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Robust Regression
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Data to Decisions

Robust Regression
• OLS: minimizing c2 (least squared errors) is 

not robust
– Outliers or points from the tails of distributions are 

heavily weighted
– b.p. = 1/n: even one bad data point can make 

regression results meaningless
– We have discussed remedial measures for 

influential outliers and non-normal distributions, 
but they are not always effective for large 
amounts of contamination and not easy to 
automate

• An alternative:  Robust Regression
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Least Absolute Deviations
• Least Absolute Deviations (LAD):

– Minimize ܵ ൌ ∑ ௜ݕ െ ො௜ݕ

– Weights outliers linearly, not quadratically

– Absolute value sign is problematic since function 
is discontinuous at zero (linear programming 
required), and may not have a unique solution

– LAD is the MLE if the residuals are independent 
and have the double-exponential distribution

– For normal errors, SE(bk) is 26% bigger than OLS

– Also called minimum L1-norm regression
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M-Estimation
• Define a general function of the residuals, ܪ ௜ߝ , 

and then minimize  ܵ ൌ ∑ ܪ ௜ߝ
– For OLS, ܪ ௜ߝ ൌ ௜ߝ

ଶ

• The properties we want for the function H
– Always non-negative, ܪ ௜ߝ ൒ 0
– ܪ 0 ൌ 0
– Symmetric, ܪ െߝ௜ ൌ ܪ ௜ߝ

– Monotonic: if ߝ௜ ൐ ௝ߝ then ܪ ௜ߝ ൐ ܪ ௝ߝ
– Continuous derivative with respect to the coefficients 

(for numerical stability)
• Implement using iteratively reweighted LS
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M-Estimation

• For least-squares regression: ܵ ൌ ∑ ௜ߝ
ଶ, take the 

derivative with respect to a parameter and set = 0

• For M-estimator,
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M-Estimation

• Define a weight as

• Giving,

• But this is just weighted linear regression!
• Guess the weights, fit, then calculate the 

residuals.  Use those residuals to calculate 
new weights.  Repeat until convergence.
– Called iteratively reweighted Least Squares
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Huber M-Estimator
• The Huber M-estimator attempts to get the 

best of both the least-square estimator (easy 
to find the minimum) and the absolute 
deviation estimator (more robust)

• Huber picked k = 1.345s, which gives 95% 
efficiency (almost the same as OLS)

• The residuals are studentized using MAD
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Huber M-Estimator
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Bisquare M-Estimator
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ሻߝሺܪ ݁ݎܽݑݍݏ݅ܤ ൌ ቊ
݇ଶ/6 1 െ 1 െ ݇/ߝ ଶ ଷ ߝ ݎ݋݂ ൑ ݇

݇ଶ/6 ߝ ݎ݋݂ ൐ ݇

k = 4.685s
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M-estimator Weights
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M-Estimator Robustness

• The bisquare estimator is popular, but can 
suffer from local minima
– The Huber M-estimator gives a unique solution 

and is often used to provide a starting point for the 
bisquare estimator

• Both M-estimators and LAD can tolerate large 
deviations in Y, so long as they are not overly 
influential (that is, they don’t have large 
deviations in X) 

• Robust estimators make good outlier detectors
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Bounded Influence Regression

• Least Trimmed Squares deletes some 
percentage of the most extreme residuals 
(up to half), then performs OLS on the rest
– Does not work well for small sample sizes
– Of course, the extreme cases may be very 

important!

• Least Median Squares minimizes the 
median of the squared residuals
– Very robust, but very low efficiency
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Lecture 56: What have we learned?

• What is the breakdown point for OLS?

• Explain the basic operation of M-
estimators for linear regression

• What are some of the difficulties and 
complications for robust regression?

• How do you choose among the robust 
regression options?
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