

Testing Individual Terms

• For any individual model term, does the confidence interval for the parameter include 0?

• The studentized parameter $b_k/SE(b_k)$ is student-t distributed with n-p degrees of freedom

• Calculate the p-value for a hypothesis test with H_0 : $\beta_k = 0$ • If a term is not statistically significant, we generally leave it out of the model

Partial F-Test: Comparing Models

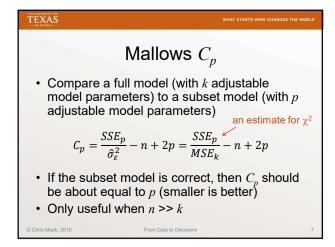
• Consider two models, where model 1 is a subset of model 2

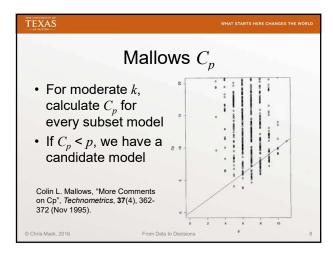
— Is it useful to include the extra variables of model 2 in the regression?

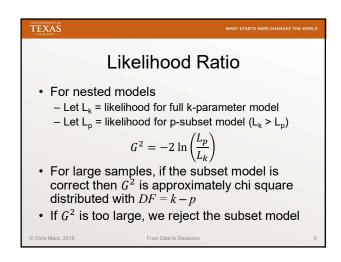
— Are the added covariates informative?

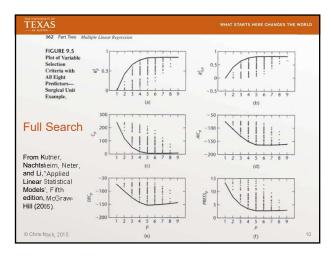
• Consider this hypothesis test:

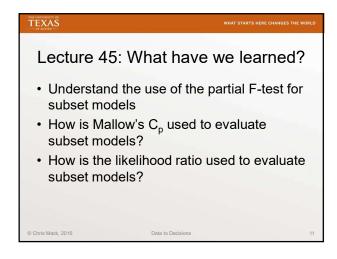
— H_0 : added predictor variables have all $\beta_j = 0$ — H_A : at least one added predictor variable has $\beta_j \neq 0$


Partial F-Test: Comparing Models


• We want to compare the SSE (or chi square for a weighted regression) for these two models:


This is called the extra sum of squares (model 1 is a sub-set of model 2) $F = \frac{(SSE_1 - SS_2)/(p_2 - p_1)}{SSE_2/(n - p_2)} = \frac{(R_2^2 - R_1^2)/(p_2 - p_1)}{(1 - R_2^2)/(n - p_2)}$ • This statistic is F-distributed with $p_2 - p_1$, $n - p_2$ degrees of freedom (p = # of adjustable parameters in the model)


Partial F-Test Example


• Full Model: $\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$ • We suspect that $\beta_1 = \beta_3$ • Create a subset model with $\tilde{x}_1 = x_1 + x_3$ $\hat{y} = \beta_0 + \beta_1 \tilde{x}_1 + \beta_2 x_2$ • The Partial F-test of the subset model to the full model is equivalent to testing the null hypothesis that $\beta_1 = \beta_3$

