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Abstract
We present a framework for analyzing luminescence regulation during quorum sensing in the
bioluminescent bacterium Vibrio harveyi. Using a simplified model for signal transduction in
the quorum sensing pathway, we identify key dimensionless parameters that control the
system’s response. These parameters are estimated using experimental data on luminescence
phenotypes for different mutant strains. The corresponding model predictions are consistent
with results from other experiments which did not serve as input for determining model
parameters. Furthermore, the proposed framework leads to novel testable predictions for
luminescence phenotypes and for responses of the network to different perturbations.

1. Introduction

Bacterial survival critically depends on regulatory networks
which integrate multiple inputs to implement important
cellular decisions. A prominent example is the global
regulatory network involved in ‘quorum sensing’, commonly
defined as the regulation of gene expression in response to
cell density. During the process of quorum sensing (QS),
bacteria produce, secrete and detect signaling molecules called
autoinducers (Miller and Bassler 2001, Waters and Bassler
2005, Bassler and Losick 2006). These signals are then
processed by the QS pathway to regulate critical bacterial
processes such as biofilm formation and virulence. The
observation that quorum sensing is linked to both biofilm
formation and virulence factor production suggests that many
virulent bacteria can be rendered nonpathogenic by the
inhibition of their QS pathways (Bjarnsholt and Givskov
2007). Quantitative modeling of the QS pathway can thus
provide useful inputs for treating many common and damaging
bacterial infections.

One of the most studied model organisms for QS-
based regulation is the bioluminescent marine bacterium
Vibrio harveyi (Nealson et al 1970). Experimental studies
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have led to a detailed characterization of regulatory elements
in the pathway (Henke and Bassler 2004, Mok et al 2003,
Timmen et al 2006, Waters and Bassler 2006, Tu and
Bassler 2007). The network (see figure 1) includes multiple
autoinducers and corresponding sensor proteins which act
together to control the phosphorylation of the response
regulator protein LuxO. The phosphorylated form of LuxO
(LuxO-P) activates the production of multiple small RNA
(sRNA)s which in turn post-transcriptionally repress the QS
master regulatory protein LuxR. At low cell density, the sRNAs
are activated and act to effectively repress LuxR expression.
In contrast, sRNA production is significantly reduced at
high cell density, thereby giving rise to increased levels of
LuxR which leads to the activation of luminescence genes.
The corresponding luminescence output per cell profile (i.e.,
colony luminescence/cell output as a function of cell density)
is frequently used as a reporter to characterize the state of the
QS pathway.

Recent experiments (Henke and Bassler 2004) have
analyzed the effects of mutagenesis of different pathway
components on the corresponding luminescence profile in
V. harveyi. It was observed that there are distinct luminescence
profiles as the network is perturbed corresponding to different
pathway mutants. The changes in the luminescence profile
were used to infer pathway characteristics such as relative
kinase strengths for the different sensors. Given the
complexity of the network which involves integration of
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Figure 1. Schematic representation of quorum sensing network in Vibrio harveyi at high and low cell densities. The dotted rectangle is the
input module which controls phosphorylation of LuxO in response to external autoinducer concentrations. Solid line, active path; dotted
line, inactive path; IM, inner membrane; OM, outer membrane.

multiple inputs, it would be desirable to develop a quantitative
framework for inferring pathway characteristics based on
network perturbations. The corresponding quantitative model
can then be used to make testable predictions for future
experiments as well as to further analyze existing experimental
data. The aim of this work is to develop such a minimal model
for the QS pathway in V. harveyi.

The starting point of our analysis is the observation
that luminescence/cell output is controlled by the degree
of phosphorylation of the response regulator LuxO. We
thus develop a simplified model which connects external
autoinducer concentrations to the degree of phosphorylation of
LuxO for the wild type (WT) strain and for different mutants.
Our analysis identifies key dimensionless parameters which
control the system response and which can be determined
using the experimental results for luminescence phenotypes.
Determination of the effective parameters, in turn, leads to
predictions for the systems response to a broader range of
perturbations, i.e., perturbations distinct from those used to
infer the effective parameters. The corresponding analysis
sheds light on previously obtained experimental results and
also gives rise to testable predictions for future experiments.

The rest of the paper is organized as follows. In section 2
we give an overview of the QS network in V. harveyi. We
then develop a minimal model of the QS pathway and define
key dimensionless parameters which control the network
response characteristics. In section 3, we connect our model
to experimental data on different luminescence curves and
thereby determine model parameters. In section 4, we discuss
experimentally testable predictions based on the model and
conclude with a summary.

2. Overview and model

The QS network in V. harveyi is shown in figure 1. The key
upstream components of the pathway are the three sensors,
LuxN, LuxPQ and CqsSV h and the corresponding autoinducer
synthases, LuxM, LuxS and CqsAV h which are responsible
for producing the three autoinducers: H-AI1, AI-2 and CAI-1,
respectively. The binding of a single autoinducer to a sensor
is highly specific, i.e., HAI-1 binds only to LuxN, AI-2 binds
to LuxPQ only and CAI-1 binds specifically to CqsSV h (see
figure 1). The overall network is conveniently described in
terms of functional modules. The first (input) module includes
interactions between autoinducers ([AIi] (i = 1, 2, 3)) and the
corresponding sensor proteins which, through a phosphorelay
mechanism, determine the overall phosphorylation state of a
σ 54-dependent response regulator LuxO.

The second module focuses on the regulated production of
sRNAs (dependent on the phosphorylation state of LuxO) and
the interaction between the sRNAs and the master regulator
protein, LuxR. The interactions between small RNAs and
their regulated targets have been modeled in several recent
studies which shed light on how target protein expression
is controlled by small RNA-mediated regulation (Lenz et al
2004, Levine et al 2007, Levine and Hwa 2008, Mehta et al
2008, Mitarai et al 2007). In V. harveyi, LuxR serves as the
target protein whose expression is controlled by the small
RNAs in combination with the RNA-binding protein Hfq.
The resulting concentration of LuxR determines the level of
activation or repression of a multitude of genes including
the genes involved in bioluminescence (Waters and Bassler
2006). The corresponding change in the luminescence/cell
output determines the luminescence profile which is frequently
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Figure 2. Schematic representation of typical luminescence curves
from the experiment. The green curve represents the response from
a wild type (WT) colony. The turnaround point in the curve
corresponds to cell density necessary for the activation of the genes
responsible for luminescence output per cell. The red curve
represents the luminescence/cell curve for a mutant strain that is
able to achieve the same activation at a lower cell density.

used to infer network characteristics such as relative rates of
kinase/phosphotase activities by the sensor proteins (Henke
and Bassler 2004).

A schematic representation of typical luminescence/cell
curves is shown in figure 2. Since the starting point is
obtained by the dilution of cells in the high density limit,
the luminescence output per cell is maximal at the initial time
points. The luminescence output per cell then declines steadily
with increasing cell density, since luminescence genes are no
longer activated in the cells. At a specific cell density, the
luminescence curve starts to rise again signaling the start of
de novo luminescence gene activation by cells in the growing
colony. The cell density necessary for activation can vary from
the WT and mutant strains resulting in different luminescence
phenotypes (see figure 2).

Current data indicate that increasing cell density leads
to increasing dephosphorylation of LuxO leading to lower
production rates for the sRNAs. Correspondingly, the
turnaround point in the luminescence curves corresponds to
unphosphorylated LuxO reaching a critical level above which
sRNA production is not effective at repressing LuxR levels
below the threshold for observable luminescence activation
in the population of cells. Thus, understanding how external
signals (i.e., AI concentrations as a function of cell density)
are translated into the degree of LuxO phosphorylation (i.e.,
the input module) is critical for analyzing luminescence
profiles. Furthermore, pathway mutants which function
upstream of LuxO are not known to have any direct effects
on sRNA production or LuxR levels, apart from the indirect
effects mediated by LuxO. Therefore we expect that the
critical level of LuxO phosphorylation corresponding to the
turnaround in the luminescence profile is the same for all
mutants. The observation that the luminescence profiles are
different for different pathway mutants indicates different
functional relations between external AI concentrations and
LuxO phosphorylation levels for the different mutants. In
the following, we derive a simple model which connects cell
density to LuxO phosphorylation and uses information from
luminescence profiles of different mutants to infer system
parameters.

The sensor proteins in the QS pathway can be modeled
as two-state systems (Neiditch et al 2006, Swem et al 2008).
We consider a further simplification which takes the sensors
to be existing either in the kinase mode, Ski , or in the

phosphatase mode, Spi (where i = 1, 2, 3 corresponds to
the distinct sensor proteins in V. harveyi). In the kinase
mode, the sensors can autophosphorylate and then transfer the
phosphate group to the downstream protein LuxU, whereas
in the phosphatase mode the phosphate flow is reversed.
Experiments indicate that at low cell density (corresponding
to low autoinducer concentrations) the sensors are primarily in
the kinase mode, whereas at high cell density (corresponding
to high autoinducer concentrations), the sensors are primarily
in the phosphatase mode. Correspondingly, we consider a
simplified model wherein the free sensor corresponds to the
kinase mode, whereas binding of autoinducer results in a
transition to the phosphatase mode.

At a given cell density, the external autoinducer
concentrations will be proportional to the colony forming units
N. Since the timescale for changes in N (i.e., the doubling time)
is large compared to the timescales for binding/unbinding
of ligands and subsequent phophorylation/dephosphorylation,
the corresponding reactions can be considered in steady state
for a given N. Furthermore, since the typical number of sensor
proteins of each type is large, the concentration of sensors of
type i is well approximated by the mean value [Si] = ci[S0]
(where [S0] is some reference concentration). At a given cell
density, external AI concentrations determine the fraction of
the receptors which exist in either the kinase or phosphatase
mode. For the simplest case of autoinducers binding to their
cognate sensors, we have the kinetic scheme

Ski + AIi

ki�
k−i

Spi, (1)

from which the mean steady state concentrations of the sensors
in either the kinase or phosphatase mode can be obtained.
More generally, to account for cooperative effects in binding,
we take the kinase/phosphatase fractions to be

[Ski] = (1 − gi)ci[S0] and [Spi] = gici[S0], (2)

where

[Ski] + [Spi] = ci[S0], gi = an
i

/(
1 + an

i

)
,

ai = [AIi]/κi. (3)

and κi = k−i/ki .
Equation (2), with Hill coefficient n = 1, corresponds

to the steady state fractions for equation (1), higher n values
correspond to sharper switching from kinase to phosphatase
mode which mimics cooperative effects in binding. Finally,
since the concentration of the ith autoinducer, [AIi], is
proportional to the colony forming units (CFU), N, i.e. [AIi] =
νiN ; we renormalize the binding constant κi to define the
scaled effective parameter κ̄i = κi/νi .

Typically in bacterial signal transduction, the sensor
proteins in the kinase/phosphatase modes serve as enzymes
which transfer the phosphate group to/from a response
regulator protein or a phosphorelay protein (Appleby 1996,
Hoch 2000, Stock et al 2000, Laub and Goulian 2007). In
V. harveyi, this step involves phosphotransfer to the
phosphorelay protein LuxU (U). Phosphorylated LuxU (UP )
can then transfer the phosphate group to the response
regulator LuxO (O); similarly, unphosphorylated LuxU serves
as a receiver for removing the phosphate group from
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phosphorylated LuxO (OP ). We represent these processes
by the following equations:

Ski + U
kki→ Ski + UP , (4a)

Spi + UP

kpi→ Spi + U, (4b)

UP + O
kf

�
kb

U + OP . (4c)

For the above kinetic equations, it is convenient to define
key dimensionless parameters of the model as follows:

αri = cikki/kkr , βi = (kf /kb)(kki/kpi). (5)

The parameter αri is a measure of the relative kinase strength
of the ith sensor with respect to the rth sensor (scaled
by the mean concentrations of the two sensors), e.g., α12

is the relative kinase strength of sensor 2 with respect to
sensor 1. Another set of key parameters is the ratio of
the scaled kinase to phosphatase rates, βi , of the ith sensor.
Using these dimensionless parameters, we then solve the rate
equations (4a)–(4c) at steady state to derive the following
expression for the fraction of unphosphorylated LuxO at steady
state, fLuxO = [O]/[O]0 (with [O]0 being the total LuxO
concentration)

fLuxO =
∑

i αri(gi/βi)∑
i αri(1 − gi) +

∑
i αri(gi/βi)

. (6)

3. Connection to experimental data

We now connect the model for LuxO phosphorylation
developed in the previous section to experimental
luminescence curves. Recall that the typical luminescence
profile shows a well-defined switching point which signals
observable de novo production of luminescence by the
population of cells. As argued earlier, this corresponds to a
critical value for the concentration of unphosphorylated LuxO.
Let us denote this critical fraction of unphosphorylated LuxO
by f c and the corresponding value of the colony forming units
by Nc. At fLuxO = f c, for the WT luminescence curve we
have the following relation (6):

∑
i

αri(1 − gi) =
(

1 − f c

f c

) ∑
i

αri(gi/βi), (7)

where the factors gi are evaluated at N = Nc. Since
Nc is known from experiments corresponding to the WT
luminescence curve, the above equation can be regarded as
a constraint on the dimensionless parameters.

We now consider the corresponding equations for
luminescence phenotypes of the mutant strains. Current
knowledge of the QS network in V. harveyi indicates that
pathway proteins functioning upstream of LuxO primarily
control LuxO phosphorylation levels and have no direct
interactions with the qrr sRNAs or the master regulator
LuxR. This suggests that for each mutant the degree of
LuxO phosphorylation needed to activate luminescence is
the same (i.e., f c is the same) since upstream proteins
affect LuxR only via LuxO-P levels. The observation
that the luminescence profiles are distinct for different

pathway mutants is a consequence of the altered functional
relationship between LuxO phosphorylation levels and
external autoinducer concentrations for the mutants. Given the
defined roles of the pathway proteins, these altered functional
relationships can readily be derived within our model for all
the mutants. For example, equation (7) for the single sensor
mutant cqsSV h (i.e., the strain with a deletion for the gene
cqsSV h) takes the form

(1 − g1) + α12(1 − g2) =
(

1 − f c

f c

) [
g1

β1
+ α12

g2

β2

]
.

Note that the quantity (1 − f c)/f c can be absorbed into
the scaled kinase to phosphatase ratios β1 and β2. This is
equivalent to setting f c = 1/2 in the above equation, and since
f c is the same for all pathway mutants, a similar rescaling can
be done for the functional relationships for all the mutants. The
corresponding equations are presented in the appendix. In the
following, we show how these equations can be used along
with WT and mutant luminescence phenotypes to determine
effective system parameters and to make testable predictions.

From the work of Henke and Bassler (2004), the critical
threshold in colony forming units (Nc) can be estimated for a
range of pathway mutants. The different mutant strains studied
were (i) luxN , (ii) luxQ, (iii) cqsSV h, (iv) luxN luxQ, (v)
luxN cqsSV h and (vi) luxQ cqsSV h. To connect the sensors
of V. harveyi with our model, we designate sensors LuxN,
LuxQ and CqsSV h as 1, 2 and 3, respectively. The ordering
of the CFU/volume for the different strains at their critical
threshold shows the following hierarchy (Henke and Bassler
2004):

Nc
12 � Nc

2 ∼ Nc
23 < Nc

wt < Nc
3 < Nc

1 ∼ Nc
13, (8)

where Nc
12 is the number of colony forming units for mutant

strain luxN luxQ at which fLuxO = f c and so on. Although
the values Nc

2 , Nc
23 and Nc

1 , Nc
13 appear to be indistinguishable

based on available experimental data, based on the model
developed we expect a small difference in the threshold values.
For example, the difference between the luxN strain and luxN
cqsSV h strain is that CqsSV h is active as phosphatase in the
luxN mutant (close to the switching threshold). This implies
that the switching in the luminescence phenotype should occur
at a lower Nc value for the luxN cqsSV h strain i.e., Nc

1 < Nc
13.

Since CqsSV h has weak effect on the luminescence phenotype,
the switching values are indistinguishable experimentally.
However to develop a consistent model, we have to impose
a small difference between the switching values based on the
constraint Nc

1 < Nc
13 (and similarly for Nc

2 and Nc
23).

Based on the above reasoning, we initially considered a
∼10% difference between Nc

2 , Nc
23 and Nc

1 , Nc
13. Accordingly,

the values for critical thresholds (switching values, in the units
of CFU/volume) used as initial inputs were

Nc
12 ∼ 1 × 105, Nc

2 ∼ 14 × 105, Nc
23 ∼ 15 × 105,

Nc
wt ∼ 40 × 105, Nc

3 ∼ 70 × 105,

Nc
13 ∼ 110 × 105, Nc

1 ∼ 100 × 105.

From the discussion of the previous section, we have seen
that the input module provides us with eight key parameters:
two relative kinase strengths (α12 and α13), three scaled kinase
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to phosphatase ratios (β1, β2, and β3) and three effective
binding constants (κ̄1, κ̄2, and κ̄3). Given that we have
experimental data for threshold cell densities for seven strains,
this indicates that if one of the parameters is fixed, the
other parameters can potentially be determined by solving
the corresponding threshold equations (see the appendix).
Since previous work indicated that the effect of CqsSV h

on luminescence phenotypes is minimal, we initially fixed
the parameter α13 (the relative kinase strength of sensor 3
(CqsSV h) with respect to sensor 1 (LuxN)) to 0.001.4 We
then proceeded to determine the effective model parameters by
solving the threshold equations using the above experimental
inputs for switching cell densities. We also checked the
stability of the solutions to the above equations based on small
perturbations to the input parameters (data not shown). We
found that the solutions are stable with respect to perturbations
that maintain the initial ∼10% difference between Nc

2 , Nc
23 and

Nc
1 , Nc

13. However the solutions are sensitive to changes in
the parameters controlling the small differences in Nc values.
Since experiments cannot guide us in determining the precise
value of these differences, the values of Nc

2 and Nc
1 do not

serve as useful inputs in determining model parameters. Thus
additional experimental data are needed to determine model
parameters as outlined below.

The luminescence data at high cell densities (hcd)
for different sensor mutants from the work of Henke and
Bassler (2004) (see figure 4(A)) provides an indirect means
of estimating model parameters. The basic experimental
observations can be summarized as follows: while the WT
strain shows a bright phenotype at hcd, the luxS strain has
a dim phenotype and the luxM strain has low levels of
luminescence and is classified as being dark. Furthermore, the
cqsSV h strain has a luminescence output that is intermediate
between WT and luxS and the cqsAV h luxS double mutant
is dark and produces significantly less luminescence than a
luxM strain. Given our definitions of model parameters,
fLuxO = 1/2 corresponds to value at which observable
luminescence/cell is produced. Higher values of f LuxO will
correspond to brighter luminescence phenotypes, whereas a
dark luminescence phenotype implies fLuxO < 1/2. Thus
we expect that, at hcd, we have f LuxO for luxS mutants to
be around 0.5 (given the dim luminescence phenotype) and
f LuxO for the cqsSV h strain to be significantly greater than
the corresponding value for the luxS strain but significantly
lower than 1 (the value for the WT strain). Based on these
constraints, we set the f LuxO values for the three synthase
mutant strains at hcd as follows: f

cqsA

LuxO = 3/4, f luxm
LuxO = 1/3

and f
luxS cqsA

LuxO = 1/4. In combination with the expression
derived for f LuxO (equation (6)), these equations can be used,
along with luminescence switching cell density equations, to
determine model parameters (see the appendix).

First, considering equation (7) for the double sensor
mutants, we have the relation between the three β-s and
three κ̄-s,

Nc
23 = κ̄1β

1/n

1 , Nc
13 = κ̄2β

1/n

2 , Nc
12 = κ̄3β

1/n

3 . (9)

4 This assumption will be relaxed in the subsequent analysis as described
below.
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Figure 3. Profile of f LuxO as a function of colony forming units
(CFU)/volume for wild type (WT) and different sensor mutant
phenotypes. The cell density at which fLuxO = f c corresponds to
the turnaround point in the experimental luminescence curves.

Also from equation (7), we have the expressions for the
wild type and one single sensor mutant (cqsSV h) with five
unknown parameters: three kinase to phosphatase ratios (β1,
β2 and β3) and two relative kinase strength (α12 and α13)
(Note that we are now considering α13 to be variable.). Using
fLuxO = f c = 1/2, the switching values for WT and cqsSV h,
(Nc

wt and Nc
3 ) and the f LuxO for three synthase mutants at hcd

we solve the five equations to determine the five unknown
parameters. The corresponding values for the key parameters
of the model are α12 ∼ 0.14, α13 ∼ 0.19, β1 ∼ 8.99,
β2 ∼ 0.29 and β3 ∼ 7.14, for the Hill coefficient n = 4.
We note that there are two sets of solutions obtained using
the above approach, however only one of these corresponds
to the experimentally observed hierarchy of switching cell
densities (8). Furthermore no solutions were obtained for
n � 2. For n = 3, the equations can be solved and
yield parameters that are close to those inferred for n = 4.
However the n = 4 results are more consistent with the
experimental observation that the switching cell densities are
experimentally indistinguishable for Nc

1 and Nc
13 (similarly

for Nc
2 and Nc

23). The high value of n = 4 suggests that
there might be cooperative effects in the switch from the
kinase to phosphatase mode for the sensors. Now using these
values for the effective parameters, we calculate the values
of f LuxO as a function of CFU/volume (see figure 3) for the
WT and different sensor mutant phenotypes of V. harveyi.
Since the effective parameters are determined, we can now
use our model to generate similar curves and make predictions
for mutants that have not yet been studied experimentally.
We have checked the stability of the obtained solutions with
respect to small changes in the input values (see the appendix).
We have also considered larger changes in the input f LuxO

values consistent with the constraints noted earlier. While the
precise values of the effective model parameters do change as
the inputs are varied, there are several robust predictions that
can be made. These are discussed further in the concluding
section.

5
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4. Conclusion and outlook

The preceding analysis helps determine the parameters in our
minimal model. While these parameters cannot directly be
compared to experiments, they can lead to several predictions
which are testable experimentally. In the following, we outline
some of the key predictions based on our analysis.

(1) The parameter βi is a measure of the relative kinase to
phosphatase rates for the ith sensor. Based on the values
determined, the following ordering is predicted for the
relative kinase to phosphatase rates of the three sensors
LuxN > CqsSV h >LuxQ. LuxN is predicted to be the
strongest kinase which is consistent with results from
previous experiments showing that LuxN has a greater
effect on LuxO phosphorylation than LuxQ (Freeman
et al 2000). Furthermore, it is interesting to note that
recent experiments have demonstrated high kinase to
phosphatase rates for the sensor LuxN (Timmen et al
2006). While the corresponding value estimated by
our model (β1 ∼ 9) cannot directly be compared to
experiments since it involves additional parameters, the
ratio βi/βj (i �= j) should correspond to experimental
estimation of the ratio of kinase to phosphatase rates of
two sensors. From our model we consistently find that
β2/β1 � 1 and β2/β3 � 1 indicating the effective kinase
to phosphatase activity ratio for LuxQ is much lower than
the other two sensors. Note that this prediction differs
significantly from the previous characterization (Henke
and Bassler 2004) that kinase to phosphatase activity ratio
for LuxQ is greater than that of CqsSV h. It would thus
be of interest to carry out experiments to measure relative
kinase to phosphatase rates for the sensors LuxQ and
CqsSV h to see if the predictions are borne out.

(2) Experiments with mutant strains (besides those used as
inputs to our model) indicate that at high cell densities,
the luminescence phenotypes can be broadly categorized
into three types: dark, dim and bright. Since f c = 1/2
is the threshold for luminescence activation in our model,
we take these categories to correspond to the following:
dark (0 � fLuxO < 0.4), dim (0.4 < fLuxO < 0.6) and
bright (0.6 < fLuxO � 1.0). Using these criteria, we
can now predict the luminescence phenotypes at high
cell density for other pathway mutants (i.e., those not
included in the experimental inputs used to determine
model parameters). The corresponding results are listed
in table 1. We note that all mutant strains with LuxM
deleted (luxM) are dark. This is consistent with previous
experimental results (Freeman and Bassler 1999). Other
interesting predictions are the following.

(i) While cqsAV h luxN is bright (comparable to
cqsAV h) at hcd, the strain cqsAV h luxQ is predicted
to be dark.

(ii) luxS is brighter than luxM at hcd, however
cqsAV h luxS is predicted to be darker than
cqsAV h luxM (note that this is consistent with the
observations in Henke and Bassler (2004)).

Table 1. Predictions for luminescence output per cell of different
synthase mutants and mixed sensor-synthase mutants.

Phenotype Mutant

Dark luxM , luxM luxS, luxS cqsAV h, luxM cqsAV h,
luxN luxS, luxQ luxM , luxQ cqsAV h,
cqsSV h luxM

Dim luxS, cqsSV h luxS
Bright cqsAV h, luxN cqsAV h

It should be noted that the results presented in figure 3 are
just for sensor mutants whereas table 1 is for synthase
mutants and mixed sensor-synthase mutants. For the
different mutants given in table 1, the maximal value of
the f LuxO curve differs from 1 and stays within the defined
range (according to the broad categories discussed in the
paper) even at the hcd in contrast to the behavior shown
in figure 3 for the sensor mutants.

(3) To figure out the values of the effective parameters of the
model, we have used the switching value (Nc) of WT,
cqsSV h and double sensor mutants from the experiment
(Henke and Bassler 2004). With these derived values of
the effective parameters, we can now predict the switching
values of the other two bright sensor mutant strains (luxN

and luxQ) at hcd (in the units of CFU/volume),

Nc
1 ∼ 100 × 105, Nc

2 ∼ 14 × 105.

It is interesting to note that the above switching values
are in good agreement with the observation that Nc

1
is experimentally indistinguishable from Nc

13 and Nc
2 is

experimentally indistinguishable from Nc
23 (see figure 3).

In addition, the effective parameter set predicts the
switching values (Nc, in units of CFU/volume) for the
two bright mutant strains cqsAV h and luxN cqsAV h

mentioned in table 1 as ∼ 130 × 105 and ∼ 156 × 105,
respectively.

(4) Recent experiments have probed the response of
the QS pathway to externally controlled autoinducer
concentrations (Mok et al 2003). In these experiments,
the autoinducer production is switched off by deleting
the corresponding synthases and then autoinducers are
added back exogenously in controlled amounts. In our
model this behavior can be mimicked by controlling the
quantity gi in equation (3). For each synthase mutation
the autoinducer production is switched off so that gi = 0
as AIi = 0 (i = 1, 2, 3). As autoinducers are added to
the network from outside, the quantity gi grows and tends
to one as AIi → ∞. For this setup, our analysis indicates
a situation wherein the sensor CqsSV h plays an important
role in regulating the response which is contrary to what is
normally assumed. Consider the situation for which all the
autoinducer synthases have been deleted and subsequently
saturating amounts of AI1 are added. In this case, we
predict a significant difference between the luminescence
output per cell for the two cases corresponding to (i)
low external AI3 concentrations and (ii) high external AI3

concentrations. The difference between these two cases is

6
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that the sensor CqsSV h is primarily in kinase mode for case
(i) and in phosphatase mode for case (ii). Our analysis
thus suggests a testable prediction for an experimentally
realizable situation wherein signaling through CqsSV h

significantly changes the output from the QS pathway.
(5) Finally, we examine predictions from our model for

the expression of genes that are also controlled by
f LuxO through LuxR but are not directly related to
luminescence/cell. Waters and Bassler (2006) studied
several genes regulated by LuxR and classified them into
different categories based on the activation/repression
induced by the presence of high concentrations of either
AI1 or AI2 or both. We will focus on the category of
genes (labeled ‘class 3’ genes) which are defined as genes
that show an equally notable change in expression when
either AI1 and/or AI2 are present in high concentrations.
Within our model, we can calculate the values of f LuxO

for the 3 cases: (i) high concentration of AI1 only, (ii) high
concentration of AI2 only and (iii) high concentration of
both AI1 and AI2. Out of these the lowest value of f LuxO

corresponds to case (ii) i.e., high concentration of AI2

only. Since class 3 genes are fully activated/repressed
when high concentrations of AI2 only are present, it
follows that the f c for all genes in this category must
be lesser than the value of f LuxO when only AI2 levels are
high (fLuxO = 0.33). (Note that we have assumed that AI3

levels are at high concentrations in the above experiments
since they are at high cell densities.) This observation
indicates that an upper bound for activation/repression of
class 3 genes corresponds to f c = 0.33. Using this, the
following testable predictions can be made.

• The synthase mutant luxM can fully activate/repress
class 3 genes at high cell density. Note that luminescence
genes, in contrast, are not activated at high cell density in
a luxM mutant.

• Similarly, the sensor-synthase mutants luxM cqsSV h

and luxQ cqsAV h cannot activate luminescence genes
at high cell density whereas they are predicted to fully
activate/repress all class 3 genes at high cell density.

The minimal model presented in this work can be
generalized further as more experimental data become
available. An important generalization would be to relax some
of the assumptions made by considering a two-state model
(Swem et al 2008) which incorporates non-zero phosphatase
activity in the on (free) state and nonzero kinase activity in the
off (bound) state. We note that this will add several additional
parameters to our current model. With additional experimental
data, the generalized model could be used to estimate the
expanded set of effective parameters. While the effective
parameters so determined are likely to be different from the
values determined using the minimal model, the framework
connecting the model parameters to experimental data will
essentially be the same.

In summary, we have proposed a minimal model to study
the quorum sensing network in V. harveyi. Using experimental
data for luminescence phenotypes of WT and different mutant
strains, we provide a framework to estimate the effective

dimensionless parameters of the model. Correspondingly, the
model can be used to predict the luminescence phenotypes of
other pathway mutants which have not been experimentally
studied to date. The proposed framework captures the key
features of the signal transduction in V. harveyi and can
contribute to guiding and interpreting experimental efforts
analyzing the QS pathway in the Vibrios.
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Appendix

For the relative kinase strength (αri = cikki/kkr for i = 1, 2, 3)
of the sensors, we generally use the kinase strength of
LuxN, i.e., kk1(r = 1), as the reference kinase. Now using
equation (7) we explicitly write the functional relation for WT
strain evaluated at N = Nc

wt for fLuxO = f c:

(1 − g1) + α12(1 − g2) + α13(1 − g3)

=
(

1 − f c

f c

)[
g1

β1
+ α12

g2

β2
+ α13

g3

β3

]
. (A.1)

Similarly for luxN mutants we use kinase strength of LuxQ,
i.e., kk2(r = 2), as the reference kinase whereas for luxQ and
cqsSV h we use kinase strength of LuxN as the reference kinase
as in WT. Thus the functional relations for the single sensor
mutants luxN , luxQ and cqsSV h evaluated at Nc

1 , Nc
2 and Nc

3 ,
respectively, are for luxN (r = 2):

(1 − g2) +
α13

α12
(1 − g3)=

(
1 −f c

f c

)[
g2

β2
+

α13

α12

g3

β3

]
. (A.2)

For luxQ (r = 1):

(1 − g1) + α13(1 − g3) =
(

1 − f c

f c

) [
g1

β1
+ α13

g3

β3

]
. (A.3)

For cqsSV h (r = 1):

(1 − g1) + α12(1 − g2) =
(

1 − f c

f c

) [
g1

β1
+ α12

g2

β2

]
. (A.4)

For double sensor mutants, the value of the relative kinase
strengths becomes 1 as there is only 1 sensor. Hence the
functional relations for the double sensor mutants luxN luxQ,
luxQcqsSV h and luxN cqsSV h evaluated at Nc

12, Nc
23 and Nc

13,
respectively, are as follows. For luxN luxQ (r = 3),

(1 − g3) =
(

1 − f c

f c

)
g3

β3
. (A.5)

For luxQ cqsSV h (r = 1),

(1 − g1) =
(

1 − f c

f c

)
g1

β1
. (A.6)

For luxN cqsSV h (r = 2),

(1 − g2) =
(

1 − f c

f c

)
g2

β2
. (A.7)

7



Phys. Biol. 6 (2009) 046008 S K Banik et al

0 20 40 60 80 100
0.98

0.99

1.00

1.01

1.02

N
12c

10
5

0 20 40 60 80 100
14.6

14.8

15.0

15.2

15.4

N
23c

10
5

0 20 40 60 80 100
107

108

109

110

111

112

113

N
13c

10
5

0 20 40 60 80 100
0.73

0.74

0.75

0.76

0.77

f_
lu

xO
cq

sA

0 20 40 60 80 100
0.320

0.325

0.330

0.335

0.340

f_
lu

xO
lu

xM

0 20 40 60 80 100
0.240

0.245

0.250

0.255

0.260
f_

lu
xO

lu
xS

cq
sA

0 20 40 60 80 100
39.0

39.5

40.0

40.5

41.0

N
w

t
c

10
5

0 20 40 60 80 100
68

69

70

71

72

N
3c

10
5

Figure A1. Results of sensitivity analysis for the input base values. The blue line represents the unperturbed data and the red dashed line is
the mean of the 100 perturbed data points represented by scattered red points.

Now, using equation (9) and the expression for the functional
relation for the WT strain given above (A.1) we have the
following equation evaluated at N = Nc

wt for f c = 1/2,

[
1 −

(
Nc

wt

Nc
23

)n]
+ α12

1 +
(
Nc

wt

/
κ̄1

)n

1 +
(
Nc

wt

/
κ̄2

)n

[
1 −

(
Nc

wt

Nc
13

)n]

+ α13
1 +

(
Nc

wt

/
κ̄1

)n

1 +
(
Nc

wt

/
κ̄3

)n

[
1 −

(
Nc

wt

Nc
12

)n]
= 0. (A.8)

Similarly, for luxN , luxQ and cqsSV h strains we have the
following set of equations evaluated at Nc

1 , Nc
2 and Nc

3 ,
respectively, for f c = 1/2,

[
1 −

(
Nc

1

Nc
13

)n]
+

α13

α12

1 +
(
Nc

1

/
κ̄2

)n

1 +
(
Nc

1

/
κ̄3

)n

[
1 −

(
Nc

1

Nc
12

)n]
= 0,

(A.9)

[
1 −

(
Nc

2

Nc
23

)n]
+ α13

1 +
(
Nc

2

/
κ̄1

)n

1 +
(
Nc

2

/
κ̄3

)n

[
1 −

(
Nc

2

Nc
12

)n]
= 0,

(A.10)[
1 −

(
Nc

3

Nc
23

)n]
+ α12

1 +
(
Nc

3

/
κ̄1

)n

1 +
(
Nc

3

/
κ̄2

)n

[
1 −

(
Nc

3

Nc
13

)n]
= 0.

(A.11)

To find the unknown parameters of the system of equations
(α12, α13, β1, β2, and β3), we use equations (A.8) and (A.11)
evaluated at N = Nc

wt and N = Nc
3 , respectively, along with

the following three equations all evaluated at N = N large:

f luxM
LuxO

= α12(g2/β2) + α13(g3/β3)

1 + α12(1 − g2) + α13(1 − g3) + α12(g2/β2) + α13(g3/β3)
,

(A.12)
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Figure A2. Results of sensitivity analysis for the effective parameters. The blue line, red line and red scattered points have the same
meaning as in figure A1.

f
cqsA

LuxO

= (g1/β1) + α12(g2/β2)

α13 + (1 − g1) + α12(1 − g2) + (g1/β1) + α12(g2/β2)
,

(A.13)

f
luxS cqsA

LuxO = (g1/β1)

α12 + α13 + (1 − g1) + (g1/β1)
. (A.14)

Equations (A.12)–(A.14) give the f LuxO values for the
three mutants luxM , cqsAV h and luxS cqsAV h once the
system has reached steady-state for N = N large such that f LuxO

has saturated. Equations (A.8) and (A.11)–(A.14) are then
numerically solved using Mathematica (Wolfram Research,
Inc., Version 6, 2008) which yielded two solutions subject to
the constraint that all the parameters must be real and positive.
We keep the solution that best agrees with experimental data

(see the main text). When solving these equations, we used
f luxM

LuxO = 0.33, f
cqsA

LuxO = 0.75, f
luxS cqsA

LuxO = 0.25 and n = 4.
We next analyzed the changes to the solutions based on

small perturbations to the input parameters. Each perturbation
for the input values is drawn from a random Gaussian
distribution whose mean is the base value and variance is
the base value ×σ , where σ is chosen such that 68% (98%)
of the perturbed values lie within 2% (5%) of the base value.
For example, to generate a list of perturbed Nc

12 values, we
set the mean of the Gaussian distribution to be Nc

12 and the
variance to be Nc

12 × σ , etc. Using this scheme, we generated
100 random data points for the input values (the switching
values) and numerically solve equations (A.8) and (A.11)–
(A.14) with n = 4 to generate the effective parameters. Note,
f luxM

LuxO , f cqsA

LuxO , f luxS cqsA

LuxO are also perturbed in the same fashion.
The resultant data of the sensitivity analysis are shown in

figures A1 and A2. The nature of the data shown in figures A1

9
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and A2 suggests that the parameter set obtained using the
experimental switching values from Henke and Bassler (2004)
is robust against small perturbations.

Glossary

Quorum sensing. Process leading to regulation of gene
expression in response to cell density.

Autoinducers. Small signaling molecules produced by
bacteria which bind to specific receptors and induce the
quorum sensing response.

Kinase. Enzyme acting as a phosphate donor.
Phosphatase. Enzyme acting as a phosphate acceptor.
Bioluminescence. Production of light by living organism as
a result of internal chemical reactions.

Vibrio harveyi. Gram-negative and bioluminescent marine
bacterium.
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