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Abstract

In the elementary theory of electrical circuits, the series connection of n identical

resistors has an equivalent resistance n2 greater than the equivalent resistance of

their parallel connection. More briefly, the series/parallel ratio is n2. We show that

if the resistors are not all identical, the series/parallel ratio is greater than n2 and can

never be less than n2. This little-known minimum has been demonstrated previously,

using the theorem that the arithmetic mean of non-negative numbers always equals

or exceeds their geometric mean. Here we present a simple proof that avoids using

the theorem. If the n resistors differ only slightly, the series/parallel ratio is still n2

to first order in their differences. Because this ‘weaker’ form has long been known,

we discuss only briefly its significance for electrical metrology. We present a Monte

Carlo simulation of the series/parallel ratio for two resistors, one of which varies in

accordance with a Gaussian density distribution defined by three tolerance ranges,

and we compare the simulation graphically with the theoretical series/parallel ratio

for each of these ranges. This theoretical ratio is essentially a plot of the density
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distribution of the square of a Gaussian variable, or equivalently of a chi-squared

distribution on one degree of freedom. Finally, we note an interesting connection

between the minimum and the second law of thermodynamics.

Keywords: resistor, series, parallel, asymmetry, voltage divider, tolerance, Monte

Carlo

1. Introduction

The connection of resistors in series and in parallel is fundamental to the study

of electrical circuits [1]. The equivalent resistance Rseries of n resistors R1, R2,...,Rn

in series can be shown to be given by Eq. (1), and the equivalent resistance Rparallel

of those resistors in parallel can be shown to be given by Eq. (2).

Rseries = R1 +R2 + ...+Rn. (1)

1

Rparallel

=
1

R1

+
1

R2

+ ...+
1

Rn

. (2)

If the n resistors are all identical, it immediately follows from Eqs. (1) and (2)

that the series/parallel ratio Rseries/Rparallel = n2. The more general case when

the resistors are not identical shows an interesting and unexpected minimum as

explained in Section 2 and also in Appendix A.

2. The little-known minimum

Eqs. (1) and (2) give

Rseries

Rparallel

= (R1 +R2 + ...+Rn)

(
1

R1

+
1

R2

+ ...+
1

Rn

)
. (3)

Multiplying out the brackets in Eq. (3) gives us:

Rseries

Rparallel

= n+

(
R1

R2

+
R2

R1

)
+

(
R1

R3

+
R3

R1

)
+ ...+

(
R2

R3

+
R3

R2

)
+ ... (4)
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= n+
n∑
i=1

n∑
j>i

(
Ri

Rj

+
Rj

Ri

)
. (5)

Each term in brackets on the right side of Eqs. (4) or (5) is of the form of

z =
(
x
y

+ y
x

)
as considered in Appendix A, where it is shown that for x, y non-

negative, z can never be less than 2. Such paired mutual reciprocals have been

observed to occur in general circuits involving combinations of equal resistors and

their resulting equivalent resistance [2]. Defining aij as the excess of
(
Ri

Rj
+

Rj

Ri

)
over

2,

aij =

(
Ri

Rj

+
Rj

Ri

)
− 2, (6)

where aij is non-negative for all i, j, j > i, we may now write Eq. (5) as

Rseries

Rparallel

= n+
n∑
i=1

n∑
j>i

(2 + aij), (7)

where all the aij are non-negative. With j > i there are 1
2
n(n − 1) terms being

summed in the summation term on the right side of Eq. (7). For example, if n = 4

there are 1
2
× 4× 3 = 6 terms being summed, these being 2 + a12, 2 + a13, 2 + a14,

2 + a23, 2 + a24, 2 + a34. The sum of the six 2’s, in this example, is 12. In general,

Eq. (7) therefore gives

Rseries

Rparallel

= n+

(
2× 1

2
n(n− 1)

)
+

n∑
i=1

n∑
j>i

aij = n+n(n−1)+
n∑
i=1

n∑
j>i

aij = n2+
n∑
i=1

n∑
j>i

aij.

(8)

Our result is therefore that the ratio of the effective resistance of n resistors in series

to the effective resistance of the same resistors in parallel can never be less than

n2. This n2 is the minimum in the title of this paper and represents an unexpected

asymmetry. By contrast, symmetry would describe the case where, depending on

the choice of resistors, the series/parallel ratio would be as likely to be less than n2

as to exceed n2.
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To take a slightly different approach leading to Eq. (7), and verifying (as

remarked after Eq. (7)) that there are 1
2
n(n− 1) terms being summed, we note that

in Eq. (3) there are n summed terms in each of the two brackets being multiplied,

so that their product has n2 summed terms. Of these n2 terms, n take the value 1

(for example, R1 × 1
R1

= 1) and therefore sum to n, which is accordingly the first

term on the right-hand side of Eq. (4). This accounts for n of the n2 terms and so

there must remain n2 − n terms of the form Ri

Rj
, or 1

2
(n2 − n) = 1

2
n(n − 1) terms

where Ri

Rj
is paired with its reciprocal

Rj

Ri
as in the rest of the right-hand side of Eq.

(4).

We refer to the asymmetry as the ‘strong’ version of the result for a series/parallel

ratio. When all the resistors differ from one another only slightly, we shall refer to

the result as the ‘weak’ version.

There exists an extensive literature on resistor networks: simpler aspects of

circuit theory [2-5], more complicated resistor networks, often involving identical

resistors and with applications such as the generation of irrational numbers [6-14],

analogies with other areas of physics [4, 15], and consideration of the weak version

and its application to electrical metrology [16-24]. We draw particular attention to

Tykodi [15], where the strong version is derived. This derivation, however, makes

use of the theorem that the arithmetic mean of any set of non-negative numbers

must equal or exceed their geometric mean. The theorem involves some rather

complicated mathematics, which is unnecessary as our simple proof demonstrates.

The strong version, and its associated asymmetry, are illustrated in Fig. 1,

which is a histogram of the series/parallel ratio for n = 3 resistors, each of which

independently takes the ten values 1 Ω, 2 Ω,...,10 Ω. The notation 9 < 10 (for

example) on the horizontal axis of Fig. 1 indicates that all the values in the

associated column lie in the range 9.00 to 9.99. The histogram displays the 1000

values of the series/parallel ratio,which peaks at the value n2 = 9 and then drops

4
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Figure 1: Fig. 1 Histogram of Series/Parallel ratio for three resistors. Each independently

takes values 1 Ω, 2 Ω,...,10 Ω.

off but only on the positive side of 9. Values less than 9 do not exist.
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3. The case where all resistors are approximately equal

The ratio Rseries/Rparallel when all resistors are approximately equal is n2 and

this is accurate to second-order in their deviations from one another. This result,

which has long been known in the venerable discipline of electrical measurements

[19,20] and has metrological applications [16-24], may be shown as follows. We write

Ri = R0(1 + εi), (i = 1, 2, ..., n), where R0 is the common nominal value and εi is a

small proportional deviation of Ri from R0. Eq. (4) then gives

Rseries

Rparallel

= n+

(
1 + ε1
1 + ε2

+
1 + ε2
1 + ε1

)
+

(
1 + ε1
1 + ε3

+
1 + ε3
1 + ε1

)
+...+

(
1 + ε2
1 + ε3

+
1 + ε3
1 + ε2

)
+...+

(9)

We use the following approximation up to second-order: 1
1+εi

≈ (1 − εi + ε2i ), for

i = 1, 2, ..., n. It is then, incidentally, simple to show that in Eq. (6), aij = (εi− εj)2.

Eq. (9) gives:

Rseries

Rparallel

= n+
[
(1 + ε1)(1− ε2 + ε22) + (1 + ε2)(1− ε1 + ε21)

]
+

[
(1 + ε1)(1− ε3 + ε23) + (1 + ε3)(1− ε1 + ε21)

]
+ ...+

[
(1 + ε2)(1− ε3 + ε23) + (1 + ε3)(1− ε2 + ε22)

]
+ ... (10)

In each pair of square brackets we have the form

(1 + εi)(1− εj + ε2j) + (1 + εj)(1− εi + ε2i )

and keeping terms up to and including second-order this is

(1− εj + ε2j + εi − εiεj) + (1− εi + ε2i + εj − εiεj)

= 2 + (ε2i + ε2j − 2εiεj) = 2 + (εi − εj)2.
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As stated previously, there are 1
2
n(n− 1) such terms, and so we have

Rseries

Rparallel

= n+

(
2× 1

2
n(n− 1)

)
+

n∑
i=1

n∑
j>i

(εi − εj)2 (11)

= n2 + terms of order ε2. (12)

We note that the second-order correction in Eq. (12) must be positive, and it is

straightforward to show (see Appendix B) that Eq. (11) may be written

Rseries

Rparallel

= n2(1 + var ε), (13)

where var ε is the variance of the ε, defined in the standard form as

var ε =
1

n

n∑
i=1

(εi − ε̄)2 (14)

with ε̄ = 1
n

∑n
i=1 εi as the mean of the ε. As shown in Section 2, however, the

series/parallel ratio must equal or exceed n2 not only for nominally equal resistors,

but also for any set of n resistor values.

7
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4. A simple laboratory demonstration of the series/parallel

results

An experiment, suitable for an undergraduate laboratory and which demon-

strates the weak version, could be based on the following set-up. In Fig. 2, a voltage

divider is shown in which the stabilised input voltage Vin produces an output voltage

Vout one-fifth of the input voltage. The divider comprises two high-accuracy 100 Ω

resistors in series, and two high-accuracy 100 Ω resistors in parallel. This is therefore

the case n = 2, which implies a voltage division by n2+1 = 5. Fig. 3 shows a voltage

divider in which one of the series resistors, and one of the parallel resistors, have

values 10% larger than 100 Ω, and this extra 10 Ω resistance is depicted explicitly as

an additional resistor in series. It is easily shown that the output voltage Vout is now

0.199637 of the input voltage. So a large mismatch of 10% in two of the resistors,

respectively in the series arm and the parallel arm, results in a voltage division only

0.18% different from the desired value of 1/5. The series-parallel connection of Fig.

3 therefore ‘attenuates’ the mismatch of 10% by a factor of 10/0.18 ≈ 56. Students

could be asked to determine experimentally the discrepancy from the desired value

of 1/5 for larger mismatches of, say, 20% (an extra 20 Ω) and 30% (30 Ω). The

theoretical values of discrepancy are respectively 0.66% (attenuation by ≈ 30) and

1.37% (attenuation by ≈ 22).

This insensitivity of a series/parallel voltage divider ratio to a mismatch in the

dividing resistors underpins the design of the high-precision voltage dividers required

in electrical metrology [22]. In [23] the case n = 3 is discussed, where the input

voltage is divided by n2 + 1 = 10. We do not discuss the further refinements to the

design of high-precision voltage dividers [23], since this area of electrical metrology

is based on the widely-known weak version.
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V
in

V
out

100 Ω

100 Ω

100 Ω 100 Ω

Figure 2: Fig. 2 Voltage divider with high-accuracy resistors: two 100 Ω resistors in

series, and two 100 Ω resistors in parallel. Output 1/5 of input

V
in

V
out

100 Ω

100 Ω

100 Ω 100 Ω

10 Ω

10 Ω

Fig. 3 Voltage divider with one series and one parallel resistor 10% larger than nominal
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5. Monte Carlo simulation of the series/parallel ratio for

two resistors, nominally equal but one of which varies slightly

In this simulation, the ratio Rseries/Rparallel is calculated for two resistors (n = 2).

One resistor is fixed at 100 Ω. The other has a nominal resistance of 100 Ω, but

varies slightly from 100 Ω. Values of (Rseries/Rparallel)− 4 were calculated for 10000

trials at each of three tolerance levels: 2%, 5% and 10%. These percentage figures

represent three standard deviations of a Gaussian density distribution, such that,

for example with 2% tolerance, 99.7% of values are expected to be within 2% of the

nominal value with mean value 100 Ω. As predicted, Rseries/Rparallel is never less

than n2 = 4, so that (Rseries/Rparallel)− 4 is always positive.

If the fixed resistance is denoted R and the variable resistance is denoted R(1+ε),

where ε is a small quantity distributed as a Gaussian with mean zero and standard

deviation σ, then for 2% tolerance we have σ = 0.02/3 = 0.006667, for 5% tolerance

σ = 0.05/3 = 0.01667 and for 10% tolerance σ = 0.1/3 = 0.03333. Gaussian density

distributions, which in principle must yield negative values, are often assumed to

describe quantities that, as in this case, cannot be negative; however, the probability

of negative values in such cases is vanishingly small. It is straightforward to

show that Rseries/Rparallel = 4 + ε2 to second order. The density distribution of

(Rseries/Rparallel) − 4 therefore is equivalent to that of the square of a Gaussian

variable. This is otherwise known as a chi-squared density distribution on 1 degree

of freedom. Calling y = ε2, the density distribution, or equivalently the probability

density function, f(y) of y is

f(y) =
1

σ
√

2π
y−1/2 exp (−y/(2σ2)) (15)

which increases to infinity at y = 0. However, the total area enclosed by f(y) is

finite at the value 1, and the mean value ȳ of y is ȳ = σ2 and the standard deviation

10
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s(y) of y is s(y) = σ2
√

2.

The results of the 10000 trials are shown in Fig. 4, for each of the three tolerance

levels. The notation along the horizontal axis is the same as was described earlier in

connection with Fig. 1. Fig. 5 shows the corresponding theoretical graphs plotted

following Eq. (15).
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Fig. 4 Histogram of Monte Carlo simulation for two resistors, showing dependence of the

increase in series/parallel ratio Rs/Rp over 4 with resistor tolerance as parameter
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Fig. 5 Theoretical plots of chi-square density distribution on 1 d.o.f., corresponding to

Fig. 4
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6. Conclusion

The ratio of the effective resistance of n resistors in series, to the effective

resistance of the same n resistors in parallel, cannot be less than n2. From our search

of the literature, this asymmetry appears to be little-known. A weaker version of the

same result has long been known: if the resistors are approximately equal but with

small deviations from equality, the ratio departs from n2 only by deviations of the

second order. This weaker version has found use in electrical metrology as described

in section 3. The departure from n2 is always in the direction of a very slight increase

when the resistors are approximately equal, and this is consistent with the strong

version. Through carrying out the experiment described in Section 4 and the Monte

Carlo simulation where students are given scope to vary the number and values of

resistors and their tolerances, students may be expected to gain a deeper insight into

circuit theory. The Monte Carlo simulation represents an excellent opportunity to

introduce this widely used and powerful technique to undergraduate students [26].

Appendix A. Range of values of a mathematical form

involving non-negative numbers

Consider the form

z =

(
x

y
+
y

x

)
(16)

where x and y are non-negative real numbers. When x = y, then of course z = 2.

We show that z can never be less than 2. Writing

z =

(
x2 + y2

xy

)
, (17)

we equate the right side of Eq. (17) to 2 + a, where a is any real number:

(
x2 + y2

xy

)
= 2 + a, (18)
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so that

x2 + y2 = 2xy + axy. (19)

This may be written

(x− y)2 = axy. (20)

The left side of Eq. (20) must be non-negative. Hence the right side of Eq. (20) is

also non-negative, and since x and y are non-negative, so is a. The left side of Eq.

(18), and equivalently the right side of Eq. (16), cannot therefore be less than 2.

This is a counter-intuitive result, since when x = y, then z = 2, but although x and

y occur symmetrically in Eq. (16) (in the sense that interchanging x and y leaves z

unchanged), z cannot be less than 2.

Appendix B. The series/parallel ratio in terms of the

variance of approximately equal resistors

The statistical term ‘variance’ var x of a sample of n measurements x1, x2, ...xn

is defined as

var x =
1

n

n∑
i=1

(xi − x̄)2 (21)

where x̄ is the mean value of the n measurements,

x̄ =
1

n
(x1 + x2 + ...+ xn). (22)

The positive square root of the variance is a measure of the spread of the mea-

surements, and is generally called the standard deviation, as in Section 5. Both

the variance and standard deviation are ‘origin-independent’; that is, if the same

constant is added to or subtracted from each of the n measurements, the variance

and standard deviation are unaffected. To simplify this analysis, we may therefore

define n terms x′1, x
′
2,...x

′
n as

x′i = xi − x̄ (23)
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for i = 1, 2, ..., n. We now have

var x′ = var x =
1

n

n∑
i=1

x′2i (24)

in view of the origin-independence of the variance. We also have

n∑
i=1

x′i = 0, (25)

and therefore (
n∑
i=1

x′i

)2

= 0 (26)

implying that

x′21 + x′22 + ...+ x′2n + 2P = 0 (27)

where P is the sum of all pairwise products

P = x′1x
′
2 + x′1x

′
3 + ...+ x′2x

′
3 + x′2x

′
4 + ....+ x′n−1x

′
n. (28)

In Eq. (11), the last term on the right-hand side is

n∑
i=1

n∑
j>i

(εi − εj)2

or, calling this term F , and in the more general notation used here

F =
n∑
i=1

n∑
j>i

(x′i − x′j)2 (29)

since (from Eq. (23)) x′i − x′j = xi − xj for all i, j = 1, 2, ..., n. Writing Eq. (29) out

in full

F = (x′1 − x′2)2 + (x′1 − x′3)2 + +...+ (x′2 − x′3)2 + ...+ (x′n−1 − x′n)2. (30)
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Each of the squared terms x′21 , x′22 ,...,x′2n appears n− 1 times in Eq. (30), so that

F = (n− 1)(x′21 + x′22 + ...+ x′2n )− 2P. (31)

But we have seen (Eq. (27)) that

x′21 + x′22 + ...+ x′2n + 2P = 0. (32)

Adding Eqs. (31) and (32),

F + 0 = F = n(x′21 + x′22 + ...+ x′2n ), (33)

and so, using Eq. (24),

F =
n∑
i=1

n∑
j>i

(x′i − x′j)2 = n2var x′ = n2var x, (34)

which verifies Eq. (13).

Appendix C. A mathematical connection with

the second law of thermodynamics

We note an interesting consequence of the mathematically exact statement that

the quantity z defined as the simple function in Eq. (16) cannot be less than 2.

Consider two equal masses of water where the temperature of one mass is T1 and

the temperature of the other is T2, with T2 6= T1. When mixed adiabatically and

at constant pressure, the mixture has a final temperature 1
2
(T1 + T2). If Cp is the

specific heat at constant pressure, the change ∆S of the entropy of the universe is

[25]:

∆S = Cp log

(
(T1 + T2)/2

T1

)
+ Cp log

(
(T1 + T2)/2

T2

)
17
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= Cp log

(
(T1 + T2)

2

4T1T2

)
= Cp log

(
1

4

[
T1
T2

+
T2
T1

]
+

1

2

)
. (35)

The quantity in square brackets in Eq. (35) is of the form of z in Eq. (16)

and so cannot be less than 2. With T1 6= T2, we therefore see that the change

in entropy ∆S of the universe must be positive. This increase in entropy of the

universe during a natural process, in our example the cooling of hot water and the

warming of cold water when mixed, is one of several formulations of the second law of

thermodynamics. Interestingly, the law is in essence statistical but is a consequence

of the mathematically exact statement noted above.
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