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CHE384,  From Data to Decisions:  Measurement, 
Uncertainty, Analysis, and Modeling

Chris A. Mack
Adjunct Associate Professor

Lecture 53
Principal Component Analysis
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http://www.lithoguru.com/scientist/statistics/
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When Two Predictors are Correlated
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But if we rotate the coordinate space…

Linear Constraints
• Multicollinearity often comes about because 

of constraints between predictor variables
– e.g., x2 – x4 + x5 = 5, x6 = 0.8x7, etc.

• Theoretical considerations can often be used 
to identify constraints; if so, use them to 
simplify the regression model (and reduce 
multicollinearity)

• Principal Component Analysis can help to 
identify unknown linear constraints
– But not all constraints are linear (e.g., x2x4 = 5)
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Principal Component Analysis

• Rotate coordinate systems to create an 
orthogonal set of new regressor variables
– Each new variable (called a principal component) 

is a linear combination of the original variables

• Steps to do this:
– Calculate the correlation matrix of predictors
– Find the eigenvalues and corresponding 

eigenvectors of the correlation matrix
– Orthogonalize the design matrix by multiplying by 

a rotation matrix made up of the eigenvectors
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Eigenvectors and Eigenvalues

• For a square pxp matrix A, the 
eigenvectors v and eigenvalues l are 
defined by ࢜࡭ ൌ ࢜ߣ

• The eigenvalues are found by the p-roots 
of the equation ࡭െ ࡵߣ ൌ 0

• Given the eigenvalues, the eigenvectors 
(one for every eigenvalue) can be 
determined by substitution into the original 
equation
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Orthogonalizing the Design Matrix

• Create a pxp rotation matrix T with each column 
equal to one eignevector from correlation matrix
– Order the columns by eigenvalue from large to small

• Create a “rotated” coordinate design matrix as 
ࢆ ൌ ࢀࢄ
– Each column of Z is a “principal component”, 

orthogonal to all the other principal components
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ଵݖ ൌ ଵݔଵଵݐ ൅ ଶݔଵଶݐ ൅⋯ݐଵ௣ݔ௣

ଶݖ ൌ ଵݔଶଵݐ ൅ ଶݔଶଶݐ ൅ ௣ݔଶ௣ݐ⋯
etc.

Each new variable zk is 
a linear combination of 
old variables xi
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Properties of the Rotated Design

• The “rotated” design matrix is ࢆ ൌ ࢀࢄ
• Each column of Z is a “principal component” (PC), 

orthogonal to all the other PCs
• The first PC (largest eigenvalue) accounts for the 

maximum amount of variance in the predictors 
• Each PC has mean = 0, and variance equal to the 

eigenvalue
• For a small eigenvalue, the PC is about constant at 

a value of 0; this is a constraint on the predictors 
that can be used to simplify the model
– ௞ݖ ൌ ଵݔ௞ଵݐ ൅ ଶݔ௞ଶݐ ൅ ௣ݔ௞௣ݐ⋯ ൎ 0
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Principal Component Analysis

• What do the Principal Components mean?
– Sometimes, we don’t care – we just want a 

simple model with predictive ability

– But sometimes, the principal components might 
be revealing!

• Why are the principal components this specific linear 
combination of other variables?

• What constraints (small eigenvalues) are revealed?

– Look at the correlation matrix between the PCs 
and the original predictor variables
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Principal Component Regression

• We can create a regression model using the 
Z design matrix rather than X

• Frequently, some of the principal components 
will not be correlated with the response
– They can be excluded from the model

• Since each PC is orthogonal to the others, a 
simple t-test of model coefficients can be 
used to keep or exclude model terms
– There is no multicollinearity
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PCA Example:  Two Regressors
• Admittedly, this is a case where we would probably never use PCA 

(since there are two few regressors), but it will illustrate the methods

• Recall:

• Find the eigenvectors:

• Plugging in l1 and then l2, we find the two eigenvectors v1 and v2.
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ଵߣ ൌ 1 ൅ ෩ࢄ෩்ࢄଵଶݎ ൌ
1 ଵଶݎ
ଵଶݎ 1 ଶߣ ൌ 1 െ ଵଶݎ

1 െ ௝ߣ ଵଶݎ
ଵଶݎ 1 െ ௝ߣ

௝ଵݒ
௝ଶݒ ൌ 0

1 െ ௝ߣ ௝ଵݒ ൅ ௝ଶݒଵଶݎ ൌ 0

௝ଵݒଵଶݎ ൅ 1 െ ௝ߣ ௝ଶݒ ൌ 0

ଵݒ ൌ ݇ଵ
1
1

ଶݒ ൌ ݇ଶ
1
െ1

where k1 and k2 are arbitrary 
constants, often chosen to 
make the vectors unit length
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PCA Example:  Two Regressors
• The rotation matrix is formed by putting the eigenvectors into 

columns:

• The rotated design matrix becomes ࢆ ൌ  Carrying out the  .ࢀ෩ࢄ
multiplication, the new rotated variables are

• Now regress y on these two rotated variables  
– Note that z1 and z2 are orthogonal
– Only for the special case of two regressors is the rotation matrix independent of 

the data (that is, r12 does not appear in T or in z1 and z2).
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ࢀ ൌ
1

2
1 1
1 െ1

ଵݖ ൌ 1/ 2 ෤ଵݔ ൅ ෤ଶݔ

where k1 = k2 = 1/ 2

ଶݖ ൌ 1/ 2 ෤ଵݔ െ ෤ଶݔ
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Lecture 53: What have we learned?

• Explain how constraints between 
regressor variables lead to multicollinearity

• Why is PCA sometimes described as a 
rotation of the parameter space?

• What does a small eigenvalue tell you 
about that principal component?

• How can PCA be used to improve 
regression?
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