

Principal Component Analysis

• Rotate coordinate systems to create an orthogonal set of new regressor variables

• Each new variable (called a principal component) is a linear combination of the original variables

• Steps to do this:

• Calculate the correlation matrix of predictors

• Find the eigenvalues and corresponding eigenvectors of the correlation matrix

• Orthogonalize the design matrix by multiplying by a rotation matrix made up of the eigenvectors

Eigenvectors and Eigenvalues

• For a square pxp matrix A, the eigenvectors v and eigenvalues λ are defined by $Av = \lambda v$ • The eigenvalues are found by the p-roots of the equation $|A - \lambda I| = 0$ • Given the eigenvalues, the eigenvectors (one for every eigenvalue) can be determined by substitution into the original equation

Principal Component Regression

• We can create a regression model using the Z design matrix rather than X

• Frequently, some of the principal components will not be correlated with the response

- They can be excluded from the model

• Since each PC is orthogonal to the others, a simple t-test of model coefficients can be used to keep or exclude model terms

- There is no multicollinearity

PCA Example: Two Regressors

• The rotation matrix is formed by putting the eigenvectors into columns: $T = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \text{where } k_1 = k_2 = 1/\sqrt{2}$ • The rotated design matrix becomes $\mathbf{Z} = \widetilde{\mathbf{X}}\mathbf{T}$. Carrying out the multiplication, the new rotated variables are $z_1 = 1/\sqrt{2}(\widetilde{x}_1 + \widetilde{x}_2)$ $z_2 = 1/\sqrt{2}(\widetilde{x}_1 - \widetilde{x}_2)$ • Now regress y on these two rotated variables

- Note that z_1 and z_2 are orthogonal

- Only for the special case of two regressors is the rotation matrix independent of the data (that is, r_{12} does not appear in T or in z_1 and z_2).

Lecture 53: What have we learned?
Explain how constraints between regressor variables lead to multicollinearity
Why is PCA sometimes described as a rotation of the parameter space?
What does a small eigenvalue tell you about that principal component?
How can PCA be used to improve regression?

Data to Decisions