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Lecture 43
Comparing Models
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From Data to Decisions

Building a Model

• In general, we strive for parsimony
– Find the simplest model consistent with the data and 

our knowledge of the problem

• If a simple model is not good enough, we can
– Add more predictor variables
– Add more complex functions of the predictor variables
– Add interaction terms

• How do we know if the added terms are really 
helping, or just fitting the noise (overfitting)?
– R2 always improves when new model terms are added
– We need something else to understand overfitting
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Coefficient of Determination

• The Coefficient of Determination (R2) is a 
measure of how much of the variation in Y is 
explained by the model
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(for linear regression)

Adjusted Coefficient of Determination

• Adjust the SSE and SSTO by their degrees of 
freedom (p = # of adjustable model parameters)

• If adding a new model term makes ܴ௔
ଶ smaller, 

that term is probably not needed
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Information Criteria

• Generic Information Criterion (xIC)

– L = maximized likelihood, commonly returned 
by regression software

• We reward lower unexplained variance but 
penalize greater complexity
– We try to lower the information criterion value
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Log-Likelihood

• For iid normal errors, 

• But, ܧ ߯ଶ ൌ ݊ െ ݌
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Information Criteria

• Akaike Information Criterion (AIC)

• Log-likelihoods are computed up to an 
additive constant

• Schwarz’s Bayesian Criterion (SBC or BIC)
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Comparing Models

• When comparing models with different 
numbers of parameters, the “goodness of 
fit” measure must penalize models with too 
many parameters
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Lecture 43: What have we learned?

• Why can’t R2 be used to compare models 
with different number of parameters?

• Explain the adjusted R2 and how it is used

• What is an “information criterion” and how 
is it used?

• The use of which information criterion 
results in the most parsimonious model?
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