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http://www.lithoguru.com/scientist/statistics/

Data to Decisions

What’s New in Multiple Regression

• Multicollinearity:  often predictor variables are 
correlated with each other – they are not 
independent
– Also called confounding

• Example:  what body measures predict 
strength in a certain fitness test?
– Height is correlated with strength
– Weight is correlated with strength
– But height and weight are correlated with each 

other! Are they really two different predictors?
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Multicollinearity Example

• Measuring % Body Fat is hard
– Measure body density using full water immersion 

to calculate density (Siri’s equation relates 
measured density to % Body Fat)

• Body Fat Model:  The goal is to create a 
model of % Body Fat using easily obtainable 
measures
– Height, Weight, Chest Circumference, Abdomen 

Circumference, Thigh Circumference, etc.
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These Measures are Correlated
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Chest and Abdomen 
are both inputs to the 
model, but one can 
be used to predict 
the other with high 
accuracy (i.e., if one 
of these variables is 
in the model, adding 
the other does not 
add much new 
information)

The Correlation Matrix

• A common output of a multiple regression is the 
correlation matrix – the correlation coefficient for each 
pair of variables (response as well as predictors)
– Only reveals pair-wise correlations
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Y X1 X2 X3
Y 1.00 .945 .836 .701
X1 1.00 .781 .499
X2 1.00 .632
X3 1.00

Data to Decisions

We like predictor 
variables with high 
correlation to the 
response, but low 
correlations to other 
predictor variables
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In the Extreme…

• For perfect multicollinearity (e.g., r12 = ±1) the 
design matrix is singular and therefore cannot 
be inverted 
– The OLS estimate does not exist

• To obtain a solution, one of the two perfectly 
correlated predictors must be removed from 
the model

• For correlation coefficients close to ±1, OLS 
math can produce large round-off errors
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Orthogonal Parameters
• When two predictor variables are completely 

uncorrelated (r12 = 0), then we say those two 
are orthogonal
– Adding or removing one of the two variables from 

the model does not affect the best-fit value of the 
other’s coefficient (nor it’s standard error)

– This is ideally what we want, but we rarely come 
close

• We often try to design our experiment to 
minimize correlations between predictor 
variables

© Chris Mack, 2016 8Data to Decisions

Are x and x2 Correlated?
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Correlation between x and x2 over the range from a to a + D:
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Note:  A standardized variable ݔ෤ and ݔ෤ଶ will always be uncorrelated.
Data to Decisions

Impact of Correlated Parameters

• When two or more predictor variables are highly 
correlated we can get: 
– Good fits, small SE(Y), and good predictions (so long 

as the correlations remain constant)
– Nonintuitive, biased values for the bk

– Large SE(bk) and large confidence intervals for the 
coefficients

• We can’t interpret the bk as a “marginal slope”:  
holding all other predictor variables constant, what 
is the slope?
– For highly correlated variables, we can’t hold all but 

one variable constant!
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Impact of Correlated Parameters

• When building a model with two or more 
highly correlated predictor variables:
– Adding or removing a predictor causes large 

changes in the coefficients of correlated 
predictors

– Different data sets produce models with very 
different coefficient values

– A statistically significant model (passes the F-
test) may have all statistically non-significant 
coefficients (each individually fails the t-test)

© Chris Mack, 2016 11Data to Decisions

Lecture 47: What have we learned?

• What is multicollinearity?
• What happens to OLS if two predictor 

variables have perfect correlation?
• What is the opposite of perfect correlation 

between predictor variables?
• What is a correlation matrix and how is it 

used?
• What happens to models and predictions 

when multicollinearity exists?
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