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Bayesian Regression

Likelihood Function

Posterior Distribution \ /Prior Distribution
p(0ly) = P(y|0)E(8) Bt
= ormalizing
P(y) constant

* We already know how to calculate the likelihood function
(we make assumptions about the pdf of y)

* The term P(y) is a constant (independent of ) and used
to normalize the posterior pdf

« Prior distribution P(8): our understanding of the model
parameters and o, before we began the experiment

* How do we interpret the posterior distribution?
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Posterior Distribution

» The output of a Bayesian regression is not a
set of best fit parameters, but a probability
distribution for each parameter and o, (called
the posterior distribution)

* How de we interpret the posterior distribution?

* We need to summarize the distribution:

— Use the mode, mean, median, or range midpoint
as an equivalent “best estimate” of the parameter

— Use the distribution to calculate “credible interval”
(quantiles) for the parameter
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Posterior Distribution

« Posterior distribution describes how much the
data has changed our prior beliefs

» Bernstein—von Mises Theorem: for a
sufficiently large sample size, the posterior
distribution becomes independent of the prior
distribution (so long as the prior is not either
Oor1)

— The posterior tends towards a normal distribution
with a mean equal to the MLE (assuming iid
data), a restatement of the central limit theorem

— The effect of the prior diminishes as the amount
of data increases
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Prior Distribution

* The prior distribution p(0) is really
shorthand notation for p(6|Z), where I is
all the information we have about the
problem before we start collecting data
— If we have NO information about what the

parameters could or should be, then p(0|1) is
a constant (called an uninformative prior or
objective prior), and the posterior distribution
equals the likelihood function

— We almost always have some information
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Prior Choice

« Non-informative (baseline or objective) prior
— Ex: a uniform probability over the expected range of
possible values
— Flat priors are not always uninformative! Ex: should we
have a uniform distribution of slopes, or uniform
distribution of the angle of the line, or its sine?
« Substantive (informative) prior
— Use some problem-specific information to provide a prior
distribution for each model parameter
— Based on previous data, experiments, knowledge
— Sometimes one can assume the prior for each parameter
is independent of the others (p(eg) = P(B)P(c?)), but
frequently a joint probability distribution is required
— Setting the prior to a delta function fixes a parameter
independent of the data (we never do this in general)
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Reparameterization

» Often, reparameterization of the model is

required to make prior assignment easier

Consider a linear regression with

Vi = Bo + P1x;

— But, By = J;(x; = 0), and often x; = 0 is not
physically meaningful

— Shift the x-axis by x, giving §; = B," + p1(x; — X)

— Now, B," = 9;(x; = %), which is meaningful

— Define the prior for 8, (which we can assume to
be independent of B; and its prior)
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Prior Choice Example

» Consider a linear regression with
Ji=PBo+B1x;  Bayes: p(8ly) x p(y|0)P(0)

» We can set our prior for the slope to favor
the “null hypothesis™ P(B;) ~ N(0,d2)
where g, is large enough to allow for the
expected range of possible slopes

* Does the data contain information to push
us away from our prior belief that there is
no relationship between x and y?
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Conjugate Priors

For a given likelihood distribution, analytical

solutions of the posterior distribution are only

possible for special cases of priors (called

conjugate priors)

— Example: For iid normal errors, the conjugate prior
for Bis normal, and for 62 is inverse gamma

Usually, we need to solve Bayes’ equation

numerically

— Markov Chain Monte Carlo (MCMC) sampling

— Result is a set of points from the posterior distribution
that we then summarize (mean, or maximum a
posteriori — MAP — estimate of the mode)
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Relationship to OLS

Consider a linear regression with

Vi = Bo + Prxa; + Poxa; + -
Assume our likelihood function is a product of
Normal probabilities with constant variance
Choose a baseline prior so that that the prior
P(B,0?) x 1/a? (Jeffreys prior, it is “improper”)
The resulting posterior distribution is t-distributed
about the MLE parameter estimates
The results are identical to OLS, but with a
different interpretation (credible intervals rather
than confidence intervals)
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Interpretation

* 95% Confidence Interval (frequentist)

— Our parameter is an unknown constant, and
with a large number of repeated samples,
95% of such calculated confidence intervals
would include the true value of the parameter

» 95% Credible Interval/Region (Bayesian)

— Our parameter is a random variable, with a
95% probability of falling within the given
interval
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Lecture 75: What have we learned?

* How is the posterior distribution used
(summarized) to tell us about model parameters?

* What does the Bernstein—von Mises theorem tell

us about the relationship between the prior and

posterior distributions?

What is the difference between uninformative and

substantive priors?

What is the Jeffreys prior and how does it apply to

linear regression?

Explain the difference between confidence

intervals and credible intervals
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