

Logistic Regression

• Instead of the probit model's inverse normal function, use the inverse logistic cdf (and assume π is Bernoulli distributed) $logit(\pi) = \ln\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots$ • Note: $odds = \frac{probability\ of\ success}{probability\ of\ failure} = \frac{\pi}{1-\pi}$ Inverting, $\pi(x_1, \dots) = \frac{e^{\beta_0 + \beta_1 x_{1i} + \cdots}}{1 + e^{\beta_0 + \beta_1 x_{1i} + \cdots}}$

Uses of Logistic Regression

• Predict binary outcome events

- Patient mortality after surgery (as a function of age, prior health indicators, sex)

- Probability of contracting a certain disease (as a function of age, ethnicity, fitness, sex)

- Probability customer will make a purchase (as a function of income, age, sex, neighborhood)

- Probability of defaulting on a mortgage (as a function of price, income, interest rate, mortgage type)

Lecture 58: What have we learned?
What are the three requirements of a generalized linear model?
What are some common distribution/link function pairs?
What is the distribution/link function pair for logistic regression?
Name three examples of where you might want to use a logistic regression