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1. 

PRECISION LOW NOISE-DELTA-SIGMA 
ADC WITH AC FEED FORWARD AND 
MERGED COARSE AND FINE RESULTS 

REFERENCE TO ISSUED PATENT 5 

The subject matter of U.S. Pat. No. 6,876,241 B2 issued 
5 Apr. 2005 and entitled CIRCUIT FOR GENERATING 
FROM LOW VOLTAGE EDGES HIGHER PULSES HAV 
ING PRECISE AMPLITUDES AND DURATIONS, filed 10 
31 Jul. 2003 by William H. Coley and Stephen B. Venzke 
and assigned to Agilent Technologies, Inc., is of interest to 
the Subject matter disclosed herein. In particular, it pertains 
to a preferred way of implementing the Feedback DAC for 
the delta-sigma architecture described in this application. 15 
For this reason, and for the sake of brevity, CIRCUIT FOR 
GENERATING FROM LOWVOLTAGE EDGES HIGHER 
PULSES HAVING PRECISE AMPLITUDES AND DURA 
TIONS is hereby expressly incorporated herein by refer 
CCC. 2O 

BACKGROUND OF THE INVENTION 

The basic delta-Sigma architecture is one where an analog 
input value is summed with a feedback value (which is often 25 
implemented as a Voltage) to produce an error difference that 
is integrated and Subsequently quantized into discrete values 
by an ADC (Analog to Digital Converter). A DAC (Digital 
to Analog Converter) driven by the ADC produces the 
feedback value. When the feedback value equals the input 30 
value the integrator output stops ramping, but typically 
hunts on either side of the true point of loop balance, owing 
to finite resolution of the ADC-DAC combination (i.e., the 
feedback value is quantized, but the input value is not, so 
exact cancellation is unlikely). Typically, the ADC and the 35 
DAC operate at the same rate, and that rate corresponds to 
a bandwidth that is much higher than a limited bandwidth 
with which the applied input is allowed to vary. A digital 
filter is responsive to the sequence of quantized values from 
the ADC; the digital filtering averages out the hunting to 40 
produce a result that corresponds (perhaps after Some brief 
delay needed for the loop to balance, or nearly so) to a recent 
value of the bandwidth limited input. If desired, the ADC 
values may be further processed to produce a digital output 
that represents another measure of the applied analog input 45 
value (e.g., its Root Mean Squared value). 
The basic delta-sigma architecture just described is well 

known, and that basic architecture and variants thereof have 
been used in a variety of different applications, as described 
in the literature. See, in particular, OVERSAMPLING 50 
DELTA-SIGMA DATA CONVERTERS Theory, Design and 
Simulation, edited by Steven R. Norsworthy, Richard 
Schreier and Gabor C. Temes, published in 1997 by the 
IEEE Press (ISBN 0-7803-1045-4). 

There have been a number of improvements or extensions 55 
of the basic delta-sigma technique over the years since a 
delta modulator was first proposed in 1954 by C. C. Cutler 
(see U.S. Pat. No. 2,927.962) and a sigma improvement 
thereto was proposed in 1962 by Inose, Yasuda and 
Murakami. Among these are various way to incorporate, by 60 
nesting or by cascading, one instance of the architecture with 
another (higher order loops) with the goal of improved 
performance. 

At present, the delta-sigma architecture is the highest 
accuracy architecture known for an ADC. Other ADC archi- 65 
tectures can run faster, but the delta-sigma architecture has 
accuracy and linearity that depend chiefly on just the DAC. 

2 
This can be appreciated if one considers that it is the 
difference between the actual input and the replica thereof 
produced by the DAC that is the origin of the feedback that 
drives the loop to balance (where balance includes the 
notion of continuous hunting that balances over time about 
the correct answer). Any non-linearity in the ADC, or offset 
or non-linearity in the integrator is construed by the loop as 
just further error to be nulled out through hunting. We may 
thus think of the hunting as having a component that 
corresponds to quantization issues arising from finite reso 
lution in the ADC and the DAC, and other components that 
appear in whatever degree is needed to get the loop to 
balance (through hunting). Almost by definition, when the 
loop is thus balanced, the digital input to the DAC has GOT 
to represent the input to the degree we can detect error in the 
difference between the actual input and the feedback. That is 
why the integrator is such a powerful actor in the delta 
sigma architecture: over time even very small errors (think: 
degrees of imbalance) are accumulated into actionable quan 
tities that drive the hunting process and null themselves out. 
Now, we believe that the DAC described in the incorpo 

rated 241 B2 Patent is at present, anyway, about as good as 
they come for use in a delta-sigma converter. It is a pulse 
width/duty cycle affair designed to exhibit very stable tran 
sition times and large Voltage Swings. In this application we 
seek ways to operate a delta-sigma ADC with the best 
linearity and the greatest precision obtainable in a commer 
cially produced DVM (Digital Volt Meter). We are also 
mindful that many of the higher order loops described in 
the literature have stability problems (say, for example, 
under certain conditions the hunting behavior becomes a 
willful and independent 'self-winding oscillator rather than 
a mechanism that tracks the input and nulls out errors). 

In many respects the delta-sigma architecture resembles a 
sampled control loop, and the needed integration can be 
provided by either a discrete (sampled) or continuous inte 
grator mechanism. Some instances of the delta-sigma con 
version technique intended for consumer or other high 
Volume/low cost applications have applied the techniques of 
Integrated Circuit (IC) design to produce an entire delta 
sigma converter within a single chip. As a part of these 
efforts a continuous integrator is often avoided in favor of a 
Switched capacitor integration technique that produces an 
output based solely on samples taken at the discrete points 
in time when the DAC and ADC make their decisions as to 
what their outputs are to be. (For steady state DC inputs the 
Switched capacitor integrator produces what the output of an 
actual continuous integrator would be if it were used 
instead.) And, since a Switched capacitor integrator uses 
sampling techniques to enforce the notion of discrete points 
in time, an AC input is automatically quantized into a series 
of discrete steps (any change in the AC input during the 
interim between loop decisions is simply not seen and is 
ignored). However, Such Switched capacitor integration 
techniques are subject to various error mechanisms that limit 
the precision of the delta-sigma converters of which they are 
a part, even for DC inputs. At present, a delta-Sigma ADC of 
the highest precision must use an actual continuous time 
(think genuine analog) integrator. 

Furthermore, if the loop decision time for the feedback in 
the delta-sigma architecture is short, say on the order of a 
microsecond, then we are tempted to use the delta-sigma 
technique to generate a sequence of digital values that 
represent an AC signal having a bandwidth of up to 100 
KHZ, or so. Unfortunately, the genuine analog integrator 
needed to obtain high precision for DC creates a frequency 
related error (in the integrated loop error signal) that 
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increases as frequency gets higher, and degrades loop per 
formance. Thus, the use of a continuous integrator with an 
AC input is another area of delta-Sigma behavior that is 
Susceptible of improvement. 

It turns out that using an actual continuous integrator 
performs extra integration for AC signals that adds an 
additional component to the hunting. (It is extra only in the 
sense that the AC input continues to change in the interim 
between loop decision cycles for quantization and feedback 
adjustment, and the continuous integrator sees that move 
ment and incorporates it into the integrated result.) In one 
sense these additional movements in the error signal con 
stitute unwanted components that adversely affect the output 
(they arise, as far as a quantized view of the loops universe 
is concerned, out of nowhere'). 

It would be desirable if there were a way to eliminate the 
error related to input frequency produced in a delta-sigma 
converter that is otherwise precision and that uses a con 
tinuous time genuine analog integrator. 

SUMMARY OF THE INVENTION 

A delta-sigma converter achieves stable high speed pre 
cision results by incorporating a DAC of Suitably high 
precision and a coarse/fine architecture for two ADCs, 
wherein an integrated error signal is coupled to a coarse 
ADC whose multi-bit output drives the DAC to create the 
feedback that achieves loop balance. The coarse ADC also 
provides the most significant digits (bits) of the result. The 
integrated error signal is also applied to a fine ADC whose 
output bits are not incorporated into the feedback, but which 
are combined with those of the coarse ADC. The combined 
bits of the coarse and fine ADCs are processed and applied 
to a filter that averages the hunting that represents loop 
balance. The result is to significantly increase the resolution 
with which the converter operates, and which allows a 
variable speed-resolution selection ahead of the filtering. 
The overall linearity is essentially dependent solely upon 
that of the DAC. ADC feed forward circuit shunts the 
integrator with a replica of the applied input signal to apply 
it to the coarse ADC through a summer. Since the feedback 
driven hunting forces the error signal to average to Zero for 
any static input, the integrator output is freed to be just the 
integrated error signal without including an integration of 
the applied input, reducing the need for dynamic range of the 
fine ADC. An AC feed forward circuit provides a compen 
satory Voltage that is removed from the integrator output (or 
alternatively, is added to its input) and that corrects for the 
frequency related error that appears at the output of the 
integrator if a continuous time genuine analog integration 
mechanism is used. The technique uses a minimum of 
components and is compatible with the use of discrete 
integration techniques, such as Switched capacitor, and also 
with single bit feedback used in place of the preferred 
multi-bit feedback. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a simplified block diagram of a prior art 
delta-sigma ADC; 

FIG. 2 is a simplified block diagram of a prior art 
delta-sigma ADC that incorporates feed-forward; 

FIG. 3 is a simplified block diagram of an improved 
delta-sigma precision ADC that merges coarse and fine 
results; and 

FIG. 4 is a simplified block diagram representing a 
specific preferred implementation of the block diagram of 
FIG. 3. 
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4 
DESCRIPTION OF A PREFERRED 

EMBODIMENT 

Refer now to FIG. 1, wherein is shown a simplified block 
diagram 1 of an early prior art delta-sigma arrangement for 
performing analog to digital conversion. An input Voltage 2 
is applied to an input conductor 3, from whence it is coupled 
to a first + (plus) input 4 of an analog Voltage Summing 
circuit 5. The input voltage applied to conductor 3 may be 
Subjected to previous Suitable signal conditioning (not 
shown) before it reaches the first + input 4, the purpose of 
which signal conditioning might be to attenuate the input by 
a known amount, limit dv/dt, or limit voltage excursions by 
clipping them when they exceed a certain magnitude, etc. 

Also applied to the Voltage Summing circuit 5 at a second 
+ terminal 6 is a feedback Voltage 7, that approximates to a 
greater or lesser degree an opposite polarity replica of the 
applied input signal 2. Thus, the output 8 of the Voltage 
Summing circuit 5 is an error signal (difference) indicative of 
the manner in which the feedback voltage 7 fails to actually 
be a replica of the applied input signal 2. 

In the basic architecture of FIG. 1 the error signal 8 is 
integrated by an integrator 9 whose output 10 is digitized 
(11, 12, 13) for later processing (16, 17, 18) to become the 
desired digital output (19), with that same digitized integra 
tor output 14 also being turned back into the analog feedback 
voltage 7 by a feedback DAC 15. (The digital output 14 from 
the ADC is complemented inside the DAC 15 to reverse its 
polarity before it is converted to an analog Voltage.) The use 
of an integrator has certain consequences, an appreciation of 
which becomes a useful starting point for what is to come. 
The main one is that the integrator's output serves as a 
cumulative memory of the history of the state of the loop 
(that is, it accumulates the ongoing error to allow balance 
through hunting). If the digitized output 14 should produce 
from the feedback DAC a feedback voltage 7 that has no 
error signal 8 the integrator's output 10 will stop changing: 
the loop will have converged exactly, and will (ideally) 
remain that way until there is a change in the input. Of 
course, that happy situation seldom, if ever, occurs, as 
various conditions would have to obtain first: the applied 
input 2 might need to be static to comport with the discrete 
time nature of the ADC and the DAC (or at least not change 
except at loop decision times), and the applied input would 
need to be a value that the DAC could create exactly and 
thus produce a error signal of Zero. 
The predominant and typical manner of operation is for 

the error signal 8 to be non-zero by a small amount, one way 
or the other. Say it is a little too low for a while, but that an 
increase in the output 14 of the ADC would create an error 
larger than the present error. The continued error signal is 
accumulated by the integrator 9 into an ever larger change 
in its output 10, so that eventually a change in the ADC is 
produced. That change is reflected by the DAC 15, and in 
turn also by the error signal 8, which is now off by some 
amount in the other direction. The integrator begins to ramp 
its output in the other direction until there is another reversal 
in the polarity of the error signal, and the same thing happens 
again. The loop is hunting. This is not bad, and we are 
certain that, all things behaving correctly and given a steady 
input, the average value of the error signal 8 is Zero (else the 
integrator would see the persistent error and integrate it 
into an actionable amount having corresponding feedback). 
From this notion that the average of the error signal is Zero 
we can draw certain conclusions. Chief among these is that 
if the DAC is nearly ideal, then the average of the ADC's 
output MUST represent the input (because the DAC's output 
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is thus the ADC's output). Another conclusion is that any 
non-linearities in the DAC are concealed by automatic 
adjustments in the hunting needed to produce balance 
(again, in the sense of average over time). 
The non-convergence of a delta-sigma loop might be 

thought reminiscent of the repeating and non-terminating 
decimal fractions that occur in long division. If we were to 
tell you that we have this string of numbers 
1428571428571 ... you could, after some deliberation, state 
with certainty that this represents some variation on the ratio 
of one to seven. As we will see shortly, this comparison of 
delta-sigma to non-terminating decimal fractions, while 
initially tempting, is incorrect. To pursue this example, the 
output of the loop might actually be more like: 1/7, 1/8, 1/7. 
1/9, . . . , etc. 

It is now possible to better appreciate the function of the 
digital filter 16. Its output is the “average value spoken of 
above, and its purpose is to Suppress the hunting (which is 
a sequence of values) and replace it with single value. Now 
recall that we said that the cycle time of loop operation 
might be many times faster that the fastest dv/dt that we are 
prepared to apply as an input Voltage 2. Say, the ADC and 
the DAC produce new outputs every microsecond. Then the 
filter 16 might be able to adequately reconstruct (in digital 
form, to be sure) at its output 17 even a one hundred 
kilohertz input signal. In the event that the applied input 
Voltage is known to be slower, and that using mechanisms 
further downstream don't want or need a representation of 
Such fast signals, a decimator 18 can produce a slower data 
rate at its output 19. This arrangement also allows an 
adjustable trade-off between the rate at which completed 
measurements are available and their resolution. 

Indeed, the amount of averaging and the decimation 
factor may be varied depending upon the application, or for 
a configuration within an application. Increasing the degree 
of averaging reduces measurement noise. This allows the 
trade-off between input signal bandwidth and resolution. 
When the degree of averaging is high the decimation factor 
is usually increased to match the desired measurement 
bandwidth and the reading (measurement) rate. This is what 
allows the trade-off between measurement speed and reso 
lution. This mechanism is well known, and the ratio of the 
ADC's Sampling rate to the decimated Sample rate is called 
the oversampling factor. 

It is typical of conventional conversions loops constructed 
after the manner of FIG. 1 to use a single-bit comparator as 
the ADC and a comparably simple single-bit DAC, while 
operating the loop at very high rates. Its operation produces 
a sequence of bits (say, with each bit representing either plus 
and minus full scale) that is interpreted by a filter that 
produces the average of the last n-many bits. The filter 
typically has a shape’ so that, for example, more weight is 
given to bits in the middle of the n-many. It will be noted that 
the loop of FIG. 1 will, unless it converges exactly (fat 
chance!), produce an error signal 8 that changes at the loop 
decision rate. The changes are steps in an ongoing variation 
(the hunting). It is these ongoing variations built of step 
changes at the loop decision rate that are integrated, mea 
sured by the ADC (11, 13), and then removed from the 
ADC's output 14 by the filter 16. 

Before proceeding, it is useful to further consider some 
topics related to the digital filter 16 and the nature of the 
values that it is to filter. As part of this exploration, it is 
useful to let the ADC (11,13) be a multi-bit ADC, of say, six 
or eight bits (amounts that are quite realizable and whose use 
is practical). Let's begin by identifying the overall paradigm 
for the filtering. For the benefit of those who may have but 
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6 
a passing acquaintance with delta-Sigma, it is helpful to 
identify the actual paradigm that is used and dismiss another 
one that is not. 

In either case the n-many bits from the ADC are treated 
as individual symbols identifying ordinal values in value 
space of 2' symbols. So, if the ADC were of four bits, we 
would not hesitate to identify those symbols as the familiar 
hexadecimal digits 0, 1, 2, . . . , 9., a, b, c, d, e and f. In the 
common case of a single bit the two digits are just the binary 
one (1) and Zero (0). In the eight-bit case the value space is 
two hundred fifty-six symbols in size, and we don't have a 
list of handy names (or digit symbols) for the individual 256 
different member of the collection, nor even a recognized 
conventional name for the collection (the algebra people 
would say it is the Integers modulo 2, or I mod 256), and 
So we settle for grouping the eight bits together (each as a 
fused quantity, as it were) and treating each Such grouping 
as a composite symbol that is eight things long. We pay no 
attention to the things (the binary meaning bits themselves) 
except as a means to represent the symbol, and in any case, 
we never simply concatenate the various bits into one long 
string and say it is a long binary number. 
To continue then, one might think that conversion begins 

and that the symbols produced have a beginning that con 
trols how the symbols relate to one another. In the earlier 
example of the non-terminating decimal fraction for 1/7 you 
would need to know that first digit in the string 
142857142... was weighted as one at 1/10, the second digit 
as four at 1/100, and so on. The implication is that both a 
delta-sigma measurement cycle and a filtering operation 
have a beginning and a duration, after which they both start 
over, and that filtering amounts to the particular weighted 
Summation indicated. Dismiss this idea, as the delta-sigma 
conversion loop has no such beginning, other than an initial 
start-up. Once it is started, it simply runs indefinitely. The 
filtering can be connected to the output at any time after that, 
and will produce a valid result after a sufficient number of 
symbols have been filtered; there is no first symbol, nor any 
permanent positional importance associated with a symbol. 

Accordingly, the correct paradigm is this. The loop runs 
continuously, producing an indefinitely long sequence of 
symbols. The filter has an aperture of the last q-many 
symbols, and produces an average using a weighted Sum 
mation of the last q-many symbols that have been applied to 
the filter. Each time a new symbol is applied, the oldest one 
is dropped, and different q-many symbols is contained with 
the filter. It produces a new average from this new combi 
nation of symbols: (once the pipe if filled) one new symbol 
in, one new average out. And don't forget that it is often the 
case that the central, or middle, symbols in the sequence of 
q-many thereofare given greater weight in the making of the 
average than are those at the beginning and end of the 
Sequence. 

For clarity, we can briefly return one last time to the 1/7 
example. If a four bit ADC were in use for a symmetrical 
plus or minus input, then how might the pesky +(1/7) of full 
scale result be represented? Well, the four bits encode 
sixteen different symbols, whose meanings could be +0/8, 
+1/8, +2/8, +3/8, ... +7/8 parts of full scale. We could name 
the sixteen symbols a, b, c, d, e, f, g, h, and -a, -b, -c, -d, 
-e, -f, -g and -h, or we could use as names the t0 through 
t7 used in the numerators, so long as we don’t get confused. 
And no matter how we pronounce their names, within the 
innards of an operating delta-sigma-filter system we almost 
certainly would use either a two’s complement representa 
tion (which is preferred) or a sign magnitude representation 
(S000, S001, S010, ..., S111 where S represents a sign bit) 
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for the four-bit groups. So, one answer for the question of 
representing +1/7 is the sequence b, c, b, b, c, a, d, b, 
c. . . . . Using uniform weighting, those nine symbols 
average to 0.138888 . . . , which is 0.004 below the desired 
value of 0.1428571 . . . . A longer sequence would allow a 
better approximation, even if the input (the target 1/7) were 
(slowly) changing during the feedback controlled approxi 
mation process. 

Next, we briefly touch on a topic that is near and dear to 
the designers of delta-sigma circuits: noise shaping, and how 
it affects the filter. This will require us to adopt a somewhat 
specialized notion of noise as it is customarily used in 
connection with delta-sigma circuits. 

To begin, we note that the basic rules of delta-sigma 
operation seem quite deterministic (almost computational in 
nature). We also acknowledge that, in the ideal and abstract, 
it is reasonable to assert that a computer program (or perhaps 
Some other model) could, given a sufficiently detailed 
description of a particular delta-sigma circuit, predict with 
certainty the sequence of symbols that the loop will produce 
for any given set of initial conditions. The reality, however, 
is considerably different. 

Despite the fact that delta-sigma is often analyzed as if it 
were truly a linear system, in actual fact it contains discon 
tinuities (which appear to be output non-linearities with 
respect to an input) that are inherent in the quantizing. These 
allow slight amounts of real thermally induced random 
behavior or quantum-like random behavior, both of which 
are inescapably present, to produce unpredictable internal 
signal fluctuations that stimulate the sensitivity to initial 
conditions behavior that is associated with chaotic behavior 
in non-linear systems. We might say that delta-sigma is 
largely linear, but with some distributed discrete non-lin 
earities. So, it is as if there were an evil demon in the loop 
with a random noise sprayer, and after some number of 
decision cycles the long term deterministic predictability 
Vanishes, and no degree of finite precision, and no amount 
of finite additional detail about gains, thresholds and delays 
incorporated into the model will allow it to accurately 
predict behavior for the actual circuit after, say, fifty or one 
hundred decision cycles. Short term predictability remains 
possible, as is the characterization of overall behavior with 
statistical methods. 

Given that this is the case, the usual method of analyzing 
delta-sigma behavior is to say that the behavior of the 
symbols created by the loop is separable into two classes. 
One class is the fundamental loop response that occurs as a 
result of tracking a changing input, and another is the 
hunting that is present even when the input is entirely steady 
and unchanging. Right away we can see that a desirable 
property of the filter is that it suppress (average out) the 
hunting without unduly affecting the ability of the filtered 
loop output to track a changing input. We should like to 
discover that the hunting is a high frequency behavior that 
is well away (on the frequency axis) from the highest 
frequency of applied input that we expect the loop to 
faithfully track. To some extent this can be arranged by 
making the loop operate with a decision time that is rela 
tively short with respect to the shortest period that the 
applied input is allowed to exhibit. 

But there is more to it than just that. Recall the example 
we gave above for symbols that averaged to 1/7. For any 
given implementation, there is an expected sequence length 
that is needed for the hunting to be averaged to a desired 
resolution. It is that sequence length which the filter must 
operate on and remove. The architecture that is discussed in 
this Specification is of the first order, and it has been shown 
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8 
that for first order loops each doubling of the oversampling 
factor produces a one and one-half bit reduction in the 
hunting-related noise. 

With all of this in mind, the usual analysis is to charac 
terize the hunting as genuine random noise, and then ask 
what things might be done to the architecture of the loop to 
shift it to a higher frequency location in the spectrum. Thus 
arises the term noise shaping as it applies to delta-sigma. 
It turns out that there is something that can be done. 
Now consider the improved architecture 20 shown in FIG. 

2. It is also conventional, but the improvement is an inter 
esting one. As before, an applied input voltage 21 appears at 
a first + (plus) input 22 of an analog Voltage Summing circuit 
23. Also as before, a second + input 24 receives a (previ 
ously polarity inverted) feedback voltage 25 that represents 
the (unfiltered) output supplied by the overall loop. Also as 
before, the (raw) loop output (36) is that of an ADC (33.34. 
35) which is applied to: (A) a feedback DAC 37 whose 
output 25 is applied to a second + input 24 of the Voltage 
Summing circuit to produce an error signal 26; and, (B) a 
filter 38 whose output 39 may be downsampled by decima 
tor 40 to produce a digital output 41. 

In FIG. 2, however, the actual input 21 is also applied to 
one + (plus) input 31 of a voltage summer 30 whose other 
+ input 29 is the output 28 of the integrator 27, and whose 
output 32 is the input to the ADC (33, 34,35). The effect of 
this is to apply the input voltage 21 directly to the ADC. As 
before the integrator is driven by an error signal 26, but now 
that error signal 26 represents only the error by which the 
loop cannot exactly quantize the input, and does not include 
errors caused by waiting for the integrator to track changes 
in the applied input voltage 21. That is, perhaps (in true 
binary fashion) a single bit ADC and DAC can represent 
only t1 (times Zero-to-plus full scale), and even a multi-bit 
ADC and DAC can exactly represent only symbols corre 
sponding to discrete it binary fractional-of-full-scale values. 
However, none of these can exactly form 1/7 using a single 
symbol, and the loop must hunt to achieve balance. (Of 
course, 1/7 is just one example out of many, and we 
appreciate that the loop probably never balances exactly, no 
matter what, even for nice values such as /2. The point is, 
that are many input values for which continuous hunting is, 
in principle, absolutely necessary.) Such a quantization error 
will appear in the error signal 26, and will, as a result of the 
lack of exactitude, result in the hunting behavior which has 
been previously described. The (different) error associated 
with a sudden step in the applied input Voltage that would 
otherwise be attributable to finite loop response as the 
integrator 27 output ramped as needed to null the error 
(requiring about three loop decision cycles) is nearly elimi 
nated by the (DC) feed forward 42 that is the duplicate of 
input 22 that is applied to + input 31 of summer 30. 

Here are some things to notice about the architecture of 
the block diagram 20 in FIG. 2. First, unlike the integrator 
output 10 in FIG. 1, where that output matches the entire 
range of the input voltage, the integrator output 28 of FIG. 
2 (assuming it is the same integration circuit as in FIG. 1) 
will range over only an amount corresponding to a step 
between adjacent levels of quantization by the DAC. Sec 
ond, an analysis of the loop's transfer function shows that it 
changes from sin c (sin x)/x) to flat. 
Now refer to FIG.3, wherein is shown a block diagram 43 

of a delta-sigma architecture that takes the block diagram 20 
of FIG. 2 as its starting place. If we ignore the AC feed 
forward mechanism (55) the operation of the feedback loop 
is essentially as described in connection with FIG. 2. 
Accordingly, an applied input voltage 44 to be measured is 
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coupled to a first + (plus) input terminal 45 of a first voltage 
Summing circuit 46. A feedback Voltage 48 that approxi 
mates (but with opposite polarity) the applied input Voltage 
(through the action of a coarse measurement to be described 
shortly) is applied to a second + (plus) input 47 of the first 
Voltage Summing circuit 46. A difference Voltage that is also 
an error Voltage 49 is produced by the first voltage Summing 
circuit 46, and is used as the input to an integrator 50. The 
output 51 of the integrator 50 is coupled to a + input 52 of 
a voltage difference circuit 53 having a - input 54 that 
receives an AC feed forward voltage from circuit 55 (to be 
discussed in due course). The output voltage 68 from the 
voltage difference circuit 53 is sent two places. One place is 
a + input 60 of a second Voltage Summer circuit 61, whose 
other + input 59 is a DC feed forward voltage 58 from circuit 
57. (This DC feed forward arrangement is essentially the 
same as described in connection with FIG. 2.) The other 
place voltage 68 is sent is the input to a fine ADC 69 that 
consists of a (fine) sample?hold circuit and a (fine) quantizer 
(these components might not appear separately, of course, as 
the ADC is preferably a merchant part in commerce that 
functionally appears to be a unitary object . . . ). 
Now, the output 62 of the second voltage summer 61 is 

applied to a coarse ADC 63 that likewise consists of a 
(coarse) sample/hold circuit and a (coarse) quantizer (which 
is also preferably a merchant part that is most likely a single 
part combining both functions. . . ). As in the block diagram 
20 of FIG. 2, the output 64 of the (coarse) ADC 63 is both 
used as a component in the production of the desired digital 
output (76), and also is fed back as the input to the feedback 
DAC 67 whose (polarity reversed) output 48 is applied to the 
input 47 of the first voltage summing circuit 46. 
The outputs 64 and 70 from the coarse and fine ADCs 

(respectively) are applied to respective inputs 65 and 71 of 
a merge circuit (or merge function) 66 that combines the 
coarse and fine values to produce a precision (albeit as yet 
unfiltered, etc.) result (e.g., as a twelve-bit symbol in a space 
of 212 different symbols). The merged precision output 72 
from the merge circuit is, as before, digitally filtered by 
digital filter 73, while the filtered output 74 is then deci 
mated as appropriate by decimator 75 to produce a precision 
output 76. The filtering further extends the precision of the 
result. It will be appreciated that operations of the merge 
(66), digital filter (73) and decimator (75) could be per 
formed in software executed by a controlling embedded 
system, or by special purpose hardware implemented with 
complex integrated circuits. 
Some remarks are in order concerning the feedback DAC 

67. It was noted at the beginning of the Specification that the 
incorporated CIRCUIT FOR GENERATING FROM LOW 
VOLTAGE EDGES HIGHER PULSES HAVING PRECISE 
AMPLITUDES AND DURATIONS describes some pre 
ferred aspects of an implementation for the feedback DAC 
67. Among what is set out there is that a multi-bit binary 
value (the Digital input to a DAC) expressed with low 
voltage logic levels is converted by the DAC 67 into a pulse 
with precision width and having a precision amplitude of 
either polarity and that is much higher than the Voltage for 
the non-precision logic levels. The higher Voltage values 
assist with obtaining good signal to noise ratio. The reader 
might have noticed that, whether precision or not, a pulse 
width is not, by itself, what is ordinarily meant as an 
Analog output from a DAC. In this case, and in the context 
of a delta-sigma architecture, the appellation actually is apt, 
since the average value over time for a constant duty cycle 
pulse of constant amplitude corresponds exactly to a unique 
and steady analog DC voltage, and the integrator (9, 27.50) 
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truly does provide that average over time (even though it is 
first operated upon to form a voltage difference with the 
applied input voltage). It will be appreciated that, since an 
integrator is responsive to both the width and amplitude of 
a series of pulses from the pulse-width style DAC, and the 
since the linearity of a delta-Sigma converter is determined 
essentially by that of the feedback DAC, it behooves us to 
select such a DAC circuit that does produce both precision 
width and precision amplitude. In this context, precision 
width means a precision duty cycle for pulses occurring at 
a fixed clock rate, and precision amplitude means more that 
every pulse has the same rise time and amplitude as every 
other pulse, more than having any particular rise time or 
particular amplitude. Given those considerations, coupled 
with an integrator that doesn't leak or drift, etc., we can 
impute similar precision to the integrator output. We shall 
have more to say below about the virtues of the architecture 
of the block diagram 43 in FIG. 3. 
The DAC may use a “return-to-Zero” or a “non-return 

to-Zero” waveform for the pulse-width system. For return 
to-Zero, the pulse width modulation uses two edges during 
every decision cycle. For non-return-to-Zero, the pulse width 
modulation uses just one edge per decision cycle. For a 
given pulse-width settling time, the non-return-to-Zero sys 
tem is more efficient but the output filtering must reject a 
tone at half the decision rate. 
Now, having described how everything is all connected as 

is seen in FIG.3, we proceed with an explanation of why this 
architecture is capable of precision operation. Let us Suppose 
that for some relatively long time there has been a steady 
state (DC) input applied as input Voltage 44, so that the loop 
has stabilized. Let's observe it in this state, and see what we 
can learn. Since the input has been static for a while, the 
output of the AC feed forward circuit 55 is either static or 
Zero, so that summer 53 does not affect the integrator output 
51, and we can (for now) ignore the AC feed forward 
function. The DC feed forward circuit 57, however, will 
produce an output that closely approximates the applied 
input voltage 44. We may think of the DC feed forward 
circuit 57 as stable low drift amplifier of unity gain. The gain 
need not be exactly unity (an error here is an error that can 
be calibrated out). Whatever its actual gain is, the effective 
gain of the DC feed forward circuit 57 should be the same 
for inputs of all legal levels. The other virtues of high 
stability, linearity and low drift between calibration cycles 
are much less important, as these are performance issues 
that, just as for ADC linearity, are automatically nulled out 
by corresponding custom created hunting arising from the 
feedback operation of the converter's feedback loop. 
The effect of the DC feed forward voltage 58 is to remove 

the need for the integrator to change significantly over the 
two or three loop decision cycles otherwise needed to 
eventually cause the coarse ADC 63 to approximate the 
applied input Voltage 44 (such changing significantly pro 
ducing an ever smaller error signal 49 that eventually would 
end an overall ramp behavior which is then replaced by 
hunting, as previously described). In a nutshell, since the 
applied input voltage supplies (via the DC feed forward 
circuit 57) its own replica, large excursion ramping by the 
integrator is not needed, and it commences to hunt without 
such ramping. (That is, the DC feed forward causes the 
coarse ADC/DAC combination to very quickly produce a 
feedback voltage 48 that limits the size of the error voltage 
49.) This might mean that the design of the integrator can be 
less stringent than otherwise, as the usual integrator output 
while hunting represents a small fraction of the applied input 
Voltage 44. On the other hand, other considerations (e.g., 
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faster overload recovery) may continue to benefit from an 
integrator that does retain the full dynamic range associated 
with the arrangement shown in FIG. 1. In any event, the 
integrator output represents the error between the applied 
input voltage 44 and the output 64 of the coarse ADC 63. 
Both the integrator output and the output of the coarse ADC 
will exhibit the hunting behavior and need to be properly 
understood over time to know what they are. Aside from 
the hunting behavior (which is ubiquitous), the effect of the 
DC feed forward mechanism is to allow the integrators 
output to be quasi-independent of the applied input, say, in 
the range of five or ten percent of what would otherwise be 
full scale. 
Now, let's dwell here for a moment. The coarse ADC 

performs a low resolution approximation that is accurate as 
far as it goes. If it were to be used by itself, then subsequent 
averaging would improve its resolution. There is a limit to 
averaging, however, as heavier filtering will reduce the 
bandwidth for tracking an AC input. If still more resolution 
were desired, then one way to get it would be to use for 63 
a more capable ADC. This can become an expensive solu 
tion, since it has to operate at least as fast as the loop 
decision rate. There is another way. 
We have stressed that the nature of the delta-sigma 

converter's operation is such that exact convergence almost 
never occurs; the hunting that ensues is part of the result 
that must be taken into account through averaging the values 
of the sequence of symbols created by the ADC. It will be 
appreciated that for the single ADC (as in FIG. 2), or for just 
the coarse ADC 63 (as in FIG. 3), the hunting is visible only 
after, and as a direct result of the quantizing performed by 
that ADC. Because of the finite nature of any practical 
quantization, we would in principle have to average an 
indefinitely long string of symbols to extract maximum 
precision represented by the string. 
Now note that the error signal 68 is just the hunting 

component of the loop's operation, and that it is not quan 
tized! That is, it is (after some delay) the (actual) input minus 
the (quantized) measured coarse value. If we take a given 
quantized coarse symbol and associate it with the correct 
instance of the error signal 68, we have a complete 
description of what the delta-sigma loop thinks the input is. 
If we can combine the two (as a coarse and a fine measure 
ment) we would no longer need to average an indefinitely 
long string of symbols to remove the effects of the hunting 
and extract all the information that the sequence contains. As 
it turns out, we can obtain the error as a fine measurement 
and combine it with the coarse one. Both will, however, will 
still be of finite resolution, and averaging of the combined 
coarse/fine symbols remains a useful tool to Suppress the 
remaining (and unduantized) vestiges of the hunting and 
reveal more precision that is still buried in the sequence of 
symbols. 

For this strategy to be successful, the Subtraction (per 
formed by 46) must produce a precision difference, and we 
will rely not just on the presence of the (optional) DC feed 
forward, but principally on the DAC 67 to not corrupt the 
computation, which is why we go to the trouble of using a 
precision DAC. Such as the one described in the incorpo 
rated 241 patent. So, with a precision DAC (67) in hand, we 
use it to Subtract out from the input the amount the coarse 
ADC 63 identifies (with the help of the DC feed forward) as 
being part of the applied input voltage 44. That difference 
(49) is applied to the integrator 50, whose output 51 is a 
linear function of that difference 49. (The integrator has a 
fixed rate of integration, so for fixed loop decision intervals 
its equivalent operation is to multiply the input by some 
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constant and add that to the previous accumulation.) 
Because of the DC feed forward voltage 58, the error voltage 
49 is only the long term I can’t quantize it exactly and have 
to hunt error associated with the coarse ADC 63. It is 
important to remember that the instantaneous output of the 
coarse ADC at any one time is an incomplete result, and that 
it is its behavior over time (which includes the hunting 
component) that is of interest. The changing nature (hunting) 
of that behavior is, of course, produced by the integrated 
error Voltage. 
As previously mentioned, one way to obtain the informa 

tion contained in the integrated error Voltage is to simply 
process the hunting behavior as measured by a very high 
performance (coarse') ADC. As mentioned above, another 
(and Superior) way is to separately measure the isolated 
hunting related error voltage with the fine ADC 69. This 
latter way is Superior to the former, as the dynamic range of 
the coarse ADC must be matched to the entire allowable 
excursion of the applied input voltage. Thus, the available 
resolution (say, eight bits) of the coarse ADC is mapped into 
a large Voltage Swing. The fine ADC (which might have ten 
bits of resolution) is exposed to only the much smaller 
excursions of the integrated error signal 51 (again, we are 
ignoring the behavior of the AC feed forward circuit 55, 
although it does not negate this observation). The output of 
the fine ADC 69 produces a digital version of the hunting, 
just as does the coarse ADC, save that it is at a considerably 
higher resolution and that it does not reflect (is unaware of) 
any particular amount subtracted out by the DC feed 
forward mechanism. We arrange that the least significant 
bits of the coarse ADC output 64 overlap the precision of the 
most significant bits from the fine ADC's output 70, so that 
they can be properly concatenated by a merge mechanism 
66, one of whose inputs 65 receives the coarse ADC output 
64 and another one of whose inputs 71 receives the fine ADC 
output 70. After the merging, the concatenated results can be 
processed and otherwise averaged as if there were simply 
one really good (think: expensivel) high precision ADC 
(used after the fashion of FIG. 2). 

It is appropriate to dwell on the nature of the merge 
mechanism 66. Recall our discussion of how the bits from 
ADC of FIGS. 1 and 2 are best construed as symbols in a 
value space, and that the filter averages a consecutive 
sequence of symbols. The idea of the coarse and fine ADCs 
of FIG. 3 is that each ADC similarly produces symbols in 
their own respective value space, and that if we understand 
correctly the relationship between those two spaces, we can 
combine the members of a corresponding pair of coarse and 
fine symbols to obtain another (precision) symbol that 
belongs to a value space that has greater resolution. Thus, we 
take a stream eight-bit of coarse symbols and its associated 
(through simultaneity) stream of ten-bit fine symbols, com 
bine the pairs, and create a sequence of, say, sixteen bit 
precision symbols that can then be averaged by the filter to 
obtain even greater resolution. 

Here is a more detailed description of the merge opera 
tion. It consists of a unit delay (a loop decision cycle) for the 
(coarse) feedback measurement, a filter arrangement for the 
measured fine value that subtracts the newest value from the 
previous value, a gain element to calibrate the scale of the 
fine measurement to that of the coarse (which may be ahead 
of and outside the merge circuit proper, and which might be 
applied to either one or both of the digitized coarse and fine 
values), and a Summation of the filtered and scaled fine value 
to the delayed coarse value. If the gain calibration were 
ideal, this operation would nearly completely remove the 
quantization error associated with the coarse ADC and DAC 
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aspects of the loop's operation. (It is only nearly so, since the 
quantization of the fine value is finite, leaving some infor 
mation still embedded in the sequence of symbols created by 
the hunting. Hence, averaging is still in order.) It will be 
appreciated that measurement noise is thus improved by 
approximately the ratio of coarse ADC and feedback DAC 
quantization noise to fine ADC quantization noise. The 
merge operation does not affect linearity because a Subtrac 
tion in the merge filter rejects any low frequency distortion 
introduced by the fine ADC. 
Now consider the AC feed forward mechanism 55. We 

begin by describing why we need it, followed by an expla 
nation of how it does what it needs to do. To begin the 
discussion of why the AC feed forward is needed, let us 
suppose that the integrator 50 were of the switched capacitor 
variety, instead of the continuous time type (i.e., instead of 
a continuously adjustable constant current source charging/ 
discharging a fixed capacitor). A Switched capacitor integra 
tor operates as a sampling circuit whose captured sampled 
value drives an integrator. Subsequent to each sample time 
it performs its operation on the Voltage captured at the 
instant of sampling, and is not affected by whatever behavior 
the real input voltage might exhibit between sample times. 
It is, in fact, a quantized-to-discrete-times arrangement, and 
actually comports quite nicely with the quantized nature of 
the rest of the delta-sigma loop architecture. So much so 
that, in principle, anyway, it does not exhibit the behavior 
that needs correction by the AC feed forward mechanism. 
(So why don’t we prefer to use a switched capacitor inte 
grator? The practical circuits available have other limita 
tions, such as finite Switching times and different behaviors 
for large and small signals, that ruin the precision of the 
measurement, which causes us to prefer to avoid the sample 
and hold circuit and use instead a genuine continuous time 
integrator that is always exposed to the input signal.) That is, 
in principle, an ideal Switched capacitor integrator would 
produce an output that is a function of only the conditions at 
the time of sampling (which is also when the rest of the 
system decides things). The ill-effects of any moving signals 
are held at bay by enforcing the Nyquist sampling criteria, 
which also applies to the system as a whole. Upon reflection 
the reader will appreciate the behavior of an IDEAL 
Switched capacitor integrator is error free as far as what is 
required of it for use in the (sampled) delta-sigma loops of 
FIGS. 1–2. To achieve comparable behavior with a continu 
ous time (real) integrator one would have to quantize the 
applied input signal and allow it to change in a step-wise 
fashion only at the decision times used by the rest of the 
delta-sigma loop. If this were done, then there would be no 
way to tell the difference between the two techniques of 
integration, and the AC feed forward mechanism would 
again be unnecessary. 
We have now snuck up upon what it is that goes wrong 

when a continuous time integrator is used and the applied 
input Voltage is allowed to vary with time. Let us say that the 
applied input voltage 44 has an AC component that is 
sinusoidal with a significant peak to peak Voltage and a 
period that is long compared to the decision rate of the loop. 
As a convenient (but contrived, as in general the properties 
of the AC component are arbitrary) example let's assume 
that the sinusoidal component has a Zero crossing at a 
decision time, To. The integrator will integrate over the 
interval of T to T. (one decision time cycle), and to describe 
its behavior during that interval we could begin by noting 
what its output is at a series of equally spaced intermediate 
points, say one hundred of them (Too-Too). According to 
our premise, at Too we begin integrating with whatever the 
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DC component is and an instantaneous AC component value 
of Zero. But at To the AC component value is no longer 
Zero, so the integrator is integrating a different input value. 
And still a different one at Too, etc. In this discrete example 
the integrator output is a Summation (a discrete X and not a 
continuous ?) of the behavior of the input at the one hundred 
approximating points. That behavior includes adv/dt that is 
our AC component, so there is a Xdv/dt included in the 
integrator output, in addition to the integration of the DC 
component. Of course, this stepwise analysis is just an 
explanatory tool, and the real situation is reached by passing 
to the limit. Now note that if the frequency of the AC 
component is low so that its period is long compared to the 
loop's decision cycle time, the values added by the Xdv/dt 
noted above are small. But that changes as the period of the 
AC component becomes shorter. 
As the frequency of the AC component approaches half 

the decision rate, the Xdv/dt can begin to approach sixty 
three percent the peak to peak excursion of that AC com 
ponent. So, the output of a continuous time integrator is 
influenced by an AC component of the applied input voltage 
44, according to both the frequency and the amplitude of that 
AC component. It can now be appreciated that it is precisely 
because a Switched capacitor integration mechanism 
samples and then ignores changes between samples, that it 
is immune to this effect. (One might object that even when 
restricted to official sample times, the presence of the AC 
component shows up as periodic disturbance to the value of 
the DC component. True, but under the framework of the 
example that effect would average to Zero over a sufficiently 
long sequence of decisions. But then you say: “What about 
actual AC measurements? What's the point of a one micro 
second decision time if you can’t measure, say, an audio 
frequency AC voltage? Our reply is that, by these rules the 
DC plays the role of that audio signal, and that we can 
indeed produce a very accurate digitized version of that AC 
input waveform, using the same basic filtering and decima 
tion we would use for DC. But since it is AC, those digitized 
values will need to be understood as a sequence of digitized 
samples, and that if a Root Mean Squared or a Peak to Peak 
value is sought, then additional Suitable processing of the 
sequence of digitized samples will be needed.) 
Now, back to the reason for the AC feed forward mecha 

nism. It can now be appreciated that if the decision rate of 
the delta-sigma loop is taken as a sampling rate, then for AC 
signals that allow that sampling rate to meet Nyquist 
requirements, the output of a continuous time integrator 
includes an error that increases with the frequency of the AC 
signal, as scaled by the amplitude of the AC signal. This 
error corresponds to a deviation from unity for the ADC 
transfer function, and it undesirable in many delta-sigma 
applications. A particular disadvantage of allowing this error 
to remain at large in the present application is that it 
increases the expected signal Swing with which the fine 
ADC must contend. For a given number of bits provided by 
the fine ADC, that increased signal Swing translates into a 
loss of resolution. 

The AC feed forward mechanism is designed to approxi 
mately remove the effect of continuous integration so that 
the resulting system operates like the discrete time equiva 
lent over the input band of interest. It is possible to show that 
the difference between continuous and discrete integration 
produces an additive error term in the output signal of the 
integrator that is proportional to the magnitude of 
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where W=2tfT, with f as the input frequency and T as the 
decision rate. 

One way to cancel this additive term is to subtract an 
appropriately filtered version of the input waveform from 
the integrator output. One property of the feedback loop is 
that any signal inserted after the integrator will be filtered by 
H(W)=(1-e'). This is the quantization noise shaping 
function. Therefore, any injected signal must be filtered by 
approximately H(W)/H(W) over the band of interest. A 
nearly ideal filter is a delay of 0.19 times the decision period, 
with a gain that varies between 0.50 at DC and 0.59 at half 
the decision period. Since actual delay circuits are often hard 
to realize, we are led to consider approximations. One 
simple circuit that roughly matches this goal is a gain stage 
followed by a single pole, and this is what would be used for 
the AC feed forward mechanism 55 of FIG. 3. It will be 
appreciated that there may well be other such useful 
approximations. 

Another way to cancel this term is to Subtract a somewhat 
differently filtered version of the input from the integrator 
input. When injecting the signal before the integrator, the 
filtering must also account for the integration. There is an 
equivalent circuit to the gain and pole compensation 
described above that uses again and a series RC before the 
integrator. This alternative removes the need for a subtrac 
tion circuit, and will be shown in connection with the 
following description of FIG. 4. 

Referring now to the somewhat more detailed block 
diagram of FIG. 4, an applied input voltage V, to be 
measured is coupled to an input terminal 44. In one preferred 
embodiment V, may exhibit a range of values that is +16V 
(DC or P P). That input is applied through resistor 79 to a 
Summing junction 90, whose other inputs are through resis 
tor 80 (for the polarity inverting feedback DAC 67) and 
through resistor 81 (for the AC feed forward signal from 
circuit 78). The summing junction 90 is also the input to a 
continuous time integrator 50, whose general nature is 
shown, and which is also conventional. In this particular 
embodiment the gain of the integrator is one half, and its 
output 91 can exhibit a +7V excursion when the loop 
experiences a transient input. 
The output 91 of the integrator 50 is coupled to two 

places. The first is through a 20:1 voltage divider (92.93) to 
a plus (+) portion of a differential input of a coarse ADC 63. 
The minus (-) portion of the differential input is fed from a 
40:1 voltage divider (94, 95) that is driven by the DC feed 
forward signal 57, which is also the V applied to terminal 
44. The coarse ADC 63 thus sees about +/2 V as its analog 
input, and operates at one mega-sample per second to 
produce an eight-bit output 97. Coarse ADC 63 may be an 
AD9283 from Analog Devices, Inc. 
The second place the output 91 of the integrator 50 is 

coupled is to the fine ADC 69, via an input limiter circuit 
104. The input limiter circuit 104 protects the fine ADC 69 
from large transients, as the nominal balanced loop hunting 
Voltage excursions it is expected to digitize are in the range 
of +1V. The fine ADC 69 operates at the same sample rate 
as, and in synchrony with, the coarse ADC 63; it produces 
a ten-bit output 105. Fine ADC 69 may be an AD9200 from 
Analog Devices, Inc. 

The eight-bit output 97 from the coarse ADC 63 is 
coupled to a digital multiply circuit 98, where it is scaled to 
compensate for various circuit gains, after which it is 
rounded to the nearest six bits (101). The result of that is a 
six-bit feedback value 102 that is sent to the polarity 
inverting feedback DAC 67 and (as 103) to the merge circuit 
66. The merge circuit 66 receives inputs 103 and 105, and 
operates as previously described. Its output 72 is applied to 
a digital filter 73 whose output 74 is, after suitable decima 
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tion (not shown), a variable speed/resolution precision digi 
tal value representing the applied V. 

Note the AC feed forward circuit 78. It is fed by V, and 
produces an output that is added to the input of the integrator 
50, as opposed to the arrangement shown in FIG. 3 where it 
is applied to the integrator output as a signal to be removed. 

Here are some final observations concerning the operation 
of the delta-sigma architectures shown in FIGS. 3 and 4. 

Each of the coarse ADC and the fine ADC has an 
associated specific input range, a maximum sample rate, and 
a minimum sample latency, which influence the overall ADC 
design in ways briefly discussed below. The input range is 
usually expressed as a symmetric signal Swing (input range) 
about a bias point. (Both the input range and the bias point 
are often related to a reference Voltage that may, in principle, 
be either internal or external to the coarse and fine ADCs. In 
our case, things track the DAC 67 independently of any 
local references in the ADCs 63 and 69, and the overall 
reference voltage is essentially the precision pulse width 
modulation performed by the DAC 67.) 

For the coarse ADC, the gains applied to the DC feed 
forward and to the integrator output ensure that the input 
Swing into the coarse ADC is acceptable. The input Swing 
may be centered around the bias point using a variety of 
biasing circuits, including a simple resistive divider. 

Since the coarse ADC is inside a feedback loop, the 
sample latency partially determines the duration between the 
end of one pulse width modulation cycle of the DAC and the 
beginning of another. Therefore, the coarse ADC sample 
latency must be a fraction of the overall delta-sigma con 
verter's decision rate. Conceptually, the coarse and fine 
ADC are sampled once at the beginning of each decision 
cycle. Because of sample latency and feedback processing 
delay, it may be advantageous to sample the coarse ADC 
before the start of each decision cycle. This early sampling 
introduces an error related to integrating the input and 
feedback signals for less than an entire integration period 
when the coarse ADC takes a sample. The effect of this error 
may be (optionally) reduced by adding a feedback offset 107 
to each feedback sample 103 with an adder 106. The value 
of the feedback offset 107 can be chosen to compensate for 
the integration of the feedback between the actual sample 
point and the beginning of the decision cycle. 

For the fine ADC, the integrator gain ensures acceptable 
input swing into the fine ADC. The fine ADC may be biased 
using standard circuits. Alternatively, the integrator output 
may be shifted to center around the fine ADC bias point by 
adding a fixed offset to each coarse ADC sample as part of 
feedback offset 107. 

Since the fine ADC is not inside a feedback loop, the 
sample rate need only match the converter decision rate, and 
the sample latency is not constrained. The fine ADC sample 
timing may be adjusted from the beginning of the decision 
cycle to allow for more analog settling of the feedback DAC 
67 and more precise cancellation of the effects of early 
coarse ADC sampling. 
The overall delta-sigma ADC has two quantities that 

should be calibrated: feedback gain and fine merge gain. The 
feedback gain is used to scale the coarse ADC sample into 
the feedback value. This scaling is calibrated to account for 
component deviations in the integrator gain, DC feed for 
ward gain, feedback reference, and coarse ADC reference. 
One possible criterion for this calibration is to minimize 

the integrator output change that corresponds to input level 
shifts. Ideally, there is no correspondence, but component 
deviations may cause some dependence. Reducing this 
dependence improves the utilization of the fine ADC range 
and reduces possible non-linearities related to the integrator. 
This calibration is performed by applying a positive and a 
negative Voltage to the ADC and measuring the average 
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integrator output level using just the fine ADC. This is done 
repeatedly with different feedback gains until the difference 
in the amount of integrator shift between the positive and 
negative input level is minimized. 

Another possible calibration criterion is to minimize the 
Infinite Impulse Response of the feedback loop. This 
improves the step response and does not require an external 
voltage source. This calibration is performed by digitally 
injecting either a periodic impulse or a specific tone into the 
feedback loop. The feedback gain is adjusted until the 
impulse response is minimized or the phase shift of the tone 
matches the ideal value. 
The fine merge gain is used to combine the feedback and 

fine samples into an output sample. The fine merge gain 
scales the fine sample to match the feedback sample. The 
value varies due to component and reference tolerances. 
This calibration is common in cascaded delta-sigma sys 
tems. One method of calibration is to digitally inject a 
known sequence into the feedback loop and measure the 
correlation between the fine ADC samples and the injected 
sequence. Another method is to apply Zero to the ADC and 
find the merge gain that minimizes the standard deviation of 
the output samples. 

In many delta-sigma designs, dither is used to improve 
performance. Adding a digital dither into the feedback loop 
reduces some error mechanisms in this design. Dither may 
be added as part of feedback offset 107. 

The range of the fine ADC 69 is determined in part by the 
combination of the resolution of the coarse ADC 63 and that 
of the DAC 67. If the resolution of DAC 67 is less than the 
coarse ADC's resolution, Some portion (e.g., two least 
significant bits 108) of the coarse ADC resolution may 
simply be discarded by the rounding (101) performed in 
FIG. 4, provided the range of the fine ADC can handle the 
entire error signal from the integrator that results from the 
now coarser resolution provided by DAC 67. We say now 
coarser in this sense: if we assume (as we are doing for the 
sake for example) that there are eight bits of resolution in the 
coarse ADC 63 and only six for DAC 67, then we are 
ignoring two least significant bits (108), and the now 
coarser DAC resolution is six bits as opposed to a finer 
eight bits of resolution. Unfortunately, eight bits of resolu 
tion is asking a lot () from DAC 67, so we might well 
simply use the six bits of resolution. That translates to about 
four times the size for the integrated error signal 91 that is 
applied to the fine ADC, as compared to an eight-bit case, 
but in an actual embodiment was found to be a quite viable 
Solution. 
As an alternative to simply discarding the example two 

least significant bits (108), the range of the fine ADC may be 
reduced to encompass just the (original eight-bit) coarse 
ADC resolution by using an auxiliary DAC 109 to offset the 
fine ADC. The output levels of the auxiliary DAC 109 are 
determined by the additional coarse ADC resolution, which 
in turn corresponds to a known error that will be placed on 
the integrator during the next decision cycle because of the 
rounding (101). The auxiliary DAC 109 may have just a few 
levels (corresponding to the difference in the number of bits 
between the coarse ADC and the feedback DAC) and has 
limited accuracy requirements. The output of auxiliary DAC 
109 is summed with the output of input limiter 104 by 
summer 110, and the result is applied as the input to the fine 
ADC 69. 

It will, of course, be appreciated that, although we have 
shown the optional 106/107 adder and the optional auxiliary 
DAC 109 and its summer 110 in an embodiment with an AC 
feed forward arrangement that drives the input of the inte 
grator, these optional circuits may be employed with the AC 
feed forward arrangement of FIG. 3, as well. Likewise, the 
optional 106/107 adder and the optional auxiliary DAC 109 
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18 
and its Summer 110 represent two separate and distinct 
activities that may be practiced independently: either one or 
both may be used, as desired. 
We claim: 
1. A method of converting an applied analog input signal 

to a digital representation thereof, the method comprising 
the steps of: 

(a) converting a previous instance of a coarse digital 
approximation of the applied analog input signal to an 
analog feedback signal; 

(b) forming the analog difference between the analog 
feedback signal and the applied analog input signal; 

(c) integrating the analog difference found in step (b): 
(d) generating a DC feed forward voltage from the applied 

analog input signal; 
(e) adjusting the integrated analog difference produced in 

step (c) with the DC feed forward voltage generated in 
step (d) to produce a coarse composite signal; 

(f) converting the coarse composite signal to a next 
instance of the coarse digital approximation of the 
applied analog input voltage, whereby each next 
instance of the coarse digital approximation is available 
for use in a respective new instance of step (a) as the 
recited previous instance of a coarse approximation of 
the applied analog input signal; and 

(g) for each instance of step (f), converting the integrated 
analog difference of step (c) to a next instance of a fine 
digital value that represents increased resolution for the 
coarse digital approximation of step (f). 

2. A method as in claim 1 further comprising the step (h) 
of merging corresponding instances of the coarse digital 
approximation and the fine digital value into a unified digital 
value representing the value of the applied analog input 
signal. 

3. A method as in claim 2 further comprising the step (i) 
of digitally processing a sequence of unified digital values. 

4. A method as in claim 1 wherein the previous instance 
of a coarse digital approximation used in step (a) is digitally 
complemented to have the opposite polarity of that of the 
applied input signal and wherein the converting of step (a) 
comprises pulse width modulation with a signal of that 
opposite polarity, and further wherein step (b) comprises 
analog addition. 

5. A method as in claim 1 wherein the previous instance 
of a coarse digital approximation used in step (a) has the 
same polarity as that of the applied input signal and wherein 
the converting of step (a) comprises pulse width modulation 
with a signal of that same polarity, and further wherein step 
(b) comprises analog subtraction. 

6. A method of converting an applied analog input signal 
to a digital representation thereof, the method comprising 
the steps of: 

(a) converting a previous instance of a coarse digital 
approximation of the applied analog input signal to an 
analog feedback signal; 

(b) forming the analog difference between the analog 
feedback signal and the applied analog input signal; 

(c) integrating the analog difference found in step (b): 
(d) generating an AC feed forward signal from the applied 

analog input signal; 
(e) adjusting the integrated analog difference produced in 

step (c) by the AC feed forward signal generated in step 
(d) to produce an adjusted integrated error signal; 

(f) generating a DC feed forward voltage from the applied 
analog input signal; 
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(g) combining the adjusted integrated error signal of step 
(e) with the DC feed forward voltage generated in step 
(f) to produce a coarse composite signal; and 

(h) converting the coarse composite signal to a next 
instance of the coarse digital approximation of the 
applied analog input voltage, whereby each next 
instance of the coarse digital approximation is available 
for use in a respective new instance of step (a) as the 
recited previous instance of a coarse approximation of 
the applied analog input signal. 

7. A method as in claim 6 further comprising the step (i) 
of for each instance of step (h), converting the adjusted 
integrated error signal of step (e) to a next instance of a fine 
digital value that represents increased resolution for the 
coarse digital approximation of step (h). 

8. A method as in claim 7 further comprising the step () 
of merging corresponding instances of the coarse digital 
approximation and the fine digital value into a unified digital 
value representing the value of the applied analog input 
signal. 

9. A method as in claim 8 further comprising the step (k) 
of digitally processing a sequence of unified digital values. 

10. A method as in claim 6 wherein the previous instance 
of a coarse digital approximation used in step (a) is digitally 
complemented to have the opposite polarity of that of the 
applied input signal and wherein the converting of step (a) 
comprises pulse width modulation with a signal of that 
opposite polarity, and further wherein step (b) comprises 
analog addition. 

11. A method as in claim 6 wherein the previous instance 
of a coarse digital approximation used in step (a) has the 
same polarity as that of the applied input signal and wherein 
the converting of step (a) comprises pulse width modulation 
with a signal of that same polarity, and further wherein step 
(b) comprises analog Subtraction. 

12. A method of converting an applied analog input signal 
to a digital representation thereof, the method comprising 
the steps of: 

(a) converting a previous instance of a coarse digital 
approximation of the applied analog input signal to an 
analog feedback signal; 

(b) forming the analog difference between the analog 
feedback signal and the applied analog input signal; 

(c) generating an AC feed forward signal from the applied 
analog input signal; 

(d) adjusting the analog difference formed in step (b) by 
the AC feed forward signal generated in step (c) to 
produce an adjusted analog difference; 

(e) integrating the adjusted analog difference of step (d) to 
produce an adjusted integrated error signal; 

(f) generating a DC feed forward signal from the applied 
analog input signal; 

(g) combining the adjusted integrated error signal of step 
(e) with the DC feed forward signal generated in step 
(f) to produce a coarse composite signal; and 

(h) converting the coarse composite signal to a next 
instance of the coarse digital approximation of the 
applied analog input voltage, whereby each next 
instance of the coarse digital approximation is available 
for use in a respective new instance of step (a) as the 
recited previous instance of a coarse approximation of 
the applied analog input signal. 

13. A method as in claim 12 further comprising the step 
(i) of, for each instance of step (h), converting the adjusted 
integrated error signal of step (e) to a next instance of a fine 
digital value that represents increased resolution for the 
coarse digital approximation of step (h). 
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14. A method as in claim 13 further comprising the step 

() of merging corresponding instances of the coarse digital 
approximation and the fine digital value into a unified digital 
value representing the value of the applied analog input 
signal. 

15. A method as in claim 14 further comprising the step 
(k) of digitally processing a sequence of unified digital 
values. 

16. A method as in claim 12 wherein the previous instance 
of a coarse digital approximation used in step (a) is digitally 
complemented to have the opposite polarity of that of the 
applied input signal and wherein the converting of step (a) 
comprises pulse width modulation with a signal of that 
opposite polarity, and further wherein step (b) comprises 
analog addition. 

17. A method as in claim 12 wherein the previous instance 
of a coarse digital approximation used in step (a) has the 
same polarity as that of the applied input signal and wherein 
the converting of step (a) comprises pulse width modulation 
with a signal of that same polarity, and further wherein step 
(b) comprises analog subtraction. 

18. A method of converting an applied analog input signal 
to a digital representation thereof, the method comprising 
the steps of: 

(a) converting, with a first resolution, a previous instance 
of a coarse digital approximation of the applied analog 
input signal to an analog feedback signal; 

(b) forming the analog difference between the analog 
feedback signal and the applied analog input signal; 

(c) integrating the analog difference found in step (b): 
(d) generating a DC feed forward voltage from the applied 

analog input signal; 
(e) adjusting the integrated analog difference produced in 

step (c) with the DC feed forward voltage generated in 
step (d) to produce a coarse composite signal; 

(f) converting, with a second resolution greater than the 
first resolution, the coarse composite signal of step (e) 
to a next instance of the coarse digital approximation of 
the applied analog input voltage, whereby each next 
instance of the coarse digital approximation is available 
for use in a respective new instance of step (a) as the 
recited previous instance of a coarse approximation of 
the applied analog input signal; 

(g) for each instance of step (f), converting into an 
auxiliary analog Voltage the least significant portion of 
the coarse digital approximation of step (f) that corre 
sponds to the amount by which the second resolution 
exceeds the first resolution; 

(h) for each instance of step (g), Summing the auxiliary 
analog Voltage with the integrated analog difference of 
step (c); and 

(i) for each instance of steps (h) and (f), converting the 
Sum found in step (h) to a next instance of a fine digital 
value that represents increased resolution for the coarse 
digital approximation of step (f). 

19. A method as in claim 18 further comprising the step 
() of adjusting the integrated analog difference of step (c) 
according to a selected AC transfer function performed upon 
the applied input signal. 

20. A method as in claim 18 further comprising the step 
() of adjusting the analog difference formed in step (b) 
according to a selected AC transfer function performed upon 
the applied input signal. 


