CHE384, From Data to Decisions: Measurement, Uncertainty, Analysis, and Modeling

Lecture 79 Propagation of Uncertainty

Chris A. Mack

Adjunct Associate Professor

http://www.lithoguru.com/scientist/statistics/

© Chris Mack 2016

Data to Decision

The Measurement Model

· Consider a measurement model

 $\underbrace{\text{Measurement}}_{\text{Output}} \longrightarrow y = f(x_1, x_2, \dots)$

- Some of the inputs represent the thing we want to measure, but some are nuisance variables
 - Ex: Measure length with a steel ruler; temperature is a nuisance variable
- How do variations in the x_i propagate to variations in y?
 - Called the propagation of uncertainty

© Chris Mack, 2016

Data to Decisions

Propagation of Uncertainty

- There are three common ways to propagate uncertainty from inputs to an output
 - Propagation of pdfs (often difficult to do)
 - Taylor Series (most common, but easy to do wrong)
 - Monte Carlo simulations (often best approach for complex measurement models)

© Chris Mack, 2016

Data to Decisions

Propagation of PDFs (1D example)

• Consider Y = f(X) where X is a random variable with known pdf $P_X(x)$. What is the pdf of Y?

$$P_Y(y) = \left| \frac{dx}{dy} \right| P_X(x)$$

where
$$x = f^{-1}(y)$$

• Note: $f^{-1}(y)$ can have multiple roots

© Chris Mack, 2016

Data to Decisions

Taylor Series Approach

• Expand the function as a Taylor series

$$\begin{split} f(x) &= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n \\ Let \ \Delta y &= f(x) - f(a) \qquad \Delta x = x-a \qquad a = \bar{x} \\ \Delta y &= \frac{df}{dx} \Delta x + \frac{1}{2!} \frac{d^2 f}{dx^2} \Delta x^2 + \dots + \frac{1}{n!} \frac{d^n f}{dx^n} \Delta x^n \end{split}$$

For K different input variables.

$$\Delta y = \sum_{j=0}^{\infty} \left(\frac{1}{j!} \left[\sum_{k=1}^{K} \Delta x_k \frac{\partial}{\partial x_k} \right]^j f \right)$$

© Chris Mack, 2016

Taylor Series Approach

• Turn Δx and Δy into σ_x and σ_y Third moment about the mean

$$E[\Delta y^2] = \sigma_y^2 = \left(\frac{df}{dx}\right)^2 \sigma_x^2 + \left(\frac{df}{dx}\right) \left(\frac{d^2f}{dx^2}\right) \stackrel{\checkmark}{\mu_3} + \left[\frac{1}{4} \left(\frac{d^2f}{dx^2}\right)^2 + \frac{1}{3} \left(\frac{df}{dx}\right) \left(\frac{d^3f}{dx^3}\right)\right] \mu_4 + \cdots$$

 The partial derivatives are evaluated at the mean value of x

© Chris Mack, 2016

Data to Decisions

Taylor Series Approach

• For two input variables x_1 and x_2 ,

$$\sigma_y^2 = \left(\frac{df}{dx_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{df}{dx_2}\right)^2 \sigma_{x_2}^2 + 2\left(\frac{df}{dx_1}\right) \left(\frac{df}{dx_2}\right) cov(x_1, x_2) + \cdots$$

- When the input errors are small and the slopes are not, we can ignore higher order terms
- When x_1 and x_2 are independent,

$$\sigma_y^2 = \left(\frac{df}{dx_1}\right)^2 \sigma_{x_1}^2 + \left(\frac{df}{dx_2}\right)^2 \sigma_{x_2}^2$$

© Chris Mack 2016

Data to Decision

Some Examples

- Assume small, independent errors
 - Keep only linear terms, ignore covariance
- $y = ax_1 + bx_2$, $\sigma_y^2 = a^2 \sigma_{x_1}^2 + b^2 \sigma_{x_2}^2$
- $y = x_1 x_2$, assuming $\bar{x}_i >> \sigma_{x_1}$

$$\left(\frac{\sigma_y}{\bar{y}}\right)^2 = \left(\frac{\sigma_{x_1}}{\bar{x}_1}\right)^2 + \left(\frac{\sigma_{x_2}}{\bar{x}_2}\right)^2$$

• $y = \ln(ax)$, $\sigma_v^2 = \sigma_x^2/\bar{x}^2$

© Chris Mack, 2016

Data to Decisions

Using a Micrometer Wicromat 40A (Images from Wikimedia Commons)

Micrometer Example

- · Sources of uncertainty:
 - Scale (calibration) error: 3 μm, assumed to be uniformly distributed (s = range/ $\sqrt{3}$ = 1.73 μm)
 - Zeropoint error: 2 μ m ($s = 1.15 \mu$ m)
 - Anvil parallelism: $s = 0.58 \mu m$
 - Temperature different between micrometer and object: 3 $^{\circ}$ C, leading to $s = 0.61 \mu m$
 - Measurement repeatability: $s = 2 \mu m$
- Combined standard uncertainty = 3.0 μm

© Chris Mack, 2016

Data to Decisions

Lecture 79: What have we learned?

Data to Decisions

- What are the major difficulties of Bayesian regression?
- Explain how frequentist and Bayesian regression concepts can merge in a "hybrid" form
- Explain how this "hybrid" form relates to ridge regression

© Chris Mack, 2016

© Chris Mack, 2016

ta to Decisions