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CHE384,  From Data to Decisions:  Measurement, 
Uncertainty, Analysis, and Modeling

Chris A. Mack
Adjunct Associate Professor

Lecture 24
Heteroscedasticity:

When Variance Varies
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Assumptions in OLS Regression
1. e is a random variable that does not depend on x (i.e., the 

model is perfect, it properly accounts for the role of x in 
predicting y)

2. E[ei] = 0 (the population mean of the true residual is zero); this 
will always be true for a model with an intercept

3. All ei are independent of each other (uncorrelated for the 
population, but not for a sample)

4. All ei have the same probability density function (pdf), and thus 
the same variance (called homoscedasticity)

5. e ~ N(0,se) (the residuals, and thus the yi, are normally 
distributed)

6. The values of each xi are known exactly
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Variance can Vary
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Plotting Residuals (visual inspection)
• Plotting residuals is the first step in 

detecting variation of variance
– Plot esr versus each predictor variable, and 

versus the predicted response variable
– Very hard to see heteroscedasticity unless 

there are many points
– A plot of the absolute value of the residual is 

sometimes more revealing (sign doesn’t 
matter when considering variance)
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Consequences of Heteroscedasticity
• Note that heteroscedasticity is often a by-product of other violations of assumptions

– Wrong model, existence of outliers, non-normal errors
– We’ll assume here that only heteroscedasticity is present in our data

• Result of heteroscedasticity will be an unbiased estimator that is inefficient
– The standard errors of the estimates are biased
– Only fairly large heteroscedasticity matters much
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Common Ways Variance Varies
• If the experimental y-value is a mean, but the sample size is different for each calculated mean

– ܧܵ തݕ ൌ /ߪ ݊
– Ex:  Average income vs. years of college

• Variance or standard error is a constant percentage of the y-value
• Variance has been experimentally determined for each y-value
• Some distributions naturally have variance that is a function of the mean (Poisson), or mean and variance both a function of parameters (Gamma)
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Checking the Variance
• Constant variance (variance is independent of the value of the predictor variable) is called homoscedasticity
• Non-constant variance (variance is not independent of the value of the predictor variable) is called heteroscedasticity
• Two ways to check for heteroscedasticity:

– Independent knowledge of the variance of the measured y-values
– Statistical tests for homoscedasticity
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Statistical Tests for Homoscedasticity
• Divide the residuals (esr for fits) into two or more sub-groups (sort by magnitude of ݕො) 

– Test to see if the sub-groups share the same variance (Null hypothesis:  all groups have the same variance)
– The Bartlett test compares variances; it assumes a normal distribution and is sensitivity to deviations from normality
– The Brown-Forsythe test (modified Levene test) compares deviations from the median; it is insensitive to departures from normality, but has somewhat less power
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Bartlett Test
• The Barlett statistic is c2 distributed with 

k-1 degrees of freedom
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ܶ ൌ ܰ െ ݇ ln ݏ௣௢௢௟ଶ െ ∑ ௝݊ െ 1 ln ݏ௝ଶ௞௝ୀଵ
1 ൅ 1/ 3 ݇ െ 1 ∑ 1/ ௝݊ െ 1௞௝ୀଵ െ 1/ ܰ െ ݇

N = total number of data points
k = number of sub-groups
nj = sample size of the jth sub-group
௝ଶ= variance of the jthݏ sub-group

௣௢௢௟ଶݏ ൌ ෍ ௝݊ െ 1 ௝ଶݏ
ܰ െ ݇

௞
௝ୀଵ
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Bartlett Test
• For two equal-sized subgroups (e.g., after rank-ordering by ݕො and dividing in half),

• The null hypothesis (that the two sub-groups have equal variance) can be rejected if T is greater that the critical c2(1)
– For a = 0.05, the critical value is 3.84
– For a = 0.01, the critical value is 6.63
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ܶ ൌ ܰ െ 2 ଶ
ܰ െ 1 ln ݏ௣௢௢௟ଶ

ଶݏଵݏ ௣௢௢௟ଶݏ ൌ ଵଶݏ ൅ ଶଶݏ
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Brown-Forsythe Test
• Divide the data into two subgroups (of size n1 and n2), calculate the median of each group (m1 and m2), then the 

absolute deviation from the median for each data point
• Calculate the mean absolute deviation for each group 

(݀̅ଵ and ݀̅ଶ) and the variance of the absolute deviations 
for each group (ݏௗଵଶ and ݏௗଶଶ )

• The pooled variance is
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݀௜ଵ ൌ ௜ଵݔ െ ݉ଵ ݀௜ଶ ൌ ௜ଶݔ െ ݉ଶ

௣௢௢௟ଶݏ ൌ ሺ݊ଵ െ 1ሻݏௗଵଶ ൅ሺ݊ଶ െ 1ሻݏௗଶଶ
݊ଵ ൅ ݊ଶ െ 2

Morton B. Brown and Alan B. Forsythe, “Robust Tests for the Equality of Variances”, Journal of the 
American Statistical Association, 69(346), pp. 364-367 (Jun., 1974).
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Brown-Forsythe Test
• The studentized difference between the mean 

absolute deviations for each group (݀̅ଵ െ ݀̅ଶ) is 
about t-distributed with n – 2 degrees of freedom

– Assumes a not too small value of n (n1, n2 > 25)
– Because we use deviations from the median, the 

statistic is insensitive to the distribution of x
– Two tailed test, null hypothesis: constant variance
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ݐ ൌ ݀̅ଵ െ ݀̅ଶ
௣௢௢௟ݏ 1݊

ଵ ൅ 1݊
ଶ
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Other Tests for Homoscedasticity
• White test:  perform linear regression of ei2with x and test nR2 as c2(p-1)
• Breucsh-Pagan test: a variation of the 

White test where x is replaced with any 
variable(s) of interest

• Park test: perform linear regression of 
ln(ei2) with ln(x) and test the significance of 
the slope (is it significantly different from 0)
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Lecture 24: What have we learned?
• Define homoscedasticity and 

heteroscedasticity
• What are the consequences of 

heteroscedasticity to your regression?
• What are some of the causes of 

heteroscedasticity?
• What are the advantages of either the 

Bartlett test or the Brown-Forsythe test?
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