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Bayesian Computations

* Analytical solutions of the posterior
distribution are only possible for special
cases (called conjugate priors)

+ Usually, we need to solve Bayes’ equation
numerically
— Markov Chain Monte Carlo (MCMC) sampling

— Result is a set of points from the posterior
distribution that we then summarize
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Bayesian Numerical Output

Numerical joint
posterior probability
distribution of the
slope and intercept
(straight line fit)
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Summarizing the Posterior
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Three Problems with Bayesian Regression

» Usually, Bayesian regression involves
difficult computations

— Less of an issue with modern software and
computers

» What prior distributions should we use?

— Sometimes we run through many priors to see
what happens

* Is it reasonable to treat every regression
parameter as a random variable?
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Frequentist + Bayesian

* Suppose we have a “constant” in our model,
but we don’t know the value of the constant
accurately

» Frequentist approaches:
— Let the constant “float” as a parameter, ignoring
what we already know about its value
— Fix the constant at our best estimate of its value,
ignoring the uncertainty in this value
» Can we add Bayesian ideas to our frequentist
regression?
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One Bayesian Approach

Constant

 Take the -log of Bayes’ Equation

—In(p(8ly)) = —In(P(y|8)) — In(P(®)) + In(2(y))
Log-likelihood

« Let's take the maximum of In(P(8]y))
(the mode) as our point estimate of the
parameters

— For normal likelihood, 1v &
we want to minimize > E;g_g =me(E)
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Hybrid Interpretation

Let the constant (call it g) be a parameter of the
fit, with a normal prior distribution with mean g
and standard error s
— A\ 2
“In(2(8)) = %(9 - g)

Sg

This is the same as adding a penalty to the y2 by
letting our prior estimate of g be a “measurement”

(55

s,
g i=0
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Bayesian as Ridge Regression

* This “hybrid” interpretation can be applied
to all model parameters:

n ~\2 P-1 2
5= Z <3’i - yi) " Z <bk - bk,prior)
=0 Sy =0 Sbk,prior

* When by ,,i0r = 0, this is identical to
Ridge Regression
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Bayes Regression Summary

* Pick a prior distribution

Calculate the likelihood function in the

usual way

+ Calculate the posterior distribution, usually
numerically (MCMC)

« Summarize the posterior distribution
(usually MAP estimate, credible interval)
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Lecture 76: What have we learned?

» What are the major difficulties of Bayesian
regression?

» Explain how frequentist and Bayesian
regression concepts can merge in a
“hybrid” form

» Explain how this “hybrid” form relates to
ridge regression
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