
11/23/2016

1

CHE384,  From Data to Decisions:  Measurement, 
Uncertainty, Analysis, and Modeling

Chris A. Mack
Adjunct Associate Professor

Lecture 74
Bayesian Regression, part 1
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http://www.lithoguru.com/scientist/statistics/

Data to Decisions

Maximum Likelihood Regression

• For conventional regression, we try to 
maximize the likelihood function:
– Likelihood = P(y|ࣂ෡)
– y = experimental data set
– ࣂ = parameters of the model, ࣂ෡ = estimate of ࣂ
– These unknown parameters are thought of as 

constants that must be estimated

• But should we instead maximize P(ࣂ|y)?
– Here, the unknown parameters are thought of as 

random variables that have pdf’s
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Bayes’ Theorem

• From the definition of conditional 
probability we can write P(A∩B) two ways

• Combining,

– Bayes theorem allows us to flip what is given
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P ܣ ∩ ܤ  ൌ P ܤ|ܣ P ܤ

P ܣ ∩ ܤ  ൌ P ܣ|ܤ P ܣ

P ܤ|ܣ  ൌ 
P ܣ|ܤ P ܣ

P ܤ

Data to Decisions

Bayes’ Theorem Example

• Consider a lab test for a disease
– It is 95% effective at detecting the disease

– It has a false positive rate of 1%

– The rate of occurrence of the disease in the 
general population is 0.5%

• I take the screening test and get a positive 
result.  What is the likelihood I have the 
disease?
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Bayes’ Theorem Example (2)

• Carefully define our variables:
– Let T = I tested positive

– Let D = I have the disease
– We want P(D|T)
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P ܶ|ܦ  ൌ 
P ܦ|ܶ P ܦ

P ܶ
ൌ

P ܦ|ܶ P ܦ
P ܦ|ܶ P ܦ ൅ P ഥܦ|ܶ P ഥܦ

P ܶ|ܦ  ൌ 
ሺ0.95ሻሺ0.005ሻ 

0.95 ሺ0.005ሻ ൅ ሺ0.01ሻሺ0.995ሻ
ൌ 0.32

P ܦ|ܶ  ൌ 0.95

P ܦ  ൌ 0.005
P ഥܦ|ܶ  ൌ 0.01
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Probability Tree Diagram
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P ܶ ∩ ܦ ൌ 0.475%

P തܶ ∩ ܦ ൌ 0.025%

P ܶ ∩ ഥܦ ൌ 0.995%

P തܶ ∩ ഥܦ ൌ 98.505%
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Bayesian Statistics

• We can use Bayes theorem to systematically 
combine what we learned from this
experiment with what we knew before we 
began the experiment

• Our previous example:
– What we knew before: effectiveness of test, false 

positive rate, prevalence of the disease in the 
population

– What we learned from this experiment: the results 
of the test on one patient (me)
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Bayesian Regression

• We already know how to calculate the likelihood function
• The term P(y) is a constant (independent of q) and used 

to normalize the posterior pdf
• We need to provide the prior distribution P(q) in order to 

calculate the posterior distribution
• How do we interpret these distributions?

– To a Bayesian, all probabilities are subjective
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P q|y  ൌ 
P y|q P q

P y

Posterior Distribution Prior Distribution
Likelihood Function

Normalizing 
constant
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Bayesians vs. Frequentists

• Frequentists
– Probability is the limiting case of repeated 

(possibly hypothetical) measurements
– Model parameters are unknown constants and 

data (results of experiments) are random variables

• Bayesians
– Probability is subjective, based on my degree of 

certainty in the event (my degree of knowledge)
– Model parameters are random variables and data 

are constants
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Lecture 74: What have we learned?

• Be able to explain and use Bayes’ Rule
• How are data and model parameter 

estimates treated in maximum likelihood 
estimation as compared to Bayesian 
regression?

• What is the meaning of the prior distribution?
• What is the meaning of the posterior 

distribution?
• What is the difference between frequentist 

and Bayesian views of statistics?
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