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CHE384,  From Data to Decisions:  Measurement, 
Uncertainty, Analysis, and Modeling

Chris A. Mack
Adjunct Associate Professor

Lecture 79
Propagation of Uncertainty
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http://www.lithoguru.com/scientist/statistics/

Data to Decisions

The Measurement Model
• Consider a measurement model

• Some of the inputs represent the thing we 
want to measure, but some are nuisance 
variables
– Ex: Measure length with a steel ruler; 

temperature is a nuisance variable
• How do variations in the xi propagate to 

variations in y?
– Called the propagation of uncertainty
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𝑦 = 𝑓(𝑥ଵ, 𝑥ଶ, … )
Measurement 

Output

Data to Decisions

Propagation of Uncertainty

• There are three common ways to 
propagate uncertainty from inputs to an 
output
– Propagation of pdfs (often difficult to do)

– Taylor Series (most common, but easy to do 
wrong)

– Monte Carlo simulations (often best approach 
for complex measurement models)
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Propagation of PDFs (1D example)

• Consider 𝑌 = 𝑓 𝑋 where X is a random 
variable with known pdf 𝑃௑(𝑥).  What is the 
pdf of Y ?

• Note: 𝑓ିଵ(𝑦) can have multiple roots
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𝑃௒ 𝑦 =
𝑑𝑥

𝑑𝑦
𝑃௑ 𝑥

𝑤ℎ𝑒𝑟𝑒 𝑥 = 𝑓ିଵ(𝑦)
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Taylor Series Approach

• Expand the function as a Taylor series

• For K different input variables,
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Taylor Series Approach

• Turn Dx and Dy into sx and sy

– The partial derivatives are evaluated at the 
mean value of x
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Taylor Series Approach

• For two input variables x1 and x2,

– When the input errors are small and the slopes 
are not, we can ignore higher order terms

• When x1 and x2 are independent, 
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Some Examples

• Assume small, independent errors
– Keep only linear terms, ignore covariance

• 𝑦 = 𝑎𝑥ଵ + 𝑏𝑥ଶ,  𝜎௬
ଶ = 𝑎ଶ𝜎௫భ

ଶ + 𝑏ଶ𝜎௫మ
ଶ

• 𝑦 = 𝑥ଵ𝑥ଶ, assuming 𝑥̅௜ >> 𝜎௫భ

• 𝑦 = ln (𝑎𝑥),  𝜎௬
ଶ = 𝜎௫

ଶ/𝑥̅ଶ
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Using a Micrometer
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(images from Wikimedia Commons)

Data to Decisions

Micrometer Example

• Sources of uncertainty:
– Scale (calibration) error: 3 mm, assumed to be 

uniformly distributed (s = range/ 3 = 1.73 mm)
– Zeropoint error: 2 mm (s = 1.15 mm)
– Anvil parallelism: s = 0.58 mm
– Temperature different between micrometer 

and object:  3 ⁰C, leading to s = 0.61 mm
– Measurement repeatability:  s = 2 mm

• Combined standard uncertainty = 3.0 mm
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Lecture 79: What have we learned?

• What are the major difficulties of Bayesian 
regression?

• Explain how frequentist and Bayesian 
regression concepts can merge in a 
“hybrid” form

• Explain how this “hybrid” form relates to 
ridge regression
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