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Abstract
Intermediate and advanced texts in electromagnetic theory frequently discuss
infinite plane waves propagating through conducting media. They find that the
magnetic field has a phase delay (relative to the electric field) that can be as
large as π/4 rad depending upon the ratio of the conductivity to the product of
the angular frequency and the permittivity [σ/(ωò)]. The expressions given to
calculate this phase delay are unnecessarily complicated and provide minimal
physical insight. We provide a simple expression for the phase delay and then
illustrate how to interpret it by first considering Ampere’s Law and Faraday’s
Law separately and then coupling them together. In the classroom, this pro-
vides an excellent educational opportunity for our students since we make
analogies between the phase shifts associated with Ampere’s Law and
equivalent phase shifts in driven oscillators and alternating current RC circuits.

Keywords: electromagnetic waves, conductors, phase delays, physics
education

1. Introduction

The study of infinite plane waves propagating through conducting media is standard material
in intermediate and advanced textbooks [1–8]. An interesting (but essentially explained)
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feature is that the magnetic field is delayed in time relative to the electric field. The typical
textbook treatment of this issue is primarily mathematical in nature with no physical inter-
pretation of this result. In this work, we will examine how to interpret this phase delay and see
how it is equivalent to other physical situations our students have seen.

In section 2, we will review a typical textbook presentation [1]. Those fundamentals
certainly lead to many more advanced studies. For example, Boyer contrasts the propagation
of electromagnetic waves into a conductor with that of velocity fields [9]. Vitela extends the
typical analysis and focuses on the wave polarization and the behavior of the Poynting vector
[10] while Shen and Chu provide illustrations exhibiting the range of behavior of reflectance
and penetration depth over a very large frequency range [11].

Conversely, this author has been unable to find any educational literature that is directly on
point. Li et al describe a software package for simulating electromagnetic wave propagation
in varying media [12]. This would certainly be a useful visualization tool but it is not focusing
on obtaining a better theoretical understanding. There are articles focusing on the under-
standing of electromagnetic plane waves propagating in a vacuum. For example, Ambrose
et al studied student misconceptions in that situation [13]. Similarly, Allred et al [14] provide
a qualitative explanation for why electric fields and magnetic fields in an electromagnetic
wave are in phase in a vacuum. They focus on the differential form of Maxwell’s equations
which is what we will do here as well. However, there do not appear to be any articles in the
educational literature related to the propagation of electromagnetic waves in conducting
media. This is an open area for investigation.

2. Typical textbook presentation

We have an infinite plane wave propagating in the z-direction. As it crosses the z= 0 plane, it
passes from a non-conducting medium into a conducting one. We will focus on the wave
properties in the conductor and are not interested in what fraction was reflected or transmitted
at the boundary. This medium is linear, isotropic and homogeneous and is described by
conductivity σ, permittivity ò and permeability μ. The free charge density is zero everywhere
(so ρf= 0) and the free current density is described by Ohm’s Law (so J Ef

 
s= ). Note that

the ‘f’ for free helps distinguish these charge and current densities from bound ones. We focus
on physical situations for which σ, ò and μ are all real since that is the case discussed in the
texts.

Let us begin by writing Maxwell’s equations. After substituting in the linear relationships
D E
 
=  , B H

 
m= , J Ef

 
s= and also ρf= 0, we get

E a0, 1
 

· ( ) =

B b0, 1
 

· ( ) =

B E
E

t
c, 1

   
( )ms m ´ = +

¶
¶



E
B

t
dand . 1

  
( ) ´ = -

¶
¶

We want to obtain the wave equation so we take the curl of (1d). After using the generic
vector identity E E E2

      
( ) ( · ) ´  ´ =   -  and substituting in (1a) and (1c), we

obtain the (scalar) damped wave equation, (2), where f (z, t) represents any component of E

.

Similarly, if we take the curl of (1c) and use the same vector identify (for B

) and then
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substitute in (1b) and (1d), we obtain (2) for any component of B

. Thus, (2) is the wave

equation for all six field components.

f z t

z

f z t

t

f z t

t

, , ,
0. 2

2

2

2

2

( ) ( ) ( ) ( )ms m
¶

¶
-

¶
¶

-
¶

¶
=

If we assume an infinite plane wave solution f z t f kz t, exp i0( ) [ ( )]w= - then (2) yields the
dispersion relation

k i . 32 2 ( )w m wms= +

Thus, k is complex and can be written as k= α+ iβ where β describes the energy absorption
by the conductor. If we substitute k= α+ iβ into (3) and equate real and imaginary parts, we
find that

2
1 1 and

2
1 1 . 4

2 2
1
2

1
2
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
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We now write E E kz texp i0

 
[ ( )]w= - and B B kz texp i0

 
[ ( )]w= - where E0


and B0


are

constant vectors. Since we lost information when we took the curl of (1c) and (1d), we must
substitute these field expressions back into Maxwell’s equations (1a)–(1d) to determine the
complete solution. When we do that we obtain

E B z B
k

E k z E B0, 0, , and . 5z z

   
ˆ ˆ ( )

w
w= = ´ = - ´ =

These are analogous to the corresponding equations for the non-conducting case so they still
tell us that the fields are transverse and that E


, B

and the propagation direction are mutually

perpendicular. However, since k is complex these expressions reveal that E

and B


are not in

phase.
If we polarize E


along x̂ and let E0 be a real field amplitude we can write

E E z t x B kE z t ye exp i and e exp i . 6z z
0 0

 
[ ( )] ˆ ( ) [ ( )] ˆ ( )a w w a w= - = -b b- -

Since we can also write k= |k|eiΩ where

tan 71( ) ( )b aW = -

the real fields are

E E z t x B k E z t ye cos and e cos . 8z z
real 0 real 0
 

( ) ˆ (∣ ∣ ) ( ) ˆ ( )a w w a w= - = - + Wb b- -

Equation (8) illustrates that the magnetic field is delayed in time by the phase angle Ω. In this
typical presentation, (4) and (7) describe that phase delay.

The textbooks frequently examine the good conductor/insulator limits. The ratio σ/(ωò)
characterizes how conductive the material is since it is essentially the ratio of the conduction
current to the displacement current. For a good insulator (σ= ωò), the conduction current is
negligible in (1c) and Ω= 0. Thus, as expected, the electric and magnetic fields are in phase
just like they are in a vacuum. Conversely, for a good conductor (σ? ωò) the displacement
current is negligible in (1c) and Ω= π/4 rad.

While many physical situations are described by σ= ωò or σ? ωò, there are ‘inter-
mediate’ conductivity cases where σ/(ωò); 1.0. For example, microwaves at 2.45 GHz are
successfully used in ablation therapy of cancerous tumors (liver, kidney, breast, etc) and they
have also been used to detect breast cancer [15, 16]. Additionally, Jiang and Georgakopoulos
[17] discuss the possibility of using 3–100MHz radio signals for communication between an
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above-ground antenna and robots/water quality monitoring equipment/etc in fresh water.
The lower end of that frequency range is in this intermediate conductivity range.

While (4) is useful for comparing the relative size of the real and imaginary parts of k, it
obscures the ‘source’ of the phase delay and provides minimal physical insight. In the rest of
this work, we will focus on demystifying this phase delay.

3. A simple mathematical expression for the phase delay

If one is primarily interested in the phase difference, there is a simple expression. Since
k= |k|eiΩ, we know that k2= |k2|e2iΩ. Thus, one can use (3) to determine 2Ω. Specifically,
tan 2 2[ ( )]wms w mW =  or

1

2
tan . 91 [ ( )] ( )s wW = - 

The inherent symmetries of the inverse tangent function reveal some (perhaps unexpected)
symmetry. Specifically, the phase angle when σ/(ωò)= 1

100
is just as close to zero (0.005 rad)

as the phase angle for σ/(ωò)= 100 is to π/4 rad. Equation (9) provides the (obvious) insight
that a non-zero conductivity is needed for there to be a phase delay. The presence of the
conduction current helps create this delay. In the next section, we will explore this in
significantly more detail.

4. How can we interpret that phase difference?

As we develop a better understanding of the source of this phase difference, we will discover
that there are features of this problem that match physical situations our students have
encountered in previous courses.

Let us think carefully about how our solutions satisfy Maxwell’s equations. Since these
transverse infinite plane wave solutions trivially satisfy both versions of Gauss’s Law, we can
focus on Ampere’s Law and Faraday’s Law. Specifically, Faraday’s Law implies that the curl
of E

is in phase with the time derivative of B


. One might conclude that E


and B


must be in

phase but that would be incorrect. While both the time and spatial derivatives involve i, the
spatial derivative also involves the complex k. Similarly, Ampere’s Law implies that the curl
of B

is in phase with the weighted combination of E


and its time derivative. The overall phase

comes from coupling the equations together.
To simplify our analysis, we will consider Ampere’s Law and Faraday’s Law separately

and then combine the results. This is an educational tool that will help us to better understand
this phase difference. If an instructor uses this in a classroom, they should make clear to the
students that the equations really are coupled together and that one always needs to check to
make sure that any solution satisfies all four Maxwell equations. Allred et al [14] illustrate the
potential risks by highlighting a common textbook problem covering Faraday’s Law which is
unphysical since Ampere’s Law cannot be satisfied. When we solve Ampere’s Law and
Faraday’s Law on their own (in sections 4.1 and 4.2 respectively), we will label the resulting
phase difference between the fields (if there is any) as ΩA (for Ampere’s Law) and ΩF (for
Faraday’s Law). Once we couple the equations together, the resulting overall phase will be
the average of those two phases (see details in section 4.3).
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4.1. What if Ampere’s Law were a standalone equation?

Let us solve Ampere’s Law (1c) with the electric field having been prescribed. In this
situation, we can treat k as a real constant. Let us use the same polarization as in (6) and let
E E kz t xexp i0


[ ( )] ˆw= - and B B kz texp i0

 
[ ( )]w= - where E0 is real. Substituting into

(1c), we find that

B
k

E y
i

. 100 0
 ( ) ˆ ( )ms wm

=
+ 

On the right-hand side in (10), the conduction current term has an i but the displacement
current term does not. Thus, there is a phase difference of π/2 rad between those two
‘sources’ leading to a phase difference between the fields. Its magnitude depends upon the
relative amplitude of the two terms, σ/(ωò), which is clearly the same ratio present in (4) and
(9). Since the coefficient of E0 in the displacement current term in (10) is real, it ‘wants’ the
magnetic field in phase with the electric field. Conversely, absorbing the i into the complex
exponential, we get B E kz texp i 2conduction 0


∣ ∣ [ ( )]w pµ - + . Thus, the conduction term

alone would lead to a magnetic field delayed by one-fourth of a period.
Students are frequently surprised by the previous statement. They expect the field to be in

phase with the conduction current. It is clear that they have trouble thinking beyond mag-
netostatics. We remind them that (1c) implies that the curl of the magnetic field (and not
necessarily the magnetic field) is in phase with the current density. In this time-dependent
situation, the curl of the magnetic field and the magnetic field are not in phase with each other.
Note that Allred et al make a related point when discussing electromagnetic waves propa-
gating in a vacuum [14].

So what happens when the conduction current and the displacement current are both
included? If we fix z and ignore the common phase from kz, we can rewrite (10) as a real
expression for the magnetic field

B t
E

k
t

E

k
t ysin cos . 110 0⎡

⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥


( ) ˆ ( )ms

w
mw

w= +


We then combine the sine and cosine in (11) to get

B t
E

k
t ycos where tan . 12A A

0
2 2 2

1


( ) ( ) ˆ [ ( )] ( )m s w
w s w=

+
- W W = -



Thus, Ampere’s Law would lead to the magnetic field delayed (relative to the electric field) by
a phase ΩA. Equivalently, this introduces the complex factor exp i A( )W into k2.

Since the magnetic field was determined by two sources one-fourth of a cycle apart, this
problem is mathematically/conceptually equivalent to many other physics problems our
students have seen. Ask your students if they can recall any matching physical situations. We
will briefly examine two here. Discussing either one in the classroom would help our students
transfer their prior knowledge and help them better understand this complex problem.

4.1.1. A driven oscillator. Let us drive a mass with two oscillating forces: one described by a
cosine and one described by a (negative) sine. The two forces are analogous to the conduction
and displacement currents in (1c). Newton’s 2nd Law and its solution are

m
v

t
F t F t v t

F

m
t

F

m
t

d

d
cos sin sin cos . 130 1

0 1( ) ( )w w
w

w
w

w= -   = +

The integration constant in v(t) has been set to zero and the solution is analogous to (11). The
velocity corresponds to the magnetic field while F0∝ σ and F1∝ ωò (ignoring the common
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factor μE0/k in (11) and mω in (13)). To complete the analogy for comparison with (12), we
rewrite this to illustrate the velocity’s phase delay (relative to the expected oscillation phase
due to F1):

v t
F F

m
t F Fcos where tan . 140

2
1
2

1
0 1( ) ( ) ( ) ( )

w
w f f=

+
- = -

4.1.2. A series alternating current RC circuit. We could also analyze a series alternating
current circuit with a resistor and a capacitor. If we write I t I tcosmax( ) w= , then Kirchhoff’s
loop rule tells us that the source voltage V(t) must be

V t V t V t
C

I t t I t R
C

I t I R t
1

d
1

sin cos . 15C R max max( ) ( ) ( ) ( ) ( ) ( )ò w
w w= D + D = + = +

In (15), ΔVC(t) and ΔVR(t) are positive when there is a voltage drop across them and the
integration constant has been set to zero. Equation (15) is also analogous to (11) where the
source voltage corresponds to the magnetic field and 1/(ωC)∝ σ and R∝ ωò. Calculating
the phase delay between the AC source voltage and the current is identical to calculating the
magnetic field phase delay relative to the electric field in the conductor. To complete the
analogy, we rewrite (15) to illustrate the phase delay of the source voltage relative to
the current:

V t I
C

R t RC
1

cos where tan 1 . 16max 2 2
2 1( ) ( ) [ ( )] ( )

w
w d d w= + - = -

4.2. What if Faraday’s Law were a standalone equation?

Notice that ΩA (12) is exactly twice Ω in (9). This reminds us that Ampere’s Law is not a
standalone equation. It is coupled to Faraday’s Law (1d). Thus, let us now solve Faraday’s
Law with the electric field having been prescribed where again we can treat k as a real
constant. Substituting the same expressions for E


and B


into (1d) we find that

B kE y. 170 0


( ) ˆ ( )w=

Since the coefficient of E0 is real, this is just like the effect of the displacement current in (10)
so we expect the magnetic field to be in phase with the electric field (just as they are when
σ= 0.) Effectively, Faraday’s Law introduces a factor exp i F( )W into k2 where ΩF= 0.

4.3. Now let us couple Faraday’s Law and Ampere’s Law

We now combine the results of 4.1 and 4.2. When Faraday’s Law and Ampere’s Law are
coupled together in (2), the phase of k2 is determined by the product of exp i F( )W and
exp i A( )W . Thus, the phase of k is determined by the average of the phases, Ω= (ΩF+ΩA)/2,
or equivalently

1

2
tan . 9 revisited1[ ( )] ( )s wW = - 

The analyses in 4.1 and 4.2 treated k as if it was real but it is complex in the final solution.
Once its true nature is included, both Faraday’s Law and Ampere’s Law clearly predict that
same phase difference between the fields.
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Recognizing that Ω= (ΩF+ΩA)/2 also helps us interpret the good conductor limit dis-
cussed earlier. When σ? ωò, ΩF= 0 and ΩA= π/2 rad so Ω= π/4 rad. Faraday’s Law alone
would result in the fields being in phase while Ampere’s Law would require a π/2 rad delay
so after coupling them that delay is π/4 rad. This is consistent with the electric field being
associated with the changing magnetic field and the magnetic field being associated with the
conduction current.

Additionally, nothing prevents us from including an imaginary component in σ and/or ò
and/or μ. This changes the value of ΩA but the overall phase delay is still Ω= (ΩF+ΩA)/2.
For example, if we let σ= σR+ iσI and leave ò and μ real, we get tan R I

1

2
1[ ( )]s w sW = --  .

5. Conclusion

In this work, we have analysed the phase delay of the magnetic field relative to the electric
field for an infinite plane wave propagating through a conducting medium. We treat Faraday’s
Law and Ampere’s Law as if they were standalone equations and then couple their effects
together. This method of treating coupled equations could be beneficial for students in many
situations. We show that calculating the magnetic field using Ampere’s Law is analogous to
calculating the velocity of a mass driven by two oscillating forces which are one-fourth of a
cycle apart and also to calculating the AC source voltage in a series RC circuit. Once we
couple it with Faraday’s Law, we obtain the correct phase relationship between the fields in a
very convenient form. This helps demystify the textbook expressions for the phase angle.
Since the textbooks often provide explanations for related features of this problem (e.g. why
the conduction current makes the magnetic field energy larger than the electric field energy),
this analysis supplements that and helps improve students’ physical understanding of this
problem.
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