
10/4/2016

1

CHE384,  From Data to Decisions:  Measurement, 
Uncertainty, Analysis, and Modeling

Chris A. Mack
Adjunct Associate Professor

Lecture 34
The Wrong Model
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http://www.lithoguru.com/scientist/statistics/

Data to Decisions

Assumptions in OLS Regression
1. e is a random variable that does not depend on x (i.e., the 

model is perfect, it properly accounts for the role of x in 
predicting y)

2. E[ei] = 0 (the population mean of the true residual is zero); this 
will always be true for a model with an intercept

3. All ei are independent of each other (uncorrelated for the 
population, but not for a sample)

4. All ei have the same probability density function (pdf), and thus 
the same variance (called homoscedasticity)

5. e ~ N(0,se) (the residuals, and thus the yi, are normally 
distributed)

6. The values of each xi are known exactly
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Process Modeling

• Our three tasks in modeling:
– Find the equation ݂ ࢞, ࢼ that meets our goals 

• Picking the right regressors

• Picking the right model form

– Find the values of the coefficients b that are “best” in 
some sense 

– Characterize the nature of e (distribution of errors)

• These three tasks are interdependent
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The Wrong Equation

• Also called “model misspecification” or 
“equation error”

• Picking the wrong equation means that some 
of the variance in y isn’t properly explained
– Underfitting:  systematic variation in y is left 

unexplained

– Overfitting:  random variation in y is fit with a 
model giving reduced predictive power

– Goodness of fit:  various measures of fitting
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First Defense:  Graphing
• F. J. Anscombe, “Graphs in Statistical Analysis”, The American 

Statistician, Vol. 27, No. 1 (Feb., 1973) pp. 17 – 21. 

© Chris Mack, 2016 5Data to Decisions

First Defense:  Graphing

• First, graph the data.  Does the proposed 
model make sense given what you see?

• Second, graph the residuals after your fit - you 
often can see more on the scale of residuals
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These data are from a 
NIST study involving 
calibration of load cells. 
The response variable 
(y) is the deflection and 
the predictor variable 
(x) is load.

http://www.itl.nist.gov/div898/strd/lls/data/Pontius.shtml
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First Defense:  Graphing
• The human brain is ideally suited to detecting 

patterns, even when there is none

• Is this an indication of systematic curvature, 
heteroscedasticity, or just random variation?
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c2 Testing for Equation Error

• In least-squares regression we seek to 
minimize 

• If the OLS assumptions are true, then this 
will be chi square distributed with n – p
degrees of freedom
– We can test for this
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Chi Square Distribution
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c2 Testing for Equation Error
• In order to calculate c2 for our fit we must know si

ahead of time (independent of our regression) through 
independent information
– What is the measurement uncertainty in y?

• Calculate the probability of getting this value of  c2

assuming no equation error
– This statistic is very sensitive to the assumption of normal,

homoscedastic residuals
• Compare the resulting p-value to our designated 

significance level (a)
– If we fail the test due to large c2, then we reject the 

hypothesis that the model accounts for all variation in y
except measurement uncertainty as described by the si
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c2 Goodness of Fit Test
• Reduced chi-square:  ߯௥௘ௗ

ଶ ൌ ߯ଶ/ሺ݊ െ ሻ݌
• For ߯௥௘ௗ

ଶ >> 1:  poor model
– There is variance in y that is not explained by the 

model or by measurement error, or our error variance 
estimate is too low

• For ߯௥௘ௗ
ଶ << 1:  fitting the noise

– The model is fitting the noise, or our error variance 
estimate is too high

• For ߯௥௘ௗ
ଶ ≈ 1:  good model fit

– The variation in y is well explained by the model + 
measurement error
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Simple Case:  si = constant

• Compare residual variance to error estimate
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Alternate view: 
What amount of measurement 
error would allow us to pass 
this test?
Is that amount reasonable?
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c2 for Weighted Regression

• Recall that for a weighted regression

• Using the usual weights (ݓ௜ ൌ ௜ߪ/1
ଶ),

• Thus the expected value of ܵܧ ߝݓ = 1
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c2 for Total Regression

• For a total regression, the sum of square 
errors is

• If x and y are normally distributed, then S
will be c2 distributed with n – p degrees of 
freedom
–p = number of model parameters excluding 

the n predicted x values
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Lecture 34: What have we learned?

• How can we use graphing to detect 
equation error?

• What is required to perform a chi-square 
test of the residuals to find equation error?

• What is the reduced chi-square and what 
is its expected value?

• What are the assumptions inherent in the 
chi-square test?
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