

Contaminated Data

Besides robustness against non-normal parametric distributions (e.g., Gamma distribution), we also seek robustness against contamination (a fraction of the data comes from a different distribution)

There are two models for contamination

Mean shift: some of the data comes from a distribution with a different mean

Variance shift: some of the data comes from a distribution with a larger variance

Location

• The standard location statistic: mean \bar{x} $-SE(\bar{x}) = s/\sqrt{n}$ (assuming normal distribution)

• Some robust alternatives $- \text{Median}, SE = 1.253 \ s/\sqrt{n}$ (b.p. = 0.5) $- \text{k-trimmed mean}, SE \approx \left(1 + \frac{2k}{n}\right) \frac{s}{\sqrt{n}}$ (b.p. = k/n) $- \text{k-Winsorized mean}, SE \approx \left(1 + \frac{2k}{n}\right) \frac{s}{\sqrt{n}}$

• The scale statistic: standard deviation s $-SE(s) \approx s/\sqrt{2(n-1)} \text{ (normal distribution)}$ • Some robust alternatives -Median Absolute Deviation (MAD): $\text{MAD} = 1.4826 \ \textit{Median}(|x_i - \textit{Median}(x)|),$ $SE(\textit{MAD}) \approx 1.67 \ s/\sqrt{2n}, \text{ (b.p.} = 0.5)$ $-\text{Interquartile Range, } SE(IQR) \approx 2.23 \ s/\sqrt{2n},$ $\text{(b.p.} = 0.25); \text{ for normal dist. IQR} = 1.349\sigma$

TEXAS

WHAT STARTS HERE CHANGES THE WORLD

Lecture 55: What have we learned?

- Explain robustness and the breakdown point
- What are some common robust location estimators?
- What are some common robust scale estimators?
- What is the main disadvantage of using robust estimators?

Chris Mack 201

Data to Decisions