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CHE384,  From Data to Decisions:  Measurement, 
Uncertainty, Analysis, and Modeling

Chris A. Mack
Adjunct Associate Professor

Lecture 6
Regression Review, part 2
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http://www.lithoguru.com/scientist/statistics/

Data to Decisions

OLS Matrix Formulation

• When we have multivariate data, it is most 
convenient to formulate the OLS/MLE 
problem using matrix math
– i = 1, 2, 3, …, n data point index

– k = 0, 1, 2, …, p –1 predictor variable index
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Data to Decisions

OLS Matrix Formulation
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(each row in X and Y is a “data point”)

For a review, see https://onlinecourses.science.psu.edu/stat501/node/382
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Model in matrix form:

OLS Matrix Formulation
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Maximum Likelihood estimate (minimum SSE):

Sum of square errors

Data to Decisions
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of the residual,

OLS Matrix Formulation
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Minimum SSE occurs when the coefficients are estimated as
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Note that H
and I – H are 
symmetric
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(common alternate notation: $� � �?�)  

I = identity matrix

OLS Matrix Formulation
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Data to Decisions

Elements of 
the hat matrix

We can use our solution to calculate the covariance matrices:

Variance of the residuals

(for a review of covariance, see lecture 15 at www.lithoguru.com/scientist/statistics/review.html)
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MLE Straight-Line Regression

• Our model:  1 B C � �� � ��C

• Ordinary least squares (OLS) estimators:
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Uncertainty of Fit Parameters

• The regression fit is based on a sample of data

• To create confidence intervals for $�, $�, ���	��
, 
we need to know their sampling distributions
– Given the assumption of +
 	~	MD0, NO	E, the parameter 

sampling distributions are unbiased and t-distributed 
(DF = n – 2 = degrees of freedom)
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Uncertainty of Fit Parameters
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model parameters)
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Confidence Intervals

• The sampling distributions are Student’s t 
with DF = n – 2
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Slope CI: $� R �*�	,S�P�

Intercept CI: $� R �*�	,S�P�
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Critical t-value
α = significance level (e.g., 0.05)

Uncertainty of Predictions
• Uncertainty in ��
 comes from the spread of the 

residuals and from uncertainty in the best fit 
parameters $1 and $0

• Uncertainty in a predicted new measurement ��*@T
adds additional uncertainty of a single measurement

© Chris Mack, 2016 11

���D��
E � ���D+E
�	 1 � D�
 5 �̅E	

���DCE

�U�V	 � �O	
�	 � �P�	 D�
 5 �̅E	

�U�WXY	 � �U�V	 � �O	
Data to Decisions

Uncertainty of Correlation Coefficient
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• The sampling distribution for r is about 
Student’s t (DF = n – 2) only for ρ = 0.  For 
this case,
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Uncertainty of Correlation Coefficient

• For ρ ≠ 0, the sampling distribution is 
complicated

• We’ll use the Fisher z-transformation:

• When n > 25, z is about normal with
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Lecture 6: What have we learned?

• Why is the matrix formulation of OLS 
commonly used?

• What is the hat matrix?  Why is it 
important?

• Be able to use the results of this lecture to 
calculate standard errors and confidence 
intervals for model parameters and 
predicted model values
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