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Lecture 75
Bayesian Regression, part 2
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http://www.lithoguru.com/scientist/statistics/

Data to Decisions

Bayesian Regression

• We already know how to calculate the likelihood function 
(we make assumptions about the pdf of y)

• The term P(y) is a constant (independent of q) and used 
to normalize the posterior pdf

• Prior distribution P(q):  our understanding of the model 
parameters and se before we began the experiment

• How do we interpret the posterior distribution?
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Data to Decisions

Posterior Distribution
• The output of a Bayesian regression is not a 

set of best fit parameters, but a probability 
distribution for each parameter and se (called 
the posterior distribution)

• How de we interpret the posterior distribution? 
• We need to summarize the distribution:

– Use the mode, mean, median, or range midpoint 
as an equivalent “best estimate” of the parameter

– Use the distribution to calculate “credible interval” 
(quantiles) for the parameter
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Posterior Distribution

• Posterior distribution describes how much the 
data has changed our prior beliefs

• Bernstein–von Mises Theorem:  for a 
sufficiently large sample size, the posterior 
distribution becomes independent of the prior 
distribution (so long as the prior is not either 
0 or 1)
– The posterior tends towards a normal distribution 

with a mean equal to the MLE (assuming iid
data), a restatement of the central limit theorem

– The effect of the prior diminishes as the amount 
of data increases
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Prior Distribution

• The prior distribution P(q) is really 
shorthand notation for P(q|I), where I is 
all the information we have about the 
problem before we start collecting data
– If we have NO information about what the 

parameters could or should be, then P(q|I) is 
a constant (called an uninformative prior or 
objective prior), and the posterior distribution 
equals the likelihood function

– We almost always have some information
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Prior Choice
• Non-informative (baseline or objective) prior

– Ex: a uniform probability over the expected range of 
possible values

– Flat priors are not always uninformative!  Ex: should we 
have a uniform distribution of slopes, or uniform 
distribution of the angle of the line, or its sine?

• Substantive (informative) prior
– Use some problem-specific information to provide a prior 

distribution for each model parameter
– Based on previous data, experiments, knowledge
– Sometimes one can assume the prior for each parameter 

is independent of the others (P ࣂ ൌ P ࢼ P ଶߪ ), but 
frequently a joint probability distribution is required

– Setting the prior to a delta function fixes a parameter 
independent of the data (we never do this in general)
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Reparameterization
• Often, reparameterization of the model is 

required to make prior assignment easier
• Consider a linear regression with

ො௜ݕ ൌ ଴ߚ ൅ ௜ݔଵߚ
– But, ߚ଴ ൌ ௜ݔො௜ሺݕ ൌ 0ሻ, and often ݔ௜ ൌ 0 is not 

physically meaningful
– Shift the x-axis by ̅ݔ, giving ݕො௜ ൌ ′଴ߚ ൅ ଵߚ ௜ݔ െ ݔ̅
– Now, ߚ଴′ ൌ ௜ݔො௜ሺݕ ൌ ሻ, which is meaningfulݔ̅
– Define the prior for ߚ଴′ (which we can assume to 

be independent of ߚଵ and its prior)
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Prior Choice Example
• Consider a linear regression with

ො௜ݕ ൌ ଴ߚ ൅ ௜ݔଵߚ

• We can set our prior for the slope to favor 
the “null hypothesis”:  P ଵߚ  ~ ܰሺ0, ௕ߪ

ଶሻ
where sb is large enough to allow for the 
expected range of possible slopes

• Does the data contain information to push 
us away from our prior belief that there is 
no relationship between x and y?
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Bayes:  P y|ࣂ  ∝ P y|ࣂ P ࣂ
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Conjugate Priors
• For a given likelihood distribution, analytical 

solutions of the posterior distribution are only 
possible for special cases of priors (called 
conjugate priors)
– Example:  For iid normal errors, the conjugate prior 

for b is normal, and for s2 is inverse gamma
• Usually, we need to solve Bayes’ equation 

numerically
– Markov Chain Monte Carlo (MCMC) sampling
– Result is a set of points from the posterior distribution 

that we then summarize (mean, or maximum a 
posteriori – MAP – estimate of the mode)
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Relationship to OLS
• Consider a linear regression with

ො௜ݕ ൌ ଴ߚ ൅ ଵ௜ݔଵߚ ൅ ଶ௜ݔଶߚ ൅ ⋯
• Assume our likelihood function is a product of 

Normal probabilities with constant variance
• Choose a baseline prior so that that the prior 
Pሺߚ, ଶሻߪ ∝ ଶߪ/1 (Jeffreys prior, it is “improper”)

• The resulting posterior distribution is t-distributed 
about the MLE parameter estimates

• The results are identical to OLS, but with a 
different interpretation (credible intervals rather 
than confidence intervals)
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Interpretation
• 95% Confidence Interval (frequentist)

– Our parameter is an unknown constant, and 
with a large number of repeated samples, 
95% of such calculated confidence intervals 
would include the true value of the parameter

• 95% Credible Interval/Region (Bayesian)
– Our parameter is a random variable, with a 

95% probability of falling within the given 
interval
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Lecture 75: What have we learned?

• How is the posterior distribution used 
(summarized) to tell us about model parameters?

• What does the Bernstein–von Mises theorem tell 
us about the relationship between the prior and 
posterior distributions?

• What is the difference between uninformative and 
substantive priors?

• What is the Jeffreys prior and how does it apply to 
linear regression?

• Explain the difference between confidence 
intervals and credible intervals
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