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CHE384,  From Data to Decisions:  Measurement, 
Uncertainty, Analysis, and Modeling

Chris A. Mack
Adjunct Associate Professor

Lecture 31
Total Regression, part 2
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Data to Decisions

Effective Variance Approximation
• We can simplify the regression for the case of small errors in x

– Let ݔො௜ ൌ –௜ݔ Define an effective variance in yusing the model ݕො௜ ൌ ݂ ௜ݔ

– Use a weighted least-squares fit with these uncertainties
• Special case: ߪ௬௜ ൌ ௫௜ߪ = constant
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௜ݔ௫௜ߪ

Special Case: sx = sy
• The effective variance becomes

• For a straight-line model, ߪ௬ି௘௙௙ଶ ∝ 1 ൅ ଵଶߚ and our 
chi-square becomes

• Called Orthogonal Regression (or orthogonal distance regression)
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Orthogonal Regression (sx = sy)
• The least-squares solution for this case is

© Chris Mack, 2016 4

ܾ଴ ൌ തݕ െ ܾଵܾ̅ݔଵ ൌ ௬ଶݏ െ ௫ଶݏ ൅ ௬ଶݏ െ ௫ଶݏ
ଶ ൅ ௫௬ଶݏ4

௫௬ݏ2
where ௫ଶݏ = sample variance of xݏ௬ଶ = sample variance of y

sxy = sample covariance of x and y
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Standard error 
estimates will be 
discussed later

Orthogonal Regression (sx = sy)
• Very useful for tool matching, calibration curves
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Ordinary LS Orthogonal LS
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Regression:  Y vs. X  or  X vs. Y?
• Sometimes, it is not obvious that one variable 

is a response and the other variable is a 
predictor
– Natural variation (lurking variable): an 

unmeasured factor is controlling both variables
– Calibration curve, tool matching

• How do we decide which variable to use as X 
(predictor) and which as Y (response)?
– We often want a symmetric regression method
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Example:  Body Fat Measurements
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An example 
of natural 
variation
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Geometric Mean Regression
• Another proposal:  estimate the slope as 

the geometric mean of the OLS slopes 
one obtains by regressing Y|X and X|Y

• After a small amount of algebra
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Example:  Body Fat Measurements
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Method of Moments
• If we know ߪఋ (the measurement error in x)

– ௜ݔ ൌ ො௜ݔ ൅ ܰ ~ ߜ ,௜ߜ 0, ఋߪ ఋݏ , = known
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1 െ ௫ݏఋݏ

ଶ

ܧܵ ܾଵ ൌ ܾଵ
݊

௬ݏ௫ݏ ଶ ൅ 2 ܾଵݏఋଶ
ଶ

௫௬ݏ ଶ െ 1

(only a reasonably good 
estimator for n > 50)Then
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Consistency
• An estimator is consistent if its bias goes to zero as the sample size goes to infinity
• Let b1(OLS) be the OLS estimator of the slope of a 

straight-line model.  We can show that

• The OLS estimator is not consistent when x has uncertainty (i.e., when ߪఋ > 0)
– We can predict how significant the bias will be before abandoning OLS
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Lecture 31: What have we learned?
• What is orthogonal regression and when is 

it useful?
• What is geometric mean regression and 

when is it useful?
• What do the method of moments and the 

asymptotic behavior of OLS (as n → ∞) 
teach about the effect of x uncertainty on 
slope?
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