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CHE384,  From Data to Decisions:  Measurement, 
Uncertainty, Analysis, and Modeling

Chris A. Mack
Adjunct Associate Professor

Lecture 21
Leverage in Regression
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Data to Decisions

Leverage During Regression
• During a regression, some data points have 

more leverage than others
– Leverage points = data with an extreme value 

of the predictor variable (x)
• Like outliers, high leverage data can have 

outsized influence on the regression results
– We’ll define “influence” more exactly later
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Defining Leverage
• Leverage can be quantified by looking at the distances 

between x’s (accounting for correlation)
– In the matrix formulation of linear regression, this is given by the 

diagonal elements of the “hat” matrix H (also called the 
projection matrix):  ࢅ෡ ൌ ࡴ ,ࢅࡴ ൌ ࢄ ࢄ்ࢄ ିଵ்ࢄ (from Lecture 6)
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Defining Leverage
• For the case of only one predictor variable,

• For two or more predictor variables (multiple regression), 
we use matrix math to calculate the hat matrix and its 
diagonal elements
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From the Anscombe Problems
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hii = 1

hii = 0.1
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(recall Lecture 8)
Looking at Residuals

• Our model is

• But when we estimate the bk’s with bk’s, the 
resulting residuals ei do not have a 
constant variance
– High leverage points have lower variance
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Residual Variance
• For ߝ~ܰ 0, ఌߪ , our true residuals have a 

constant variance ߪఌଶ, with unbiased 
estimator

• But the variance of each fit residual ei is
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From the Anscombe Problems
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This residual 
has zero 
variance! 
The fit always 
passes exactly 
through this 
point.
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Studentized Residuals
• When doing statistical tests on residuals (Grubbs’ test, skewness, etc.) one must studentize the residuals first

• Since the SE of the residual varies, tests should always be done on the studentizedresiduals, not the raw residuals
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Called “internally studentized residual” or “standardized residual”
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Studentized Residuals
• Internally Studentized Residual: all data are 

included in the calculation

• Externally Studentized Residual: the ith data point 
is excluded from the calculation of se
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t-distributed with 
DF = n – p – 1
[for e ~ N(0,se)]

Also called 
“studentized 
deleted residual”

This distribution 
is complicated
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Testing the Residuals
• Perform statistical tests on the esr

(externally studentized residuals) only
– QQ Plots
– Moment testing
– Outlier detection/rejection (Grubbs, etc.)
– More to come …

• This is because the esr has a simple 
sampling distribution: Student’s t
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Williams Graph
• To see the possibility for both outliers and high-leverage 

data, plot the externally studentized residual (esr) versus 
the normalized leverage (݄௜௜/ത݄) for each data point
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Lecture 21: What have we learned?
• Define leverage
• What is the role of the hat matrix in determining leverage?
• What is the difference between internally and externally studentized residuals?
• How should residuals be studentized for statistical testing?
• Know how to create and interpret the Williams Graph
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