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Foreword 
 
Like virtually any area of study, optical lithography is best learned by a 
combination of thinking and doing. Reading my textbook, Fundamental 
Principles of Optical Lithography, will certainly require a fair amount of 
thinking.  And doing the homework problems is a first step in “doing”, practicing 
lithography to reinforce the concepts found in the book.  But the real practice of 
lithography – getting in the fab or lab and printing wafers – is often out of the 
reach of most students, requiring equipment and facilities that are frequently 
unavailable.  Thus, there is a need for more opportunities to “do” than the book’s 
homework problems can provide.  Simulating lithography, performing the 
complex calculations detailed in my book to create a virtual lithography 
environment, is a valuable way to get experiences closer to the real world of 
lithography practice without the (sometimes extreme) expense of physical 
experiments. 
While sophisticated lithography simulators such as PROLITH® are extremely 
valuable learning tools for the student of lithography, Kevin Berwick in this 
volume offers another approach to learning through simulation:  use the power of 
the MATLAB® environment to enable students to write their own code for 
performing complex lithography calculations.  Found within these pages are 
laboratory “experiments” to be performed in the MATLAB® environment.  They 
are, in a sense, extreme homework problems, requiring computational 
capabilities that often stretch far beyond paper, pencil and calculator.  But their 
very complexity enables a new level of learning – the ability to toy with inputs 
and examine the resulting outputs in a simulated lithography experience.  While 
seeing a graph showing how an output varies with an input can be instructive, 
doing the calculations that generate that curve is even more instructive.  Kevin 
Berwick’s MATLAB® laboratory manual is a valuable resource for the reader of 
Fundamental Principles of Optical Lithography.  Whether in academia or in 
industry, performing the laboratories found in this manual will bring one’s 
lithography learning a little closer to reality. 
 
 
 

 
 
 
 
 
 
 

Chris Mack 
December, 2010 

Austin, Texas, USA 
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Preface 

 
The original motivation to write this book was when I was asked to teach an 
elective, one-semester course in Lithography as part of a new M. Sc. Program at 
the Dublin Institute of Technology. While there are many books available which 
describe the full range of processes required to build a circuit on silicon, very few 
exist which concentrate solely on Lithography.  
One of the aspects of Lithography which I wanted to highlight was mathematical 
modelling of Lithography and, as I searched the literature in order to find 
information on this for my lecture notes, Chris Mack’s name cropped up again 
and again. As the author of the lithography simulation software PROLITH®, 
Chris has an enormous breadth of knowledge on the subject of lithography 
modelling. I was delighted when, in 2007, Chris’s book, Fundamental Principles 
of Optical Lithography, was published. Here was a synthesis of the many, many 
papers published in the field, filtered by an expert and dished up in an easily 
digestible form for my reading pleasure. 
For about a month, my morning routine before starting my teaching consisted of 
a train journey into town, followed by two double shot lattes at Insomnia, my 
favourite coffee shop, as I read Chris’s book from cover to cover. The 
mathematics was, in parts, intimidating. Although largely standard algebra and 
calculus, many of the expressions developed were long. In addition, the 
interpretation of the mathematics was challenging, requiring me to dust off some 
of the physics I hadn’t used for the best part of a decade.  As an engineer, I found 
that the plots of the equations in the text were a great help in visualising the 
underlying physics.  
Initially, I wrongly assumed that all the plots had been generated using 
PROLITH®. However, as I read further, it became apparent that most of the 
Figures could be reproduced with any mathematical calculation and plotting 
program.  
Coincidentally, I had started to use MATLAB® for teaching several other subjects 
around this time. MATLAB® allows you to develop mathematical models 
quickly, using powerful language constructs, and is used in almost every 
Engineering School on Earth. MATLAB® has a particular strength in data 
visualisation, allowing you to get insight into trends in data far quicker than using 
spreadsheets or other high level languages such as C or Fortran. I decided to 
attempt to reproduce some of the plots in Chris’s book using MATLAB® and still 
remember my delight when, after writing only a few lines of MATLAB® code, an 
Aerial Image plot identical to that in the book materialised on my screen.  
In my experience, familiarity with theoretical models, and the underlying 
physical principles used in constructing the models, is greatly improved if the 
behaviour of the equations is explored using computer software. So, I wrote 
several laboratory exercises for my students based on Chris’s book using 
MATLAB®. The lab sheets I produced eventually grew into the book you are now 
reading.  
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This book is intended to act as a companion to Chris’s book, reinforcing the 
principles covered in the text. As such, I would imagine the Manual will prove 
useful to Senior Undergraduate and Graduate students, as well as practising 
lithographers who wish to improve their theoretical knowledge of what is 
essentially a practical process. Along the way, the interested student will gain 
some familiarity with MATLAB®. In order to kick start this process, I include a 
short MATLAB® Primer as an Appendix to the text. 
An Instructor’s Solution manual is available by emailing me at 
kevin.berwick@dit.ie . Suggestions for improvements, error reports and additions 
to the book are always welcome and can be sent to me at this email address. 
I would like to thank a number of people who assisted in the production of this 
manual. I have already mentioned Chris Mack, author of Fundamental Principles 
of Optical Lithography. Most of the questions in this Manual are based directly 
on his textbook. Chris advised me on the mathematics and physics when needed, 
and supplied me with analytical solutions to many of the problems. He also 
provided valuable advice at various stages of the production of the book and his 
enthusiasm for the project when initially proposed was very encouraging. 
 I also received valuable feedback from anonymous reviewers during the writing 
of the book and am very grateful for their contributions. I would like to thank The 
MathWorks for their support via their Book program and for producing the 
MATLAB® software on which this book is based. I would also like to thank the 
School of Electronics and Communications Engineering at the Dublin Institute of 
Technology for affording me the opportunity to write this book.  
Finally, I would like to thank my family, who tolerated my absence on the many 
occasions when, largely self imposed, deadlines loomed.    
     
            

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kevin Berwick 
Dublin, Ireland  
December 2010 

mailto:kevin.berwick@dit.ie
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1. Introduction to Semiconductor Lithography 
 

 

1. Plot the projected range and straggle for the ion implantation of Boron into resist. Use 

the data in Table 1.1 of the Book. You should get something like this.  

 

 
(i) What energy is required to produce a Boron implant with a projected range of 1μm? 

(ii) What is the straggle at this Energy? 

 
2. The Yield,  Production Cost and Profit, in dollars, of a chip at a semiconductor plant 

can be described by  

   

                     
 

  (1.3) 

                
        

     
 

 

       
   

 
      

 

where w is the feature size in nm, (which must be greater than w0, the ultimate resolution, 

in this model), and σ is the sensitivity of Yield to feature size. If w0 = 65 nm and σ = 9 

nm, plot Yield, Production Cost and Profit as a function of feature size, for feature sizes 

between 72 nm and 120 nm.  
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You should get something like this. 

 

 
Answer the following questions. 

 

(i) Below what feature size does the Yield drop below 30%?  

(ii) Above what feature size does the Yield exceed 95%?  

(iii) What is the feature size at the lowest Production Cost? 

(iv) What is the Yield at the lowest Production Cost? 

(v) What is the maximum Profit per chip, in dollars, at this plant? 

(vi) What is the feature size when the plant is most profitable? 

(vii) What is the Yield when the plant is most profitable? 

 

3. Resolution in optical lithography scales with wavelength, λ, and numerical aperture, 

NA, according to a modified Rayleigh criterion: 

 

  
   

  
 

 

where k1 can be thought of as a constant for a given lithographic approach and process. 

Assuming k1 = 0.35, plot resolution versus numerical aperture over a range of NAs from 

0.5 to 1.0 for the common lithographic wavelengths of 436 nm, 365 nm, 248 nm, 193 nm, 

and 157 nm. From this list, what options (NA and wavelength) are available for printing 

90 nm features? Your plot should look like this. 
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4. Resist thickness scales as 

 

           
    

    
 (1.4) 

 

ω is the spin speed and υ is the resist viscosity. If k is the constant of proportionality. 

 

           
    

    
 

 

The Reynold’s number, Re, is given by 

 

    
   

    
 (1.5) 

 

where r is the wafer radius and υair is the viscosity of air. 

 

(i) Plot thickness of resist as a function of resist viscosity for viscosities of 5 – 35 cStoke 

(1 Stoke = 1 cm
2
/s), for a spin speed of 2000 rpm. Take care with dimensions, assuming  

k = 4.38 x 10
-4

, υ is in m
2
/s and ω is in revolutions per second.  

 

(ii) Plot the Reynolds number as a function of spin speed for a 300 mm wafer and prove 

that a spin speed of 2000 rpm will not cause turbulent flow, given that flow instabilities 

would be expected to begin at a Reynolds number of 100,000.  Take υair = 1.56 x 10
-5

 

m
2
/s. 

 

(iii) Plot thickness of resist as a function of spin speed, for a resist viscosity of 20 

cStokes, for spin speeds between 2000 and 5000 rpm.  
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You should get something like the plots shown. 
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2. Aerial Image Formation – The Basics  
 

Aerial Image calculation: - Dense Lines and Spaces 
 

1.  This exercise is based on Chapter 2 of the book, in particular the material presented in 

Section 2.2.5. In this exercise, we will look at the aerial image formed by a dense pattern 

of lines and spaces as a function of the number of diffraction orders captured by the 

objective lens. We will assume coherent illumination is used.  

The diffraction pattern of an infinite array of lines and spaces is made up of discrete 

diffraction orders, mathematically represented by delta functions. The image of such a 

pattern is calculated as the Inverse Fourier Transform of the diffraction orders that make 

it through the lens, that is, those with spatial frequencies less than NA/λ. 

 

We can show that for a dense array of lines and spaces  

 

 E(x) = a0 +      

 

   
   (2πjx/p) (2.63) 

 

The zeroth order, given by a0, provides a DC offset to the electric field. Each pair of 

diffraction orders j = +/- 1, 2, 3, etc., contributes a cosine at harmonics of the pitch p to 

the image. In order to calculate the coefficients    , 

 

 aj = 
          

  
 (2.62) 

 

where w is the linewidth and p is the pitch.  The Electric Field Intensity is given by  

 

 I (x) = n        (2.39) 

 

Take n = 1 for this exercise, that is, assume that the medium is air. 

 

2. For equal lines and spaces, calculate a1 to a11.  How can a0 be calculated? 

 

3. Write a MATLAB® program to calculate the Aerial image, that is, the Electric Field 

Intensity, I(x), across a space, as a function of the number of diffraction orders captured 

by the objective lens. Assume coherent illumination is used for a pattern of equal lines 

and spaces of width 500 nm and an associated pitch of 1000 nm. Do the calculation for N 

= 1, 3, 5, 7, 9, 11. 
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You should get a plot which looks like the one above.  

 

4. If you repeated the exercise, but this time included even diffracted orders, that is, N = 

2, 4, 6, 8 etc., how would the results be affected? 

 

5. Do a hand calculation of the intensity at the centre of the space (x = 0) and the centre 

of a line (x = p/2) for the case where N = 1, that is, 3-beam imaging. Does it match the 

results from your MATLAB® simulation?  

 

6. Note that as the number of orders captured by the lens, that is, the NA, increases, the 

image improves. The ringing in the image is reduced, while the transition from dark to 

light is sharper. Ideally, you want to collect as many diffracted orders as possible, that is, 

have a large NA. If a wavelength of 248 nm is used to image this dense pattern of lines 

and spaces, and given that on-axis, coherent illumination is used, calculate which 

diffraction orders pass through the lens. Take the numerical aperture of the lens to be 

0.85. Plot the image using MATLAB®.  

 

7. In the text, Section 2.3.1, it says that oblique illumination results in a shift of the 

diffraction pattern by an amount, in spatial frequency terms, of sin θ'/λ. If the illumination 

system in the stepper described earlier is tilted by an angle of 30 degrees, identify which 

diffraction orders get through to the lens.  
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Partially coherent illumination, the Kintner method 
 

1. This Exercise is based on Chapter 2 of the book, in particular the material presented in 

Section 2.3.2. 

 
Figure 2.15 The diffraction pattern is broadened by the use of partially coherent illumination 
(plane waves over a range of angles striking the mask) 

 

If the mask illumination comes from a range of angles, rather than just one, we say the 

light is partially coherent.   

 

For a uniform intensity, circular source and a repeating pattern of lines and spaces, the 

aerial image is given by  
 

 beambeambeam IsIsIsxI  3221 31)(  (2.90) 

 

where s1, s2, and s3 are given in Table 2.3 and  
 

   
   

 

   
 
 
   

  

   

 (2.91) 

 

   

        
     

  
 

   

           
      

   

   
 (2.92) 

 

   

        
 

   
  

 

   
    

 

   
 
 
 

   
  (2.93) 

  

Mask Pattern 
(equal lines and spaces) 

Diffraction Pattern 

Lens Aperture 



Optical Lithography Modelling with MATLAB® 2011 
 

Kevin Berwick Page 12 
 

 
Table 2.3  Kintner weights for conventional source imaging of small lines and spaces. 

Regime Description s1 s2 s3 




1
pNA

 
All 3-beam imaging 0 0 1 

211 


 
pNA

 
Combination of two- and 

three-beam imaging 

0 2 1 – 2 

11 2 
pNA


  

Combination of one-, two- 

and three-beam imaging 
 + 2– 1 2(1 – – ) 




 11
pNA

 
Combination of one- and 

two-beam imaging 
2 – 1 2(1 – ) 0 

pNA


 1  

Only the zero order is 

captured, all 1-beam 

1 0 0 

 

In this Exercise, we will calculate the aerial image formed by a dense pattern of lines and 

spaces formed using partially coherent illumination.  
 

2. Read pp 58-62 in Fundamental Principles of Optical Lithography, by Chris Mack. 

 

3. Write a MATLAB® program to calculate the Aerial image, that is, the Electric Field 

Intensity, I(x), across a space. Assume partially coherent, 248 nm illumination with 

values of σ = 0.8, NA = 0.8 and the linewidth = spacewidth = 200 nm.  Note that this 

involves plotting Eq (2.90). You should get a plot which looks like the one below. 
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3. Aerial Image Formation – The Details 
 

1.  Plot the Z3, Z4, Z6 and Z8 Zernike formulae using MATLAB®. You should get 

something like this. 

 

 
 
2.  Equation (3.6) describes 3

rd
 order x coma as 

 

 Z6              (3.6) 

 

For simplicity, we consider coma in the direction of maximum magnitude is given by Eq 

(3.6) with c    maximum, that is 1.  From Table 3.1,  Z1       is the x-tilt. Comparing 

these Equations, we see that coma acts as an x- tilt with coefficient          . This 

leads to a placement error which varies with R. 

 

We know that tilt generates a placement error of  

 

 Placement error =  
   

  
 (3.5) 

 

By comparison, we would expect coma to generate a placement error of  

 

Placement error =  
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Consider a pattern of lines and spaces of pitch p. Diffraction will produce discrete orders 

of light passing through the lens. The zeroth order goes straight through the lens centre, 

while the first orders enter the lens at radial positions         . The placement error 

is given by substituting R =        into the Equation for placement error as a result of 

Coma above.  

 

 Placement error =  
   

  
   

 

   
 

 
    (3.7) 

 

This applies to line/space patterns and  λ/NA < p < 3λ/NA and coherent illumination. It 

predicts that you will get a negative placement error when the pitch is less than 1.5λ/NA, 

a positive error for pitches greater than this amount, and zero placement error when the 

pitch is equal to this amount.  

 

The error is zero when                     , other values of R will suffer 

placement error.  Show why this is true, using plots of the wavefront error generated 

using MATLAB®. 

 

You should get something like this for your plot of wavefront error.  
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3.  Consider the case of dense equal lines and spaces (only the 0 and ±1st orders are used) 

imaged with coherent TE illumination. Using MATLAB®, plot the aerial image intensity 

for this situation, given by Eq (3.27). By changing the amount of defocus over a suitable 

range, show that the peak intensity of the image in the middle of the space falls off 

approximately quadratically with defocus, for small amounts of defocus. Here is some 

typical data, together with a fit generated using MATLAB®. 

 

 

Defocus  Intensity 

 

0 1.29 

0.05π 1.284 

0.1 π 1.26 

0.15 π 1.22 

0.2 π 1.17 
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4.  Compare the depth of focus predictions of the high-NA version of the Rayleigh 

equation (3.60) to the paraxial version of equation (3.61) by plotting predicted DOF 

versus pitch. Use k2 = 0.6, λ = 248 nm and pitches in the range from 250 to 500 nm. 

Assume imaging in air. 

 

 DOF (high NA)  
   

 

 

         
 (3.60) 

 

 DOF (low NA) ≈ k2

    

 
 (3.61) 

 

 

You should get something like this plot. 

 

 
 

5. Read Section 3.6.2. Note that for TE illumination, and for a y - oriented dense pattern, 

the electric field component for TE polarisation is in the y - direction. However, TM 

illumination has x- and z- components present, and will give a degraded image when 

compared to that produced by TE illumination.  

 

Consider the case of dense equal lines and spaces (only the 0 and ±1st orders are used), 

with the linewidth and spacewidth equal to 250 nm, imaged with conventional coherent 

illumination at a wavelength of λ = 193 nm. Explore the influence of polarisation of the 

illumination source by plotting both the TE and TM aerial images. 

You should get something like this. 
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6.  In this exercise, we will look at the effect of  defocus on a pattern of lines and spaces 

formed by a projection lithography system utilizing the 0 and +/-1 diffraction orders only, 

that is, 3-beam imaging using coherent illumination and TE polarization.  

 

The intensity image in this case is given by  

 

 I(x) =   
                     

   

 
      

        
   

 
   (3.27) 

 

The impact of defocus is to reduce the magnitude of the main cosine term in the image. 

As the first orders go out of phase with respect to the zeroth order, the interference 

between the zeroth and first orders decreases. When    = 90
0
, there is

 
no interference 

and the     
   

 
  term disappears. For defocus δ we get  

 

    

           
 

  
 
 
 

 
 (3.25) 

 

Note that for coherent imaging,   = 0. 

 

Consider a coherent, three-beam image of a line/space pattern under TE illumination.  

NA = 0.93,  λ = 193 nm, linewidth = 100 nm, spacewidth = 150, pitch = 250 nm. Plot the 

resulting aerial image at best focus and at defocus values of 50 and 100 nm for: 

 

i) imaging in air 

ii) immersion imaging in a fluid with a refractive index of 1.44. 
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You should get something like this for imaging in air.  

 

 
 

You should get something like this for immersion imaging.  
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7. (i) Consider an in-focus, TE image where only the zeroth order and one of the first 

orders pass through the lens. This is two-beam imaging. For this image, what are the 

values of β0, β1, and β2 in Equation (3.93)? 

 

               
    

 
  

    (3.93) 

 

(ii) Using Eq (3.96), show that the value of the NILS for the case of equal lines and 

spaces is 2.85.  

 

(iii) Plot the aerial image for equal lines and spaces of width 500 nm.  Measure the NILS 

by measuring the slope of the image. Use the formula  

 

     
 

 

  

  
         

  

  
                                     

 

and compare it with the theoretical result from part (ii). 

 

Your plot should look like this. 
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8.  For the line/space image of equation (3.93): 

 

               
    

 
  

    (3.93) 

 

i) Derive an equation for the image contrast, defined as 

 

                 
         

         
 (9.1) 

 

For simplicity, assume the maximum intensity occurs in the middle of the space, and the 

minimum intensity occurs in the middle of the line. 

 

ii) For the case where the second harmonic is the highest harmonic in the image (i.e., 

when N = 2 in Eq (3.93)), compare the expression for the resulting Image contrast to the 

NILS of equation (3.96). Note that this is 3-beam imaging.  

 

        
  

     
 (3.96) 

 

(iii) Consider an in focus, three-beam, TE image with an aerial image intensity described 

by the equation 

 

        
     

            
   

 
      

     
   

 
  (3.69) 

 

(a) From Table 3.2, what are the values of          ? 

 

(b) Plot the aerial image, given by equation (3.69), for equal lines and spaces of width 

500 nm.  You should get something like this. 
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(c) Measure the NILS from the aerial image plot and compare it to the theoretical NILS 

value of 8 predicted for this imaging situation. In addition, compare it to the theoretical 

NILS  from equation (3.96) below. 

 

        
  

     
 (3.96) 

 

(d) Measure the image contrast from the aerial image and compare it to the value of 
  

     
  you would expect.  

 

 

9. Replot the TE aerial image, however, this time for N = 1, that is, assume that only the 

zeroth and one first order contributes to the image. This is two-beam imaging and 

requires plotting Eq (3.38).  

 

 I(x) =   
    

            
   

 
  (3.38) 

 

You should get something like this. 

 
 

What are           for this case?  Measure the NILS from this new image and the Image 

Contrast. Compare your result to those obtained from equation (3.95) and from the 

equation for image contrast in terms of β. Compare your results to those obtained in 8 (c) 

and 8 (d) above. Comment on the impact of the second harmonic on the NILS and Image 

Contrast. 

 

Some typical results are shown below.  
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 Two beam imaging  3 beam imaging 

NILS NILS=  
  

  
 = 2.84        

  

     
 

 

        8 

Contrast   

  
  0.906                 

  

     
 

0.9715 

 

 

10. Plot the improvement in Depth of Focus as a result of using immersion lithography,  
            

      
  . Perform the plot for a binary mask pattern of lines and spaces as a 

function of pitch, for pitches between 200 nm and 600 nm. The fluid used is ultrapure 

degassed water with a refractive index of 1.43. The illumination source has a wavelength 

of 193 nm. Prove that the ratio 
            

      
   is at least equal to the refractive index, 

over this range of pitches. Note that this requires plotting Eq (3.83). 

 

 
            

      
 

      
 

 
 
 

       
 

 
 
 
 (3.83) 

You should get something like this.
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4. Imaging in Resist: Standing Waves and Swing 
Curves 
 

1.  Plot  Eq (4.19) from the text, the standing wave intensity as a function of depth, for a 1 

micron resist film and i-line illumination at 365 nm. Take the resist refractive index to be 

1.69+i0.027 and the silicon refractive index to be 6.5+i2.61, from Table 4.3. Assume the 

imaging takes place in air. From the plot, prove that the period of the standing wave = 
 

   
, where n2 is the real part of the resist refractive index. You should get something like 

this.  

 

 
 

2.  Using the program written for Q1, we can explore the use of two techniques which can 

be used to reduce standing waves in lithography. 

 

a)  Modify the value of the absorption coefficient of the resist by increasing the imaginary 

part of the refractive index κ to 0.05 for the resist. Physically, this is usually 

accomplished by adding a dye to the resist to make it more absorbent. Replot the standing 

wave, giving the diagram shown below. Comment on the result. 
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b)  Simulate the effect of adding a Bottom Anti Reflection Coating (BARC) by reducing 

the value of ρ23 . One straightforward way to simulate this is to simply replace the silicon 

substrate with a, less reflective, silicon dioxide substrate with a refractive index at 365 

nm of 1.474 + i0. Remember to reset n2 = 1.69 + i0.027. Replot the standing wave giving 

the diagram shown below. Comment on the result. 
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3.  Plot the reflectivity as a function of angle of incidence for both s - polarisation and p - 

polarisation for a beam incident on a resist film with a refractive index of 1.7. Assume the 

medium is air with a refractive index of 1. Note that this effectively involves plotting Eq 

(4.29), giving the plot below. 

 

 
 

4.  For a typical resist on silicon at an illumination wavelength of 248 nm, α = 0.5 μm
-1

, 

                       , υ12 = -179.5
o
, υ23 =  -134

o
. 

 

 

 

 

 

 

 

 

 

(4.46) 

 

 

 

Use the notation above to refer to the terms in Eq (4.46). Using MATLAB® 

 

i) Plot the Reflectivity, R,  as a function of depth, D,  into the resist using Eq (4.46) 

ii) Plot Top_first_terms, Top_cosine_arg and  Top_cosine as a function of D.  

iii) Show that Top_first_terms and Top_cosine_arg vary only slightly with depth, when 

compared to Top_cosine.  

iv) Plot Bottom_first_terms, Bottom_cosine_arg and  Bottom_cosine as a function of D.  

v)  Show that Bottom _first_terms and Bottom _cosine_arg vary only slightly with depth, 

when compared to  Bottom _cosine.  
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vi)  Replace Top_first_terms, Top_cosine_arg, Bottom_first_terms and 

Bottom_cosine_arg in Eq (4.46) with their values from the graphs at a nominal 300 nm. 

You should get values of 0.47, 0.345, 1.03 and 0.345 respectively. This is now Eq (4.47). 

Plot the approximate R, Eq (4.47), on the same scale as the R from Eq (4.46) and 

comment on the result.  

vii) Show that the maximum Reflectivity at a depth of 300 nm is 0.59 and the minimum 

Reflectivity is 0.18. Calculate the Swing Ratio at this point. 

 

Some sample results are given below for guidance.  
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5. Suppose two, unit amplitude, plane waves are travelling with an angle θ to the vertical, 

as shown below. In this exercise you will plot the TE and TM images that occur as a 

result of interference, that is, plot Eq (4.109) in the book.  

 

 

 

 

 

 

 

 

 

 

 TE or s-polarisation TM or p-polarisation 

 

i)  Plot the image for an angle of 30
o
 and for a wavelength of 193 nm. Use x values 

between -500 nm and +500 nm. You should get the diagram below.  

 
 

ii)  What is the period of the resultant waveform? 

 

iii)  From the plot, measure the NILS and Contrast for the TE image. Show that, for the 

TE image, the NILS is equal to π and the Contrast is equal to 1.  

 

iv)  From the plot, measure the NILS and Contrast for the TM image. Prove that, for the 

TM image, the NILS should be equal to π cos(2θ) and the Contrast should be equal to 

cos(2θ) .   

 

v)  Increase the angle between the plane waves to 40
o
. Discuss what happens to the NILS 

and Contrast for both the TE and TM images as a result of increasing this angle. 
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6. Refer again to the two plane wave interference of Q5.  Assuming a resist with a 

refractive index of 1.7 is used, plot, using MATLAB®, the Contrast as a function of the 

Angle of the incoming wave for  

 

i) Aerial image with TM illumination. 

 

ii) Resist image with TM illumination. 

 

iii) Aerial image with TE illumination. 

 

iv) Resist image with TE illumination.   

 

v) Aerial image with unpolarised light. 

 

vi) Resist image with unpolarised light. 

 

The plot you generate should look like this. 

 

 
 

If the angle in air is 40
o
, calculate the NA for two beam imaging at the resolution limit. At 

this resolution limit, 

 

vii) What is the Contrast for the aerial image with TM illumination?  

 

viii) What is the Contrast for the resist image with TM illumination? 

 

ix) What is the Contrast for the aerial image with TE illumination? 
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x) What is the Contrast for the resist image with TE illumination? 

 

xi) What is the Contrast for the aerial image with unpolarised illumination? 

 

xii) What is the Contrast for the resist image with unpolarised illumination? 

 

 

 

7. As an example of the use of equation (4.100), consider a 193 nm resist with n2 = 1.7, 

α = 1.2 μm
-1

, D = 200 nm, and |ρ12| = 0.26. Suppose that 2 % dose error due to resist 

thickness variations is considered acceptable. Generate a plot of maximum allowed 

substrate reflectivity, |ρ23|
2
,  as a function of the resist thickness variation Δ. You 

should get something like this. 

 
 

What is the maximum allowed substrate Reflectivity if the resist thickness increases by 5 

nm? 
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5. Conventional Resists: Exposure and Bake 
Chemistry 
 

1. For a resist film of a given thickness, there is one value of the absorption coefficient 

that maximizes the amount of light absorbed by the resist at the bottom of the film. This 

can be seen by looking at the extremes. When α is zero, all of the incident light makes it 

to the bottom, but none is absorbed. When α is infinite, no light makes it to the bottom, so 

none is absorbed there. Thus, in between these two extremes there must be a maximum.  

In a homogeneous medium, where α is not a function of z, I(z) , the Intensity of light at a 

depth z into the resist is given by 

  

         
                                                                                            (5.2) 

 

I0 is the Intensity at z=0, that is, at the surface.  

 

Calculate the intensity of light at the bottom of the resist by differentiating Eq (5.2) wrt z 

and noting that at the bottom of the resist, z=D. By setting this expression equal to 0 and 

solving for α, show that the maximum Intensity reaches the bottom of this layer when α = 

1/D. 

Plot the amount of light absorbed at the bottom of a 2 micron resist layer for values of α 

between 0 μm
-1 

and 5 μm
-1

.  Take I0, the normalised Intensity incident on the resist, to be 

0.9. Show that the maximum Intensity reaches the bottom of this layer when α = 1/D. A 

typical plot is shown below. 

 

 
  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

X: 0.5

Y: 0.1655

alpha (per micron)

In
te

n
s
it
y
 (

a
.u

)

SSSPPPEEECCCIIIMMMEEENNN   



Optical Lithography Modelling with MATLAB® 2011 
 

Kevin Berwick Page 31 
 

 

2. The modified Fujita−Doolittle equation (5.61) is shown below. 

 

     
   

 
  

   
 
  

 
  

where 

 

                           (5.61) 

 

It predicts a temperature dependence for solvent diffusivity which is not the Arrhenius 

equation. For a typical resist, from Table 5.1, B = 0.737,               

                            and                 . Take β = 0.351.  Assuming 

10% solvent volume fraction, create an Arrhenius plot (ln[diffusivity] vs. 1/T) for solvent 

diffusivity from 115 ºC to 135 ºC. How close is this to true Arrhenius behaviour? Find a 

best estimate for Ar, the Arrhenius coefficient and Ea, the Activation energy, based on this 

plot. A sample plot is shown below.  

 

 
3. Using the MATLAB® tools, plot the variation of the resist absorption parameter A 

with post-apply bake time.  

Plot A versus bake time and loge(A/ANB) versus bake time, for bake times up to 130 

minutes. Normalise ANB to 1. Take the Activation energy for the resist to be Ea = 30.3 

kcal/mol and the Arrhenius coefficient to be 2.1409 x 10
15

 min
-1

. R, the universal gas 

constant, is 1.98717 cal/mol-Kelvin.  

Assume that decomposition begins immediately the heat is applied, that is, there is no 

time lag as the wafer ramps in temperature. The plots should look like these. 
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4. Table 5.1 in the text gives typical diffusion parameters in photoresist. It is possible to 

use the data in the Table to predict how the solvent diffusivity will vary with temperature. 

To do this, use the modified Fujita-Doolittle equation to plot ln (diffusivity) as a function 

of 1/Temperature.   

You will need to perform the plot for 2 distinct regimes, viz, above the glass transition 

temperature and below the glass transition temperature. The relevant equations are 

 

     
   

 
  

 
 
  

 
 

 

                               (5.61) 

 

Perform the plot for a value of solvent mass fraction, υs,  of 0.05.  Note that below the 

glass transition temperature, the value of vf  becomes  

 
                     

    
 a consequence of Equation (5.56) . The plot should look like this. 
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5. A wafer bake, for a 300 mm wafer of thickness 0.775 mm, consists of a 60 second 

bake on a hotplate at a temperature of 100 ºC, followed by a 10 s transfer to a chillplate at 

5 ºC. The wafer remains on the chillplate for 30 s. The ambient temperature is 20 ºC. 

Assume the initial wafer temperature is the same as that of the ambient. Take the thermal 

conductivity of air to be kair = 0.031 W/m-K @ 100 
o
C. The atomic weight of silicon is 

28.09 g/mol. The convection heat transfer coefficient, h, is 7.5 W/m
2
-K. ρ, the density of 

silicon is 2.33 g/cm
3
. Assume Cp, the silicon molar heat capacitance, is 21 J/K-mol. 

 

Use these equations for this exercise:  

 

    
    

 
                

    
 

  
 (5.76) 

 

   
    

    
 

  
 (5.77) 

 

                    
     (5.75) 

 

(i) Plot the resist temperature as a function of time for a proximity gap, δ, of 0.2 mm.  

 

(ii) What is the equilibrium wafer temperature (T*) and the rise time of the bake τ for a 

proximity gap of 0.2 mm? 

 

(iii) Plot the resist temperature as a function of time for a proximity gap of 0.4 mm. 

 

2.4 2.45 2.5 2.55 2.6 2.65 2.7

x 10
-3

6

7

8

9

10

11

12

13

1/ Absolute Temperature

ln
(D

if
fu

s
iv

it
y
)

SSSPPPEEECCCIIIMMMEEENNN   



Optical Lithography Modelling with MATLAB® 2011 
 

Kevin Berwick Page 34 
 

(iv) What is the equilibrium wafer temperature (T*) and the rise time of the bake τ for a 

proximity gap of 0.4 mm? 

 

Typical results are shown here. 

 

 
 

(v) Redo the plot, returning the proximity gap to 0.2 mm and reducing the wafer diameter 

from 300 mm to a 100 mm wafer of thickness 0.675 mm. Comment on the impact of this 

change on the equilibrium wafer temperature (T*) and the time constant for heating the 

wafer, τ. 

Typical results are shown below. 
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100mm wafer 

 

 

Wafer diameter Equilibrium wafer 

temperature T* (
o
C) 

Time constant 

for heating (s) 
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vi) Plot the temperature profile of the resist on the 300 mm wafer during a 10 s transfer to 

a chill plate at 5 
o
C. Take the initial temperature to be 96 

o
C. Typical results are shown 

 
 

(vii) Plot the temperature profile of the resist on the 300 mm wafer during a 30 s period 

on a chill plate at 5 
o
C. Assume a proximity gap of 0.2 mm during the chill.  Take the 

initial wafer temperature to be 92 
o
C. 

 

Typical results are shown below. 
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6. Tight control of wafer warpage is essential in lithography. This is a result of the limited 

Depth of Focus in modern steppers. Warpage can also affect other aspects of the 

lithography flow, as illustrated in this example.  

 

Consider a 300 mm silicon wafer baked at a hotplate temperature of 100 ºC. The 

proximity gap is 0.2 mm, while the ambient temperature is 20 ºC.  

 

            
  

    
                  (5.79) 

 

        
      

     
                             Centigrade per metre. 

 

                                
 

The circled term, 19.35δ  is the change in equilibrium wafer temperature as a result of 

varying the proximity gap. Plot the variation in equilibrium wafer temperature as a 

function of wafer warpage. You should get something like this. 
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6. Chemically Amplified Resists: Exposure and Bake 
Chemistry 
 

1. A Chemically Amplified Resist receives an exposure dose of 40 mJ/cm
2
.  The 

Arrhenius coefficient for the amplification reaction is 3.69 x10
12 

per second,  while the 

Activation Energy is 25 kcal/ mol. Take R = 1.98717 cal/mole-K.  The exposure rate 

constant C for this reaction is 0.04 cm
2
 /mJ. Given that the PEB is performed at 110 

o
C 

for 1 minute, calculate the amplification rate constant, Kamp, for the reaction.  

 

Plot: 

 

(i)  the normalised acid concentration as a function of exposure time. 

 

(ii) the normalised number of unreacted sites as a function of PEB time for this resist.  

 

Assume that the 40 mJ/cm
2
 resist exposure is for 60 s and the maximum PEB duration is 

60 s, allowing both quantities to be plotted on the same x- axis. You should get a graph 

which looks like this. 
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2.  The normalised acid concentration, assuming that no acid diffusion occurs, is given by  

 

           (6.9) 

 

This must be modified if we take into account a constant acid diffusivity. Assuming a 

step function temperature profile for the bake, and ignoring any acid loss, it is possible to 

solve the reaction rate equation giving,   

 

                   (6.17) 

 

The acid profile, at time t = 0, is convolved with the Reaction-Diffusion Point Spread 

Function, RDPSF.  Plot the 1D Reaction-Diffusion Point Spread Function for values of 

x/σD between 0 and 2.5.  You should get the graph below. 

 

 
 

3. Consider a 193 nm exposure of a resist with a Dose-to-Clear of 10 mJ/cm
2
.  At the 

resist edge, the mean exposure energy (         will be of the order of the Dose-to-

Clear.  

 

(i) Calculate the energy of one photon of light of this wavelength.  

 

For an area of 1 nm x 1 nm.  

(ii)  Calculate the mean number of photons during the exposure. 

(iii) Calculate the standard deviation as a percentage of the average number of photons 

during the exposure. 

 

For an area of 10 nm x 10 nm.  

(iv) Calculate the mean number of photons during the exposure.  
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(v) Calculate the standard deviation as a percentage of the average number of photons 

during the exposure. 

(vi) Comment on the results. 

 

Plot, as a function of length scale =      : 

 

(vii) The mean number of photons during the exposure. 

(viii) The standard deviation, as a percentage of the average number of photons, during 

the exposure. 

 

You should get something like this.  

 

 
 

(ix) If the maximum standard deviation, as a % of the average allowable for the process, 

is 5%, what is the minimum area that a resist feature can occupy on the wafer?  

(x) What is the mean number of photons contributing to the Dose for the area calculated 

for part (ix)? 

 

4.  Plot the Amplification Rate Constant and Effective Thermal Dose versus Temperature 

for a resist with an amplification reaction Ea = 25.0 kcal/mol and Ar = exp(28.0) s
-1

, and 

an exposure rate constant C = 0.05 mJ/cm
2
. Use a temperature range from 100 to 140 ºC 

and assume a PEB time of 60 s.  Use the following equations: 

 

         
  

  
   (6.10) 

and  

 

                                   
 

You should get something like this. 
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From your graphs, what are the values of the Amplification Rate Constant and the 

Effective Thermal Dose at 125 ºC? 

 

 

5.  The variance in acid concentration following exposure is given by the following 

Equation: 

 

   
   

   

        
  

                    

   
 (6.70) 

 

The first term on the right hand side of the Equation is the Poisson result based on 

exposure kinetics – the relative uncertainty in the resulting acid concentration after 

exposure is proportional to the reciprocal of the square root of the mean number of acid 

molecules generated in the volume of interest. For large volumes and exposure doses, the 

number of acid molecules generated is large and the statistical uncertainty becomes small. 

The second term accounts for photon shot noise.  

Assume that a certain amount of acid is required to achieve a desired lithographic effect, 

that is, assume the mean concentration of photogenerated acid is fixed. 

Plot both terms as a function of the mean number of photons. By noting the crossover 

point, identify the point at which the photon shot noise exceeds the PAG loading shot 

noise.  Take the normalised acid concentration to be     = 0.3 and               = 0.05 

/nm
3
. Perform the calculation for a cube 10 nm on a side.  

 

You should get something like this. 
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6.  Consider a typical 193 nm resist. Take G0NA = 0.042/nm
3
, so there are 0.042 

molecules of PAG per cubic nm. Plot the Poisson distribution of the number of PAGs per 

volume element. Do the plot for cubic sample volumes, 4 X 4 X 4 nm, 6 X 6 X 6 nm and 

10 X 10 X 10 nm.  

 

For the 10 X 10 X 10 nm volume, calculate the mean and show that it matches that read 

from the graph. Your plots should look like this.  
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7. Photoresist Development 
 
1.  Consider the ‘Original Mack model’ for development, as given by Eq (7.10).   

 

i)  Plot the Development rate, r, of a resist as a function of the relative inhibitor 

concentration, m, for a few different values of n, the dissolution selectivity parameter. 

Take rmax = 100 nm/s, rmin = 0.1 nm/s.  Use values of n = 2, 8 and 20.  Take mth = 0.5. 

 

ii)  Demonstrate that for high molecular weight resins, that is, for high values of n, the 

shape of the graph approaches a step function, giving an ideal threshold resist. What is 

the disadvantage of using these high molecular weight resins in resists?  

 

iii)  Change the value of the threshold inhibitor concentration, mth,  and describe the 

effect on the graph.  

 

iv)  Change the value of rmax/rmin and show that increasing this ratio will increase 

lithographic performance.  

 

You should get something like this. 
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2.  Use the enhanced kinetic model, given by Eq (7.12), to plot Development Rate vs. 

Relative Inhibitor Concentration under the following conditions. Take rmax = 100 nm/s, 

rmin = 0.1 nm/s, rresin = 10 nm/s. Take the rate constant for the enhancement reaction to be 

9 and the rate constant for the inhibition mechanism to be 20.  

 

i)  Perform the plot for l = 9 and n = 1, 5, 9. Above what value of the relative inhibitor 

concentration do the n = 5 and n = 9 plots coincide? 

 

ii)  Perform the plot for n = 5 and l = 1, 5, 15. Below what value of the relative inhibitor 

concentration do the l = 5 and l = 15 plots coincide? 

 

iii)  As noted in the text, the enhanced kinetic model for resist dissolution is a superset of 

the reaction-controlled version of the Original Mack model. The two models are the same 

when the parameter a >> 1. In addition, kinh must be zero, that is, the inhibition 

mechanism should be unimportant and rresin = rmin  and rmax = rresin kenh. 

 

If the following parameter set is used, all these conditions are satisfied. By plotting both 

models, prove they give identical results.  

 

rmax = 10 nm/s,  rmin = 0.1 nm/s, rresin = 0.1 nm/s, kenh = 100, kinh = 0, n = 5, l = 15. 

 

You should get plots similar to this. 
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3.  Consider a conventional positive resist that obeys the reaction-controlled version of 

the original kinetic development model of the equation: 

 

                   (7.11) 

 

Assume no bleaching occurs, but absorption means that the inhibitor concentration m can 

be related to incident dose E and depth into resist z by 

 

                               
 

Using MATLAB®, plot Development Rate versus Dose up to 100 mJ/cm
2
 for rmax = 200 

nm/s, rmin = 0.05 nm/s, n = 4, C = 0.02 cm
2
/mJ, α= 0.5 μm

-1
 and a depth into the resist of 

500 nm. Compare these results to the approximate equation, which is valid for low doses 

only.  

                   
 

              (7.19) 

 

Repeat for α= 0.1 μm
-1 

and α= 1.5 μm
-1

.  

 

Answer the following questions. 

 

i)  Is the assumption, made in the derivation of the approximate equation, that we assume 

small exposure doses, apparent in your simulations? 

 

ii)  Based on your results, would the approximate equation be useful if the resist was 

highly absorbing? 

The result for α = 0.5 μm
-1

 is shown below. 
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4.  A conventional positive resist obeys the reaction-controlled version of the original 

kinetic development model of the equation viz.  

 

                   (7.11) 

 

If we assume that no bleaching occurs, the inhibitor concentration m can be related to 

dose E by 

 

m = e
−CE 

 

Assuming that the minimum development rate rmin can be ignored over the dose range of 

interest and ignoring any variation in development rate with depth into the resist, it can be 

shown that the relative thickness of the remaining resist is given by 

 

     
        

 
          

 

Take rmax = 200 nm/s, n = 7, C = 0.02 cm
2
/mJ, an initial resist thickness of 800 nm and a 

development time of 60 s.  

 

i)  Calculate the Dose to Clear for this situation by letting       and solving for E0. 

 

ii)  Plot the relative resist characteristic curve, Tr , versus (a)  Exposure dose and (b) log10 

(Exposure Dose). Mark the Dose-to-Clear on the plot.  How does it compare to the 

calculated value? 

Your plot should look like this.  
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5.  Near the line edge, an aerial image can be approximated by a Gaussian. Consider an 

aerial image caused by 3-beam imaging of a dense pattern with pitch p expanded in a 

Taylor series about x = 0, the centre of the space.  

 

               
   

 
        

   

 
  

 

              
      

 
  

   

 
 

 

  
       

  
  

   

 
 

 

   

  (7.89) 

For the Gaussian image, 

 

         
   

        
  

        
  

         (7.90) 

 

The zero- and second-order terms for these two series can be made the same as follows: 

 

                  and        
        

      
  

 

  
 

 
 (7.91) 

 

i)  Plot the aerial image, as given in Eq (7.89), and the Gaussian approximation to the 

aerial image, as given in Eq (7.90),  on the same plot. Take a0 = 0.45, a1 = 0.55, a2 = 0.1. 

Calculate  I0 and σ
2 

from Eq (7.91). Do the plot for x/p = 0 to 0.5 on a linear-linear scale, 

with  p = 1.  

 

ii)  Redo the plot on a log-linear scale. Measure the Image Log-Slope at the line edge by 

measuring the slope of the Gaussian at the line edge in this plot. Compare your answer to 

the value of x/ σ
2 

given
 
by Eq (7.92). 

 

 

Your plots should look something like this. 
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8. Lithographic Control in Semiconductor 
Manufacturing 
 

1. Use the Equations below to generate a theoretical Bossung plot for the following 

conditions.  

 

        

    
 
     

      ,     Δ = 0.17 μm,     CD1 = 100 nm,     E1 = 30 mJ/cm
2
 

 

 
      

   
         

    
 
    

   
  

 
  (8.31) 

 

 
       

    
         

    
 
    

    
    

 
 

 

  (8.37) 

 

Do the plot for doses of 23, 25, 27, 30, 35 and 40 mJ/cm
2
.  You should get something like 

this. 

 

 
Answer the following questions: 

 

i)  At what value of dose is the Bossung plot flat?  Comment on this. 

 

ii)  What is the effect on the plot of increasing Δ?  Comment on this. 

 

iii)  What is the effect on the plot of increasing CD1?  Comment on this. 

 

iv)  What is the effect on the plot of decreasing E1?  Comment on this. 
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2.  Use Eq (8.49) to plot the process windows for a nominal line CD of 100        The 

nominal dose is 20 mJ/cm
2
, s = -1, Δ = 0.45 microns. Isofocal CD1 = 100 nm. You should 

get something like this.  

 

 
 

 

3.  Equations (8.31) and (8.35) both predict CD versus dose, with the latter equation 

being  more accurate. 

 

 
      

   
         

    
 
    

   
  

 
  (8.31) 

 

 
  

   
           

    
 
    

   
 

  
  (8.35) 

 

Plot CD versus Dose for these two models on one graph for the case of CD1 = 80 nm,    

E1 = 32 mJ/cm
2
  and    

       

    
 
    

  0.6. 

 

Plot the percentage difference in CD predicted by the two models as a function of Dose. 

At what Dose values do the two models disagree with each other in predicted CD by 2%? 
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Here are some typical plots 

 
 

4.  Using the Equations below, (8.50) – (8.52), plot the depth of focus of a 65 nm line as a 

function of isofocal bias.  Use the following values:  CDspec = 0.2, Elspec = 0.08, snom = 

0.75, and Δ = 0.2 μm. 

 

For isofocal bias within the CD spec, 

 

        
      

            
   (8.50) 

 

For isofocal bias greater than the CD spec range, 

 

     
 

 
   

      

            
   (8.51) 

 

where 

   
               

            
   

 

and                  
             

     
  (8.52) 

 

You should get something that looks like this. 
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9. Gradient-Based Lithographic Optimization: Using 
the Normalized Image Log-Slope 
 

1.  The slope of the latent image is given by  

 

 
  

  
       

    

  
   (9.11) 

 

The quantity mln(m), relates the Image Log Slope to the latent image gradient. Plot the 

value of -mln(m) against m, the relative concentration of light sensitive material,  for 

values of m between 0 and 1. 

 

Using your plot, show that for m = 0 or m = 1, mln(m) = 0. At these values the gradient of 

the latent image is zero and no information is transferred to the wafer. This makes sense 

since at m = 0 the dose is infinite, while for m = 1, the dose is zero. 

Show also that at m = 0.37 the value of mln(m) is at a maximum value of around 0.37 and 

the full information contained in the aerial image is transferred to the wafer. 

Your plot should look something like this.  
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2. Plot  
  

 

  
  against           to compare the degradation of the Fourier coefficients as a 

function of increasing           for the diffusion only case and the reaction-diffusion 

system. Use the Taylor Series expansions of the exponential given in Eq (9.35). You 

should get something like this. 
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3. Using the non-linear development rate function  

 

                     (9.55) 

 

it can be shown that 

 

 
    

   
  

 

       
    

 
  (9.56) 

 

i) Plot  
      

   
  and r as function of m*.  Take n = 5, rmax = 100 nm/s, rmin = 0.1 nm/s. You 

should get something like this. 

 

 

 
 

 

ii) Show that the maximum gradient occurs ( 
    

   
  is a maximum) when r = n rmin. 

iii) Show that this maximum gradient occurs at a value of m* =    
         

    
 

 

 
. 

 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

X: 0.66

Y: 0.5544

X: 0.66

Y: 12.05

 

 

Relative Concentration m-star

dlnr/dm*

r

SSSPPPEEECCCIIIMMMEEENNN   



Optical Lithography Modelling with MATLAB® 2011 
 

Kevin Berwick Page 56 
 

4. Use the Full Kinetic Rate model (the Mack model): 

 

       
             

          
        (9.60) 

 

   
     

     
          (7.9) 

 

 
    

   
  

 

       
    

 
  

 

           (9.61) 

 

i) Plot r and  
    

     as a function of m* on the same plot. Take n = 5, rmax = 100 nm/s, rmin 

= 0.1 nm/s, mth = 0.7. You should get something like this. 

 

 
 

ii) What inhibitor concentration maximizes the development rate gradient? 

 

iii) Show that the maximum development rate gradient occurs at a value of r given by  

 

   
     

       
       

       
 

 (9.62) 

 

iv) Show, with a suitable plot, that for large n, say n = 25, and since the calculation is 

done for a good resist (rmax/rmin >1000), the development rate can be approximated as 

 

 
     

   
      

 

       
 

 

        
   

    

    
  (9.66) 

 

v) Show, with a suitable plot, that for large n, say for n = 25, the optimum inhibitor 

concentration approaches mth (which can be taken to be 0.7). 
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10. Resolution Enhancement Technologies 
 

1. From the book, the electric field intensity of the ideal aerial image of small lines and 

spaces, using coherent illumination, for an ALT-PSM is given by 

 

                
  

 
  (10.30) 

 

with        for imaging in air. 

 

For an ideal ALT-PSM with phase error (see text), 

 

        
  

  
  

 

    
      

   
  

 

 
   

   

 
  (10.31) 

 

 

If the image is defocused,  

 

                                  
  

  
                       (10.33) 

 

Plot the aerial image for an ALT PSM with a 10 degree phase error for  

i)  +400 nm defocus. 

ii)  An in focus image. 

iii)  -400 nm defocus. 

 

Assume a dense line space pattern with 100 nm lines and spaces and, therefore, a pitch of 

200 nm. The illumination is coherent and at a wavelength of 248 nm. You should get 

something like this. 
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2. The point spread functions for a Chrome-On-Glass and Embedded PSM are given by 

the following equations. 

 

               
       

  
 
 

 (10.42) 

 

                

       

  
    

   
 

 

 (10.43) 

 

Plot the PSFs for a COG and EPSM. The plot should be for normalized radii of -1.5 to 

+1.5 and you can assume the ESPM has an intensity transmittance of 6%. You should get 

something like this. 

 

 
 

(i) Measure the FWHM of both PSFs and compare them. 

 

(ii) Measure the sidelobe intensity in the EPSM.  

 

(iii) Rerun the simulation at transmittances of 1 - 6% and measure the sidelobe intensity 

for the PSF of the EPSM. Plot the sidelobe intensity and the FWHM of the EPSM as a 

function of transmittance and comment on the graphs. 
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A MATLAB® Primer 
 

 

 

Introduction 

 

MATLAB® is a high-level technical computing language and interactive environment 

for algorithm development, data visualization, data analysis, and numeric computation. 

Using MATLAB®, you can solve technical computing problems faster than with 

traditional programming languages, such as C, C++ or Fortran. 

The purpose of this Primer is to help you to begin to use MATLAB® so that you can do 

the problems in this Manual. Since most of the problems in this Manual require you to 

plot complex mathematical functions, this plotting capability will form the core of the 

Primer. MATLAB® is far more powerful and versatile than this Primer might suggest. In 

order to explore these features, please go to www.mathworks.com, where there are a 

wealth of tutorials, webinars, examples and other educational material available on the 

use of the software.  

 

Plotting using MATLAB® 

 

MATLAB® can produce 2D and 3D plots of curves and surfaces. In this Primer, we will 

use MATLAB®  to plot the improvement in Depth of Focus,  
            

      
,  for a binary 

mask pattern of lines and spaces as a function of pitch. This requires plotting Eq (3.83). 

 

 
            

      
 

      
 

 
 
 

       
 

 
 
 
 (3.83) 

 

 

We will produce the plot for pitches between 200 nm and 600 nm. The illumination 

source has a wavelength of 193 nm. The die is immersed in ultrapure degassed water with 

a refractive index of 1.43.  
 

The code to perform the plot is shown below and illustrates most of the features of 

MATLAB® required to produce the plots in this Manual. As you can see, MATLAB® is 

a powerful language, and complex plots can be produced using only a few lines of code.  

 

  

http://www.mathworks.com/


Optical Lithography Modelling with MATLAB® 2011 
 

Kevin Berwick Page 61 
 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                                                  % 

%                                                                                  % 
%     Primer Solution :- Kevin Berwick                                % 

%     Summer 2010                                % 

%                                                                                   % 
% %%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%  define constants   

 

                                                                                
clear 

pitch=200:5:600 
lambda = 193 

n=1.43 

% Calculate the value of Eq 3.83 
  

DOF_immersion_dry = (1-sqrt(1-(lambda./pitch).^2))./(n-sqrt(n^2-(lambda./pitch).^2)) 
% Plot image 

plot(pitch, DOF_immersion_dry) 

 

The script starts with some comments, which are ignored by MATLAB®. Comments are 

delineated by beginning them with the % sign, as shown. In the Editor, comments are 

given a green colour.  

The first statement in the script is clear. This removes all variables from the workspace, 

releasing them from system memory.  

Next we define an array pitch, which has values from 200 to 600 with a step size of 5.  

lambda, the wavelength and n, the refractive index, are constants and are defined as 

shown, with an equals sign. Note that MATLAB® is case sensitive; it distinguishes 

between uppercase and lowercase letters. A and a are not the same variable. 

Next we calculate the value of the Equation, using a small selection of the software’s vast 

number of built-in functions. Most of this line is self explanatory, however the use of the 

dot when performing operations involving the pitch array is worth exploring further. The 

expression   

 

 (lambda./pitch).^2 

 

uses the dot twice, one to divide the value of lambda, a single value, by the pitch, which 

is an array. What happens is that lambda is divided by each element in the array pitch. 

The result of this element-wise division is a new array (lambda./pitch). When we want to 

square this array, we again have to use the dot to show that each element in the array is to 

be squared. Leaving out the dot in either case would lead to an error.   

We finish the script by using the keyword plot followed by the x and y values, in 

brackets, that we want to plot. 

Running the script gives the following output. Both axes are automatically scaled and the 

default blue colour is used for the plot.  
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Now that we have the plot, we can improve its appearance using the plot tools provided 

by MATLAB®. We can add axis titles, legends and change the colours used in the plot 

with these tools. If desired, we can then generate an M-file so that we can ensure that the 

changes in the appearance of the final plot are permanently encoded into a MATLAB® 

script. In addition, we can perform basic fitting and even rotate the plot in 3D in order to 

assist in data visualisation.  

 

However, these are merely details. Most of the exercises in this Manual can be done 

simply by building on the MATLAB® example given in this Primer.   
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