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Lecture 50
Detecting Multicollinearity
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http://www.lithoguru.com/scientist/statistics/

Data to Decisions

Problems with Multicollinearity
• Adding or deleting predictor variables 

changes the regression coefficients
• The standard errors of the regression 

coefficients become large
• The individual regression coefficients may not 

be significant even if the overall model is 
significant

• Some regression coefficients may be 
significantly different than expected (even the 
wrong sign)
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Causes of Multicollinearity

• Sampling:  we only sampled regions 
where the predictors are correlated

• The model (or population) demands that 
certain predictors are correlated

• We are not using the best model
– Shows up more if the range of predictors is 

small (e.g., x is correlated with x2)
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Sampling-induced Multicollinearity
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We have no 
data in this 
region

We have
no data in 
this region

If we simply 
failed to sample 
these regions, 
then the 
multicollinearity 
is not inherent 
in the model or 
population

Data to Decisions

How to Detect Multicollinearity

• Generate a correlation matrix – simple 
pairwise coefficients of correlation
– Won’t tell you about more complicated 

relationships (e.g., if x1 is highly correlated 
with x2 + x3, but not either variable separately)

• Variance Inflation Factor (VIF)
– Includes more complicated correlations

• Eigensystem Analysis
– We’ll use this for principle component analysis
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Variance Inflation Factor (VIF)
• How much is the variance of the kth model 

coefficient inflated compared to the case of 
no correlation?

where ܴ௞
ଶ is the coefficient of determination 

when xk (the kth predictor) is regressed 
against all of the other predictor variables
– ௞ܨܫܸ/1 is sometimes called the tolerance
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Variance Inflation Factor (VIF)

• When ܴ௞
ଶ ൌ 0 we have no correlation and 

௞ܨܫܸ ൌ 1
• When ܴ௞

ଶ → 1 we have perfect correlation and 
௞ܨܫܸ goes to infinity
– The kth regressor adds no new information

• The largest ܸܨܫ௞ is used to indicate the 
severity of multicollinearity
– If  > 4, we investigate; if  > 10, we act

• If the mean value of all the ܸܨܫ௞ is much 
bigger than 1, we worry as well
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Eigensystem Analysis

• For a pxp matrix A, the eigenvalues are the p-roots 
of the equation

• Find the eigenvalues of ࢄ෩்ࢄ෩ , the correlation matrix
– If all the eigenvalues are about the same magnitude, 

we have no multicollinearity

• Calculate the condition number, defined as 
κ ൌ ௠௜௡ߣ/௠௔௫ߣ  (some people use ߣ௠௔௫/ߣ௠௜௡)
– If bigger than ~100, we have a problem
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࡭ െ ࡵߣ ൌ 0
determinant
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(see Belsley, Kuh, & Welsch, Regression Diagnostics, Wiley, 1980)

Eigensystem Analysis Example

• For a two regressor model,
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Correlation matrix

Lecture 50: What have we learned?

• What are the advantages and 
disadvantages of using the correlation 
matrix for detecting multicollinearity?

• How do the Variance Inflation Factors 
address the disadvantage of the 
correlation matrix?

• How do we use eigenvalues and the 
condition number to detect 
multicollinearity?
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