

 $\chi^2 \text{ for Weighted Regression}$ • Recall that for a weighted regression $[SE(\sqrt{w}\varepsilon)]^2 = \frac{\sum_{i=1}^n w_i (y_i - \hat{y}_i)^2}{(n-p)}$ • Using the usual weights $(w_i = 1/\sigma_i^2)$,

 $[SE(\sqrt{w}\varepsilon)]^2 = \frac{\chi^2}{(n-p)} = \chi_{red}^2$

• Thus the expected value of $SE(\sqrt{w}\varepsilon) = 1$

© Chris Mack. 2016

Data to Decision:

Lecture 34: What have we learned?

• How can we use graphing to detect equation error?

• What is required to perform a chi-square test of the residuals to find equation error?

• What is the reduced chi-square and what is its expected value?

• What are the assumptions inherent in the chi-square test?