
CHE 384 - From Data to Decisions:  Measurement, Uncertainty, Analysis, and Modeling 
 

Class Summary Notes - Least-Squares Regression 
 
Model 
 
Functional Relationship:  )(ˆ xfy =  

Statistical Relationship:  iii xfy ε+= )(  

ŷ  = predicted response 

yi = measured response for ith data point 
xi = value of explanatory variable for ith data point 
εi = true value of ith residual (from true model) 
ei = actual ith residual for the current model 
βk = true model parameters (which can never be known) 
bk = best fit model parameters for this data set (sample), estimate for βk. 
 
Linear-parameter Model:  ŷ  is directly proportional to each model coefficient (parameter) 

Nonlinear-parameter Model:  ŷ  is not directly proportional to each model coefficient (parameter) 
 
Assumptions for Least-Squares Regression 
 

1. ε is a random variable that does not depend on x (i.e., the model is perfect, it properly accounts 
for the role of x in predicting y) 

2. µε = 0 (the population mean of the true residual is zero) 
3. All εi are independent of each other 
4. All εi have the same probability density function (pdf), and thus the same variance 
5. ε ~ N(0,σε) (the residuals, and thus the yi, are normally distributed) 
6. The values of each xi are known exactly 

 
Maximum Likelihood Estimator 
 
Best fit is here defined as the model parameters that maximize the probability of getting the observed 
sample (data set) given the above assumptions.  For assumption #5, normally distributed residuals, the 
result is a minimum chi-square (and is thus called a least-squares regression): 
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Straight Line Model – Least Squares Regression 
 
Best-fit model estimate:  xbby 10ˆ +=  
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Properties of a Least-Squares Straight-Line Fit 
 

1. By the Gauss-Markov theorem, the parameters of a linear-parameter model are unbiased 
estimators of the true parameters, with minimum variance compared to all other unbiased 
estimators 
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6. The best fit line goes through the point ( )yx,  
 
Sampling Distributions for Model Parameters and Predictions 
 

Slope, b1:  [ ] 11 β=bE ,   
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Intercept, b0:  [ ] 00 β=bE ,   ( ) 
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Predicted mean value ŷ :  [ ] ][ˆ yEyE = ,   
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Predicted single new value newŷ :   [ ] ][ˆ yEyE new = ,   
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Studentized parameters:  
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Note:  If the ei are not normally distributed, the sampling distributions for b1, b0, and ŷ  approach 

normality as the sample size increases.  newŷ , on the other hand, will be distributed about like the ei.  
Note:  the “standard error” of a statistic is just the standard deviation of the sampling distribution for that 

statistic.  Thus, the standard error of b1, written as SE(b1), is just 2
1bs . 

 
What can go wrong?  Checking the Assumptions 
 

1. The model is perfect 
a. Plot ei vs. ŷ  or vs. each predictor variable.  Do you see a trend, such as higher order or 

cyclical behavior? 
b. Plot ei vs. unmodeled predictor variables (such as time or sequence, for example) 

2. µε = 0 
a. Only worry about this if your model does not have an offset parameter (such as b0) 



3. All εi are independent 
a. Plot ei vs. time/sequence, look for trend, autocorrelation behavior 
b. Think about your experimental design – any place for data non-independence to creep in? 

4. All εi have the same variance 
a. Plot ei vs. ŷ  or vs. each predictor variable, look for change in spread 

b. Plot |ei| or ei
2 vs. ŷ  or vs. each predictor variable, look for change in spread 

c. Check for outliers 
d. Use a statistical test for equal variance (not covered in this class) 

5. ε ~ N(0,σε) 
a. Generate a normal probability plot of residuals – is it a straight line? 
b. Perform statistical tests for normality (not covered in this class) 

6. The values of each xi are known exactly 
a. Think about your experiment, do the xi have uncertainty?  If so, quantify it. 

 
What To Do When the Assumptions Are Violated 
 

1. The model is not perfect 
a. Improve the model!  Add higher order terms, more complex terms, non-linear function, 

new predictor variables 
b. Transform the data 

2. µε ≠ 0 
a. Add an offset parameter (such as β0) to your model 

3. All εi are not independent 
a. Be sure data collection is randomized so that non-independence causes least amount of 

damage 
b. Improve your experimental design to remove interdependence 

4. All εi do not have the same variance 
a. Remove outliers 
b. Transform ŷ  to obtain constant variance 
c. Use weighted chi-square for the regression 

5. ε ≠ N(0,σε) 
a. Find a better model for the distribution of residuals, then find the maximum likelihood 

estimator for that distribution and use it for the regression 
b. Transform ŷ  to obtain distribution that is close to Normal 

6. The values of each xi have uncertainty 
a. Use total (error-in-variables) least-square regression 

 
Final Thoughts 
 
All assumption of the least-squares regression should be explicitly checked and discussed when 
performing a regression. 
 
Every regression statistic should always be quoted with its confidence interval (or, equivalently, with its 
standard error derived from its sampling distribution). 
 
Model scope:  the range of predictor values where the data has known behavior and match to the model.  
Outside of the model scope (that is, when extrapolating), the confidence intervals on all regression 
statistics become suspect. 


