

Multiple Regression
 Multiple Regression is regression against more than one predictor variable
 Case 2: More than one input variable (multivariate data)

 - ŷ = ∑_k β_k f_k (x₁, x₂, ..., x_m) for multivariate data
 - Example: ŷ = β₀ + β₁x₁ + β₂x₂ + β₃x₁ln(x₂)
 - Holding all other variables constant, β_j is the change in ŷ (mean Y) per unit change in x_j

Multiple Regression Math

• Multiple Linear Regression uses the same mathematical techniques as standard linear regression

- Maximum likelihood estimator (MLE): define the likelihood function, take the derivative with respect to each parameter, solve p equations simultaneously to give an exact solution

- OLS: same solution as the MLE solution when the proper assumptions are met

What's New in Multiple Regression

• Multicollinearity: often predictor variables are correlated with each other – they are not independent

- Also called confounding
- More on this in later lectures

• Example: what body measures predict strength in a certain fitness test?

- Height is correlated with strength

- Weight is correlated with strength

- But height and weight are correlated with each other! Are they really two different predictors?

What is the Purpose of our Model?

• Predictive ability: Predicting the model output

• We want a small $SE(\hat{y})$, and we don't care about $SE(\beta_k)$ • We need to avoid overfitting, but the form of the model is not too important

• We need to think about model scope (the range of predictor variables over which our predictions are valid)

• Control: Given a measured output, how much should we change an input to move the output?

• We want small $SE(\beta_k)$ • Interpretive ability: Testing or validating a theory, providing explanation

• We want a both small $SE(\hat{y})$ and small $SE(\beta_k)$

Lecture 42: What have we learned?

• Define multiple regression, and how it applies to both bivariate and multivariate data

• What mathematical techniques are used for OLS multiple regression?

• Explain interaction and what it means for multiple regression

• Explain multicollinearity and what it means for multiple regression

• Provide three unique purposes for a model