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Lecture 76
Bayesian Regression, part 3
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http://www.lithoguru.com/scientist/statistics/

Data to Decisions

Bayesian Computations

• Analytical solutions of the posterior 
distribution are only possible for special 
cases (called conjugate priors)

• Usually, we need to solve Bayes’ equation 
numerically
– Markov Chain Monte Carlo (MCMC) sampling

– Result is a set of points from the posterior 
distribution that we then summarize 
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Bayesian Numerical Output
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Numerical joint 
posterior probability 
distribution of the 
slope and intercept 
(straight line fit)
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Summarizing the Posterior
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Three Problems with Bayesian Regression

• Usually, Bayesian regression involves 
difficult computations
– Less of an issue with modern software and 

computers

• What prior distributions should we use?
– Sometimes we run through many priors to see 

what happens

• Is it reasonable to treat every regression 
parameter as a random variable?
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Frequentist + Bayesian

• Suppose we have a “constant” in our model, 
but we don’t know the value of the constant 
accurately

• Frequentist approaches:
– Let the constant “float” as a parameter, ignoring 

what we already know about its value
– Fix the constant at our best estimate of its value, 

ignoring the uncertainty in this value

• Can we add Bayesian ideas to our frequentist
regression?
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One Bayesian Approach

• Take the -log of Bayes’ Equation

• Let’s take the maximum of  ln P |y
(the mode) as our point estimate of the 
parameters
– For normal likelihood,

we want to minimize 
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Hybrid Interpretation

• Let the constant (call it ݃) be a parameter of the 
fit, with a normal prior distribution with mean ݃̅
and standard error ݏ௚

• This is the same as adding a penalty to the c2 by 
letting our prior estimate of ݃ be a “measurement”
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Bayesian as Ridge Regression

• This “hybrid” interpretation can be applied 
to all model parameters:

• When ܾ ௞,௣௥௜௢௥ ൌ 0, this is identical to
Ridge Regression
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Bayes Regression Summary

• Pick a prior distribution

• Calculate the likelihood function in the 
usual way

• Calculate the posterior distribution, usually 
numerically (MCMC)

• Summarize the posterior distribution 
(usually MAP estimate, credible interval)
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Lecture 76: What have we learned?

• What are the major difficulties of Bayesian 
regression?

• Explain how frequentist and Bayesian 
regression concepts can merge in a 
“hybrid” form

• Explain how this “hybrid” form relates to 
ridge regression
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