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The Accuracy of Series and Parallel Connections of

Four-Terminal Resistors

JACK C. RILEY, SENIOR MEMBER, IEEE

Abstract-The range and accuracy of resistance calibration can
be increased by the use of series and parallel connections of four-
terminal resistors. Low value resistors can be permanently connected
in series and reconnected in parallel by using Hamon's' technique
to change resistance level without materially affecting resistance
accuracy. The resistors are connected in parallel by attaching short-
ing bars to one terminal at each end of each resistor and attaching
matched resistors in series with the other terminals. High accuracy
can be attained even though lead and connection resistance are
relatively high.

The purpose of this paper is to provide a theoretical base and an
error analysis to justify the use of the series-to-parallel transfer
technique at low resistance levels. The analysis uses a four-terminal
equivalent circuit suggested by Searle.' The accuracy of series and
parallel connections of groups of like resistors is investigated in terms
of the equivalent circuit. Procedures are developed for determining
the connection accuracy of a set of resistors in parallel or series.

RESISTANCE TRANSFER

jA CONVENIENT technique forconfidently transfer-
ring from one accurately known resistance value
to other levels is the use of equal value resistors

in series and parallel configurations. For example, ten
equal resistors in series have one hundred times the
resistance of the same resistors in parallel. It is easy to
see how an accurate change in level can be made with
perfect resistors having zero-resistance connections and
no leakage resistance paths. Unfortunately these condi-
tions can only be approached, not met. The real advan-
tage of the series-to-parallel connection change is found
when using less than perfect resistors. In fact, the series-
to-parallel technique is so accurate that even for the
most precise transfers the two configurations can usu-
ally be assumed to have the same accuracy. This tech-
nique will also work for very low value resistors if special
junction configurations and four-terminal connections
are used. High value resistance transfers can be accom-
plished accurately by using three-terminal techniques
and low leakage designs. Thus, a tremendous range of
resistance values can be accurately intercompared.
So far, this discussion has been qualitative. A quanti-

tative analysis of the accuracy limitations shows how
far the assumption of equal series and parallel accuracy
can be trusted. The analysis is broken into several
phases.

First, the accuracy of the series-to-parallel change is
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investigated assuming perfect connections between
resistors which are not quite equal in value.

Next, junction resistance is investigated and a true
four-terminal junction is proposed. The effect of junc-
tion inaccuracies is then investigated for both series and
parallel connections. The results of these investigations
are reduced to test measurements which can be used to
predict the expected accuracy.

Equal Resistors Connected in Series and Parallel
Our object is an investigation of the effect of combin-

ing nominally equal resistors which differ from each
other slightly. The nominal value of each resistor is R,
but each will deviate from R by A,, proportional parts.

Rn= R(1 + Asn) (1)

where Rn is the value of the nth resistor in ohms, R is the
nominal value of each resistor in ohms, and A. is the
deviation of R. from R in proportional parts.

For this part of the discussion we shall assume that
perfect junctions are possible and that the values of
individual resistors are the same whether connected in
series or parallel.

Series Value: If m of these nominally equal resistors
are connected in series (Fig. 1), the total resistance will

R, R2 R3 Rn Rm

Fig. 1. Resistors in series.

be nominally equal to mR but it will be slightly different
by an amount Aav. This can be shown algebraically

m
Rs= Rn

n-1

m

= R(1 + An)
n=1

=mR+R?XAn
n=l

(2)=mR(1+-lAnm
m n=l

where Rs is the total resistance of m resistors R,, in series,
in ohms,

I m
av =- E A, (3)

m n-I
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where A, is the average of the deviations of Rn from R,
in proportional parts. Thus, the series resistance can be
expressed in terms of its expected value and the average
deviation

Rs = mR(l + av). (4)

Parallel Value: If these same m resistors are recon-
nected in parallel (Fig. 2), the circuit equation will be

RI R2 tR3 o* tR *0 tRm

Fig. 2. Resistors in parallel.

more complicated, but it can be reduced to a similar
expression

Rp=
m 1

n=1 Rn

1
m 1

n-=l R(1 + An)

(5)

where Rp is the total parallel resistance of m resistors
Rn in ohms. In this form it is hard to see any usable
relation between the series and parallel equations. Two
series expansions will give the usable form and indicate
the difference between the series and parallel accuracy.
Since

1
-i-A-= t -+A2- 3+ * (6)
1 + A

The A, A2, and A3 terms can be collected to find the
contribution of each order

R m

- [_ /An2 -(i AflA)2]

m Mn=1 = -

+[' a((-A)(2/))
R: 'A 2 -1

=- {1 + Aa -[ n2 - av2]
+ [' 3 _a ma

1 m 3
+ E A\n -2a

m n=l==

PIn=l ) ] } (9)

If second- and higher-order terms are eliminated, the
most often used expression for the parallel connection
results:

R
RRp;:,- (1 + Aav).

m
(10)

The second-order, A2, terms exceed all of the higher-
order terms so they give a measure of the accuracy of the
simple expression for Rp given by (10). Manipulation of
the second-order terms brings out an interesting relation
between them and the sample variance of the resistance
values involved:

then

m 1

n-1 R(l + An)
1 m

= - E (1 - An +An2 - An3+ )
R n=l

m 1 m

_ _ 1- (,An -, An+ 'An 3 ) I

m 1 m 1 m n
2
- 'Aav2-m- 1 2 - 2Aav - A,,, + Aav

m n=l m n=l m n=l/
1 m

= E [An2 - 2,AavAn + lA.V2 1
m n=l

(7)

and

1 ~m
R 1 - -E n-A. 2 + An3-***)

R 1 m

--, + E (,n An 2 t+ - **
m m n=l

m2

+ E (.n An 2 + An3 - **)
-m n=l

+ -E (,An - Aa¢ 2 + An3 - ***) +***
-m n-I

(8)

1 m

= - E (An - Aav) 2.
m n=l (1 1)

The second-order terms combine to give the expression
for the sample variance, or square of the sample stan-
dard deviation, of the values of A. The parallel resistance
will be lower than predicted by (10) by the variance of
the deviation of the resistors from their average value.
Third- and higher-order terms will have an exceedingly
small influence on the value.
A simple example will show what effect these high-

order terms might cause. If ten resistors, five of which
are 0.1 percent high and five of which are 0.1 percent
low, are connected in parallel, the expected value can be
calculated. The conductance values will be 0.1001001

* percent high and 0.099900099 - - percent low.
These will combine to give a resistance that is low by
one ppm to the first eleven places. Equation (10) pre-
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dicts no error. Equation (11) predicts the one-ppm low,
the third-order expression in (9) predicts zero, and the
fourth-order term would add two parts in 1012, etc.

1 m 1 m

E2 (L\av - An)2 = -E (0 n)2

m n=1 10 n=l

1 m

= - > [(lo)(1o-3)2]
10 n=1

= 10-6

= I ppm (12)
lm 1
10 n2 -(5)-(103)3 - (5)(10-3)3J
10 n=1 10

=0 (13)
l m
->2L 1n4 +
10 n=l

rIm - 2 1

E 'A.2j =-[10(103)41 + 10-12

= 2 in 1012. (14)

For part-per-million accuracy of the series-parallel
transfer, the resistors must be alike within a sample
deviation of less than 0.1 percent. If this is the case, (10)
can be used safely, and the series and parallel values will
differ less than one ppm.

Four- Terminal Resistors

Greater resistance consistency and accuracy can be
realized if lead and contact resistances can be removed
from the measurement circuit. This can be done by
making separate voltage and current leads on each end
of a resistor. By measuring the voltage potentiometri-
cally so that no current flows through the potential
leads, the direct resistance value can be properly deter-
mined. Four-terminal resistors have a fixed value of
direct resistance even when current is being drawn
through the potential leads. Usually, the potential and
current leads can be interchanged in several ways with-
out changing the value of the direct four-terminal resis-
tance. These last two statements are easy to believe
when the resistor has long leads coming from small junc-
tions, but in the general case of four leads randomly
connected to a piece of conductor, some questions begin
to arise. To make four-terminal junctions these ques-
tions have to be answered. A simple equivalent circuit
for any four-terminal configuration can be derived by
using the superposition and reciprocity theorems. The
measurement characteristics of the equivalent circuit
are just as valid and much more obvious than those of
the true configuration.

Generalized Resistor: The resistor that is to be ana-
lyzed can be a network or a conductive blob. Four ter-
minals are connected to it. It can be heterogeneous and
nonisotopic, but it cannot exhibit any rectifying action,
and the resistivity of all its parts must be constant at all
voltages and currents to which they will be subjected.
At a constant temperature most metals meet these re-

quirements but many semiconductors do not. Such a
resistor is shown in Fig. 3.

Equivalent Circuit: The performance of this general-
ized four-terminal resistor is not very obvious. A more
easily analyzed simple equivalent circuit, which has
exactly the same characteristics, can be developed by
investigating all of the possible voltage and current
relations that can be measured at the terminals. This
can be done by supplying current to one terminal and
taking it out of another in each of the twelve possible
ways. If an equivalent circuit can be devised which will
give the same voltages at all four terminals for each
current condition, it will be an exact equivalent. This is
true because of the superposition theorem.

Superposition Theorem: The current that flows at any
point in a linear network, or the potential difference
which exists between any two points in such a network,
due to the simultaneous action of a number of EMF's
distributed in any manner throughout the network, is
the sum of the component currents at the first point, or
the potential difference between the two points that
would be caused by the individual EMF's acting alone.

Measurable Resistances: For each current condition
there are twelve measurable voltages, as shown in Fig.
4. Each of the six voltages shown represent two because
they can be measured in either direction. Twelve cur-
rents with twelve voltages each, result in 144 distinct
resistances which must be duplicated. This number can
be reduced sharply by noting that reversing the current
will reverse the voltage direction without changing any
resistance, and that changing the direction of measuring
the voltage will change its sign in such a way that again
the resistance value will be preserved. These considera-
tions leave us with the thirty-six measurable resistances
shown in the six equivalent circuits of Fig. 5. The four
subscripts on each resistor are: first, the terminal that the
current enters; second, the voltage reference termi-
nal; third, the voltage measurement terminal; and
fourth, the terminal that the current leaves. Many of
these thirty-six resistors are alike.

Reciprocity Theorem: If an EMF of any character
whatsoever located at one point in a linear network
produces a current at any other point in the network,
the same EMF acting at the second point will produce
the same current at the first point. The reciprocity
theorem allows us to interchange the voltage and cur-
rent terminals. Resistors with the inner and outer sub-
scripts interchanged will be the same. Also complete
reversal of the subscripts indicates that both the current
and voltage are changed and, therefore, there is no
change in the resistance value. For example,

RABCD RDCBA - RBADC - RCDAB. (15)

These considerations leave the twenty-one unique resis-
tances shown in Fig. 6. Each of the missing ones is just
like one of these twenty-one. Each of the six equivalent
circuits has only three unique resistances. The other
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Fig. 3. Generalized four-terminal resistors.

RAABD RABCD RACDD RAACD RABDD RAADD

RAABC RABDC RADCC RAACC RABCC

RADCe RAn RADBB RAABB

RBDCC RBBDC RBBCC
RBCDD RBBDD

RCCDD

Fig. 6. Unique resistances.

RAABD RA RCCBD: RC

RBBAC = RB RACDD = RD

RABCD: C

RABDC = D

Fig. 4. Voltages for each current.

R-RAB RABDD RBACCRAACD RBBDC

RBRC CA- R

-RAABD-.LRABCD-FRACD -RBBC- LRBADC-SR90CC-

RAADD RCC

RABCC RBADDDRAADC RBBCD -

-RAAC- .LRABDC URADCC -RBBAD- ~RBAC- RBCDDG~~~~~~~~~~~R RBC3
RAACC RBBDD

RADBB RCBDDRAACB RCCAD

RAADB-RADCB RAB -RCCDtRBDt~CD

Fig. 5. Six equivalent circuits.

three are made of combinations of those three. For
example,

RAACD = RAABD + RABCD. (16)

Making these substitutions leaves us with only six inde-
pendent resistances. This implies that a six resistor
equivalent circuit might be possible. The simplest one

which will work is a tetrahedron with a resistor along
each edge. The circuit suggested by Searle2 will be used
instead because it is more convenient to use in later
calculations. To work toward the desired circuit six
resistance values will be chosen, as shown in Fig. 7.
These six resistances can be used to make all of the
resistances in the six equivalent circuits of Fig. 5. This is
shown in Fig. 8.
A Single Equivalent Circuit: The circuit of Searle is

shown in Fig. 9. This circuit with the values indicated
will give all of the values shown in Fig. 8. The values of
Fig. 8 will give the values in Fig. 5 which can be used in
turn to represent all of the possible measurements on

a four-terminal circuit. Thus, the circuit of Searle will
represent the four-terminal unit exactly. In addition,
three circuits can be chosen from Fig. 8 which permit

Fig. 7. Six independent resistances.

B R

RA R

RA+D C- R +D

R R

0Srtm s i r

RIC
RA R

:~~~~~~

Fig. 9.Sixur-ermistnceakealrsisto equivalent circuits.

I I

direct measurements of the six resistance values shown
in Fig. 7. The first, third, and fourth circuits of Fig. 8 are
suggested.
A Four-Termi-nal Standard Resistor: The four-termi-

nal standard resistor is a special case of the generalized
unit of Figs. 3 and 9. The direct resistance D is the one
of interest, and the cross resistance C is so small that it
can be neglected. As C approaches zero the equivalent
circuit approaches that of Fig. 10. With this circuit it
makes no difference whether the voltage and current
leads are reversed at one or both ends. Searle' investi-
gated the design of current shunts to find when the
equivalent circuit of Fig. 10 could be used. To make the
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D

g FRD Rc et

Fig. 10. Four-terminal standard resistor.

IA

l%O.l%i00 10 I 0.W I

2 3 4 5

x

Fig. 11. Resistance change caused by changing voltage and current
terminals at one end.

analysis he chose a "worst case" configuration which
could be mathematically analyzed and also provide
useful information for predicting the behavior of an

actual resistor. He chose a flat ribbon of resistance ma-

terial, as shown in Fig. 11. Normal operation would be
with current flowing from D to C, using A and B as

potential leads. He investigated the change in potential
at B when the current was changed to flow from A to C.
If the current remains the same in both cases, this
change at B is the only change in the voltage across the
direct resistance. The voltage from A to C with current
entering at D is the same as the voltage between D and C
with the current entering at A because of the reciprocity
theorem. Thus, the change in resistance is proportional
to the change in the voltage at B when the current is
moved from A to D. For one ppm the resistor need only
be four times as long as it is wide. The values shown are

voltage change in proportional parts of the voltage drop
along a length of the ribbon equal to its width and carry-

ing the same current as that entering A or D. For a

cylinder, such as a piece of wire, the resistance change
will be even smaller. If there is any question about the
change it can be easily measured. From the circuit of
Fig. 9, the change can be found by measuring the cross

resistance C. The cross resistance is the ratio of the volt-
age between terminals B and C to the current entering A
and leaving D. This measured cross resistance will be the
amount of the difference between the four-terminal
resistances measured with the current and potential
leads at one end, first normal and then interchanged. No
matter what the resistor configuration, C will be the
same whether the interchange is made on one end or the
other. These results can be verified by examining Fig. 8.
A Four-Terminal Junction: It would often be desir-

able to have four wires emerging from exactly the same
point electrically. Fortunately, this can be done to any
desired degree of precision with finite and rather simple
junctions.
A four-terminal junction results when both the cross

and direct resistances of the equivalent circuit are zero.

If current can be passed between two of the four
terminals without producing a voltage between the
other two, in all possible ways, the unit is a four-termi-

Fig. 12. Four-terminal junctions.

Fig. 13. A four-terminal junction.

nal junction. Actually, any two such measurements
which show that C and D are both zero are sufficient.
The equivalent circuit for such a junction and some
physical arrangements for realizing it are shown in Fig.
12. A practical four-terminal junction used in the ESI
Model SR 1010 Resistance Standard is shown in Fig. 13.
The direct and cross resistances of these junctions are
less than 0.1 ,uQ. This is the resistance of about one one-
thousandth of an inch of number ten copper wire. The
notch in the end of the junction can be filed to make the
cross and direct resistances even smaller. Hamon' de-
scribes another practical configuration consisting of a
cylinder with one coaxial lead and three equally spaced
radial leads.

Four-Terminal Resistors in Series
If a group of resistors are connected in series by four-

terminal junctions, any series combination can be mea-
sured by four-terminal techniques. If the junctions are
truly zero-resistance four-terminal junctions, the series
resistances will be sums of the individual resistances. If
this is true the group can be used as a resistance transfer
device. Individual resistances can be measured and their
sums calculated. The sums can then be used as known
standards at other resistance levels.
The accuracy of two resistors in series is investigated

by means of the circuit of Fig. 14. Here, two resistors are
connected by a four-terminal junction which is indi-
cated by its equivalent circuit. This circuit can be ana-
lyzed to see the difference between four-terminal mea-
surements of the series resistance and the sum of the two
individual resistances. In the series measurement the
center resistances combine in parallel to give the circuit
shown in Fig. 15. For the individual measurements, the
center resistances form delta circuits which can be re-
placed by equivalent wye circuits to give the results
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I ~~ ~ ~ ~ ~ ~ ~ ~

ICD ID

Fig. 17. Measuring C and D.

Fig. 14. Two resistors connected in series by a
four-terminal junction.

2 R C+2 6+D

RA_Jf5D RC-J
/

3

RI + RA C+D RC + R2

Fig. 15. Series measurement.

RB+D RB+C

25) RD+C RD+D 6

Fig. 16. Individual measurements.

shoxvn in Fig. 16. The only difference between the series
measurement and the sum of the individual measure-
ments is the sum of the cross and direct resistance values
of the four-terminal junction. These values can be mea-
sured to find whether or not they can be ignored. If they
are large enough to be a problem the measured values
can be used for making a correction. The measurement
circuits for C and D are shown in Fig. 17. The measure-
ments can be made by the volt/ampere method or
directly with a Kelvin bridge.
There are other connections for making this same

measurement. The plus battery lead can be connected
to the same terminal for both measurements. The minus
voltmeter lead does not need to be moved either. If the
values of C and D are going to be used for corrections,
the polarity of the voltage and current must be ob-
served. The polarity shown is for a positive value of
resistance, but the four-terminal resistance measured is
quite likely to be negative. Of course, reversing both
current and voltage directions results in the same resis-
tance polarity. If the measurement is being made with a
Kelvin bridge it will be impossible to balance the nega-
tive resistance. If trouble is encountered, reverse the
potential leads and try again.

If a group of resistors is connected in series by four-

Fig. 18. Resistors connected in series by five-terminal junctions.

terminal junctions, each junction will contribute its
values of cross and direct resistance to the series mea-
surement but not to the individual measurements. If
each cross and direct junction resistance is less than
some limiting value M, the difference between the sum
of the individual measurements and the series measure-
ment can be expressed by

- M(m-1)-
mR 1 + Aav- 2

L Rm j

- M(m-1)-
<Rs<mR= 1-+Fav+ 2 .

L Rm
(17)

If ten 10-ohm resistors are connected with junctions
like those of Fig. 13 for which M is 2 ,uQfl, the resulting
series resistance will be given by

F S )X 10-7(10 - 1)
(10) (Io) 1 +Aav + 2 10(10) ]

= 100[i + Aav ± 0.09 ppm], (18)

where A,av is found from individual measurements of the
resistors. If greater accuracy is needed the individual
values of C and D for the junctions can be measured and
used to find a much closer value of the series resistance.

Five-Terminal Junctions: If a series of four-terminal
resistors does not have to be connected in parallel a
much simpler and more reliable junction can be made.
By making three connections to a connecting conductor
that is several times as long as it is wide the center
junction point will not move a measurable amount when
the individual resistances are measured, as shown in
Fig. 18. The series combination will be given very accu-
rately by the sum of these measurements.
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Fig. 19. Resistance standard with shorting bars and network.

Four- Terminal Resistors in Parallel

Four-terminal junctions and special four-terminal
connections can be combined to make parallel connec-
tions to four-terminal resistors in a way that produces
almost no connection error. Hamon' has described such
a resistance device. The ESI model SR 1010 resistance
box connected by the PC 101 parallel compeftsation net-
work and SB 103 shorting bars shown in Fig. 19 is
another. Confidence in the use of this simple system can
be gained by analyzing the source of possible errors and
determining their expected magnitude.

Parallel Connection with Four-Terminal Junctions: If
two resistors are connected by a four-terminal junction
and if it is assumed that the other ends of the resistors
are connected to perfect junctions, the circuit of Fig. 20
will result. This circuit can be analyzed to find the
difference between the measured parallel resistance and
the desired parallel combination of the two measured
resistances. Assuming no error at the other end, the first
step in the analysis is to change the delta circuit of the
center junction resistors into an equivalent wye, as
shown in Fig. 21. The resulting circuit is shown in
Fig. 22. The parallel resistance will be determined by
assuming that a current enters at B and leaves at T.
The measured resistance is the voltage E from D to T
divided by this current. The voltage at D will be the
same as though an infinite impedance divider had been
connected between F and G and set as shown. This can
be seen from Fig. 20. The voltage from the equivalent
wye junction to T is V. The currents I, through R1 and
I2 through R2 can be found in terms of V.

V

RI + RA + D

(19)12 = V
R2 + Rc + C

and combined to give the total current I.

I = V (R 1
= vR±RA ±D± R2 ±R0 ±C).

Fig. 20. Two parallel connected resistors joined
by a four-terminal junction.

2(C-,rCD) @2(D S aD)

6x

Fig. 21. Delta-wye transformation of junction center.

Fig. 22. Equivalent parallel circuit

Thus, the voltage of F and G can be found, and finally
E can be determined,

IlV/D(Rl+RA - I/CD) +I2VC(R2+Rc- v\CD)
-,/C+\ID-

to give the total parallel measured resistance

D R1+RA-V/CD R2+Rc- /CD

Rl+RA+D R2+Rc+C
Rp=

(k/V+V/)(Rl+RA+D R2+Rc+C)
CD

(R1+RA)(R2+Rc) (R1+RA)(R2+Rc)
Rl+RA+R2+Rc 1+ C+D

Rl+RA+R2+Rc

(20)

(21)

The individual resistance measurements are the same
that they were for the series case. They combine in
parallel to give the desired resistance

264



RILEY: FOUR-TERMINAL RESISTORS

(R1 + RA)(R2 + RC)
R1 + R2 + RA + Rc

(22)

The difference between (21) and (22) is the error caused
by an imperfect junction.

R, RQ = - __RQ(C + D) + 2CD
R1 + R2 + RA + Rc + C + D

(23)

Resistances C and D are usually quite small so their
productcan be ignored. If the individual measured values
are almost alike, (23) reduces to

RP- RQ - -
C+ D

2
(24)

for practical values. The resulting deviation of the
parallel measurement from that predicted by the indi-
vidual measurements in terms of the value of the indi-
vidual resistors, R, being connected in parallel is

RPp RQ(1- C)- (25)

If neither C nor D exceeds M in value, (10) and (25) can
be combined to give

R/M
RPp - I1 + 'Aav + R)'(26)

where Rp is the measured parallel resistance, in ohms,
R is the nominal value of resistors connected in parallel,
in ohms, 'av is the average deviation of individual
measured resistance values from nominal value R, in
proportional parts, and M is the largest junction error,
in ohms. Thus, the error resulting from the parallel con-
nection of two resistors, which are already connected in
series by a four-terminal junction, will be the ratio of
the sum of the direct and cross resistances of the junc-
tion to twice the value of the individual resistors. For
two 10-ohm resistors with M equal to 2 ,vfQ, the parallel
connection error would be five parts in ten to the
eighth. Thus far, it has been assumed that the opposite
ends of the series pair were connected perfectly. This
connection is investigated next.

Parallel Connection With Shorting Bar and Network:
The second problem in combining a group of four-
terminal resistors in parallel is the connection when the
resistors are not already joined by a four-terminal junc-
tion. Somehow leads must be taken from all of the re-
sistors to the current and potential terminals of the
measuring circuit. The resulting circuit for joining tw"To
resistors, assuming that they already have a perfect
junction on one end, is shown in Fig. 23. From this cir-
cuit the equation for the measured four-terminal re-
sistance of the parallel combination can be derived in

Fig. 23. Two resistors in parallel.

much the same manner that was used for the paralleling
junction. The resulting parallel resistance is given in

ERROR TERM

(RRR2) RH RF -R_ RE) 1

RpI2 1+ R1)(R2 RI

1R ~2 L(RE+RF+RG4R \Ri*R2 (RE+R+RG)(R 4}R)J( RE-+RRF+RGN

R' RE RF RG RH R R2 RE RG

R2 RF RH

For convenience in understanding their influence,
equivalent circuits have been drawn for appropriate
parts of the equation. The parallel combination of R,
and R2 is the desired result. The right hand part of the
equation should be as near zero as possible. As Wenner3
points out, this can be accomplished with the connection
resistors in either of two ways. If RH iS to R2 as RF is to

R1, the entire right-hand expression will disappear. Also
the ratios of RG to R2 and RE to R1 can be chosen to

remove the term. Also, if RH and RF or RG and RE
approach zero, the right-hand ternm will vanish leaving
the desired resistance. Hamon' uses both effects. He
makes RF and RH as small as possible, and matches RE

and RG. This reduces the error as the product of the
two effects so that extremely high accuracy results from
moderate corrections by each technique. If the small
resistors are matched too, even greater accuracy is
achieved. Equation (27) can be simplified considerably
by setting limits on the resistance values of the low re-

sistance leads and on the matching of the other two

leads. Then (28) can be used to find the expected
accuracy:

R j?2 _1

R, + R 4 /(R

RH RF << R1, R2, RE, RG

RE RG(1 + 6)

Ri R2(1 + A)

R,i R2 ; R. (28)

3F. J. Wenner, NBS Sci. Papers, vol. 8, 1912, p. 575.

(27)
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The deviations represent the imbalance in proportional
parts of the two connecting resistors and of the resistors
being connected in parallel. If two resistors are con-
nected together with a shorting bar and matched re-
sistors on one end and a four-terminal junction on the
other, as shown in Fig. 24, all of the first-order error
terms can be shown as

Fig. 24. Resistors in parallel.R A LM RF ( )J
RPU2 1,1+2 + -R 4RJ (29)

Multiple Four- Terminal Resistors in Parallel: The ac-
curacy of the calculated parallel resistance of a group of
nominally equal resistors is investigated by a perturba-
tion technique. The effect of changing one lead resistor
and one shorting bar resistor can be investigated with
the circuit of Fig. 23 and (27). For the analysis, resistor
R1 is one of the resistors connected in parallel. Resistor
R2 is the parallel combination, R/(mr- 1), of all of the
rest of the resistors. Resistor RE is one network resistor
and RG is the parallel combination of all the others. Re-
sistor RF is one shorting bar resistance and RH is the
parallel combination of the rest. RH is assumed to be
zero. This results in the circuit of Fig. 25 and

R2(1+ A)
R

Fig. 25. Equivalent circuit for several resistors connected in parallel.

P=

(m- 1) [R(1 A+/) +-]
Fig. 26. Ten four-terminal resistors in parallel.

x 1+

X_

RR(ll+/A)
(M-1) [RN(1+a)+rRi+RF]

RN RN(1+8)]
_ R R(1+A)_

R_ [RN(+ R)N+ RF

R(1+A)+ 1 + RN
M1 RN

RN(1+6)+ 1+RF
rn-1

By assuming that the shorting bar resistance is very
low and that the resistor deviations are small, (30) is
approximately given by

R A m- I /RF
Rp- I+-+ (-)]. (31)

m _ m m2 R

If

RF <<R, RN

1 A, a.

If each resistor contributes two errors of this magnitude
then m resistors connected in parallel, as shown in

Fig. 26, would have less than the error indicated by

R [- I /R
RP-:- Il+ av+2 -(A\ - 6) .

m _ m \R/
(32)

Rp is the measured parallel resistance in ohms, R is the
nominal value of each resistance being connected in
parallel in ohms, m is the total number of resistors con-
nected in parallel, Aav is the average deviation of resistors
being connected in parallel, RF/R is the ratio of largest
shorting bar resistances to resistance of each resistor
being connected in parallel, and a is the greatest devia-
tion of network resistors from nominal value in propor-
tional parts. This represents a very conservative accu-
racy limit for several reasons. First, the imbalance of the
network and main resistors cannot always have the
same sign. Each case would be compared to the average
of the rest so probably the worst case would be only
about one-fourth that indicated. Similar reasoning
would reduce the effect of the shorting bar resistance
about the same amount. Matching of the shorting bar
resistances causes further improvement. As a result, the
expected accuracy of ten resistors connected in parallel
should be at least a factor of ten better than predicted
by (32). If the resistors being connected in parallel are
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already connected in series by four-terminal junctions
which have much lower resistance than the shorting bar
connection differences, the probable accuracy is reduced
by about another factor of two. Thus, if (32) predicts a
measurement of sufficient accuracy, it is quite reason-
able to expect much better results.
Bv a matrix analysis of the complete circuit of Fig. 26,

Page4 arrived at essentially the same limiting error term
as that shown in (32). He calculated the error in terms
of the individual errors of all of the resistors. For his
wAorst case analyses, he found that the maximum possible
error in proportional parts was a product of twice the
ratio of the maximum shorting bar resistance to the re-
sistance of the resistors being paralleled, times the maxi-
mum deviation of the network resistors from their aver-
age value, times the maximum deviation of the shorting
bar resistances from their average value. Using Page's
notation, the constant was four instead of two, but this
wvas caused by his using the value of two network re-
sistors RN in parallel for the nominal value. The other
difference was in the term (m - 1)/rm. Page used the
value, one, which this approaches for large m. The dif-
ference is caused by the choice of variables. Page uses
difference from average while difference from the other
(m - 1) values has been used here. In equipment of the
types used by Hamon and that shown in Fig. 19, both
analyrses would indicate the same limit of error.

Accuracy of Series-to-Parallel Transfer: The maximum
error for ten resistors connected in parallel relative to
their value when connected in series can now be ex-
pressed in terms of the four-terminal junction resistance
error M, the resistor value R, the network resistor un-
balance (, (for >>\A), the accuracy of the individual
resistors being paralleled A, and the maximum shorting
bar resistance RF:

100 R R

1 10

+ - E (A, - A,) ]. (33)

Measuring Paralleling Errors. The values of RF and
(A-5) can be measured directly so that the measure-
ment accuracy can be predicted. The technique for find-
ing the ratio of shorting bar resistance to main resistor
resistance is shown in Fig. 27. The technique for finding
the maximum arm imbalance is shown in Fig. 28. These
values substituted into (32) give a conservative estimate
of the accuracy of the parallel ocnnection. Note that the
values of RN could be separately adjusted to reduce the
connection error to an undetectable level.

4C. H. Page, J, Resecrch NB,S, vol. 69 C, no, 3, July-September
1965, p. 181.

RI R3 R5 T E

Connect the shorting bar

Measure voltage from a point on the bars to the unused terminals,
this is the voltage to the junction of adjacent resistors

Find the maximum difference of volues V for each bar

Use the greatest V difference to calculate I RF)

for RF<<R VMAXKVMIN (RF)
Es R)MAX

Fig. 27. Measuring the shorting bar resistance.

Connect the compensating network

Connect one shorting bar

Supply a voltage E from the shorting bar to the other side of the
networK

Measure the voltage V from one unused shorting bar terminal to
each of the others

Change the shorting bar to the other side and repeat

Find the maximum voltage difference (VMAX - VMIN) between terminals

Calculate (ARN-AR)MAX

(VMAX VMIN)( 2RN + )MAX

Fig. 28. Measuring the bridge imbalance.

Page also has given a set of simple measurements
which permit evaluation of the errors on a specific re-
sistance box.

CONCLUSION

For the calibration of resistors of one value by a
standard of a different value, the series-to-parallel trans-
fer technique can be used with confidence at a very high
accuracy level. This technique can also be modified for
the calibration of precision voltage and current ratio
devices. Thus, it is the base for an important segment
of metrology technology. The analysis reported here was
done to establish the theoretical validity of the four-
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DELTA AVE. IS -1.8 PARTS PER MILLION
THE STANDARD DEVIATION IS 20.2771 PARTS PER MILLION
THE VARIANCE IS 411.16 PARTS IN 10 TO THE 12

DELTA R
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(a)
ui+500 0EE I(1 ) E I SEE 200 2(RF)

FIG.8 R 8L FiG.27 R
0:U ° L °l ~~~~IN ppm Z IN ppm

2:ME 3z 408

00 -0.2 o
0 5 lo 0 5

FREQUENCY FREQUENCY

(b)
Rp =-Rs [1±4(-)2())8F ±VARIANCE

Rp - [0.1 4+88x 450X10-6+412X10-6) xiO63

100 1[ +0. Pm

(c)

Fig. 29. Measured accuracy of one-to-one-hundred-ohm transfer
using a ten ohm per step transfer standard. (a) Computer analysis
of resistors showing individual resistance deviations and variance.
(b) Measured junction and connection variations. (c) Worst-
case accuracy calculation.

terminal junction and four-terminal connection. With
the errors from these sources well below the level of
measurement accuracy, the application of the series to
parallel transfer technique becomes deceivingly simple.
A four-terminal measurement of ten resistors in series is
accomplished by comparison to a resistance standard of
the same nominal value. Shorting bars are attached and
a network of connecting resistors is plugged in. The
freshly calibrated resistors then provide exactly one-
hundredth of their series value within the predetermined
accuracy limit (see Fig. 29). A series-parallel connection
permits an accurate ten-to-one transfer. Comparing
both the series and parallel connected values to the

decade between permits a ten-to-one interchange for a
simple but extremely accurate calibration of ten-to-one
ratio devices.
Modern resistor technology and materials have

pushed the desired resistance accuracy range well below
one ppm, and these connection techniques are herein
shown to be capable of such performance.
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