Just as the Gaussian shape does not depend on the choice of the individual scores,

as long as they are additive, neither does the lognormal shape, as long as they are

multiplicative. The analogue of a constant K or −K as the individual scores for

the Gaussian case (in figures 8.1(a)–(f) we had K = 1) is a factor C or 1/C for the

lognormal case (in figures 8.12(a) and (b), C = 2). We note that C and 1/C have

the same sign.

When influences combine in a multiplicative fashion, we may regard any change

in a lognormal variable, resulting from an influence, as proportional to the existing

magnitude of the variable. The change may be such as to increase or decrease the

magnitude. The population of microorganisms such as bacteria or a fungus in a

particular plant species is likely to be lognormally distributed, since, if the existing

amount of microorganism is x , the rate of change is Cx .

Such a multiplicative process may take place in manufactured goods, includ-

ing, for example, the resistors and transistors in figures 8.9 and 8.10, for which a

roughly lognormal distribution seems to be present.11 In the case of the transistors,

in particular, we see that the process need not necessarily entail the propagation

of a ‘defect’, since in the tail of the distribution we have transistors of unusually

high gain for the type number. For many applications, high gain is desirable. How-

ever, in metrology the same process in artefact standards usually has undesirable

results. Artefact standards that realise a particular unit or multiple of a unit (for

example, a 500-g standard weight, a 10-V voltage standard or a platinum resistance

11 The shape of a histogram is sensitive to the bin size, so we should be cautious about inferring a particular
distribution from a single histogram (whose bin size may be automatically selected by the software used for
creating the histogram). There are objective tests for determining how well an observed distribution fits a
theoretical distribution. One such test is the ‘chi-square goodness of fit test’ (Bendat and Piersol 2000).
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thermometer for a specified temperature range) are manufactured with meticulous

care and should be identical to other artefact standards of the same nominal value.

Nevertheless, their exact values differ and often have a lognormal distribution.

8.5.2 Truncated Gaussian distributions

A distribution that would otherwise be Gaussian may be truncated at some phys-

ically imposed limit. Thus, angles measured in coordinate metrology cannot be

negative, and in chemical metrology the purity of an element or compound cannot

exceed 100%. If the variable has values very close to a physically imposed limit,

we must assume truncation at that limit. ‘Very close’ implies that the quantity being

measured has a mean and standard deviation that together bring it to a physically

imposed limit. The contrasting case arises where such a limit is many standard

deviations distant from the mean; a Gaussian distribution is then possible, to a very

good approximation. Such an example is provided by the histogram of masses of

fruit in figure 8.6; the fact that mass cannot be negative has no effect on the shape

of the histogram.12

8.6 The central limit theorem

If non-Gaussian distributions occur regularly, does this invalidate the application

of the Gaussian distribution in the determination of uncertainties in measurement?
The central limit theorem predicts that a Gaussian distribution will result (usually

to a good approximation) when we calculate the sums, and therefore means, of

samples whose elements are randomly drawn from non-Gaussian distributions.13

Calculating the mean is the most common operation carried out on experimental

data, and so the central limit theorem in effect restores and validates the Gaussian

assumption.

Figures 8.1 and 8.2 show, respectively, the variation in the shape of the discrete

distribution of scores using coins and dice. For a single coin or die, the distribution

is the discrete equivalent of the uniform distribution discussed in section 8.3. As the

number of coins or dice increases, the shape of the distribution of the sum approaches

the Gaussian distribution. We may now ask the obvious question regarding the

continuous counterpart of these discrete distributions: if we draw at random two,

three, four or more elements from a continuous uniform distribution and add them

together, what is the distribution of the sum?

12 A Gaussian distribution that would have zero mean if untruncated, but is truncated at its peak to have only
positive values, is shown in figure 8.16(a) later.

13 In this chapter, we refer to the individual items in a sample as its ‘elements’. Each element has a numerical
value, so that we can calculate the sum and mean of these values. ‘Randomly drawn’ implies that all the values
in a sample are obtained independently of one another.
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Figure 8.13. Probability density distributions of sums of samples consisting of
one, two, three and four elements from a uniform distribution.

As we might predict from figures 8.1 and 8.2, the sum of two elements drawn at

random from a uniform distribution is distributed as a triangular distribution. When

we draw more than two elements at random from the uniform distribution, their

sum approaches the Gaussian distribution, as shown in figures 8.13(a), (b), (c) and

(d) for the sum of one, two, three and four randomly drawn elements, respectively,

showing a progressive trend towards a Gaussian distribution.14

The tendency for the distributions of sums and means of samples taken from

a distribution to become more nearly Gaussian as the sample size increases is a

prediction of the central limit theorem.

We shall give several examples of approaches to the Gaussian distribution.

Although a distribution, on its way towards the Gaussian shape, may change in

14 It can be shown that, as the number of randomly drawn elements from the uniform distribution increases, the
distribution of the sum of the elements is composed of a large number of high-order smoothly joined polynomial
curves whose combined extent increases until it becomes a Gaussian extending from x = −∞ to x = +∞.



8.6 The central limit theorem 145

complicated ways, a simple and useful relationship holds between the mean of the

distribution of the sum of a randomly drawn sample and the means of the com-

ponent distributions that provide the individual elements of that sample. A similar

relationship holds for the respective variances.15 These relationships may be stated

as follows.

8.6.1 Distribution of the sum of a sample

Suppose that each individual element, zi (i = 1, 2, . . ., n), of a sample of size n is

randomly drawn from a population with its own probability density distribution,

Di . (The population may be a different one for each element.) Let µi be the mean

and σ 2
i the variance of Di . We calculate the sum S =

∑n
i=1 zi of this sample of size

n. The sum, S, will have its own probability density distribution, DS . Then the mean

of DS is µ1 + µ2 + · · · + µn and the variance of DS is σ 2
1 + σ 2

2 + · · · + σ 2
n . Here

are some examples for the particular case where the Di are all the same distribution

(this being the case when we have a single distribution and randomly draw samples

of varying size from it alone).

We start with the uniform distribution of half-width 1
2

in figure 8.13(a). The

above relationships yield the following results. The means of the distributions in

figures 8.13(b)–(d) are all zero, since the mean of the distribution in figure 8.13(a)

is zero, and this result is obvious from the symmetry in figures 8.13(b)–(d). Since

the variance of the uniform distribution is 1
12

(equation (8.10) with a = 1
2
), the

variances of the distributions in figures 8.13(b)–(d) are, respectively, 2 × 1
12

= 1
6
,

3 × 1
12

= 1
4

and 4 × 1
12

= 1
3

(standard deviations respectively

√

1
6

≃ 0.41, 1
2

and
√

1
3

≃ 0.58).

Next, we consider a quantity distributed as a one-sided exponential distribution.

For this quantity,

p(x) =
{

e−x , x ≥ 0,

0, x < 0.
(8.16)

It may be checked that
∫ ∞
−∞ p(x) dx = 1, satisfying equation (8.3). The probability

density p(x) shown in figure 8.14(a) is a maximum at x = 0, but the mean, µ, of

x is at x = 1. For an asymmetrical distribution such as this, the locations of the

maximum and the mean are expected to be different. Since this distribution has a

long right-hand tail, µ exceeds the value that x has (namely, zero) at the peak of the

15 These relationships have appeared previously under a different guise; thus the relationship for the means is
simply rule (c) in section 5.1.1, and the relationship for the variances was discussed in section 7.1.1. The
relationships appear in formal proofs of the central limit theorem. Proofs of the theorem may be found in
chapter 7 of Kendall and Stuart (1969).
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Figure 8.14. Probability density distributions of sums of samples consisting of
one, two, three and four elements from a one-sided exponential distribution.

distribution. When two elements are drawn at random from this distribution, their

sum is distributed as in figure 8.14(b). Perhaps contrary to intuition, the maximum

of this distribution is not at x = 0 but at x = 1. Its mean is at x = 2, following

the relationship for means stated above. With three and four elements drawn at

random from the exponential distribution, the distribution of the sum moves further

to the right as shown in figures 8.14(c) and 8.14(d), becoming more symmetric and

approaching a Gaussian shape. The means of the distributions in figures 8.14(c)

and 8.14(d) are respectively 3 and 4.

The variance of the one-sided exponential in figure 8.14(a) may be shown to be

1 (using equation (8.5)). The variances of the distributions in figures 8.14(b)–(d)

are therefore respectively 2, 3 and 4 (standard deviations
√

2 ≃ 1.41,
√

3 ≃ 1.73

and 2), following the relationship for variances stated above.

Figure 8.15(a) shows a ‘central-dip’ parabolic distribution, defined by p(x) =
3
2
x2 for x between −1 and +1 and p(x) = 0 elsewhere. (The factor 3

2
ensures that
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Figure 8.15. Probability density distributions of sums of samples consisting of
one, two, three and four elements from a central-dip parabolic distribution.

∫ +1

−1
p(x) dx = 1.) With this distribution, x is more likely to take values near the

extremes of its permitted range, rather than near the centre.16 This distribution is,

therefore, radically different from the Gaussian. Nevertheless, figure 8.15(b) shows

how the distribution of the sum of a sample of just two elements taken from this

distribution has already acquired a central peak. In figures 8.15(c) and 8.15(d),

showing respectively the distributions of sums of samples consisting of three and

four elements, the envelope approaches the Gaussian shape, although side-lobes

are still prominent.

For this central-dip parabolic distribution in figure 8.15(a), it may be shown,

using equation (8.5), that its variance is given by 3
2

∫ +1

−1
x4 dx = 3

5
and the stan-

dard deviation is therefore

√

3
5
. Thus, in spite of the complicated shapes of figures

16 Symmetrical distributions with high densities at the edges and a low density at the centre are encountered in
microwave metrology (Harris and Warner 1981).
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Figure 8.16. Probability density distributions of sums of samples consisting of
one, two, three and four elements from a truncated Gaussian distribution.

8.15(b)–(d), we have the result that their respective variances are 6
5
, 9

5
and 12

5
, and

that their respective standard deviations are therefore

√

6
5
, 3√

5
and 2

√

3
5
. Like the

rule for means stated above, the rule that the variance of sums is the sum of variances

(for uncorrelated populations) is useful inasmuch as the details of the probability

density distributions are not required.

Figure 8.16(a) shows a Gaussian distribution that is truncated at its peak to

positive values only. If the ‘full’ Gaussian distribution has mean equal to 0 and

standard deviation equal to 1, this truncated distribution may be defined, from

equation (8.12), as

ptrunc(x) =

⎧

⎨



√

2

π
e−x2/2, x ≥ 0,

0, x < 0.

(8.17)

There is an extra factor of 2 in equation (8.17) compared with equation (8.12), since

we require that
∫ +∞
−∞ ptrunc(x) dx = 1.

The mean of this truncated distribution may be shown to be
√

2/π ≃ 0.798, and

its standard deviation
√

1 − (2/π ) ≃ 0.603. Figures 8.16(b)–(d) show respectively

the distributions of sums of 2, 3 and 4 from such a truncated Gaussian distribution.

Again, the distributions approach a symmetrical Gaussian distribution. The means
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Figure 8.17. Probability density distributions of sums of samples consisting of
one, two, three and four elements from a Gaussian distribution.

of the distributions of figures 8.16(b)–(d) are, respectively, 2 × 0.798 = 1.596,

3 × 0.798 = 2.394 and 4 × 0.798 = 3.192. The respective standard deviations are√
2 × 0.603 = 0.853,

√
3 × 0.603 = 1.044 and 2 × 0.603 = 1.206.

Figures 8.17(a)–(d) show the sequence of distributions when the original distri-

bution is Gaussian. Here the original distribution is given a mean 0 and a variance

1 (standard deviation therefore also 1). The distribution of figure 8.17(b), for the

sum of a sample of two elements, has mean zero, variance 2 or standard deviation√
2. The distribution of the sum of a sample of three elements (figure 8.17(c)) has

mean zero, variance 3 and standard deviation
√

3, and the distribution of the sum of

a sample of four elements (figure 8.17(d)) has mean zero, variance 4 and standard

deviation 2. As figure 8.17 suggests, the distributions of sums from the original
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distribution are still Gaussian, and this result can be shown to hold whatever the

values of the mean and standard deviation of the original Gaussian distribution.

Thus the Gaussian distribution is, in a sense, ‘as far as we can go’ in the direction

of randomness.17

8.6.2 Distribution of the mean of a sample

Since a mean is equal to a sum divided by the number of values making up that sum,

the distribution of the means of elements randomly drawn from (say) a uniform

distribution is a scaled version of figures 8.13(a)–(d), and undergoes the same

approach to a Gaussian. By ‘scaled version’ we mean the following. Suppose that

we have the distribution of the sum of a sample of two (for example figure 8.13(b),

where the two elements are randomly drawn from a uniform distribution). The

distribution of the mean of a sample of two has the same shape and size, but the

numbers labelling the tick marks along the horizontal axis are divided by 2, and

the numbers labelling the tick marks along the vertical axis are multiplied by 2. (The

total area under the curve remains unity.) Similarly, to obtain the distribution of the

mean of a sample of three, starting from the distribution of the sum of a sample of

three, the shape and size of the distribution stay the same, but the numbers labelling

the tick marks along the horizontal and vertical axes are respectively divided and

multiplied by 3.

The relationship stated above between the means and variances of the distri-

butions Di and DS may be readily adapted to the case where we calculate the

mean M = S/n = (1/n)
∑n

i=1 zi . If DM is the probability density distribution of

M , the mean of DM is (1/n)(µ1 + µ2 + · · · + µn) and the variance of DM is

(1/n2)(σ 2
1 + σ 2

2 + · · · + σ 2
n ). If the sample elements are randomly drawn from the

same distribution, so that σ 2
1 = σ 2

2 = · · · = σ 2
n = σ 2, this rule for variances im-

plies that the variance of DM is (1/n2)nσ 2 = σ 2/n. This is a restatement of (for

example) equation (5.56). We recall, from previous discussions, that the values of a

sample of size n, drawn from a population with variance σ 2, must be uncorrelated

if the variance of the mean of that sample is σ 2/n. In the present context, we see

that it is the randomness of draws from a population that provides the necessary

absence of correlation.

We may now express the central limit theorem as follows. Suppose that we

make n independent measurements of a non-Gaussian random variable, x , and we

calculate their mean, x̄ . Let x have a population mean µ and a population variance

17 We should note, however, that a sequence of readings may present significant autocorrelation, yet may also
have a Gaussian distribution. A Gaussian distribution of serial readings therefore does not necessarily imply
‘white noise’ (this term was introduced in section 7.2.2).
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Figure 8.18. (a) The sum of a sample of two, one element from figure 8.13(a), the
other from figure 8.14(a). (b) The sum of a sample of three, two elements from
figure 8.13(a), the third from figure 8.14(a).

σ 2. Then the distribution of x̄ approaches a Gaussian distribution as n increases,18

and this Gaussian distribution has mean µ and variance σ 2/n. As indicated in

chapter 5, we can estimate µ unbiasedly as x̄ (equation (5.2)), and we can estimate

σ 2 unbiasedly using s2 as in equation (5.8).

The relationship stated above between DS and Di and between DM and Di

remain valid when the Di (i = 1, 2, . . ., n) are different distributions. Suppose

that we take a sample consisting of two elements, one drawn at random from the

uniform distribution of figure 8.13(a) and the other from the one-sided exponential

distribution of figure 8.14(a). We calculate the sum of these two elements. Its

distribution is shown in figure 8.18(a). The mean and variance of the distribution in

figure 8.13(a) are respectively 0 and 1
12

, and the mean and variance of the distribution

in figure 8.14(a) are respectively 1 and 1. Hence the mean of the distribution in

figure 8.18(a) is 0 + 1 = 1, and the variance of this distribution is 1
12

+ 1 = 13
12

(standard deviation

√

13
12

≃ 1.04). Figure 8.18(b) shows the distribution of the sum

of three elements, two drawn from the uniform distribution and one from the one-

sided exponential distribution. As expected, this distribution is smoother and more

symmetrical than that in figure 8.18(a). The mean of this distribution is 0 + 0 +
1 = 1, and the variance of this distribution is 1

12
+ 1

12
+ 1 = 7

6
(standard deviation

√

7
6

≃ 1.08).

18 There are distributions, such as the Cauchy distribution (Bevington and Robinson 2002), where the approach to a
Gaussian does not take place no matter how large the sample. Such distributions are not commonly encountered
in metrology.



152 Probability density

As a consequence, the central limit theorem has the following further generali-

sation: the approach to a Gaussian can be observed when each item in a sample is

drawn from a different non-Gaussian distribution. The approach will be slow if the

distributions differ greatly in their standard deviations. Thus, if we have a sample

size of ten elements, of which nine are drawn from the same Gaussian distribution

with standard deviation 1 and the tenth from a uniform distribution of width 100,

we would not expect the sum or the mean of this sample to resemble closely a

Gaussian distribution.

In the examples represented by figures 8.13–8.18, the distributions of means of

samples are scaled versions of the distributions of sums. The shortcut argument that

enabled us to find the means and variances of distributions of sums also gives us the

means and variances of the distributions of means. We may illustrate this starting

from the uniform distribution of figure 8.13(a). Since the triangular distribution

in figure 8.13(b) of the sum of a sample of two elements drawn from a uniform

distribution has a variance of 1
6
, the distribution of the mean of a sample of two ele-

ments from a uniform distribution has a variance 1
4

× 1
6

= 1
24

or standard deviation
√

1
24

or 1

2
√

6
. The standard deviation of the distribution of the mean of a sample of

size two from the uniform distribution of figure 8.13(a) is, therefore, less by
√

2

than the standard deviation

√

1
12

of the distribution consisting of samples in which

each sample consists of a single element from the same uniform distribution. This

recalls the fact that, if x1 and x2 are uncorrelated values from the same population

with variance σ 2
x , then the sum x1 + x2 has variance 2σ 2

x and the mean 1
2
(x1 + x2)

has variance 1
4

× 2σ 2
x = 1

2
σ 2

x . So, if x1 and x2 each has a standard deviation σx ,

their mean 1
2
(x1 + x2) has a standard deviation σx/

√
2. This is a restatement of (for

example) equation (5.56) in chapter 5 with n = 2.

Exercise D

(1) The probability density for a particular distribution is given by p(x) = Ax4 for −1 <

x < +1. For other values of x , p(x) = 0.

(a) For this probability density, show that the value of the constant A = 5
2
.

(b) Calculate the mean and standard deviation of the distribution.

(c) What is the probability that x lies between −0.5 and +0.5?
(d) Calculate the mean and standard deviation of the distribution of the mean of samples

of six values drawn from this distribution.

(2) The probability density for a particular distribution is given by p(x) = 1 for 0 < x <

+1. For other values of x , p(x) = 0.

(a) For this probability density, calculate the mean and standard deviation of the distri-

bution.
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(b) Calculate the mean and standard deviation of the distribution of the mean of samples

of two values drawn from this distribution.

Use the uniform random-number generator19 on a spreadsheet to generate 2000

numbers in the interval 0 to 1. Taking these numbers in pairs, calculate the mean of

each pair and create a column consisting of 1000 means.

(c) Calculate the mean and standard deviation of the 1000 means – compare this with

your answer for part (b).

8.7 Review

The examples shown in figures 8.13–8.17 are instances of the central limit theorem

in operation. Although in these examples we considered sums (and means) taken

from the same distribution, the approach to a Gaussian distribution also takes place

if each of the elements in the sample is drawn at random from a different distribution,

as in figure 8.18. This is the essence of the central limit theorem. The approach to

a Gaussian will be gradual or even very slow if one or several of the component

non-Gaussian distributions have a much larger standard deviation than the others.

However, in most cases the distribution of a measurand y, which is the sum of inputs

y = x1 + x2 + · · · + xn , may be considered Gaussian (or at least approximately

so) when some or all of the inputs xi are non-Gaussian. This finding also holds for

measurands that are more complicated functions of the inputs xi , and explains the

great metrological usefulness of the theorem.

In the next chapter we will consider in more detail how the properties of a

sample (such as the mean, variance and standard deviation) drawn from a Gaussian

distribution are affected as the size of the sample changes.

19 The function RAND( ) in Excel will generate numbers in the interval 0 to 1 with uniform probability.
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Sampling a Gaussian distribution

If it is reasonable to assume that a population consists of values that have a Gaussian
distribution, then what will be the distribution of a property (a ‘statistic’) of a sample

drawn from this Gaussian ‘parent’? The property might be the mean, variance or
standard deviation of the sample. Each of these properties has a sampling distribu-

tion, which can be described as follows.
We imagine a very large or infinite population that has a Gaussian distribution

with mean µ and standard deviation σ . A sample consisting of n values is randomly

drawn from this population. A property of the sample is calculated, in order to
estimate the corresponding population parameter. We then draw another sample,
also of size n, and calculate the same property for this second sample. The process
is repeated many times. Next the distribution of that property is examined; the
distribution becomes manifest as a result of taking a large number of repeated
samples (all of size n). The distribution is the sampling distribution of the property
in question. It is understood that, in any particular experimental situation, we do
not actually need to draw a large number of samples; this process is a conceptual
one that enables us to infer, from one actual sample, the variability (depicted by the
shape of the sampling distribution) of our estimate of the population parameter. In
section 9.1 we review the material already discussed in section 8.6.2.

9.1 Sampling distribution of the mean of a sample of size n,

from a Gaussian population

Assume a Gaussian population with meanµ and varianceσ 2. Let xi (i = 1, 2, . . ., n)
be a value in a sample of size n randomly drawn from the population. We discovered
in chapter 5 that, in terms of expectations, µ and σ 2 may be expressed as E(xi ) = µ

and E(x2
i ) − µ2 = σ 2.
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The mean, x̄ , of the sample is given by

x̄ =
x1 + x2 + · · · + xn

n
.

The sampling distribution of x̄ itself has a mean given by1

E(x̄) =
1

n
[E(x1) + E(x2) + · · · + E(xn)]

=
1

n
[µ + µ + · · · + (n times)] =

1

n
nµ = µ. (9.1)

We conclude that, whatever the shape of the distribution of the means x̄ of samples
of size n, the mean of this distribution must be µ, like the mean of the parent
distribution.

The variance, σ 2
x̄ , of the distribution of the means of samples of size n is given

by

σ 2
x̄ =

σ 2
x

n
, (9.2)

where σ 2
x is the variance of each value, xi , in the sample; thus σ 2

x = σ 2, the variance
of the parent population to which each such value belongs. Equation (9.2) is valid
when the xi are values randomly drawn from the parent population. The standard
deviation, σx̄ , of the distribution of the means of the samples of size n is, therefore,
from equation (9.2),

σx̄ =
σx√

n
. (9.3)

Figure 9.1 shows the shapes of the sampling distribution of x̄ for n = 1, 4, 10
and 20 when the parent population is Gaussian with mean µ = 0.3 and standard
deviation σ = 1. The shapes are all Gaussian; this preservation of the Gaussian
shape, when samples are drawn at random from a Gaussian parent and the sums or
means of these samples are calculated, is shown in figures 8.17(a)–(d). The larger
the sample size, the more reliable the estimate of the population mean, as is shown
by the narrower Gaussian curves for samples of larger n.

9.2 Sampling distribution of the variance of a sample of size n, from a

Gaussian population

A sample (x1, x2, . . ., xn) of size n and mean x̄ provides an unbiased estimate, s2,
of the population variance given by

s2 =
1

n − 1
[(x1 − x̄)2 + (x2 − x̄)2 + · · · + (xn − x̄)2]. (9.4)

1 See rules (b) and (c) in section 5.1.1, or section 8.6.2.
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Figure 9.1. The probability density for the mean, x̄ , of samples of size n = 1, 4,
10 and 20 from a Gaussian parent of µ = 0.3 and σ = 1.

When considering the sampling distribution of the variance we exclude the case
n = 1, since the variance of a sample of size equal to 1 has no meaning. In addition,
the variance of a sample must be zero or positive; therefore, the distribution of s2

cannot be Gaussian, since a Gaussian variable extends from minus to plus infinity,
no matter what its mean or standard deviation.

In equation (9.4), the variance, s2, is calculated for n − 1 degrees of freedom.
The more general expression for s2 is2

s2 =
∑n

i=1 ǫ2
i

ν
, (9.5)

where ν is the number of degrees of freedom. When we calculate the mean, x̄ ,
of a sample of size n, the number of degrees of freedom is ν = n − 1, and this
divisor, n − 1, appears in equation (9.4). In some situations, we may wish to obtain
estimates of an intercept and a slope by fitting a straight line to n values. In cases
such as these where we extract two estimates from the sample, the unbiased estimate
of the population variance is calculated as the residual sum of squares divided by
n − 2. Here the n residuals, ǫi , are constrained by two equations:

∑n
i=1 ǫi = 0 and

a second equation that includes the explanatory variable.3

The sampling distribution of s2 depends more directly on the number of degrees
of freedom than on the sample size. The distributions of s2 for degrees of freedom

2 Repeating equation (5.23).
3 See section 5.2.3.
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Figure 9.2. The probability density for the unbiased estimate, s2, of variance of a
Gaussian population with σ 2 = 1, for 1, 2, 3, 9 and 19 degrees of freedom.

equal to 1, 2, 3, 9 and 19 drawn from a Gaussian parent of arbitrary mean and
standard deviation equal to 1, and variance therefore also equal to 1, are shown in
figure 9.2.4 For a general Gaussian parent of variance σ 2, the distributions of s2

would be identical to those in figure 9.2, with the numerical values of probability
density along the vertical axis divided by σ 2, and the numerical values along the
horizontal axis multiplied by σ 2.

The distributions for ν equal to 1 and 2 in figure 9.2 peak at a variance of zero
(where the probability density is infinite for ν = 1), while the distributions for
higher numbers of degrees of freedom peak at non-zero values of variance. All the
distributions of the sample variance in figure 9.2 have a mean equal to 1, and this is
true no matter what the sample size, as long as the variance of the Gaussian parent is
equal to 1. The reason is that E(s2) = σ 2 = 1, the stated variance of the population:
s2 is the unbiased estimate of the variance. More generally, the unbiased estimate
of the population variance, σ 2, is given by equation (9.5), implying that

E(s2) = σ 2, (9.6)

which is equal to 1 in the case of figure 9.2.5

In figure 9.2, the greater the number of degrees of freedom, the narrower the
distribution and the closer the approximation to a Gaussian shape. In general, the

4 These values of the number of degrees of freedom are chosen because, when only the mean is estimated
(ν = n − 1 or n = ν + 1) the actual sample sizes are 2, 3, 4 and the round numbers 10 and 20. The equations
describing the probability densities in figures 9.2 and 9.3 are derived in Wilks (1962).

5 It is worth noting that the unbiased property E(s2) = σ 2, where s is calculated using equation (9.4) or equation
(9.5), does not require the parent distribution to be Gaussian.
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Figure 9.3. The probability density for sample standard deviation for ν = 1, 2, 3, 9
and 19 degrees of freedom from a Gaussian population with σ = 1.

larger the sample size (for a given number of parameters to be estimated), the more
reliable is the estimate of the population variance. The sampling distribution of the
variance can itself be characterised by a variance, which we call u2(s2). It can be
shown that (Frenkel 2003)

u2(s2) =
2σ 4

ν
. (9.7)

Thus the higher ν, the smaller u2(s2); hence the narrower curves in figure 9.2 for
higher degrees of freedom. We note the dependence on σ 4, which is dimensionally
correct, since the left-hand side of equation (9.7) is essentially the variance of a
variance, namely a fourth-order term. It follows that both the left- and the right-hand
side of equation (9.7) are of fourth order.6

The variance, s2, plotted along the horizontal axis in figure 9.2 is related through
a change of scale to a variable known as the ‘chi-squared’ variable for ν degrees of
freedom and denoted by χ2

ν . The definition of χ2
ν is

χ2
ν =

∑n
i=1 ǫ2

i

σ 2
=

νs2

σ 2
, (9.8)

so that the mean of χ2
ν is

E
(

χ2
ν

)

=
νE

(

s2
)

σ 2
=

νσ 2

σ 2
= ν, (9.9)

6 Note that ν is dimensionless.
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and the variance u2(χ2
ν ) of χ2

ν is, using (for example) equations (7.18) and (9.7),

u2
(

χ2
ν

)

=
ν2u2(s2)

σ 4
=

ν22σ 4

σ 4ν
= 2ν. (9.10)

The standard uncertainty u(χ2
ν ) of χ2

ν is therefore
√

2ν.
The probability density graph of χ2

ν , for a given value of ν, is identical to the
graph in figure 9.2 for that particular value of ν, with the horizontal axis marked in
units 0, ν, 2ν, 3ν, . . . instead of 0, 1, 2, 3, . . . The chi-squared variable is used when
experimental and theoretical probability density distributions are being compared;
a significantly high value of χ2

ν (meaning a value well to the right of the peaks in
figure 9.2) implies that an experimentally derived distribution is in conflict with
theory.7

9.3 Sampling distribution of the standard deviation of a sample

of size n, from a Gaussian population

The standard deviation, s, is defined as the square root of s2 in equation (9.4):

s =
√

1

ν
[(x1 − x̄)2 + (x2 − x̄)2 + · · · + (xn − x̄)2]. (9.11)

The sampling distributions of s for ν = 1, 2, 3, 9 and 19, drawn from a Gaussian
parent of arbitrary mean and standard deviation equal to 1, are illustrated in fig-
ure 9.3. They are similar to the distributions of s2 in figure 9.2, although for ν = 1
the probability density is now finite, and there is a further difference: although s2 is
an unbiased estimate of the population variance σ 2, so that E(s2) = σ 2, it does not

follow that E(s) = σ . Thus, although in figure 9.2 s2 for each number of degrees
of freedom has a mean value equal to 1, in figure 9.3 the standard deviation, s, for
each number of degrees of freedom does not have a mean equal to 1. However, the
difference from 1 is small, especially for a large number of degrees of freedom;
thus the means E(s) of the curves for ν = 1, 2, 3, 9 and 19 are, respectively,
0.798, 0.886, 0.921, 0.973 and 0.987, so that, as the number of degrees of freedom
increases, E(s) tends to σ (equal to 1 in this case) asymptotically from below.

9.3.1 The ‘uncertainty of an uncertainty’ and its relationship

to degrees of freedom

The variance, u2(s), of the curves in figure 9.3 is given approximately by

u2(s) =
σ 2

2ν
. (9.12)

7 For a discussion of the chi-squared distribution, see Blaisdell (1998).
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It follows that the standard deviation, u(s), of s is given by

u(s) =
σ

√
2ν

. (9.13)

If, for example, σ = 1 and ν = 9, equation (9.13) gives approximately u(s) ≃ 0.24,
and the near-Gaussian curve for ν = 9 in figure (9.3) shows that u(s) ≃ 0.24 is a
plausible value for its standard deviation.

Equation (9.7), for the variance of the variance, is exact (for Gaussian parent
populations), but the above equations (9.12) and (9.13) for the variance and stan-
dard deviation of the standard deviation are only approximate. The relationship
between u2(s2) and u2(s) can be approximately derived using equation (7.14).
Since ∂s2/∂s = 2s, we have from equation (7.14) that

u2(s2) =
(

∂s2

∂s

)2

u2(s) = 4s2u2(s), (9.14)

and so, on substituting into the left-hand side of equation (9.14) from equation (9.7),

2σ 4

ν
= 4s2u2(s), (9.15)

so that

u2(s) =
1

2

σ 4

νs2
. (9.16)

If we approximate s2 ≃ σ 2, equation (9.16) gives

u2(s) =
s2

2ν
, (9.17)

agreeing with equation (9.12).
Equation (9.17) may be expressed in terms of ν:

ν =
1

2

s2

u2(s)
. (9.18)

Equation (9.18) has the following practical application. It is sometimes necessary
to assign degrees of freedom to an uncertainty obtained from a Type B evaluation,
under the circumstance in which no repeated values are available.8 We rewrite
equation (9.18) as

ν =
1

2

(

u(s)

s

)−2

=
1

2

(

u(u)

u

)−2

, (9.19)

8 If there existed a record of n repeated values, then n could be related to the number of degrees of freedom, ν,
by an equation such as ν = n − 1 for the situation where one parameter, namely the mean, is estimated.
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replacing s by the equivalent, u, which is more suited to the metrological context
of evaluation of uncertainty. We can now recognise that u(u)/u is the proportional

uncertainty in our Type B-evaluated uncertainty, u. This proportional uncertainty
can often be estimated (or, sometimes, frankly only guessed at). Then the appro-
priate degrees of freedom are given by equation (9.19). If our Type B-evaluated
uncertainty has itself a proportional uncertainty of about 20%, equation (9.19) im-
plies that about 12 degrees of freedom are associated with it. It is important to
note the kind of information conveyed by the number of degrees of freedom in
a measurement: it does not denote the uncertainty of the result, but the ‘uncer-
tainty of the uncertainty’ of the result. This can clearly be seen to be the case with
Type A uncertainties; thus a straight line fit to only four points, giving ν = 2, results
in a proportional uncertainty of roughly 50% in all the uncertainties associated with
this fit.

Exercise

(1) Information accompanying a solution of copper in nitric acid indicates that the amount
of copper is 9.99 mg/g with a standard uncertainty of 0.02 mg/g. Past experience
indicates that the uncertainty in the standard uncertainty is 10%. Use this information
to determine the number of degrees of freedom associated with the standard uncertainty
in the density.

(2) The number of degrees of freedom associated with the standard uncertainty in the heat
capacity of a particular liquid is eight. Use this information to calculate the fractional
uncertainty in the standard uncertainty.

9.4 Review

Through the process of taking many samples each consisting of n values from a
population, we are able to determine the shapes of the probability distributions of
important quantities such as the sample mean, variance and standard deviation.
In the next chapter we apply knowledge of the distribution of sample means and
variances to establish an interval that contains the true value (otherwise known
as the population mean) of a quantity with a known probability. This leads quite
naturally to a quantitative expression for the expanded uncertainty of a measurand.
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The t-distribution and the Welch–Satterthwaite formula

The uncertainty that accompanies the best estimate of a measurand is usually based

on fewer than 20 degrees of freedom, and sometimes fewer than 10. The reason is

as follows.

For Type A evaluations of uncertainty, the number of degrees of freedom, ν, is re-

lated to the sample size, n. Thus, when calculating the mean of a sample, ν = n − 1.

Where measurements are made ‘manually’ (not under computer control), n and

therefore ν are likely to be small. Where measurements are computer-controlled

and the environment is sufficiently stable, it is easy to amass samples consisting of

hundreds or even thousands of values from the same population. We might there-

fore think that the number of degrees of freedom associated with the uncertainty

in the measurand is also very high. However, this is unlikely to be so, since there

will probably exist systematic errors that can be corrected for but that will nev-

ertheless leave a Type B uncertainty. Such an uncertainty is generally associated

with fewer degrees of freedom. Admittedly, the estimation of a systematic error

may also be based on a large number of repeated measurements. The calibration

of the 3 1
2
-digit DMM by means of simultaneous measurements with an 8 1

2
-digit

DMM in section 6.1.2 is a case in point. A large number of such measurements

could in principle allow us to determine an uncertainty in the systematic error

of the 3 1
2
-digit DMM that is associated with a large number of degrees of free-

dom. However, the readings of the 8 1
2
-digit DMM themselves have an uncertainty

obtained from its calibration report that is likely to be based on fewer degrees of

freedom.

Somewhere along every traceability chain there is likely to be a systematic

error that leaves a Type B uncertainty that can only roughly be estimated.1 This

1 In the example just given, such a traceability chain extends from the 3 1
2

-digit DMM to the 8 1
2

-digit DMM, and
then to the high-level voltage standards based on the Josephson effect in superconductors (see section 4.1.3)

used to calibrate the 8 1
2

-digit DMM. Type B uncertainties related to Josephson-effect voltage measurements
include uncertainties in corrections for thermal voltages (see section 6.2).
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uncertainty is, therefore, based on only a few degrees of freedom, as implied by

Equation (9.19). As will be seen in the discussion of the Welch–Satterthwaite

formula in section 10.3, the combining of uncertainties based on a large number of

degrees of freedom with those based on a small number of degrees of freedom is

likely to create a combined uncertainty with a small number of degrees of freedom.

This is not surprising; it is the rough metrological analogue of the chain that is no

stronger than its weakest link.

The measurand, therefore, has an uncertainty that is generally associated with

a small number of degrees of freedom. That is why we need the t-distribution.

We shall illustrate how this comes about by calculating a coverage interval for the

measurand.

The best estimate of the true value of a measurand is derived from a sample drawn

from a population. The coverage interval for the measurand is that interval within

which the true value of the measurand is located with high probability, usually

95% or (less commonly) 99%. Very often this interval is symmetrical about the

best estimate. At the end of the experiment, we would like to know the coverage

interval for the measurand, since it answers the following question: ‘how well have

we located the true value of the measurand?’

We note here that there is a trade-off between the confidence associated with a

coverage interval and what we might call ‘interesting information’. Thus we could

state a coverage interval that gives us a probability of 100% that the true value lies

within the interval, but this interval would be of no interest! The reason is that such

a coverage interval would extend over the entire theoretically permitted range of the

measurand. But we already know that the measurand has this permitted range, so we

have learned nothing new. By way of example, without taking any measurements

we could declare, with 100% confidence, that the temperature of distilled liquid

water in a beaker, at normal atmospheric pressure, is between 0 ◦C and 100 ◦C.

10.1 The coverage interval for a Gaussian distribution

Suppose that a population has a Gaussian distribution with mean µ and standard

deviation σ . We draw a sample of size n from the population and calculate its mean,

x̄ . The expectation value2 of x̄ is µ, thus E(x̄) = µ. We have, therefore, an unbiased

estimate of the quantity of prime interest, namely the population mean, which we

take to be equal to the true value of the measurand. We also need an estimate of

how well we know µ. Such an estimate is provided by the coverage interval. With

every coverage interval there is an associated probability. Though any probability

could be chosen, most metrologists adopt an interval that contains the true value

2 See equation (5.3).
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with a probability of 0.95. An equivalent way to express this is to refer to the 95%
coverage interval, by which it is understood that, if many intervals were calculated

using samples drawn from a population, those intervals would contain the true value

of the measurand in (on average) 95 out of 100 occasions.

From a sample of size n, we are able to calculate an unbiased estimate, s2, of

the variance of the population, σ 2, and, using s2, we can obtain an approximate

estimate of the standard deviation, σ , of the Gaussian population.3

We assume that the values in the sample are mutually uncorrelated, so that the

standard deviation of x̄ is given by

sx̄ = s/
√

n. (10.1)

The sample mean, x̄ , is itself a Gaussian variable.4 With x̄ as an unbiased estimate

of µ, and x̄ having a variability described by its standard deviation s/
√

n, we may

write, notionally,

x̄ = µ ±
s

√
n
. (10.2)

To answer the question ‘how well do we know µ?’, we interpret equation (10.2)

as follows. We regard µ as having a value that is the unknown ‘true’ value of the

measurand. However, we do not ‘see’ this true value as a perfectly sharp image;

it is blurred or indistinct by an amount estimated as ±s/
√

n that we regard as the

uncertainty in the value of µ.5

We assume for the present that the term s/
√

n in equation (10.2) is a constant

quantity. (For small sample sizes, we shall soon discover that this assumption gives

unsatisfactory results.) With s/
√

n a constant quantity and x̄ a Gaussian variable,

figure 10.1 shows the Gaussian distribution of x̄ , centred on µ and having standard

deviation s/
√

n. The 95% coverage interval for x̄ is equal to x̄ ± some multiple of

s/
√

n, this multiple being chosen so that the two ‘tail regions’ in figure 10.1 each

have an area that is 2.5% of the total area under the probability density curve. For

a Gaussian distribution this multiple is approximately 1.96. For a 95% coverage

3 We may, if we wish, calculate an exact unbiased estimate of σ . If we have three degrees of freedom, as
when calculating the mean of a sample of n = 4 values, then E(s) ≃ 0.921σ (see section 9.3). It follows
that, for three degrees of freedom, the unbiased estimate of σ is not exactly s but rather s/0.921 ≃ 1.086s,
because E(1.086s) = 1.086E(s) ≃ 1.086 × 0.921σ ≃ σ . This refinement is not necessary for the argument
being developed here.

4 See the discussion in section 9.1.
5 The treatment in this book is consistent with the conventional, so-called ‘frequentist’, statistical approach. In this

approach, the sampled quantities, for example x̄ , are the variables, and the population parameters, for example
µ, are fixed. A separate approach to statistical estimation is called ‘Bayesian inference’ and here the population
parameters are regarded as variables with probability density distributions determined by a single sample. This
is a branch of statistics in its own right, named after Thomas Bayes (1702–1761), who wrote the seminal papers
on what is now known as conditional probability. A general overview of this field is given in Malakoff (1999).
The GUM can be interpreted as having a partly Bayesian foundation (Kacker and Jones 2003).
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Figure 10.1. Coverage interval for the population mean, µ.

interval for µ, we therefore have

x̄ = µ ± 1.96
s

√
n
. (10.3)

10.1.1 Using Monte Carlo simulations to study coverage intervals

Equation (10.3) will now be used to calculate the 95% coverage interval when

the sample size, n, is small: specifically, n = 4. We perform what is known as

a Monte Carlo simulation, or MCS. This technique is a kind of trial-and-error

statistics, made feasible by readily available software that rapidly generates many

random numbers with a specified distribution.6 These random numbers enable us to

‘simulate’ a measurement process, by imparting plausible amounts of variability to

the inputs to the measurand. The resulting variability in the measurand can then be

observed. MCS, which can also be called ‘experimental statistics’, bears a relation

to theoretical statistics similar to that which experimental physics does to theoretical

physics.7

List 10.1 at the end of this chapter contains 1000 random numbers. The numbers

have been generated from a Gaussian distribution with arbitrary mean µ = 2.5810

6 There are many commercially available software packages that generate random numbers with a specified
distribution: for example, Excel, Origin and IMSL (International Mathematical Software Library).

7 The name Monte Carlo refers to the randomness of the draw of values from the software-generated distribution,
and reminds us of the mixed parentage of statistics: mathematics and gambling!
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and arbitrary standard deviation σ = 0.0630. A population size of 1000 is quite

small for MCS, where sizes of 100 000 or greater are common, but is adequate

here for purposes of illustration (and economy of paper). Our procedure will be,

in brief, to pretend that we do not know the population mean and, therefore, to try

to estimate this mean (and its uncertainty) through the random drawing of small

samples from the population. In practice, of course, we always have a population

whose mean we truly do not know, but which we try to estimate by randomly

drawing a single sample. In such a practical case, we assign a coverage interval

with a particular level of confidence around our estimate of the population mean.

The MCS procedure, with its many possible samples, allows us to evaluate the

‘success rate’ of our coverage interval in actually enclosing the population mean.

We shall see how the need for the t-distribution emerges naturally from this process

when the sample size is small.

Figure 10.2(a) shows a histogram of the 1000 software-generated values. The

mean, x̄ , and standard deviation, s, of these values are 2.5818 and 0.062 77, respec-

tively, which are close to the assigned mean and standard deviation of the population

of 1000.8 Figure 10.2(b) shows the histogram of the 250 sample means that result

from drawing samples of size n = 4, from the population of 1000. The mean of the

250 means is 2.5818, the same to five decimal digits as the mean of the histogram of

the 1000 original values. The standard deviation of the 250 means is 0.031 94, close

to half the standard deviation of the 1000 original values. The narrower histogram

in figure 10.2(b), compared with that in figure 10.2(a), illustrates the reduction in

uncertainty by
√

n (equal to 2 in this case) when a mean of n uncorrelated values is

calculated. Such a reduction is the reason why we generally consider averages to be

more reliable than single readings. Figures 10.2(c) and 10.2(d) are the theoretical

Gaussian counterparts to figures 10.2(a) and 10.2(b), respectively.

For each of the 250 samples of size n = 4, drawn from the original Gaus-

sian distribution of 1000, the standard deviation, s, can be calculated. A his-

togram of these 250 values of standard deviation is shown in figure 10.3(a). The

mean of the 250 standard deviations is 0.057 95. For three degrees of freedom

as in this case, we have9 E(s) ≃ 0.921σ and, since σ = 0.0630, E(s) ≃ 0.921 ×
0.0630 ≃ 0.058 02, giving close agreement with the Monte Carlo-derived value

of 0.057 95. Figure 10.3(b) shows a histogram of the corresponding 250 values of

standard deviation of the means of the samples. The mean of these 250 standard

deviations is 0.028 97, close to half the mean value of the values in figure 10.3(a).

Figures 10.3(c) and 10.3(d) show the theoretical counterparts to figures 10.3(a) and

10.3(b), respectively. It can be seen that both the experimental and the theoretical

8 Standard deviations are not normally stated to more than two (sometimes three) significant figures. However,
for purposes of comparison of standard deviations, more figures are stated here.

9 See section 9.3.
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Figure 10.2. (a) A histogram of a software-generated Gaussian population of
1000 with assigned mean 2.5810 and assigned standard deviation 0.0630. The
mean of the histogram is 2.5818; the standard deviation is 0.062 77. (b) A
histogram of means of 250 samples of size 4 from the population shown in (a).
The mean of the histogram is 2.5818; the standard deviation is 0.031 94. The
mean, x̄ , is calculated using

x̄ =
∑n

i=1 fi xi
∑n

i=1 fi

,

where fi is the number of values in the i th bin and xi is the value of x
corresponding to the mid-point of the i th bin. (c) A Gaussian probability density
distribution with mean 2.5810 and standard deviation 0.0630. (d) A probability
density distribution of means of samples of size 4.

distributions have the asymmetrical feature of a steep rise from the origin to the

peak followed by a relatively gentle fall.

Next, 60 samples of size n = 4 are drawn at random from the population of

values in list 10.1.10 For each sample the four component values are given in list

10.2 at the end of this chapter (each with a number showing its location in list 10.1).

10 We could choose a larger number of samples, but 60 samples, each of size 4, are sufficient to show how a
coverage interval that contains the mean with high probability is obtained.
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Figure 10.3. (a) A histogram of standard deviations of 250 samples of size 4.
The mean of the histogram is 0.057 95. (b) A histogram of standard deviations of
means of 250 samples of size 4. The mean of the histogram is 0.028 97. (c) The
probability density distribution for sample standard deviation, s, for three degrees
of freedom. The population standard deviation is 0.0630. (d) The probability den-
sity distribution for the standard deviation of means of sample sizes, n = 4. The
population standard deviation is 0.0630.

The mean and standard deviation of the mean for each sample are also stated. The

‘95% coverage interval’ for the population mean is then calculated on the evidence

of each sample, using equation (10.3). We might anticipate that the probability

that this interval encloses the population mean is 0.95 or 95%. For each of the

60 samples, this coverage interval is stated, and also whether or not this interval

actually does enclose the population mean.

If we claim that each coverage interval has a probability of 95% of enclosing the

population mean, and if we make 60 attempts at finding such a coverage interval,

then the expected number of occasions when the true mean is actually in the interval

should be (95/100) × 60 or about 57. But, as indicated in list 10.2, the number of

occasions when the population mean is enclosed within the coverage interval is

only 52, which is about 87% of 60. It appears that the factor 1.96 in equation (10.3)

should actually be somewhat larger.
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If, instead of using s as the approximate unbiased estimate of σ , we used 1.086s

as the exact unbiased estimate11 of σ , we would have increased our success rate

from 87% to only about 88%. Our failure to match expected and actual enclosure

probabilities is not due to the use of an approximate unbiased estimate of s.

The explanation for the relatively low success rate in enclosing µ is that not

only does x̄ in equation (10.3) vary with the sample, but so does s. For three

degrees of freedom as in this case, the variation of s is substantial and is shown in

figure 10.3(a) for our particular Monte Carlo-derived population. Figures 10.3(b)

and 10.3(d) show, respectively, the observed and theoretical variations in s/
√

n =
s/

√
4 = s/2 in our example where n = 4. The factor 1.96 in equation (10.3) entails

the assumption that s/
√

n is the constant standard deviation of x̄ and that only

x̄ varies; the variation of x̄ (a Gaussian variable) can then, on this assumption,

be correctly described as covering the range ±1.96s/
√

n for 95% of the time.

Such a variation in x̄ was illustrated in figure 10.1. But if s, and therefore s/
√

n,

varies with the sample, the factor 1.96 cannot be correct for a 95% success rate,

even though x̄ remains a Gaussian variable. As we have just discovered, 1.96

must be replaced by a larger factor. On the other hand, for a larger number of

degrees of freedom, as was shown in figure 9.3, the curve of s is narrower and so

s is more nearly constant; 1.96 will then be closer to the correct factor for 95%
coverage.

10.2 The coverage interval using a t-distribution

When the number of degrees of freedom is small, how do we find the factor that

should replace 1.96 for 95% coverage? We note that, since equation (10.3) may be

rewritten

±
x̄ − µ

s/
√

n
= a multiplying factor,

where the ‘multiplying factor’ is 1.96 for a 95% coverage interval and very many

degrees of freedom (that is, the Gaussian situation), a promising approach for few

degrees of freedom would be to regard the left-hand side, (x̄ − µ)/(s/
√

n), as a

new variable and to find its distribution. This new variable is called tν and has a

distribution called the t-distribution with ν degrees of freedom.12

tν is given by

tν =
x̄ − µ

s/
√

n
. (10.4)

11 See footnote 3 in this chapter.
12 It is also known as ‘Student’s t’, after the pen-name of W. S. Gosset, who published it in 1906.
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Figure 10.4. t-distributions for ν = 3, 8, 20 and ∞.

Equation (10.4) can be written

x̄ = µ ± tX%,ν

s
√

n
, (10.5)

where tX%,ν refers to the X% level of confidence for ν degrees of freedom. For very

large ν and X% = 95%, tX%,ν = 1.96. Conventionally, in deriving the mathematical

formula for the t-distribution, µ is regarded as the fixed population parameter, and

x̄ and s as the variables that vary with the particular sample. The probability density,

p(t, ν), of the t-distribution for ν degrees of freedom is given by13

p(t, ν) = K (ν)

(

1 +
t2

ν

)−(ν+1)/2

, (10.6)

where K (ν) ensures that the area under the probability density curve is unity.14

In equation (10.4), tν may be regarded as the difference between x̄ and µ ex-

pressed in terms of the number of standard deviations of the mean, s/
√

n. We note

that tν is a dimensionless number.

Figure 10.4 shows the probability density of the t-distribution for numbers of

degrees of freedom ν = 3, 8, 20 and ∞. The t-distribution is symmetric, even

13 See Kendall and Stuart (1969).
14 It may be shown that

K (ν) =
Ŵ{(ν + 1)/2}

Ŵ(ν/2)

√

1/πν,

where Ŵ denotes the gamma function.
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Table 10.1. t values for ν degrees

of freedom at the 95% level

of confidence

ν t95%,ν

3 3.18
8 2.31

20 2.09
∞ 1.96

though it is the ratio of a Gaussian and therefore symmetrical distribution (the

distribution of x̄ − µ) to an asymmetrical distribution (the distribution of s/
√

n,

as in figure 10.3(d)). For infinite ν, the t-distribution coincides exactly with the

Gaussian distribution with mean zero and standard deviation 1. Figure 10.4 also

shows the respective limits of the intervals along the horizontal axis which enclose

95% of the total area. For the Gaussian case (ν infinite), the limits are ±1.96. As ν

decreases, the peak of the t-distribution is reduced and more of the area under the

probability density curve is located in the tails.15 As a consequence, as ν decreases,

95% of the total area is delimited by points further from the origin (which is at the

centre of the horizontal axis). The limits for all four cases are given in table 10.1.

Appendix A contains a more extensive table giving t95%,ν for a range of ν.

For samples of size n = 4 (ν = n − 1 = 3), table 10.1 indicates that 3.18 should

be used instead of 1.96 as the multiplier of the standard deviation of the mean. When

this is done, the proportion of successful intervals – those enclosing the population

mean – in list 10.2 increases to 56 out of 60, that is 93% of the intervals. This is

much closer to the claimed 95% level of confidence, although we note that there is

still statistical variability arising from the low number of 60 trials; a similar MCS

with a much larger population and number of trials would have given a proportion

of successful intervals much closer to 95%.

10.2.1 The coverage factor, k, and expanded uncertainty, U

The symbol tX%,ν in equation (10.5) is called the coverage factor and is given the

more convenient symbol k. We therefore have the result that the standard uncertainty

of an estimate multiplied by k gives the expanded uncertainty, U , of that estimate

at that level of confidence (usually X% = 95%). Expanded uncertainty is given

15 A lower peak must be accompanied by more area in the tails, since the total area beneath the curve must equal
unity.
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Table 10.2. Variation of absorbance with concentration of

standard silver solutions

Concentration, C (ng/mL) Absorbance, A (arbitrary units)

5.06 0.129
10.10 0.249
15.07 0.380
20.12 0.511
25.06 0.645

the upper-case symbol U , to distinguish it from standard uncertainty, u, so we

have

U = ku. (10.7)

It is conventional to quote an expanded uncertainty with a ± sign; for example, in an

accurate measurement of length, U might be stated as U = ±10 µm. By contrast,

a standard uncertainty should be stated without the ± symbol and indeed without

any sign; thus u might be stated as u = 5 µm for that estimate of the measurand. It

is uncommon for U to be quoted to more than two significant digits.

A generalised form of equation (10.4) can be used whenever a sample yields not

just one least-squares estimate (the mean), but two or more. Two estimates might

be the intercept, a, and slope, b, as when fitting the straight line y = a + bx to

x, y data. If the sample size is n, we now have ν = n − 2 and, in place of equation

(10.4), we have the following t-variables:

t
(a)
X%,ν =

a − α

sa

, (10.8)

t
(b)
X%,ν =

b − β

sb

. (10.9)

Here a and b are unbiased estimates of the true intercept and slope, α and β,

respectively. The standard uncertainties in a and b are sa and sb, respectively.16

Example 1

Equations (10.8) and (10.9) may be used to find coverage intervals. Table 10.2

contains data of absorbance, A (in arbitrary units), as a function of concentration,

C , for standard silver solutions analysed by atomic absorption spectroscopy.

16 We note that equations (10.8) and (10.9) do not have 1/
√

n in the denominator, whereas equation (10.4) does.
However, in equation (10.4), s/

√
n can be more briefly written sx̄ , so all three equations are consistent in

appearance when written in terms of the standard uncertainties of the estimates from the sample, namely x̄ or
a and b.
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Table 10.3. The area under an HPLC peak as a

function of concentration

Concentration (x) (mg/L) Area (y) (arbitrary units)

1.006 8.20
2.012 17.6
5.030 42.8
7.555 65.7

10.064 90.5
15.101 136

Assuming the relationship between absorbance and concentration to be linear,

we use least-squares to fit the equation

A = a + bC (10.10)

to the data in table 10.2, where a is the intercept and b is the slope.17

The least-squares estimate of the intercept is a = −0.007 35, with stan-

dard uncertainty sa = 0.005 49. The least-squares estimate of the slope is b =
0.025 87 mL/ng, with standard uncertainty sb = 0.000 329 mL/ng. Since there are

five pairs of data in table 10.2 it follows that the number of degrees of freedom

associated with the least-squares fit is ν = 5 − 2 = 3. The t value for ν = 3 is given

in table 10.1 as t95%,3 = 3.18. The expanded uncertainty, U , in a for the 95% level of

confidence is 3.18 × 0.005 49 = ±0.0175. Similarly, the expanded uncertainty in

b for the 95% level of confidence is 3.18 × 0.000 329 mL/ng = ±0.00105 mL/ng.

We can now write

a = −0.007 ± 0.018 and

b = (0.0259 ± 0.0011) mL/ng.

Exercise A

(1) An HPLC instrument was calibrated using known concentrations of sodium nitrate.

Table 10.3 contains values of the concentration and area under a peak produced by the

instrument.

Use the data in table 10.3 to

(a) find the slope and intercept of the best straight line through the data;

(b) calculate the standard uncertainty in the slope and intercept;

(c) find the expanded uncertainty in the best estimate of slope and intercept at the 95%
level of confidence; and

17 Details of fitting by least-squares are given in section 5.2.3.
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(d) find the coverage intervals containing the true value of the slope and intercept at the

95% level of confidence.

(2) Using the data in table 5.2, find the coverage interval containing the true drift of the

voltage reference at the 95% level of confidence.

10.3 The Welch–Satterthwaite formula

When inputs x1, x2, . . . , xn are used to determine the best estimate of the measurand,

y, through the functional relationship y = f (x1, x2, . . ., xn), the combined standard

uncertainty, u(y), in y may be found using18

u2(y) = c2
1u2(x1) + c2

2u2(x2) + · · · + c2
nu2(xn), (10.11)

where the c’s are sensitivity coefficients defined by the partial derivatives, ci =
∂y/∂xi (i = 1, 2, . . ., n).

Each of the standard uncertainties, u(xi ), of the inputs, xi , is associated with νi

degrees of freedom. If, for example, x1 is the mean of ten repeated uncorrelated

values that have a standard deviation s1, then u(x1) = s1/
√

10 has ν1 = 9 degrees

of freedom.

The obvious question now is as follows: how many degrees of freedom should

we associate with u(y) on the left-hand side of equation (10.11)? The answer is

provided by the Welch–Satterthwaite formula which, though only approximate, is

nevertheless adequate for most cases.19

Consider two uncorrelated inputs, x1 and x2. In this case we have y = f (x1, x2)

and equation (10.11) may be written

u2(y) = c2
1u2(x1) + c2

2u2(x2). (10.12)

Let u(x1) and u(x2) be associated with ν1 and ν2 degrees of freedom, respectively.

We now take the variance of both sides of equation (10.12). We recall that, for any

constant, K , and variable x , u2(K x) = K 2u2(x). Then

u2[u2(y)] = c4
1u2[u2(x1)] + c4

2u2[u2(x2)]. (10.13)

We note another assumption: not only the inputs, x1 and x2, but also their vari-

ances, u2(x1) and u2(x2), are assumed to be uncorrelated. If the variances were

correlated, equation (10.12) would contain a third term involving the covariance of

the variances, u2(x1) and u2(x2).

Next we assume that the inputs, x1 and x2, are random Gaussian variables. As

a consequence of the central limit theorem this assumption is likely to be valid

18 This applies to uncorrelated inputs: see section 7.1.
19 For further information see Ballico (2000) and Hall and Willink (2001).
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if each of x1 and x2 is the mean of several values, and the greater the number of

values, the better the approximation.20 The central limit theorem allows a Gaussian

distribution to be assumed as an approximation to the distribution of the means of

randomly drawn samples, even if these samples are drawn from a non-Gaussian

distribution.

An input, x1, and its associated standard uncertainty, u(x1), may also be obtained

from a calibration report or look-up table. To establish the standard uncertainty in the

report, repeat measurements are likely to have been made. There is no difference

in principle between a ‘present’ run that acquires several values through repeat

measurements and a ‘past’ run; indeed, an uncertainty obtained through repeat

measurements and classified as a Type A uncertainty (because of the statistical

techniques involved in estimating it) is ‘fossilised’ into a Type B uncertainty when

used subsequently. As a consequence, we may assume that a value, x1, obtained

from a calibration report or look-up table has a Gaussian distribution even though

the associated standard uncertainty, u(x1), is Type B. Such an assumption also

applies to the other input, x2.

Calibration reports always state the uncertainty of a reported value, and some-

times also state the associated number of degrees of freedom. By contrast, look-

up tables of properties of materials often give no indication of the uncertainty

of the value of the quantity being looked up. The number of significant decimal

places quoted can, however, be used to infer a rough figure for the uncertainty (see

section 2.3). Because this inferred figure is only rough, estimated to perhaps no

better than 30%, the associated number of degrees of freedom is low21 (about six

for 30% uncertainty). In all cases the uncertainty, whether explicitly stated or in-

ferred, must refer to possible values of a quantity consistent with a distribution that

has low-probability tails and a high-probability peak region. A Gaussian distribution

best describes this situation.

In some situations we may need to determine an intercept and a slope from x, y

data. Just as a mean will have a near-Gaussian distribution even when its component

readings are drawn from a non-Gaussian distribution, so the intercept and slope will

similarly have a near-Gaussian distribution. The reason is that the intercept and slope

are calculated as a linear combination of the observed response variables, where

the response variables are the yi and the explanatory (error-free) variables are the

xi . It is this linear combination of possibly non-Gaussian variables that produces a

near-Gaussian variable (and the larger the sample of such non-Gaussian variables,

the closer will be the approximation to a Gaussian distribution).

20 See, for example, section 8.6.
21 Numbers of degrees of freedom are estimated if we can assess the uncertainty attaching to the uncertainty itself,

as described by equation (9.18).
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The above discussion suggests that, in most cases, we may take x1 and x2 in

equation (10.13) as each having a Gaussian distribution. That being so, we now

apply equation (9.7), repeated here:

u2(s2) =
2σ 4

ν
. (10.14)

We recall the meaning of equation (10.14): s2 is the variance of a sample drawn

from a Gaussian distribution with variance σ 2. Equation (10.14) gives the variance,

u2(s2), of s2. This variance is based on ν degrees of freedom (for example, if a mean

is calculated from n readings, then ν = n − 1). The square root u(s2) of equation

(10.14) is a measure of the ‘fatness’ of the curves in figure 9.2.

The term s2 in equation (10.14) is equivalent to u2(x1) or u2(x2) in equation

(10.13).22 So we may write equation (10.13) as

u2[u2(y)] =
2c4

1σ
4
1

ν1

+
2c4

2σ
4
2

ν2

, (10.15)

where σ 2
1 and σ 2

2 are the population variances of x1 and x2, respectively.

σ 2
1 is the same as u2(x1), and σ 2

2 is the same as u2(x2). Equation (10.15) may

therefore be written

u2[u2(y)] =
2c4

1u4(x1)

ν1

+
2c4

2u4(x2)

ν2

. (10.16)

We now claim that y has a near-Gaussian distribution. This is plausible for the

following reason. Using c’s for the sensitivity coefficients,

δy = c1 δx1 + c2 δx2. (10.17)

The increments in equation (10.17) may be written δy = y − µy , δx1 = x1 − µx1

andδx2 = x2 − µx2. The quantitiesµy ,µx1 andµx2 are, respectively, the population

means of y, x1 and x2. Thus, although the functional relationship, y = f (x1, x2),

may be highly nonlinear, small changes of y from its mean obey a linear relationship

to small changes of x1 and x2 from their respective means. These changes are

near-Gaussian (this is another interpretation of the statement that x1 and x2 are

near-Gaussian), and therefore so is y.

If y is Gaussian, then we may assign an ‘effective number of degrees of freedom’,

νeff, to u2(y); this is the purpose of the Welch–Satterthwaite formula, and equations

(10.14) and (10.16) yield

u2[u2(y)] =
2u4(y)

νeff

=
2c4

1u4(x1)

ν1

+
2c4

2u4(x2)

ν2

. (10.18)

22 We have u2[u2(x1)] = 2σ 4
1 /ν1 and u2[u2(x2)] = 2σ 4

2 /ν2.
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Since, from equation (10.11), u2(y) = c2
1u2(x1) + c2

2u2(x2), equation (10.18) gives,

upon cancelling out the 2’s,

[

c2
1u2(x1) + c2

2u2(x2)
]2

νeff

=
c4

1u4(x1)

ν1

+
c4

2u4(x2)

ν2

. (10.19)

Equation (10.19) may be rearranged as follows:

νeff =
[

c2
1u2(x1) + c2

2u2(x2)
]2

c4
1u4(x1)

ν1

+
c4

2u4(x2)

ν2

. (10.20)

The effective number of degrees of freedom, νeff, is not necessarily an integer.

In practice, νeff is often truncated to an integer for the purpose of calculating a

coverage factor, k (for example, the numbers 6.2 and 6.8 would both truncate to 6).

For xi inputs, where i = 1 to n, equation (10.19) may be written generally as

[

c2
1u2(x1) + c2

2u2(x2) + · · · + c2
nu2(xn)

]2

νeff

=
c4

1u4(x1)

ν1

+
c4

2u4(x2)

ν2

+ · · · +
c4

nu4(xn)

νn

.

(10.21)

Since the numerator on the left-hand side of equation (10.21) is u4(y), equation

(10.21) may be written

νeff =
u4(y)

n
∑

i=1

c4
i u4(xi )

νi

. (10.22)

Equations (10.21) and (10.22) are equivalent statements of the Welch–

Satterthwaite formula.

With νeff determined for u(y) by equation (10.22), we can now regard the ratio

(y − µy)/u(y) as a t-variable for νeff degrees of freedom:

tνeff
=

y − µy

u(y)
. (10.23)

Equation (10.23) is analogous to, and should be compared with, equations (10.4),

(10.8) and (10.9). Coverage intervals for µy are now obtainable in the manner

described in section 10.2. If, for example, νeff = 8, the 95% coverage interval for

µy is µy ± 2.31 × u(y), in which µy is estimated by y as obtained from the inputs

x1, x2, . . ., xn and u(y) is given by equation (10.11). The expanded uncertainty

U (y) is given, in this case, by U (y) = 2.31u(y).

The determination of the expanded uncertainty, U (y), in the measurand, y, rep-

resents the conclusion of the process of measuring y. For this process we need to
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know the values of the n inputs, x1, x2, . . ., xn , their standard uncertainties u(x1),

u(x2), . . ., u(xn), their associated degrees of freedom ν1, ν2, . . ., νn and the sensitiv-

ity coefficients (the partial derivatives) c1, c2, . . ., cn . When there are many inputs,

the calculations can be lengthy and are often neatly summarised by means of a table

(sometimes referred to as an ‘uncertainty budget’). Practical advice for such cases

is available.23

If, when we have two inputs, c1 = c2 = 1 (sensitivity coefficients are in fact often

equal to 1) and also u(x1) = u(x2) (u(x1) and u(x2) being mutually independent),

equation (10.20) then gives

νeff =
4ν1ν2

ν1 + ν2

. (10.24)

Equation (10.24) implies that, if, for example, a Type A uncertainty, u(x1), with a

large number of degrees of freedom, ν1, is combined with a roughly similar Type B

uncertainty, u(x2), which has a small number of degrees of freedom, ν2, then the

combined uncertainty
√

u2(x1) + u2(x2) will have an associated νeff closer to the

lower of ν1 and ν2. If ν1 = 100 and ν2 = 5, then (using equation (10.24) νeff ≃ 19.

We note from equation (10.21) that a high cku(xk), for any particular input xk ,

and a low associated νk reinforce each other to make that kth term dominant on

the right-hand side of equation (10.21). A high cku(xk) or a low νk , or both, are

often the effect of a systematic error. Then we have νeff ≃ νk , so the uncertainty

of the measurand is dominated by the least accurate input and has a number of

degrees of freedom not much different from the low number of degrees of freedom

of that input. Owing to the likely presence of systematic errors the accuracy of a

measurement cannot be significantly improved, beyond a certain point, merely by

increasing the number of readings. A high value of uncertainty, u(xk), however,

might not be important if the measurand is insensitive to the value of that input

(small ck).

An instructive case of equation (10.21) occurs when y is the mean of repeated

readings x1, x2, . . ., xn:

y =
x1 + x2 + · · · + xn

n
. (10.25)

We assume that all the xi (i = 1, 2, . . ., n) are independently drawn from one pop-

ulation (since they are independently drawn, they are uncorrelated). The variance

of all the xi has the same value, u2(x), as the variance of the population from which

they were sampled. Equation (10.25) with uncorrelated xi implies that

u2(y) =
u2(x)

n
. (10.26)

23 See, for example, Bentley (2005).
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With νx = n − 1 as the number of degrees of freedom associated with u2(x), equa-

tions (10.26) and (10.14) give

u2[u2(y)] =
1

n2
u2[u2(x)] =

1

n2

2u4(x)

n − 1
, (10.27)

so that, setting u2[u2(y)] = 2u4(y)/νeff as before, equation (10.27) gives

2u4(y)

νeff

=
2

n2

u4(x)

n − 1
, (10.28)

and since, from equation (10.26), u4(y) = u4(x)/n2, equation (10.28) gives finally

νeff = n − 1. (10.29)

The variance, u2(y), and therefore the standard deviation or standard uncer-

tainty, u(y), of y, are associated with the same number of degrees of freedom

as u2(x), which is the (unbiased) variance of the n values of repeated readings xi

(i = 1, 2, . . ., n). This result is to be expected: because u2(y) = u2(x)/n, the sam-

pling distribution of u2(y) must be a scaled version of the sampling distribution of

u2(x) for the particular number of degrees of freedom (as shown in figure 9.2 for

several values of ν). This scaled version for u2(y) must keep the same shape as for

u2(x), so the number of degrees of freedom associated with u2(y) must also be the

same.

In the demonstration of the Welch–Satterthwaite formula, we made the assump-

tion that not only are the xi uncorrelated, but so also are the u2(xi ). However, for

this particular case y = (x1 + x2 + · · · + xn)/n, the fact that all the xi are drawn

from the same population with variance u2(x) implies that the u2(xi ) are not uncor-

related; in fact, we now have all the u2(xi ) equal at the value u2(x), and therefore

perfectly correlated! Although the result νeff = n − 1 in equation (10.29) is correct

and was shown using u2(y) = u2(x)/n, a full demonstration from first principles

starting from equation (10.12) (generalised to n inputs) would need to take into

account the correlation between the variances. The step from equation (10.12)

to equation (10.13) would now be invalid; equation (10.13) would have additional

terms corresponding to the correlation terms in equation (7.36), and it can be shown

that equation (10.13) with the necessary additional terms leads to the same result

νeff = n − 1.

In calculations involving the Welch–Satterthwaite formula, it is prudent to keep

extra decimal places when evaluating standard uncertainties. This is a consequence

of the fourth powers in the formula, which may easily create round-off errors in

the final result for the effective number of degrees of freedom, and hence in the

coverage interval.



180 The t-distribution and Welch–Satterthwaite formula

Example 2

The moment of inertia, I , of a solid cylinder of mass M , rotating about its principal

axis, is given by24

I =
M R2

2
, (10.30)

where R is the radius of the cylinder. The mean of eight values of the mass measured

in an experiment is 252.6 g and the standard uncertainty in the mean mass is 2.5 g.

The mean of five values of the radius is 6.35 cm with a standard uncertainty in the

mean radius of 0.05 cm. Use this information to determine

(a) the best estimate for the moment of inertia of the cylinder;

(b) the standard uncertainty in the best estimate of the moment of inertia, assuming that the

errors in the mass and radius measurements are uncorrelated;

(c) the effective number of degrees of freedom of the measurand uncertainty using the

Welch–Satterthwaite formula;

(d) the coverage factor for the 95% level of confidence; and

(e) the coverage interval containing I at the 95% level of confidence.

Answer

(a) Using equation (10.30), the best estimate of the moment of inertia is

I =
252.6 × (6.35)2

2
= 5092.7 g · cm2.

(b) Following equation (10.12), can write the variance in the best estimate as

u2(I ) = c2
M u2(M) + c2

Ru2(R), (10.31)

where

cM =
∂ I

∂ M
=

R2

2
, cR =

∂ I

∂ R
= M R.

Equation (10.31) becomes

u2(I ) =
(

R2

2

)2

u2(M) + (M R)2u2(R)

=
(

(6.35)2

2

)2

× (2.5)2 + (252.6 × 6.35)2 × (0.05)2

= 2540.5 + 6432.1 = 8972.6 (g · cm2)2.

It follows that u(I ) = 94.7g · cm2.

24 See Young and Freedman (2003).
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(c) Replacing the subscripts in equation (10.20) by M and R as appropriate, we can write

the Welch–Satterthwaite formula for this example as

νeff =
[

c2
M u2(M) + c2

Ru2(R)
]2

c4
M u4(M)

νM

+
c4

Ru4(R)

νR

,

where νM is the number of degrees of freedom in the calculation of the standard uncer-

tainty in M , i.e. νM = 8 − 1 = 7.The number of degrees of freedom νR in the calculation

of the standard uncertainty in R is νR = 5 − 1 = 4. From part (b), c2
M u2(M) = 2540.5

and c2
Ru2(R) = 6432.1, so

νeff =
(2540.5 + 6432.1)2

(2540.5)2

7
+

(6432.1)2

4

= 7.1,

which truncates to 7 for the purpose of calculating the coverage factor, k.

(d) The t value for the 95% level of confidence and seven degrees of freedom is found from

the table in appendix B. We have k = t95%,7 = 2.36.

(e) The interval containing the true value at the 95% level of confidence is 5092.7 g · cm2

± 2.36 × 94.7 g · cm2 = (5092.7 ± 223.5) g · cm2. The moment of inertia may be ex-

pressed in scientific notation to an appropriate number of significant figures as

Moment of inertia of the cylinder = (5.09 ± 0.22) × 103g · cm2.

Example 3

In this example we include the influence of resolution when calculating a confidence

interval.

The contribution to the combined standard uncertainty due to the resolution of

an instrument is worthy of special mention. Resolution is a perennial (though often

small) contributor to the combined standard uncertainty. The manner by which this

contribution is quantified is still a matter of research and debate.25 Here we have

adopted the approach suggested by the GUM.26

The diameter of a wire is measured five times using a micrometer with a reso-

lution of 0.01 mm. The mean diameter is found to be 0.253 mm with a standard

uncertainty in the mean of 0.007 mm. Use this information to calculate

(a) the best estimate of the cross-sectional area of the wire;

(b) the standard uncertainty in the best estimate;

(c) the effective number of degrees of freedom for the standard uncertainty;

(d) the coverage factor, k, for the 95% level of confidence; and

25 See, for example, Elster (2000) and Frenkel and Kirkup (2005).
26 This is consistent with advice contained in the GUM (see annex F to the GUM (1995)); see also Lira and Wöger

(1997).
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(e) the coverage interval containing the true value of the cross-sectional area of the wire at

the 95% level of confidence.

Answer

(a) The value of the cross-sectional area, A, of the wire is given by

A =
π D2

4
, (10.32)

where D is diameter of the wire. D may be written as

D = X + Z . (10.33)

X is the mean diameter of the wire obtained by calculating the mean of repeat values of

the diameter. Z is the correction required due to systematic errors. From the information

in this example, X = 0.253 mm. Since the correction term due to the resolution of

the instrument is as likely to be positive as negative, we take Z = 0. It follows that

D = 0.253 mm + 0 = 0.253 mm.

Substituting D = 0.253 mm into equation (10.32) gives A = 0.0503 mm2.

(b) The standard uncertainty in the diameter, u(D), can be found using

u2(D) = u2(X ) + u2(Z ). (10.34)

u(X ) is given in the question as equal to 0.007 mm. u(Z ) is determined by assuming

that the probability distribution associated with the scatter of Z is rectangular with a

width of δ = 0.01 mm, in which case the standard deviation is δ/
√

12 (see section

8.3). Then u(Z D) = 0.01 mm/
√

12 = 2.9 × 10−3 mm. Using equation (10.34), we

obtain

u2(D) = (7 × 10−3)2 + (2.9 × 10−3)2

= 4.9 × 10−5 + 8.33 × 10−6

= 5.73 × 10−5 mm2.

It follows that u(D) = 7.6 × 10−3 mm.

(c) Following equation (10.20), we write νeff as

νeff =
[

c2
X u2(X ) + c2

Z u2(Z )
]2

c4
X u4(X )

νX

+
c4

Z u4(Z )

νZ

. (10.35)

Now, using equation (10.33),

cX =
∂ D

∂ X
= 1

and

cZ =
∂ D

∂ Z
= 1.
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Therefore equation (10.35) simplifies to

νeff =
[u2(X ) + u2(Z )]2

u4(X )

νX

+
u4(Z )

νZ

. (10.36)

Now νX = 5 − 1 = 4. Since the uncertainty in the standard uncertainty in Z is zero,

equation (10.14) indicates that the effective number of degrees of freedom is very large:

νZ tends to ∞. Equation (10.36) becomes

νeff =
(5.73 × 10−5)2

(7 × 10−3)4

4
+ 0

= 5.5,

which truncates to νeff = 5.

(d) The t value for the 95% confidence interval for D based on five degrees of freedom is

found from the table in Appendix B to be t95%,5 = 2.57, so that k = 2.57.

(e) To calculate the coverage interval containing the true value of the area at the 95% level

of confidence, we write

u(A) =
(

∂ A

∂ D

)

u(D).

From equation (10.32)

∂ A

∂ D
=

π D

2
=

π × 0.253

2
= 0.397 mm,

so

u(A) = 0.397 × 7.6 × 10−3 = 0.0030 mm2.

It follows that the coverage interval containing the true value of the cross-sectional area

at the 95% level of confidence is (0.0503 ± 2.571 × 0.0030) mm2, i.e.

Cross-sectional area = (0.0503 ± 0.0077) mm2.

Exercise B

The volume, V , of a cylinder of length, L , and radius, r , is given by

V = πr2L .

Four measurements of the length of the cylinder and five of its radius are made.

The mean length is 15.3 cm with a standard uncertainty in the mean length of

0.1 cm. The mean radius is 3.85 cm with a standard uncertainty in the mean radius

of 0.02 cm. Use this information to determine

(a) the best estimate for the volume of the cylinder;

(b) the standard uncertainty in the best estimate of the cylinder’s volume, assuming that the

errors in the mass and radius measurements are uncorrelated;
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(c) the effective number of degrees of freedom of the measurand uncertainty using the

Welch–Satterthwaite formula;

(d) the coverage factor for the 95% level of confidence; and

(e) the coverage interval containing the true value of V at the 95% level of confidence.

Exercise C

n independent readings are obtained using a DMM. The standard deviation of the

values is 30 µV (microvolts). The DMM has a systematic error of −50 µV for the

particular range of values being measured. (Each reading is therefore increased by

50 µV). This systematic error has an estimated standard uncertainty of 10 µV on

six degrees of freedom. Consider two situations.

(1) Presence of systematic error.

(a) If ten readings are taken, and their mean calculated, find (i) the resultant standard

uncertainty of the mean reading; (ii) its effective number of degrees of freedom;

and (iii) the expanded uncertainty of the mean reading for a 95% coverage interval.

(b) Suppose that, in (a), the number of readings is doubled to 20. What are now the

values of (i), (ii) and (iii) above?
(2) Absence of systematic error.

(a) Repeat (1) (a) (ten readings), assuming that the DMM has no systematic error.

(b) Repeat (1) (b) (20 readings), again assuming that the DMM has no systematic error.

10.3.1 The effective number of degrees of freedom νeff can never exceed the

sum of the numbers of degrees of freedom of the inputs

With n inputs x1, x2, . . ., xn and standard uncertainties u(x1), u(x2), . . ., u(xn) on

ν1, ν2, . . ., νn degrees of freedom, respectively, we always have

νeff ≤ ν1 + ν2 + · · · + νn. (10.37)

An equals sign would appear in equation (10.37) when the variance terms are in

the same mutual ratio as the respective numbers of degrees of freedom:

c2
1u2(x1)

c2
2u2(x2)

=
ν1

ν2

,

c2
1u2(x1)

c2
3u2(x3)

=
ν1

ν3

,

and similarly for every pair of inputs. If all these conditions are satisfied, then

νeff = ν1 + ν2 + · · · + νn . This follows from Equation (10.21) and may be shown

by dividing both sides of the equation by (for example) c4
1u4(x1). These conditions

are satisfied extremely rarely, if ever. So the inequality in Equation (10.37) is in
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practice always observed: the effective number of degrees of freedom associated

with the uncertainty of the measurand is less than the sum of the individual numbers

of degrees of freedom associated with the uncertainties of the inputs.27

Equation (10.37) may be verified by algebraic manipulation of equation (10.21).

An alternative demonstration, using an electric analogue, is given in Appendix C.

10.4 Review

To determine the expanded uncertainty in a measurand, we need to know the ef-

fective number of degrees of freedom to be associated with the standard uncer-

tainty in the measurand. This number of degrees of freedom is obtained using the

Welch–Satterthwaite formula, for which we need to know in advance the standard

uncertainties in the inputs to the measurand and the numbers of degrees of free-

dom associated with them. The resultant effective number of degrees of freedom

gives us the coverage factor for a particular level of confidence, usually 95%. The

coverage factor multiplied by the standard uncertainty in the measurand gives the

expanded uncertainty in the measurand. In the next chapter we apply these methods

to the calculation of uncertainties in a selection of typical experiments carried out

in undergraduate laboratories.

27 It would be very surprising if the uncertainty of the measurand had more degrees of freedom than the sum
of the component degrees of freedom contributed by the uncertainties of the inputs. This would amount to a
metrological ‘free lunch’!



List 10.1. One thousand random numbers from a population with mean µ= 2.5810
and standard deviation σ = 0.0630.





List 10.2. The mean, standard deviation and 95% coverage interval for samples
consisting of four values drawn from the population in list 10.1.
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Case studies in measurement uncertainty

In this chapter we present four case studies based on typical undergraduate ex-

periments, involving the determination of best estimates of measurands, standard

uncertainties, expanded uncertainties and coverage intervals. For completeness, we

include a brief description of each experiment. The equipment required is inexpen-

sive or can usually be found in an undergraduate science laboratory. The account

of each experiment contains data obtained in an actual experiment.

We have not included a detailed introduction to each experiment, nor have we

indicated how each might be improved or ‘finessed’. The account of each experi-

ment is biased towards giving details of the data analysis such as the calculations

of standard uncertainties and coverage intervals. A more detailed analysis would

normally require consideration of the uncertainty in the calibration of instruments

used. For many undergraduate experiments such information is not available, and

therefore we have not included the contribution of the calibration uncertainty to the

combined standard uncertainty. At the end of the account of each experiment we

suggest practically based exercises related to the experiment.

11.1 Reporting measurement results

An account of an experiment, as presented in a formal report, may contain many

sections with headings such as introduction, materials and methods, results, analy-

sis and conclusion. With respect to the analysis of data, best estimates of particular

quantities obtained through experiment and by other means should be communi-

cated clearly, concisely, and in a manner that is useful to others. In particular, it is

necessary to provide an account of the uncertainty components and how they were

evaluated. Steps in the calculation of uncertainties should be sufficiently transparent

that the calculation of (for example) a standard uncertainty can be verified by others.

When calculating and reporting the best estimate of a quantity and uncertainty, we

should do the following.

191
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� Fully define the measurand. For example, if the electrical resistance of a metal wire is to

be determined, the temperature at which the resistance is measured is an essential piece

of information.
� State the best estimate of the measurand found by bringing together best estimates of

the particular quantities that contribute to the calculation of the measurand. The unit of

measurement of the measurand must be clearly stated.
� Describe the Type A and Type B evaluations of standard uncertainties that have been

carried out. Show how these evaluations have been merged in the calculation of a combined

standard uncertainty.
� Retain as many figures as possible in intermediate calculations, so that rounding errors do

not accumulate. Once the expanded uncertainty has been determined, the best estimate of

the measurand can be rounded to a ‘sensible’ number of significant figures. The analyses

in this chapter were carried out with the aid of Excel. Excel retains 15 digits internally,

and therefore it is assumed that rounding errors are negligible. We have chosen not to

show all 15 digits in the intermediate calculations in this chapter.
� Use the Welch–Satterthwaite formula to determine the effective number of degrees of

freedom, νeff. In order not to underestimate the coverage factor, k, νeff is rounded down

to the nearest integer.
� Show how νeff has been used along with the chosen level of confidence to calculate the

coverage factor, k.
� Quote the expanded uncertainty at the chosen level of confidence to two significant figures.
� State the coverage interval at the chosen level of confidence.

Advice regarding the calculation and expression of best estimates of measurands

and their uncertainties is put into practice in the following case studies. Errors in

replicate measurements are assumed uncorrelated, unless stated otherwise.

11.2 Determination of the coefficient of static friction for glass on glass

11.2.1 Purpose

The purpose of the experiment is to estimate the coefficient of static friction, µs,

for glass on glass as well as the standard uncertainty in the estimate of µs and the

coverage interval containing the true value of µs at the 95% level of confidence.

11.2.2 Background

The amount of force required to cause one body to slide over another depends on

the nature of the two surfaces in contact. Consider a force applied to a body in a

direction parallel to the surface on which the body rests. The force of static friction,

Fs, which acts on the body (in the direction opposite to the applied force) increases

in response to the applied force up to a maximum value, Fs,max, at which point the
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Glass slide 

Glass block 

qc

Figure 11.1. A glass slide on an inclined block of glass. When the angle of incline
of the glass block equals the critical angle, θc, the glass slide begins to slip.

body will slip. Fs,max, is given by1

Fs,max = µs N . (11.1)

N is the force perpendicular to the surface exerted on the body by the surface with

which it is in contact. µs is a dimensionless constant called the coefficient of static

friction, which depends on the two surfaces in contact. In this experiment, µs is the

measurand.

Typical values for µs are 0.1 for graphite on graphite and 1.5 for silver on silver.2

Our goal in this experiment is to determine µs for glass sliding on glass.

One method of determining µs for two surfaces requires that a body made from,

say, material A is placed upon another (usually larger) body made from material

B. The bodies are tilted until they reach a critical angle, θc, at which point body A

begins to slip. In this situation, it is possible to show that µs for the two surfaces in

contact is related to θc by the equation

µs = tan θc. (11.2)

Through the determination of θc, we are able to find µs.

11.2.3 Method

A glass slide was placed on a block of glass3 as shown in figure 11.1. The block of

glass was inclined slowly until, at the critical angle, the glass slide began to slip.

The critical angle was measured using a protractor with smallest scale interval of 1◦.

The block and the slide were returned to their starting positions and the procedure

repeated until six values of the critical angle had been obtained.

1 See Halliday, Resnick and Walker (2004), chapter 6.
2 See Serway and Faughn (2003), p. 101.
3 Both the glass slide and the glass block were cleaned thoroughly with detergent then rinsed with water. The

slide and the block were dried carefully.
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Table 11.1. Values of the critical angle for a glass slide

slipping on a glass block

xi (degrees) 48 46 38 39 46 40

11.2.4 Results

Table 11.1 shows experimental values obtained for the critical angle.

11.2.5 Analysis

The best estimate of the critical angle, θc, may be written

θc = X + Z , (11.3)

where X is calculated by taking the mean of values obtained through repeat mea-

surements. In the absence of systematic error, X is equal to θc. Z is the best estimate

of the correction which accounts for the effect of systematic error.

Determination of X and the standard uncertainty in X

X is the mean of the values in table 11.1, so that X = 42.83◦.

The standard uncertainty in X is based on a Type A evaluation of uncertainty. The

standard deviation of the values in table 11.1, s = 4.309˚. The number of degrees

of freedom in the calculation of s is one fewer than the number of data, i.e, ν = 5.

The standard uncertainty in X , u(X ), is given by

u (X ) =
s

√
n

=
4.309◦
√

6
= 1.759◦. (11.4)

The number of degrees of freedom associated with u(X ), which we write as νX , is

the same as the number associated with s, i.e. νX = 5.

Determination of Z and the standard uncertainty in Z

Several sources contribute to the best estimate of the correction, Z , including those

due to the calibration error and resolution error. In this experiment we limit our

determination of Z and the standard uncertainty in Z to consideration of the reso-

lution error only, since we do not have information regarding other sources of error

that may contribute to the correction term.

The correction due to resolution error alone could be either positive or negative.

Since neither sign is favoured, we take the best estimate of the correction to be

Z = 0. Using equation (11.3), it follows that θc = 42.83◦. The determination of the
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standard uncertainty in Z is not based on a statistical analysis, and therefore it is a

Type B evaluation of uncertainty.

In this experiment, the resolution, δ, of the protractor4 is δ = 1˚. The standard

uncertainty in Z , u(Z ), is given by5

u(Z ) =
δ

√
12

,

i.e.

u(Z ) = 0.289 × 1◦ = 0.289◦. (11.5)

Since the uncertainty in u(Z ) is zero, the number of degrees of freedom associated

with u(Z ) is taken to be very large, such that νZ → ∞ (see equation (9.18)).

The combined standard uncertainty

Inspection of equations (11.4) and (11.5) indicates that, in this experiment, u(Z )

is small compared with u(X ). It follows that u(Z ) could justifiably be neglected

in the determination of the combined uncertainty. However, for completeness, we

retain u(Z ) in the calculation of the combined standard uncertainty, u(θ c), to give

u2(θc) = u2(X ) + u2(Z ) = (1.759◦)2 + (0.289◦)2 = (1.783◦)2.

The effective number of degrees of freedom, νeff

To calculate νeff, we use the Welch–Satterthwaite formula6 which can be written in

this situation as

νeff =
u2(θc)

u4(X )

νx

+
u4(Z )

νz

. (11.6)

As νZ → ∞, equation (11.6) simplifies to

νeff =
u4(θc)

u4(X )

νx

=
(1.783)4

(1.759)4

5

= 5.3 (which truncates to 5).

Calculation of the best estimate of the coefficient of static friction

µs is found by substituting the best estimate of the critical angle, θ c = 42.83˚, into

equation (11.2) to give

µs = tan(42.83) = 0.927. (11.7)

4 With care it is possible to estimate the angle reliably to the nearest 0.5˚, in which case δ = 0.5˚. Here we use a
slightly pessimistic estimate of the resolution.

5 See section 5.5.
6 See section 10.3 for a discussion of the Welch–Satterthwaite formula.
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To find the standard uncertainty in µs, µ(µs), we use the relationship

u2(µs) =
(

dµs

dθc

u(θc)

)2

. (11.8)

The derivative7 dµs/dθc is evaluated at θ c = 42.83˚. For equation (11.8) to be valid,

it is required that u(θ c) be expressed in radians, i.e.

u(θc) = 1.783◦ = 0.031 11 rad. (11.9)

Differentiating equation (11.2) with respect to θ c gives

dµs

dθc

= sec2 θc. (11.10)

Substituting θc = 42.83˚ into equation (11.10) gives

dµs

dθc

= 1.859. (11.11)

Substituting values for u(θc) and dµs/dθc into equation (11.8) gives

u(µs) = 0.0579.

The expanded uncertainty, U (µs), at the 95% level of confidence is given by

U (µs) = ku(µs), (11.12)

where k is the coverage factor determined at a given level of confidence for a given

number of degrees of freedom. By applying equation (11.6), we found the effective

number of degrees of freedom to be νeff = 5.

The coverage factor, k, at 95% level of confidence for five degrees of freedom

is 2.57. Using equation (11.12), we find

U (µs) = 2.57 × 0.0579 = 0.149.

The coverage interval containing the true value of the coefficient of static friction

at the 95% level of confidence is therefore (rounding the expanded uncertainty to

two significant figures)

µs ± U (µs) = 0.93 ± 0.15.

11.2.6 Summary

The best estimate of the coefficient of static friction for glass on glass obtained in

this experiment is µs = 0.93.

7 This derivative measures the sensitivity of µs to θ c, and is an example of a sensitivity coefficient as described
in section 7.1.1.
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The standard uncertainty in the best estimate is u(µs) = 0.0579. The effective

number of degrees of freedom is νeff = 5, giving a coverage factor of k = 2.57 for

a 95% level of confidence.

The expanded uncertainty at the 95% level of confidence is U (µs) = 0.15.

The coverage interval for the 95% level of confidence for the true value of the

coefficient of static friction is 0.93 ± 0.15.

The value for the coefficient of static friction for glass on glass obtained in this

experiment compares with the value of 0.94 published for glass on glass.8

Experimental exercise A

1. (a) Use a smooth flat piece of wood to act as an inclined plane. Determine the critical

angle for a range of materials placed on the plane using the method described in

section 11.2.3. Suggested materials are rubber, wood, glass and copper (or another

metal).

(b) Determine the best estimate of the coefficient of static friction and the coverage

interval at the 95% level of confidence for each combination of materials in part

(a) of this question. Compare your value for the coefficient of static friction of the

material combinations with published values.

2. Investigate whether the coefficient of static friction is affected by surface smoothness.

To do this, take one smooth glass slide and another glass slide that has been scratched

using ‘wet and dry’ paper. Clean both carefully, then follow the method described in

section 11.2.3. Through your analysis of the data, can you establish whether surface

roughness is a factor that affects µs?

11.3 A crater-formation experiment

11.3.1 Purpose

The purpose of the experiment is to establish the relationship between the diameter,

D, of a crater formed in sand and the kinetic energy, E , of a small ball striking

the sand. In particular, the exponent, n, appearing in the equation, D = cEn is

found using the experimental data. In addition, the standard uncertainty in n and

the coverage interval at the 95% level of confidence are calculated.

11.3.2 Background

A crater is formed when a fast-moving object strikes the surface of, for example,

a solid planet. By studying the relationship between the diameter of the crater

and the kinetic energy of the impacting object, it is possible to discover which

8 See Serway and Faughn (2003), p. 101.
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D

sand

lamp

Figure 11.2. A crater formed when a steel ball strikes sand in a container.

energy-dissipating mechanism dominates (as examples, energy may be dissipated

by deformation of material, ejection of material from the crater and the creation of

seismic waves).

If the dominant process by which energy is dissipated is plastic deformation,

then it is predicted that the diameter of the crater, D, should be given by9

D = cE1/3. (11.13)

By contrast, if most of the incident kinetic energy is transferred to sand which

is ejected from the crater, then the crater diameter is predicted to be related to the

incident kinetic energy by the equation

D = cE1/4. (11.14)

In equations (11.13) and (11.14), c is a constant.

11.3.3 Method

Steel balls of masses 8.35 g, 28.16 g and 66.76 g were dropped in turn from heights

of between 25.5 cm and 150.0 cm into a container of 30 cm diameter filled with fine

dry sand. The heights were chosen after preliminary measurements, which indicated

that, owing to the relative insensitivity of the crater diameter to the kinetic energy

of the ball, a wide range of kinetic energies should be employed in this experiment.

The sand was spread evenly to a depth of 10 cm. A small lamp was used to

illuminate the sand in order to accentuate the contours of the crater. The diameter

of the crater, D, as defined in figure 11.2, was measured using a plastic rule. The

heights from which the balls were dropped were measured using a wooden metre

rule. The smallest intervals marked on each rule were separated by 1 mm.

After measuring the diameter of the crater formed by the ball, the sand was

shaken vigorously to ensure that the sand was not compacted. The sand was further

9 See Amato and Williams (1998).
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Table 11.2. Values of crater diameter for various values of kinetic energy, E

Mass, m(g) Height, h (cm) Kinetic energy, E(J) Crater diameter, D (cm)

8.35 25.5 0.020 867 4.0, 4.0, 3.9
28.16 25.5 0.070 372 5.4, 5.3, 5.0
66.76 25.5 0.166 833 6.4, 6.4, 6.2
66.76 68.0 0.444 889 8.2, 7.8, 7.9
66.76 150.0 0.981 372 10.4, 10.0, 10.1

shaken (less vigorously) until the sand in the container was levelled. Three replicate

measurements of crater diameter were made at each height for each ball used.

11.3.4 Results

Table 11.2 contains the values obtained for the diameter of the crater and the kinetic

energy of the incident ball. The kinetic energies in table 11.2 were calculated

assuming that all the potential energy possessed by a ball at height h is transformed

into kinetic energy before impact. In this case we can write10

E = mgh, (11.15)

where m is the mass of the ball and g is the acceleration due to gravity. The

acceleration due to gravity is taken as 9.80 m/s2, which is its value to three significant

figures in Sydney, Australia, where the measurements were made.

11.3.5 Analysis

The relationship between the diameter of the crater, D, and the kinetic energy, E ,

of the impacting ball may be written

D = cEn. (11.16)

Equation (11.16) can be fitted to data in table 11.2 using the technique of least-

squares.

In applying least-squares we assume that

(a) the error is confined to the dependent variable (here the dependent variable is the

diameter, D); and

(b) the size of scatter of the data about the line of best fit through the data should neither

increase nor decrease over the range of the predictor variable.

10 See Serway and Faughn (2003), p. 122.
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To verify the validity of assumption (a) for this experiment, we compare the frac-

tional uncertainty in E with the fractional uncertainty in D.

Uncertainty in the predictor variable, E

Through equation (11.15) we are aware that uncertainty in the best estimate of E

depends on the uncertainties in the

� mass of the ball,
� acceleration due to gravity and
� height of fall of the ball.

Another source of uncertainty, which is not quantified here, and is assumed neg-

ligible, is due to the conversion of some of the kinetic energy of a falling ball

into internal energy of the ball and the air due to air resistance (which causes the

temperature of the ball and the air to increase slightly).

Since the resolution of the balance, δ, is δ = 0.01 g, the standard uncertainty in

the mass of the ball, u(m), due to the limited resolution of the electronic balance is

given by

u(m) = δ/
√

12 = 0.01 × 0.189 g

= 0.002 89 g.

The fractional standard uncertainty in the mass in this experiment, u(m)/m, for

m = 8.35 g, is (0.002 89 g)/8.35 g = 3.46 ×10−4.

With respect to the acceleration due to gravity, g, we assume that g dif-

fers by no more than 0.01 m/s2 from the nominal value of 9.80 m/s2. Assum-

ing that the distribution of g can be represented by a Gaussian distribution with

standard uncertainty, u(g) = 0.005 m/s2, the fractional standard uncertainty in g,

u(g)/g =(0.005 m/s2)/(9.80 m/s2) = 5.1 × 10−4.

The uncertainty in the height measurement depends to an extent on the care taken

when releasing the ball, in addition to how well the sand is levelled in the container.

These uncertainties are likely to be greater than the uncertainty due to the limited

resolution of the rule used to measure h, and so the uncertainty due to the limit

of resolution of the rule is not considered in this analysis. We assume a Gaussian

distribution for each measurement of height with a standard uncertainty, u(h) = 1

mm. It follows that u(h)/h for h = 255 mm is 1 mm/255 mm ≈ 0.004.

The combined fractional uncertainty in the energy may be found by root-sum-

squaring the fractional uncertainties in mass, acceleration due to gravity and height;

this assumes that there is no correlation between the errors in the measurements

of any of these quantities. This gives u(E)/E ≈ 0.0045. Expressing the ratio as a

percentage gives u(E)/E× 100% = 0.45%.



11.3 A crater-formation experiment 201

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

ln[E(J)]

ln
[D

(m
)]

Figure 11.3. Variation of crater diameter with energy presented on a log–log scale.

Further calculations indicate that as the mass and height increase, so u(E)/E

decreases to about 0.001 (i.e. 0.1%) for m = 66.76 g and h = 150 cm.

Uncertainty in the dependent variable, D

Since three replicates of D have been made for each ball at each height, we may

estimate the fractional standard uncertainty using a Type A evaluation of uncertainty

at each energy. When the standard uncertainty, u(D), in the mean value of D in

table 11.2 is calculated for each value of kinetic energy, the fractional standard

uncertainty, u(D)/D, is found to be in the range 0.0084 to 0.0230. Expressed as a

percentage, this range is 0.84% to 2.3%.

As the fractional uncertainty in D is consistently greater than that in E , we

proceed to analyse the data using unweighted linear least-squares in which we

assume that error is confined to the dependent variable, D.

Least-squares analysis

To linearise equation (11.16) so that it is in the form y = a + bx , we take natural

logarithms of both sides of equation (11.16), giving11

ln D = ln c + n ln E (11.17)

y = a + b x (11.18)

i.e. ln c = a, and n = b.

The natural logarithms of D and E in table 11.2 are calculated and are shown

plotted in figure 11.3. An inspection of the graph of ln D versus ln E shown in

11 We have chosen to use natural logarithms, though logarithms to any base would be equally valid.



202 Case studies in measurement uncertainty

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

−3.4 −3.2 −3.0 −2.8 −2.6 −2.4 −2.2 −2.0

∆
y i

 =
 y

i
−

 y
i

 ˆ

ŷi

Figure 11.4. A plot of residuals indicating that the unweighted fit is valid.

figure 11.3 indicates that the linearisation has been successful. Included on the

graph is the line of best fit obtained using least-squares.

Fitting equation (11.18) to data in table 11.2 using least-squares12 gives a and b as

a = −2.3111, b = 0.2404.

It follows that n = b = 0.2404. Least-squares also gives the standard uncertainty

in b, u(b) = 0.005 90, so that u(n) = 0.005 90.

In order to establish whether an unweighted fit to data is appropriate, the residuals,

�yi , given by

�yi = yi − ŷi (11.19)

are plotted versus ŷi as shown in figure 11.4. Here yi = ln Di , where Di is the i th

value of the crater diameter as measured in the experiment. ŷi = ln D̂i , where D̂i

is the i th value of D calculated at E = Ei using the equation representing the line

of best fit, as found using least-squares.

The plot in figure 11.4 shows no obvious trend in the residuals. This supports the

assumption that the equation fitted to the data (i.e. equation (11.18)) is appropriate,

since a mismatch between equation and data often causes a trend to appear in the

residuals.13

Calculation of the expanded uncertainty in n at the 95% level of confidence

The expanded uncertainty, U (n), is given by

U (n) = ku(n), (11.20)

12 The Excel spreadsheet by Microsoft was used to fit equation (11.18) to the data in table 11.2.
13 See Devore (2003).
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where k is the coverage factor determined at a given level of confidence for a given

number of degrees of freedom.

Since a and b in equation (11.18) have been determined using 15 values, the

number of degrees of freedom used in the determination of the coverage factor is

that equal to that number of values − 2, i.e. ν = 13.

k at the 95% level of confidence for 13 degrees of freedom is equal to 2.16.

Substituting this value for k into equation (11.20) gives the expanded uncertainty as

U (b) = 2.16 × 0.0059 = 0.013 (to two significant figures).

The coverage interval for the 95% level of confidence for the true value of the

exponent in equation (11.16) is therefore

n ± U (n) = 0.240 ± 0.013.

11.3.6 Summary

Using the data in this experiment, the best estimate of the exponent in equation

(11.16) is n = 0.240.

The standard uncertainty in the best estimate is u(n) = 0.0059. The number of

degrees of freedom is ν = 13, giving a coverage factor of k = 2.16 for the 95%
level of confidence.

The expanded uncertainty at the 95% level of confidence is U (n) = 0.013.

The coverage interval for the 95% level of confidence for the true value of the

exponent is 0.240 ± 0.013.

The interval for n obtained through this experiment is consistent with the domi-

nant energy-dissipation mechanism being due to ejection of material on impact of

the ball with the sand, as suggested by equation (11.14).

Experimental exercise B

(a) Carry out this experiment using a coarse grade of sand.

(b) Determine the exponent, n, and the expanded uncertainty in the best estimate at the 95%
level of confidence. Is the coverage interval for the 95% level of confidence obtained

for n consistent with that expected for energy dissipation by ejection of material?

11.4 Determination of the density of steel

11.4.1 Purpose

The purpose of the experiment is to find the best estimate of the density, ρ, of a steel

ball bearing at ambient temperature. The experiment requires the determination of

the standard uncertainty in the best estimate of ρ and the expanded uncertainty at
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Table 11.3. Replicate values of the mass of the ball bearing

Mass of steel ball 8.348 8.349 8.351 8.350 8.349 8.350 8.351 8.349
bearing, xmi

(g)

Table 11.4. Replicate values of the diameter of the ball bearing

Diameter of steel ball 12.68 12.68 12.68 12.70 12.69 12.69
bearing, xdi

(mm)

the 95% level of confidence. The value for the density is compared with published

values for the density of steel.

11.4.2 Background

A fundamental property of any material is its density. If the mass of an object is

M and the volume it occupies is V , then the average density of the material, ρ, is

defined as

ρ =
M

V
. (11.21)

11.4.3 Method

A steel ball bearing was weighed using a top-loading electronic balance with a

resolution of 1 mg. Eight repeat measurements of the mass of the ball were made.

Six repeat measurements were made of the diameter of the ball bearing using

a micrometer. The smallest scale marks on the micrometer were separated by

0.01 mm. All measurements were made at (23 ± 1) ◦C.

11.4.4 Results

Table 11.3 contains the values obtained for the mass of the ball bearing obtained

through repeat measurements. Table 11.4 contains values for the diameter of the

same ball bearing measured at different positions around the ball.

11.4.5 Analysis

The volume, V , of a sphere of diameter D is written

V =
π D3

6
. (11.22)
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This allows equation (11.21) to be written in terms of M and D, i.e.

ρ =
M

π D3

6

=
6M

π D3
. (11.23)

Best estimates of mass and diameter are combined to find the best estimate of the

density of the ball bearing. To determine the standard uncertainty in the density, we

need to determine the standard uncertainties both in the mass and in the diameter

of the ball bearing taking into account Type A and Type B components.

Best estimate of mass and standard uncertainty in mass of the ball bearing

The best estimate, M , of the true mass is given by

M = Xm + Zm . (11.24)

Xm is the mean of repeat measurements of the mass. Xm = M in the absence of

systematic errors. Zm is a correction term introduced to account for the effect of

systematic errors.

Xm is the mean of the value in table 11.3, i.e.

Xm =

i=n
∑

i=l

xmi

n
=

66.797

8
= 8.3496 g.

The estimate of the population standard deviation, s, of the values in table 11.3 is

s = 1.06 × 10−3 g.

The standard uncertainty, u(Xm), in Xm is given by

u(Xm) = s/
√

n = 1.06 × 10−3 g/
√

8 = 3.75 × 10−4 g.

The number of degrees of freedom, νXm
, associated with u(Xm) is one fewer than

the number of values, i.e. νXm
= 7.

Determination of Z m and the standard uncertainty in Zm

The best estimate, Zm , of the correction depends on several quantities such as

calibration error and resolution error. In this experiment we limit our determination

of Zm and the standard uncertainty in Zm to consideration of the resolution error

only. The correction due to resolution error alone could be either positive or negative.

Since neither sign is favoured, we take the best estimate of the correction to be

Zm = 0. It follows that the best estimate of the mass, M , is

M = Xm + Zm = (8.3496 + 0) g = 8.3496 g. (11.25)
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In this experiment, the resolution is δ = 1 mg. The standard uncertainty in u(Zm),

due to the limited resolution of the instrument, is14

u(Zm) = δ/
√

12

= 1 × 0.289 mg = 2.89 × 10−4 g. (11.26)

Since the uncertainty in u(Zm) is zero, the number of degrees of freedom associated

with u(Zm) is very large, i.e. νzm
→ ∞.

The combined standard uncertainty in the mass, u(M)

The combined standard uncertainty in the mass, u(M), is found using the equation

u2(M) = u2(Xm) + u2(Zm) = (3.75 × 10−4 g)2 + (2.89 × 10−4 g)2

= 2.24 × 10−7 g2.

It follows that

u(M) = 4.73 × 10−4 g.

The effective number of degrees of freedom, νeff, for the combined standard

uncertainty in mass

To calculate νeff, we use the Welch–Satterthwaite formula,15 which can be written

in this situation as

νeff =
u4(M)

u4(Xm)

νxm

+
u4(Zm)

νzm

=
5.05 × 10−14

(

1.98 × 10−14

7

)

+ 0

=17.8 (truncating to 17).

Uncertainty in the diameter of the ball bearing

The best estimate, D, of the diameter of the ball is given by

D = Xd + Zd . (11.27)

Xd is the diameter of the ball obtained by taking the mean of repeat measurements

of the diameter. In the absence of systematic errors, Xd = D. The correction term

introduced to account for the effect of systematic error is Zd .

The mean diameter, Xd , is found using the data in table 11.4, i.e.

Xd =
∑

xdi

n
=

76.13

6
= 12.687 mm.

14 See section 5.5.
15 See section 10.3 for a discussion of the Welch–Satterthwaite formula.
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The estimate of the population standard deviation of the diameter values, s, found

using the data in table 11.4 is

s = 8.16 × 10−3 mm.

The standard uncertainty in the mean diameter, u(Xd), of the ball is given by

u(Xd) = s/
√

n = 8.16 × 10−3/
√

6 = 3.33 × 10−3 mm.

The correction due to resolution error alone could be either positive or negative.

Since neither sign is favoured, we take the best estimate of the correction to be

Zd = 0. This means that the best estimate of the diameter, D, is

D = Xd + Zd = (12.687 + 0) mm = 12.687 mm. (11.28)

In this experiment, the resolution of the micrometer is δ = 0.01 mm. The standard

uncertainty in u(Zd), due to the limited resolution of the instrument, is

u(Zd) = δ/
√

12

= 0.01 × 0.189 mm = 2.89 × 10−3 mm. (11.29)

Since the uncertainty in u(Zd) is zero, the number of degrees of freedom associated

with u(Zd) is very large, i.e. νZd
→ ∞.

The contribution to the combined uncertainty in the diameter due to other

Type B components, such as that which may be expressed in a calibration certificate

accompanying the micrometer, is not included in this analysis.

The combined standard uncertainty in diameter, u(D)

The combined standard uncertainty in the mass, u(D), is found using the equation

u2(D) = u2(Xd) + u2(Zd) = (3.33 × 10−3 mm)2 + (2.89 × 10−3 mm)2

= 1.94 × 10−5 mm2,

i.e. u(D) = 4.41 × 10−3 mm.

The effective number of degrees of freedom, νeff, for the combined standard

uncertainty in the diameter

To calculate νeff we use

νeff =
u4(D)

u4(Xd)

νXd

+
u4(Zd)

νZd

=
3.78 × 10−10

(

1.23 × 10−10

5

)

+0

= 15.3 (truncating to 15).



208 Case studies in measurement uncertainty

Best estimate of density of the ball bearing

The best estimate of the density of the ball bearing is given by equation (11.23).

Using the data in this experiment,

ρ =
6 × 8.3496

π × 12.6873
= 7.810 × 10−3 g/mm3 (equivalent to 7.810 × 103 kg/m3).

Standard uncertainty in the density of the ball bearing

Regarding the errors in the measurement of diameter and mass as uncorrelated, the

combined standard uncertainty in the density, u(ρ), can be found using

u2(ρ) =
(

∂ρ

∂ M
u(M)

)2

+
(

∂ρ

∂ D
u(D)

)2

. (11.30)

The partial derivatives in equation (11.30) are evaluated at the best estimate of mass

and diameter, i.e. for M = 8.3496 g andD = 12.687 mm, so that

(

∂ρ

∂ M

)

=
6

π D3
= 9.353 × 10−4 mm−3,

(

∂ρ

∂ D

)

= −
18M

π D4
= −

8.3496

(1069.2)2
= −1.847 × 10−3 g/mm4.

Substituting these partial derivatives into equation (11.30), together with the stan-

dard uncertainties in the mass and diameter, gives

u2(ρ) = (9.353 × 10−4 × 4.73 × 10−4)2 + (−1.847 × 10−3 × 4.41 × 10−3)2

= 6.65 × 10−11 (g/mm3)2.

It follows that u(ρ) = 8.16 × 10−6 g/mm3, which is equivalent to 8.16 kg/m3. Equa-

tion (11.30) can also be written

u2(ρ) = u2
1(ρ) + u2

2(ρ), (11.31)

where

u2
1(ρ) =

(

∂ρ

∂ M
u(M)

)2

, u2
2(ρ) =

(

∂ρ

∂ D
u(D)

)2

.

To find the 95% coverage interval of confidence for ρ, we need to determine the

coverage factor, k. We begin by using the Welch–Satterthwaite formula to find the

number of degrees of freedom, νeff, which can be written in this situation as

νeff =
u4(ρ)

u4
1(ρ)

ν1

+
u4

2(ρ)

ν2

. (11.32)
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Now

u2(ρ) = 6.65 × 10−11 (g/mm3)2

u2
1(ρ) =

(

∂ρ

∂ M
u(M)

)2

= (9.353×10−4× 4.73×10−4)2 = 1.96×10−13 (g/mm3)2

u2
2(ρ) =

(

∂ρ

∂ D
u(D)

)2

= (−1.847×10−3×4.41×10−3)2 =6.63×10−11 (g/mm3)2.

For the mass estimation, ν1 = 17. For the diameter estimation, ν2 = 15.

Substituting values into equation (11.32) gives

νeff =
(6.66 × 10−11)2

(1.96 × 10−13)2

17
+

(6.63 × 10−11)2

15

= 15.1 (truncating to 15).

The coverage factor, k, for 15 degrees on freedom, and at the 95% level of

confidence, is 2.13. It follows that the expanded uncertainty at the 95% level of

confidence is given by

U (ρ) = 2.13 × u(ρ) = 2.13 × 8.16 × 10−6 g/mm3 = 1.74 × 10−5 g/mm3.

The coverage interval for the 95% level of confidence for the true value of the

density is therefore

ρ ± U (ρ) = (7.810 ± 0.017) × 10−3 g/mm3.

11.4.6 Summary

The best estimate of the density of the ball bearing at 23 ◦C is ρ = 7.810 ×
10−3 g/mm3.

The combined standard uncertainty in the best estimate of the density is u(ρ) =
8.16 × 10−6 g/mm3. The effective number of degrees of freedom is νeff = 15, giving

a coverage factor, k = 2.13, for a 95% level of confidence.

The expanded uncertainty at the 95% level of confidence, U(ρ) = 1.74 ×
10−5 g/mm3.

The coverage interval for the 95% level of confidence for true value for the

density, ρ, can be written

ρ ± U (ρ) = (7.810 ± 0.017) × 10−3 g/mm3.

This is equivalent to

(7.810 ± 0.017) × 103 kg/m3.
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We may compare the value obtained here for the density of the ball bearing with

published values for the density of stainless-steels. While the largest component to

stainless-steel alloys is iron, several other elements may also be present, such as

nickel and chromium. The range of densities of stainless steel is normally in the

range 7.73 × 10−3 g/mm3 to 7.96 × 10−3 g/mm3 as published by the company

Goodfellow Metals.16

Experimental exercise C

An alternative way to determine the volume of a body that has density greater than

that of water is to immerse it in water contained within a measuring cylinder. The

volume of water displaced is equal to the volume of the body. Use this method

to find the volume of an irregular-shaped solid metal object. Measure the mass

of the object. Use your data to calculate the density of the object, the combined

standard uncertainty in the density and the expanded uncertainty at the 95% level

of confidence.

11.5 The rate of evaporation of water from an open container

11.5.1 Purpose

To determine the best estimate of the rate at which tap water in a shallow plastic

container evaporates per unit area in air at room temperature and to find the expanded

uncertainty in the best estimate at the 95% level of confidence.

11.5.2 Background

Evaporation is the process by which molecules escape from the surface of the liquid.

The evaporation rate of water depends on many factors including the temperature

and humidity of the atmosphere and the air velocity (Hisatake et al. 1995). Knowl-

edge of evaporation rate over a range of conditions of humidity, temperature and

rate of air flow can assist in accounting for certain changes in the Earth’s climate.

For example, measurements on evaporation rates have been used to support the

theory of ‘global dimming’ (Roderick and Farquhar 2002).

11.5.3 Method

A round container was placed on a top-loading electronic balance, which has a res-

olution of 1 mg. The balance was zeroed using the tare facility. The container

16 Details can be found at the Goodfellow web site at http://www.goodfellow.com.
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Table 11.5. Replicate values of the diameter of a container

Diameter (cm) 4.00 3.95 3.95 4.00 3.95 3.90

Table 11.6. Variation of mass of water in an open container as a function of time

Time (s) 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
Mass (g) 2.909 2.884 2.867 2.851 2.834 2.818 2.800 2.782 2.767 2.758 2.742 2.730 2.716

≈2 mm 

D

Top-loading balance

water 

Figure 11.5. A schematic diagram showing a method for measuring the evapora-
tion rate of water in an open container.

was then filled with tap water to an approximate depth of 2 mm as shown in

figure 11.5. The balance was situated in a draught-free environment. The mass

of water remaining in the open container was measured at time intervals of 300 s

using a stopwatch capable of measuring time intervals to a resolution of 0.1 s. The

temperature of the room was (23 ± 1) ˚C. The relative humidity of the room was

(65 ± 5)%. The diameter of the container was measured with callipers that have a

resolution of 0.05 cm.

11.5.4 Results

Replicate values of the diameter of the container are given in table 11.5.

Table 11.6 contains 13 values obtained for the mass of water remaining in the

container over a time interval of 3600 s.

11.5.5 Analysis

The expression for the evaporation rate, e

The best estimate of the evaporation rate per unit area, e, may be written

e =
b

A
, (11.33)
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where b is the best estimate of the evaporation rate and A is the area of the surface

of the water exposed to the atmosphere. A can be written in terms of the diameter,

D, of the vessel containing the water as

A =
πD2

4
. (11.34)

Equation (11.33) becomes

e =
4b

πD2
. (11.35)

The best estimate of the diameter, D, of the container is given by

D = X + Z . (11.36)

X is the mean of values of diameter obtained through repeat measurements. X

is equal to D, so long as systematic errors are small. Z is the best estimate of the

correction which accounts for the systematic errors.

The mean of the values in table 11.5 is X = 3.958 cm and the standard deviation

is s = 0.037 64 cm.

The standard uncertainty of the mean of the values in table 11.5 is given by

u(X ) =
s

√
n

=
0.037 64

√
6

= 0.015 37 cm.

Since s was calculated using six values, the number of degrees of freedom is

6 − 1 = 5, i.e. νX = 5.

The best estimate of the correction, Z , depends on several quantities, such as

calibration error and resolution error. In this experiment we limit our determination

of Z and the standard uncertainty in Z to consideration of the resolution error

only.

The limited resolution of the callipers of δ = 0.05 cm introduces a Type B com-

ponent of uncertainty. The correction due to resolution error alone could be either

positive or negative. Since neither sign is favoured, we take the best estimate of the

correction to be Z = 0. This means that the best estimate of the diameter, D, is

D = X + Z = (3.958 + 0) cm = 3.958 cm. (11.37)

The standard uncertainty associated with the limited resolution is given by

u(Z ) =
0.05
√

12
cm = 0.014 43 cm.

Since the uncertainty in u(Z ) is zero, the number of degrees of freedom associated

with u(Z ) is taken to be very large, i.e. νZ → ∞.
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Figure 11.6. Variation of mass of water with time in an open container.

The combined standard uncertainty in the diameter, D

This is calculated using

u2(D) = u2(X ) + u2(Z ) = (0.015 37 cm)2 + (0.014 43 cm)2 = 4.444×10−4 cm2,

so that u(D) = 0.021 08 cm.

The effective number of degrees of freedom, νeff, for the standard uncertainty in

the diameter

To calculate νeff we use the Welch–Satterthwaite formula, which can be written in

this case as

νeff =
u4(D)

u4(X )

νX

+
u4(Z )

νZ

. (11.38)

As νZ → ∞, equation (11.38) simplifies to

νeff =
u4(D)

u4(X )

νX

=
(0.021 08)4

(0.015 37)4

5

= 17.7 (truncating to 17).

Best estimate of slope of the mass-versus-time graph

Inspection of the graph of mass versus time, shown in figure 11.6, indicates that it

is reasonable to fit an equation of the form

y = a + bx (11.39)
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to the data in table 11.6. Here b is the evaporation rate in g/s. We make the assumption

that the error in the measurement of the time is negligible and that error is confined to

the mass measurement. This assumption that the error is confined to the dependent

variable allows the use of conventional least-squares in order to determine the

equation of the line of best fit through the data.

Analysis by least-squares17 gives the best estimate of the slope of the line in

figure 11.6, b = −5.269 × 10−5 g/s. The standard deviation of the slope is 1.216 ×
10−6 g/s and is the standard uncertainty in the slope, u(b).

Substituting b = −5.269 × 10−5 g/s and D = 3.958 cm into equation (11.35)

gives

e =
4 × −5.269 × 10−5

π × 3.9582
= −4.282 × 10−6 g/(cm2 · s).

The combined standard uncertainty in the evaporation rate

Regarding the errors in the slope of the line and diameter of the container as

uncorrelated, the combined standard uncertainty in the evaporation rate, u(e), can

be found using

u2(e) =
(

∂e

∂b
u(b)

)2

+
(

∂e

∂ D
u(D)

)2

. (11.40)

The partial derivatives in equation (11.40) are evaluated at the best estimates, b

and D.

Using equation (11.35),

∂e

∂b
=

4

π D2
=

4

π × 3.9582
= 0.081 28 cm−2,

∂e

∂ D
=

−8b

π D3
=

−8 × −5.269 × 10−5

π (3.958)3
= 2.164 × 10−6 g/(cm3 · s).

Substituting ∂e/∂b and ∂e/∂ D into equation (11.40), together with u(b) and u(D),

gives

u2(e) = (0.081 28 × 1.216 × 10−6)2 + (2.164 × 0.021 08)2

= 9.768 × 10−15 + 2.081 × 10−15

= 1.185 × 10−14 [g/(cm2 · s)]2.

It follows that

u(e) = 1.089 × 10−7 g/(cm2 · s).

17 The Excel spreadsheet by Microsoft was used to fit y = a + bx to the data in table 11.6.
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Equation (11.40) can be written

u2(e) = u2
1(e) + u2

2(e), (11.41)

where

u2
1(e) =

(

∂e

∂b
u(b)

)2

, u2
2(e) =

(

∂e

∂ D
u(D)

)2

. (11.42)

To find the 95% coverage interval for the evaporation rate per unit area, we find the

effective number of degrees of freedom using the Welch–Satterthwaite formula.

For this problem, νeff is given by

νeff =
u4(e)

u4
1(e)

ν1

+
u4

2(e)

ν2

. (11.43)

We have already determined

u2(e) = 1.185 × 10−14 [g/(cm2 · s)]
2
,

u2
1(e) = 9.768 × 10−15 [g/(cm2 · s)]

2
, ν1 = 11,

u2
2(e) = 2.081 × 10−15 [g/(cm2 · s)]

2
, ν2 = 17.

It follows that

νeff =
(1.185 × 10−14)2

(9.768 × 10−15)2

11
+

(2.081 × 10−15)2

17

=15.7 (truncating to 15).

The coverage factor, k, and expanded uncertainty

The coverage factor, k, for the 95% level of confidence, when νeff = 15, is k = 2.13.

The expanded uncertainty, U (e), for the 95% level of confidence is given by

U (e) = ku(e) = 2.13 × 1.089 × 10−7 g/(cm2 · s) = 2.320 × 10−7 g/(cm2 · s).

It follows that the coverage interval containing the true value of the evaporation

rate per unit area at the 95% level of confidence is

e ± U (e) = (−4.28 ± 0.23) × 10−6 g/(cm2 · s).

Further analysis

Close inspection of the line of best fit in figure 11.6 indicates that the scatter of

the data about the line is not random, but exhibits a definite trend. This is further

supported by the plot of residuals, yi − ŷi versus ŷi , where yi is the measured mass

remaining and ŷi is the calculated mass remaining as found using the equation
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Figure 11.7. Residuals obtained when fitting equation (11.38) to the data in table 11.6.

ŷi = a + bxi . The residuals are shown in figure 11.7. The trend from positive

to negative then back to positive residuals is an indication that there is a model

violation.18 That is to say, the equation y = a + bx is probably not optimum and

another equation (perhaps a higher-order polynomial) should be considered.

11.5.6 Summary

For the conditions prevailing in this experiment, namely air temperature of

(23 ± 1) ˚C, relative humidity (65 ± 5)% and the container holding the water iso-

lated from draughts, the best estimate of the evaporation rate for water per unit area

in the container is e = −4.28 × 10−6 g/(cm2 · s).

The standard uncertainty in the best estimate is u(e) = 1.089 × 10−9 g/(cm2 · s).

The effective number of degrees of freedom is νeff = 15, giving a coverage factor

of k = 2.13 for a 95% level of confidence.

The expanded uncertainty at the 95% level of confidence for the true evaporation

rate per unit area is therefore

U (e) = 2.3 × 10−7 g/(cm2 · s).

The coverage interval for the 95% level of confidence for true evaporation rate

is (−4.28 ± 0.23) × 10−6 g/(cm2· s).

Experimental exercise D

To what extent does the evaporation rate of water per unit area depend on the surface

area of the water? To investigate this, fill plastic containers of different areas with

water to the same depth. Keeping other variables as constant as possible (such as

18 See Kirkup (2002).
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ambient temperature and local air flow), measure the evaporation rate per unit area

as a function of area.

11.6 Review

In this chapter we have analysed data from experiments drawn from a range of

topics often forming an element of an undergraduate laboratory programme. We

have used methods described in the GUM to determine standard uncertainties,

effective numbers of degrees of freedom and expanded uncertainties at the 95%
level of confidence. In all the examples we have considered both Type A and Type B

contributions to the total uncertainty. Type B uncertainties were based upon the

limited resolution of the instruments used. In situations in which other uncertainty

information is available, such as that found in a calibration report or certificate, that

information should also be incorporated into the Type B uncertainty evaluation.
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Solutions to exercises

Chapter 2

Exercise A

(a) kg−1· m−3· s4· A2, (b) kg · s−3, (c) kg · m−1· s−2, (d) kg · m2 · s−2 · K−1,
(e) kg · m3 · s−3 · A−2, (f) kg · s−3 · A−2, (g) kg−1· s · A, (h) kg · m2 · s−2 · A−2,
(i) kg−1 · m−3 · s4 · A2, ( j) kg · m2 · s−2, (k) kg · m · s−2 · A−2, (l) kg · s−3 · K−4

Exercise B

(a) 7.7 nC, (b) 52 pJ, (c) 7.834 kV, (d) 13 Mm/s, (e) 350 µPa · s

Exercise C

(a) 6.75 × 10−2 N, (b) 3 × 103 kg, (c) 1.6 × 10−19 C, (d) 7.55 × 10−1 V, (e) 3.5 × 10−3 kat,
(f) 9.821 × 108 W

Exercise D

(a) 67.5 × 10−3 N, (b) 3 × 103 kg, (c) 160 × 10−21 C, (d) 755 × 10−3 V, (e) 3.5 × 10−3 kat,
(f) 982.1 × 106 W

Exercise E

(a) 3.56 m, (b) 1.4 × 103 J/C or 1.4 × 103 V, (c) 11.85 g, (d) 3.24

Chapter 4

Exercise A

(1) variance = 0.305 mg2, standard uncertainty = 0.552 mg
(2) variance = 906.7 nm2, standard uncertainty = 30.1 nm

Exercise B

(a) 11.85 mg, 0.17 mg, (b) 423 nm, 12 nm.

Exercise C

(a) 5.557 N, (b) 0.078 N, (c) 0.023 N

218
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Exercise D

(1) 38.8 cm/s, 2.0 cm/s
(2) 18.7 m/s, 1.3 m/s

Chapter 5

Exercise A

(1) 0.167, 0.180
(2) (b) 3, 11, 51

Exercise C

(1) 2.10 × 105 m, 58.09 m/s2, 2.0272 × 106 (m/s)2, 9.1 × 109 m2

(2) 9.801 m/s2, −3.400 × 10−6 s−2

Exercise D

0.012 m/s2, 3.1 × 10−7 s−2

Chapter 6

Exercise A

1034.66 mbar, 0.08 mbar

Exercise B

(a) −4.22 mV
(b) 3.24 × 10−5 V
(c) 3.6 × 10−5 V

Exercise C

Add 0.0154 V to the value indicated by the DMM.

Exercise D

+10.5 µg/g in the reported mass

Exercise E

52.8 ◦C

Chapter 7

Exercise A

(1) 46.5 Hz, 5.2 Hz
(2) 12.73, 0.16
(3) (a) expressions for ∂v/∂T and ∂v/∂µ: 1/(2

√
µT ) and − 1

2

√

T/µ3, respectively
(b) 49.32 m/s, 0.57 m/s

(4) (a) q2/(p + q)2, p2/(p + q)2, (b) 9.66 cm, 0.31 cm
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Exercise B

(a) c1 =
2x1x2

x3
, c2 =

x2
1

x3
, c3 = −

x2
1 x2

x2
3

(b) c1 = 2−3/2(x1x2)−1/2, c2 = −(x1/(2x2)3)1/2

(c) c1 = exp x2, c2 = x1 exp x2,

(d) c1 =
cos x1

sin x2
, c2 =

− sin x1 cos x2

sin2 x2

Exercise C

1064.6 �, 1.240 mA, 0.033 mA

Exercise D

322.5 nm, 2.8 nm

Exercise E

(a) 30.53 cm, 5.44 cm
(b) 0.10 cm, 0.068 cm
(c) 5.611
(d) 0.072

Chapter 8

Exercise A

0.246, 0.0547

Exercise B

(1) 5.8, 1.83, 3.36
(2) (b) 1

2 , (c) 0.3125

Exercise C

0.14 ◦C, 0.058 mL, 2.9 pF, 0.0029 s

Exercise D

(1) (b) 0, 0.845, (c) 0.0313, (d) 0, 0.345
(2) (a) 0.500, 0.289, (b) 0.500, 0.204

Chapter 9

Exercise A

(1) 50
(2) 0.25

Chapter 10

Exercise A

(1) (a) 9.075 L/mg, −1.53, (b) 0.0979 L/mg, 0.8157, (c) 0.272 L/mg, 2.27, (d) 8.80 L/mg
to 9.35 L/mg, −3.79 to +0.74
(2) 0.237 µV/V (yr)−1 to 0.267 µV/V (yr)−1
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Exercise B

(a) 712.5 cm3

(b) 8.75 cm3

(c) 6.4
(d) 2.45 for six degrees of freedom
(e) 691.1 cm3 to 733.9 cm3

Exercise C

(1) (a) (i) 13.8 µV, (ii) 14 degrees of freedom, (iii) 29.5 µV
(b) (i) 12.0 µV, (ii) 11 degrees of freedom, (iii) 26.4 µV

(2) (a) (i) 9.5 µV, (ii) 9 degrees of freedom, (iii) 21.4 µV
(b) (i) 6.7 µV, (ii) 19 degrees of freedom, (iii) 14.0 µV

The solution to this problem indicates that, with no systematic error, the expanded
uncertainty is reduced by more than 30% if the number of readings is doubled; but with the
systematic error, the reduction is only by slightly more than 10%.
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95% Coverage factors, k as a function of the number
of degrees of freedom, ν

Degrees of freedom, ν Coverage factor, k

2 4.30
3 3.18
4 2.78
5 2.57
6 2.45
7 2.36
8 2.31
9 2.26

10 2.23
11 2.20
12 2.18
13 2.16
14 2.14
15 2.13
16 2.12
17 2.11
18 2.10
19 2.09
20 2.09
25 2.06
30 2.04
40 2.02
50 2.01

100 1.98
Infinite 1.96
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Further discussion following from the

Welch–Satterthwaite formula

The effective number of degrees of freedom associated with the uncertainty of a measurand
can never exceed the sum of the degrees of freedom associated with the uncertainties of the
inputs.

This is a consequence of the Welch–Satterthwaite formula discussed in section 10.3.
For n inputs x1, x2, . . ., xn with standard uncertainties u(x1), u(x2), . . ., u(xn), sensitivity
coefficients c1, c2, . . ., cn and degrees of freedom ν1, ν2, . . . ,νn , the Welch–Satterthwaite
formula states that
[

c2
1u2(x1) + c2

2u2(x2) + · · · + c2
nu2(xn)

]2

νeff

=
c4

1u4(x1)

ν1

+
c4

2u4(x2)

ν2

+ · · · +
c4

nu4(xn)

νn

. (1)

From (1) it follows that

νeff ≤ ν1 + ν2 + · · · + νn. (2)

This may be shown by algebraic manipulation of (1), but a demonstration in terms of
electric circuits may be of interest.1 For convenience of illustration figure C.1 shows the
particular case of five inputs, n = 5, but the following argument applies in an obvious way
to the general case of n inputs.

In figure C.1(a) the batteries have voltages c2
1u2(x1), c2

2u2(x2),. . ., c2
nu2(xn), and are con-

nected across resistances ν1, ν2,. . ., νn . When a battery of voltage V is connected across a
resistance R, the power dissipated in the resistance is V 2/R. So the total power dissipation
P1 in all the resistances is, in figure C.1(a) (for n batteries and resistors),

P1 =
c4

1u4(x1)

ν1

+
c4

2u4(x2)

ν2

+ · · · +
c4

nu4(xn)

νn

. (3)

In figure C.1(b), all internal links are removed. The batteries are now all in series, connected
across all the resistances in series, and so the total power dissipation P2 in all the resistances
is

P2 =
[

c2
1u2(x1) + c2

2u2(x2) + · · · + c2
nu2(xn)

]2

ν1 + ν2 + · · · + νn

. (4)

Since conducting material has been removed in going from figure C.1(a) to figure C.1(b), and
the circuit in figure C.1(a) consists only of constant voltage sources and linear resistances,

1 The algebraic manipulation and the electric-circuit demonstration are both described in Frenkel (2003).
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Figure C.1. Electrical analogue to the Welch–Satterthwaite formula.

P2 must be less than P1. (If all the battery voltages are in the same mutual ratios as their
corresponding resistances, so that c2

1u2(x1)/[c2
2u2(x2)] = ν1/ν2, etc. then P2 is equal to P1,

and the equality in (2) holds. The internal links would then not have carried any current
anyway in figure C.1(a). If there were just two batteries and resistances obeying the ratio –
and therefore only one internal link – this particular case would be recognised as essentially
a Wheatstone-bridge circuit in balance, with no current in the link.) The fact that P2 is
less than P1 may be checked as plausible by considering simple circuits of batteries and
resistors.2 So if P2 < P1, then

[

c2
1u2(x1) + c2

2u2(x2) + · · · + c2
nu2(xn)

]2

ν1 + ν2 + · · · + νn

<
c4

1u4(x1)

ν1

+
c4

2u4(x2)

ν2

+ · · · +
c4

nu4(xn)

νn

. (5)

2 The fact that P2 < P1 may be proven rigorously in a more general context of a linearly conducting medium.
See, for example, Ferraro (1958), chapter 12.
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The right-hand side of (5) is also the right-hand side of (1). So (5) and (1) together give

[

c2
1u2(x1) + c2

2u2(x2) + · · · c2
nu2(xn)

]2

ν1 + ν2 + · · · + νn

<

[

c2
1u2(x1) + c2

2u2(x2) + · · · c2
nu2(xn)

]2

νeff

, (6)

or, on cancelling out the equal numerators in (6),

νeff < ν1 + ν2 + · · · + νn. (7)
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