WHAT STARTS HERE CHANGES THE WORLD

10/50/2016

WHAT STARTS HERE CHANGES THE WORLD

CHE384, From Data to Decisions: Measurement,
Uncertainty, Analysis, and Modeling

Lecture 53
Principal Component Analysis

Chris A. Mack

Adjunct Associate Professor

http://www.lithoguru.com/scientist/statistics/

© Chris Mack, 2016 Data to Decisions 1

When Two Predictors are Correlated
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But if we rotate the coordinate space...
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Linear Constraints

» Multicollinearity often comes about because
of constraints between predictor variables
—e.g., Xo — X4 + X5 = 5, Xg = 0.8x7, etc.
Theoretical considerations can often be used
to identify constraints; if so, use them to
simplify the regression model (and reduce
multicollinearity)
* Principal Component Analysis can help to
identify unknown linear constraints
— But not all constraints are linear (e.g., X,x, = 5)
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Principal Component Analysis

* Rotate coordinate systems to create an
orthogonal set of new regressor variables
— Each new variable (called a principal component)
is a linear combination of the original variables
 Steps to do this:
— Calculate the correlation matrix of predictors
— Find the eigenvalues and corresponding
eigenvectors of the correlation matrix
— Orthogonalize the design matrix by multiplying by
a rotation matrix made up of the eigenvectors
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Eigenvectors and Eigenvalues

» For a square pxp matrix 4, the
eigenvectors v and eigenvalues 4 are
defined by Av = Av

» The eigenvalues are found by the p-roots
of the equation |[A — AI| =0

» Given the eigenvalues, the eigenvectors
(one for every eigenvalue) can be
determined by substitution into the original
equation
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Orthogonalizing the Design Matrix

» Create a pxp rotation matrix 7 with each column
equal to one eignevector from correlation matrix
— Order the columns by eigenvalue from large to small
» Create a “rotated” coordinate design matrix as
Z =XT
— Each column of Z is a “principal component”,
orthogonal to all the other principal components

21 = by1Xy + bipXy + o b Ea_ch new var?ablg z; IS
a linear combination of

Zp = tnXq + Xy +bypXp g variables x,
e

etc.
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Properties of the Rotated Design

» The “rotated” design matrix is Z = XT

» Each column of Z is a “principal component” (PC),
orthogonal to all the other PCs

» The first PC (largest eigenvalue) accounts for the
maximum amount of variance in the predictors

» Each PC has mean =0, and variance equal to the
eigenvalue

» For a small eigenvalue, the PC is about constant at
a value of 0; this is a constraint on the predictors
that can be used to simplify the model

= Zig = L1 Xq + baXp + o bpXp = 0

© Chris Mack, 2016 Data to Decisions 7

Principal Component Analysis

» What do the Principal Components mean?
— Sometimes, we don’t care — we just want a
simple model with predictive ability
— But sometimes, the principal components might
be revealing!

* Why are the principal components this specific linear
combination of other variables?

« What constraints (small eigenvalues) are revealed?
— Look at the correlation matrix between the PCs
and the original predictor variables
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Principal Component Regression

* We can create a regression model using the
Z design matrix rather than X

Frequently, some of the principal components
will not be correlated with the response

— They can be excluded from the model

Since each PC is orthogonal to the others, a
simple t-test of model coefficients can be
used to keep or exclude model terms

— There is no multicollinearity
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PCA Example: Two Regressors

« Admittedly, this is a case where we would probably never use PCA
(since there are two few regressors), but it will illustrate the methods
e 1 M =1+r
+ Recall: X'X = 12 ! 12
rz 1 Ay =1-—1y,

« Find the eigenvectors:
1-4 2 [le] — 0 — (1= X)vjn + 112052 =0
T12 1— 24| 1Yj2 Tavn + (1= 24, = 0
« Plugging in 4, and then A,, we find the two eigenvectors v, and v,.

=7 1 —k 1 where k, and , are arbitrary
V1=K 1 Uy =Ky -1 constants, often chosen to

make the vectors unit length
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PCA Example: Two Regressors

» The rotation matrix is formed by putting the eigenvectors into
columns: 1
T =—[1 L ] where k, =k, = 1/v2
\/7 1 -1 1 2]

+ The rotated design matrix becomes Z = XT. Carrying out the
multiplication, the new rotated variables are

2 = 1/V2(% + %)
7, = 1/V2(% — %)
» Now regress y on these two rotated variables
— Note that z, and z, are orthogonal

— Only for the special case of two regressors is the rotation matrix independent of
the data (that is, r,, does not appear in T or in z, and z,).
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Lecture 53: What have we learned?

» Explain how constraints between
regressor variables lead to multicollinearity

* Why is PCA sometimes described as a
rotation of the parameter space?

* What does a small eigenvalue tell you
about that principal component?

* How can PCA be used to improve
regression?
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