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CHE384,  From Data to Decisions:  Measurement, 
Uncertainty, Analysis, and Modeling

Chris A. Mack
Adjunct Associate Professor

Lecture 30
Total Regression, part 1
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Data to Decisions

Assumptions in OLS Regression
1. e is a random variable that does not depend on x (i.e., the 

model is perfect, it properly accounts for the role of x in 
predicting y)

2. E[ei] = 0 (the population mean of the true residual is zero); this 
will always be true for a model with an intercept

3. All ei are independent of each other (uncorrelated for the 
population, but not for a sample)

4. All ei have the same probability density function (pdf), and thus 
the same variance (called homoscedasticity)

5. e ~ N(0,se) (the residuals, and thus the yi, are normally 
distributed)

6. The values of each xi are known exactly
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Uncertainty in X
• For most experiments, the predictor variable 

values (xi) are themselves the results of 
measurements
– All measurements have uncertainty (sxi)

• If the uncertainty in each xi has only a very 
small impact on the uncertainty in yi, it may be 
OK to ignore it
– For ݕො௜ ൌ ݂ ௜ݔ , is

௬௜ߪ ≫ ௫௜ߪ డ௙
డ௫೔ for each i ?
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Example:  Hubble Constant
• Edwin Hubble noted that therate galaxies were movingaway from us was proportionalto their distance from us

– Model:  Velocity = H0 * Distance
• He performed a linear regression to obtain the Hubble constant  H0• But, most of the uncertainty in his data was in the x-variable!
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A Modern Hubble Diagram
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R. P. Kirshner, 
PNAS,101(1), 
8-13 (2004).

Solution: For this regression, set 
y = distance and x = velocity
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Total Regression
• If X and Y have non-negligible uncertainty, we must find 

not only the predicted y values but the predicted x values 
as well (x and y are interchangeable)
– Also called Errors-in-Variables regression or Measurement Error 

Modeling (W.A. Fuller, Measurement Error Models, Wiley, 2006)
– We want values that minimize 

• Example:  ݕො௜ ൌ ଴ߚ ൅ ො௜ݔଵߚ
– There are n + 2 best fit parameters
– Requires a nonlinear least-squares regression
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Different Total Regression Approximations
• Effective Variance Approximation
• Orthogonal Regression
• Geometric Mean
• Method of Moments
• Deming Regression
• Full Total Regression
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Interpreting Total Regression
• Structural Model

– The X’s are fixed, but unknown, and so must 
be estimated

• Functional Model
– The X’s are random variables, to be 

represented by their mean and standard 
deviation (pdf)

• The difference between these two is subtle
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Effective Variance Approximation
• We can simplify the regression for the case of small errors in x

– Let ݔො௜ ൌ –௜ݔ Define an effective variance in y using the model ݕො௜ ൌ ݂ ௜ݔ :

– Use a weighted least-squares regression with 
weights ݓ௜ ൌ ௬௜ି௘௙௙ଶߪ/1

– What value of ߲݂/߲ݔ௜ should we use?
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Effective Variance Approximation
How to estimate the model slope (߲݂/߲ݔ௜)?

1. Run a linear regression ignoring the x-variance
2. Use this model fit to calculate ߲݂/߲ݔ௜ for each i
3. Calculate the effective variance for each yi
4. Run a weighted least-squares regression using 

1/effective variance to weight the yi
5. Repeated steps 2-4 until the parameters 

converge (usually only 1-2 iterations)
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Improving the Effective Variance
• We can also improve our estimate of ݔො௜

– For ݕො௜ ൌ ݂ ௜ݔ ,

– Again, iterate and repeat the weighted linear 
regression, using the better estimates for ݔො௜(iteratively reweighted least squares)
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Impact of Errors in Predictor Variables
• For a straight line model, errors in x will bias the 

OLS estimate of the slope towards zero
• For a higher order model, errors in x will look like 

heteroscedasticity
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Lecture 30: What have we learned?
• When do I have to worry about error in the x-variable?
• What is total regression (also called errors-in-variables regression)?
• Explain the effective variance approximation
• How does x uncertainty affects our OLS slope estimate for a straight-line model?
• When does error in the x-variable result in heteroscedasticity?
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