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The Measurement Model

» Consider a measurement model

Measurement
Output — Yy = f(xl,xz,...)

+ Some of the inputs represent the thing we
want to measure, but some are nuisance
variables

— Ex: Measure length with a steel ruler;
temperature is a nuisance variable

* How do variations in the x; propagate to
variations in y?

— Called the propagation of uncertainty
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Propagation of Uncertainty

» There are three common ways to
propagate uncertainty from inputs to an
output
— Propagation of pdfs (often difficult to do)

— Taylor Series (most common, but easy to do
wrong)

— Monte Carlo simulations (often best approach
for complex measurement models)
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Propagation of PDFs (1D example)

» Consider Y = f(X) where Xis a random
variable with known pdf Px(x). What s the
pdf of Y ?

dP(x)
yX

PY(}’)—|

where x = f~1(y)

 Note: f~1(y) can have multiple roots
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Taylor Series Approach

» Expand the function as a Taylor series
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Taylor Series Approach

Third moment

* Turn Ax and Ay into 6, and 6, about the mean
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— The partial derivatives are evaluated at the
mean value of x

4+...
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Taylor Series Approach Some Examples
* For two input variables x, and x,, + Assume small, independent errors
L (df 2 , ar\? s df \ [ df — Keep only linear terms, ignore covariance
oy = ax ) %\, 0%, ax ) \dx, cov(xy,x;) + .« y =ax, + bx,, 0_; — QZO'J?I +b20'£2
—When the input errors are small and the slopes * y = Xx1X,, assuming x; >> Ox,
are not, we can ignore higher order terms o \2 o \2 o \2
i ) = (2 Xz
* When x, and x, are independent, (3_,> (le ) + (fz )
df \* df \* - 2 _ 42 /572
2 () 52 (&) 42 * y =In(ax), o, = o5 /%
oy <dx1> ox, +<dx2> oz, y (ax), oy x/
Using a Micrometer Micrometer Example

» Sources of uncertainty:
— Scale (calibration) error: 3 um, assumed to be
uniformly distributed (s = range//3 = 1.73 um)
— Zeropoint error: 2 um (s = 1.15 pum)
— Anvil parallelism: s = 0.58 um

— Temperature different between micrometer
and object: 3 °C, leading to s = 0.61 um

— Measurement repeatability: s =2 um
» Combined standard uncertainty = 3.0 um

(images from Wikimedia Commons)
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Lecture 79: What have we learned?

* What are the major difficulties of Bayesian
regression?

» Explain how frequentist and Bayesian
regression concepts can merge in a
“hybrid” form

 Explain how this “hybrid” form relates to
ridge regression
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