CHE 384 - From Data to Decisions: Measurement, Uectainty, Analysis, and Modeling
Class Summary Notes - Least-Squares Regression
Model

Functional Relationship:y = f (x)
Statistical Relationshipzy, = f (x) + &

y = predicted response

y, = measured response flrdata point

x = value of explanatory variable fdt dlata point

& = true value of'f residual (from true model)

e = actual ' residual for the current model

L = true model parameters (which can never be known)

by = best fit model parameters for this data set (d@jnestimate fof..

Linear-parameter Modely is directly proportional to each model coeffici¢parameter)
Nonlinear-parameter Modely is not directly proportional to each model coefficiena(@meter)

Assumptions for Least-Squares Regression

1. ¢gis arandom variable that does not depensd @e., the model is perfect, it properly accounts
for the role ofx in predictingy)

U= 0 (the population mean of the true residuaki®y

All g are independent of each other

All & have the same probability density function (pdfyd thus the same variance

£~ N(0,0) (the residuals, and thus theare normally distributed)

The values of eack are known exactly

oukwnN

Maximum Likelihood Estimator

Best fit is here defined as the model parameteatsntaximize the probability of getting the observed
sample (data set) given the above assumptionsadsamption #5, normally distributed residuals, the
result is a minimum chi-square (and is thus cadléelast-squares regression):
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Straight Line Model — Least Squares Regression

Best-fit model estimate:y = b, +b;x
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Properties of a Least-Squares Straight-Line Fit
1. By the Gauss-Markov theorem, the parameters ofeatiparameter model are unbiased

estimators of the true parameters, with minimuniewere compared to all other unbiased
estimators

2. Zn:q =0
i=1

3. Zyi :Zyi , so thaty =¥
i=1 i=1

4. Zyiq:o
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6. The best fit line goes through the po(#t y)

Sampling Distributions for Model Parameters and Prealictions

2
Slope,b;: E[bl] =4, sﬁl =HL, b, are normally distributed
X =X’
i=1
1 X2
Intercept,og: E[bo] =B, sgo =g - + Z( )2 , b are normally distributed
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Studentized parameters* = b -4 =Y Hy] , and t* = BB e allt,, distributed
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Note: If thee are not normally distributed, the sampling disttibns forby, by, and y approach
normality as the sample size increasgs,,, on the other hand, will be distributed about kikee.
Note: the “standard error” of a statistic is just #ieandard deviation of the sampling distributiontfeat
statistic. Thus, the standard errobgfwritten as SHY), is just\/g .

Predicted single new valug,: E[y,o,)=E[Yl, s = s§[1+% +

What can go wrong? Checking the Assumptions

1. The model is perfect
a. Plote vs. y or vs. each predictor variable. Do you see alrsach as higher order or
cyclical behavior?
b. Plote vs. unmodeled predictor variables (such as timgequence, for example)
2. u:=0
a. Only worry about this if your model does not hameoffset parameter (such bg



3. All g are independent

a. Plote vs. time/sequence, look for trend, autocorrelaiehavior

b. Think about your experimental design — any placelfda non-independence to creep in?
4. All & have the same variance

a. Ploteg vs. y or vs. each predictor variable, look for changspread

b. Plot g| org?vs. y or vs. each predictor variable, look for changepread
c. Check for outliers
d. Use a statistical test for equal variance (not oeaén this class)
5. £e~N(00)
a. Generate a normal probability plot of residuals # & straight line?
b. Perform statistical tests for normality (not cowkne this class)
6. The values of eack are known exactly
a. Think about your experiment, do tkehave uncertainty? If so, quantify it.

What To Do When the Assumptions Are Violated

1. The model is not perfect
a. Improve the model! Add higher order terms, moreplex terms, non-linear function,
new predictor variables
b. Transform the data
2. K:#0
a. Add an offset parameter (such/&$to your model
3. All g are not independent
a. Be sure data collection is randomized so that ndegpendence causes least amount of
damage
b. Improve your experimental design to remove inteethelence
4. All & do not have the same variance
a. Remove outliers
b. Transformy to obtain constant variance
c. Use weighted chi-square for the regression
5. £€#N(0,0))
a. Find a better model for the distribution of residu#hen find the maximum likelihood
estimator for that distribution and use it for tiegression
b. Transformy to obtain distribution that is close to Normal
6. The values of eack have uncertainty
a. Use total (error-in-variables) least-square regoess

Final Thoughts

All assumption of the least-squares regressionldimiexplicitly checked and discussed when
performing a regression.

Every regression statistic should always be qued#dits confidence interval (or, equivalently, tvits
standard error derived from its sampling distribnji

Model scope: the range of predictor values whieeedata has known behavior and match to the model.
Outside of the model scope (that is, when extrdpglp the confidence intervals on all regression
statistics become suspect.



