WHAT STARTS HERE CHANGES THE WORLD

10/6/2016

WHAT STARTS HERE CHANGES THE WORLD

CHE384, From Data to Decisions: Measurement,
Uncertainty, Analysis, and Modeling

Lecture 39
Autocorrelation in Time Series

Chris A. Mack

Adjunct Associate Professor

http://www.lithoguru.com/scientist/statistics/

© Chris Mack, 2016 Data to Decisions 1

Lag Plots

» Aplot of ¢ versus ¢, (when residuals are ordered in time
or other natural sequence) helps to discover correlations
between a residual and its preceding residual

— Alag of n plots ¢, versus ¢,
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Lag Plots
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Modeling Autocorrelation

* The past is sometimes the best predictor of
the future

+ Consider the first-order autoregressive model
AR(1):
—yi=f()+ e
— & = p&i_q +u;, u; ~ N(0,02) iid
— p = autocorrelation parameter, [p| < 1

* p =0 means no autocorrelation
» p> 0 means positive autocorrelation (“persistence”)
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AR(1) Properties

* Properties of the error terms:

—E[g]=0

- var[g] = 0?/(1 - p?)

— covle;, &-4] = po?/(1 — p?) = pvar|e]

— cov[e;, ] = pSa? /(1 — p?) = pSvar[g], fors >0
* Two questions:

— Can we test for autocorrelation?

— How can we estimate p ?
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Durbin-Watson Test

* We wish to perform a hypothesis test:
—Hy:p=0
— Hy: p > 0 (negative autocorrelation is rare)
+ Define the Durbin-Watson statistic

_ YP,(ei—&-1)*  Basedonthe

e gl? raw residuals

D

+ If D is smaller than a critical value, we reject
the null hypothesis
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Durbin-Watson Test

+ We can’t obtain an exact critical value for D.
Instead, we define upper (d,)) and lower (d,)
critical values so that
— D >dy, can't reject H,

— D <d,, conclude H,
—d; < D <d,, test is inconclusive

+ Critical values are from

— N.E. Savin and K.J. White, “The Durbin-Watson Test for Serial
Correlation with Extreme Sample Sizes or Many Regressors,”
Econometrica, 45, 1989-1996 (1977).
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Durbin-Watson Test

 This test only checks for autocorrelation with
alag of 1; longer lags may not be detected

* Notethat D = 2(1 — p)
— When D = 2 we have no autocorrelation
— As D — 0 we approach perfect autocorrelation

» While negative autocorrelation is rare, we can
test for it
— Test statistic is 4 — D
— Use the Durbin-Watson critical tables as before
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Consequences of Autocorrelation

» Regression coefficients remain unbiased but
are no longer minimum variance estimates

* For positive autocorrelation, our MSE
estimate of the residual variance will
underestimate the true variance (sometimes
seriously)

— Estimated standard errors for regression
coefficients will be too small

— Statistical tests (such as F or t) on the model will
not be appropriate
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How Do We Estimate p ?

« If the Durbin-Watson test detects
autocorrelated residuals, we have three
common ways to estimate p:

— Slope of residual lag plot (through the origin)
— Correlation(e;,e;;): 1 = Sxy,/(SxSy) (preferred)
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Estimating the Autocorrelation Coefficient
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Autocorrelation, r
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Is AR(1) Appropriate?

e Called the ACF, the autocorrelation function
» Determine r(k), r = correlation coefficient, k£ = lag
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AR(1) is appropriate AR(1) is not appropriate
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How to Fix Autocorrelated Residuals

* First, look for an improved model

— Missing predictor variables often show up as
autocorrelated residuals (especially if
experiments are not randomized): an artificial
time dependence

« If autocorrelation is a function of drift, aging,
or other such behavior, then

— Improve the measurement/experiment to remove
the time/space/order dependence

— Use an autoregressive model (last resort)
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First-Order Autoregressive Correction

* For a linear AR(1) model,
—Yi =PBo+Bixi + ¢
—& = pei_q +u;, u; ~ N(0,02) iid

+ Define transformed variables
=Yi=Yi—pyic1, X=X —pxig
-B'o=pB1-p), B1=5h

* Then, the transformed regression model is
=yi=PBotB Xty
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First-Order Autoregressive Correction

» Perform a standard (OLS) regression on
the transformed data, then
—by=b"y/(1—71), SE[bo] = SE[b'4]/(1 — 1)
—b; =b'y, SE[b;] = SE[b'4]

—r = our estimate of p

The final model:
Yi=rYyia +(1—r)b0 +bl(xi _rxi‘1)+ui
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More on Autoregressive Correction

» The Cochrane-Orcutt procedure: test the
residuals after the autoregressive
transformation and linear regression

— Does the Durbin-Watson test show it is clear of
autocorrelated residual behavior?

— If not, iterate the whole procedure
 Alternate approaches
— Just assume p = 1, see what happens

— Find an MLE of p while fitting model (nonlinear
regression)
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Lecture 39: What have we learned?

* What is an AR(1) model?

* What is the Durbin-Watson test and what
can it tell you?

» How can we estimate the correlation
parameter p of an AR(1) model?

« How can we correct for autocorrelation
when doing a regression?
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