CHE384, From Data to Decisions: Measurement, Uncertainty, Analysis, and Modeling

Lecture 56
Robust Regression

Chris A. Mack
Adjunct Associate Professor

http://www.lithoguru.com/scientist/statistics/

Robust Regression
 OLS: minimizing χ² (least squared errors) is not robust

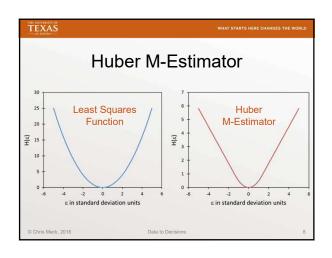
 Outliers or points from the tails of distributions are heavily weighted
 b.p. = 1/n: even one bad data point can make regression results meaningless
 We have discussed remedial measures for influential outliers and non-normal distributions, but they are not always effective for large amounts of contamination and not easy to automate

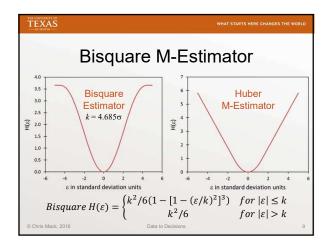
 An alternative: Robust Regression

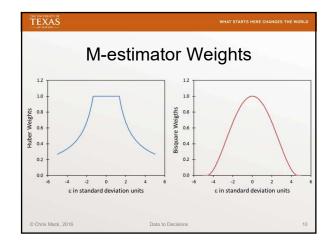
Least Absolute Deviations

• Least Absolute Deviations (LAD):

- Minimize $S = \sum |y_i - \hat{y}_i|$ - Weights outliers linearly, not quadratically

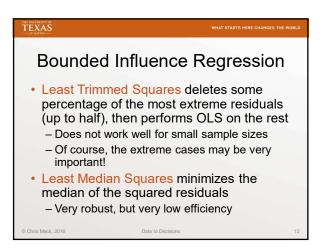

- Absolute value sign is problematic since function is discontinuous at zero (linear programming required), and may not have a unique solution


- LAD is the MLE if the residuals are independent and have the double-exponential distribution


- For normal errors, $SE(b_k)$ is 26% bigger than OLS

- Also called minimum L_1 -norm regression

Huber M-Estimator • The Huber M-estimator attempts to get the best of both the least-square estimator (easy to find the minimum) and the absolute deviation estimator (more robust) $H(\varepsilon) = \begin{cases} \varepsilon^2/2 & for \ |\varepsilon| \leq k \\ k|\varepsilon| - k^2/2 & for \ |\varepsilon| > k \end{cases}$ • Huber picked $k = 1.345\sigma$, which gives 95% efficiency (almost the same as OLS) • The residuals are studentized using MAD


M-Estimator Robustness

• The bisquare estimator is popular, but can suffer from local minima

• The Huber M-estimator gives a unique solution and is often used to provide a starting point for the bisquare estimator

• Both M-estimators and LAD can tolerate large deviations in Y, so long as they are not overly influential (that is, they don't have large deviations in X)

• Robust estimators make good outlier detectors

Lecture 56: What have we learned? • What is the breakdown point for OLS? • Explain the basic operation of Mestimators for linear regression • What are some of the difficulties and complications for robust regression? • How do you choose among the robust regression options?