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Most scanning electron microscope (SEM) measurements of pattern roughness today produce biased results,
combining the true feature roughness with noise from the SEM. Further, the bias caused by SEM noise changes
with measurement conditions and with the features being measured. The goal of unbiased roughness measure-
ment is to both provide a better estimate of the true feature roughness and to providemeasurements that are in-
dependent of measurement conditions. Using an inverse linescan model for edge detection, the noise in SEM
edge and width measurements can be measured and removed statistically from roughness measurements.
This approach was tested using different pixel sizes, magnifications, and frames of averaging on several different
post-lithography and post-etch patterns. Over a useful range of metrology conditions, the unbiased roughness
measurements were effectively independent of these metrology parameters.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Lithography and patterning advances continue to propel Moore's
Lawby cost-effectively shrinking the area of silicon consumed by a tran-
sistor in an integrated circuit. Besides the obvious need for improved
resolution, these lithography advances must also allow good control of
the smaller features being manufactured. Besides the normal “global”
sources of variation that affect patterning fidelity (exposure dose and
focus variations, hotplate temperature non-uniformity, scanner aberra-
tions, etc.), small features also suffer from “local” variations caused by
the fundamental stochastic randomness of patterning near the molecu-
lar scale. This stochastic-induced variation continues to be one of the
major concerns for semiconductor patterning at the 10-nm node and
below (with feature sizes below 40 nm). Stochastic effects can reduce
the yield and performance of semiconductor devices in several ways:

• Within-feature roughness can affect the electrical properties of a de-
vice, such as metal line resistance and transistor gate leakage;

• Feature-to-feature size variation caused by stochastics (also called
local CD uniformity, LCDU) adds to the total budget of CD variation,
sometimes becoming the dominant source;

• Feature-to-feature pattern placement variation caused by stochastics
(also called local pattern placement error, LPPE) adds to the total
budget of PPE, sometimes becoming the dominant source;
• Rare events leading to greater than expected occurrence of cata-
strophic bridges or breaks are more probable if error distributions
have fat tails;

• Decisions based on metrology results (including process monitoring
and control, as well as the calibration of OPC models) can be poor if
those metrology results do not properly take into account stochastic
variations.

For these reasons, proper measurement and characterization of sto-
chastic-induced roughness is critical. Unfortunately, current roughness
measurements (such as the measurement of linewidth roughness,
LWR, or line-edge roughness, LER, using a critical dimension scanning
electron microscope, CD-SEM) are contaminated by large amounts of
measurement noise caused by the CD-SEM. This results in a biasedmea-
surement, where the true roughness adds in quadrature with the mea-
surement noise to produce an apparent roughness that overestimates
the true roughness. Furthermore, these biases are dependent on the
specific CD-SEM tool used and on its settings. In this context, prior at-
tempts at providing unbiased roughness estimates [1–6] often struggle
in many of today's applications due to the smaller feature sizes and
higher levels of SEM noise. As will be shown, these biases are also a
function of the patterns being measured.

In this study, a new technique for producing unbiased estimates of
roughness parameters will be investigated. It is based on the use of an
analytical model for SEM scattering behavior that predicts linescans
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Fig. 3. Power spectral densities (PSDs) of 18 nm resist lines and spaces where only the
number of frames of integration was varied. SEM conditions: 500 eV, 49 images per
condition, 21 features per image, pixel size = 0.8 nm square, image size = 1024
× 1024 pixels.

Fig. 1. A typical PSD can be described by three parameters: PSD(0), the low-frequency
value of the PSD, the correlation length ξ, and the roughness exponent H. The variance
of the roughness is the area under the PSD curve. Figure from Ref. 7.
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for a given feature geometry. Run in reverse, an Inverse LinescanModel
can be used for edge detection in such a way that SEM noise can be ad-
equately measured and statistically subtracted from the roughness
measurement, thus providing unbiased estimates of the roughness pa-
rameters. To test this technique, several sample datasets (each with
set roughness characteristics) will be measured under a variety of CD-
SEM conditions: SEMpixel size, magnification, and number ofmeasure-
ment frames averaged (i.e., electron dose). Ideally, each of these mea-
surement tool settings will only have negligible impact on the
unbiased roughness measurements, even though they are known to
have a significant impact on biased roughness measurements.

2. Unbiased roughness measurement

Rough features are most commonly characterized by the standard
deviation of the edge position (for LER), linewidth (for LWR), or feature
centerline for pattern placement roughness (PPR). However, a fre-
quency analysis of the roughness is required to fully describe the rough-
ness, most commonly by using the power spectral density (PSD). The
discussion in this section is based on the description of measuring unbi-
ased power spectral densities of rough lines and spaces given in Refer-
ence 7.
Fig. 2. The principle of noise subtraction: using the power spectral density, measure the
flat noise floor in the high-frequency portion of the measured PSD, then subtract this
white noise to get the true PSD. Figure from Ref. 7.
Fig. 1 shows that a typical PSD curve can be describedwith three pa-
rameters [7,8]. PSD(0) is the zero-frequency value of the PSD.While this
value of the PSD can never be directly measured (zero frequency corre-
sponds to an infinitely long line), PSD(0) can be thought of as the value
of the PSD in the flat low-frequency region. The PSD begins to fall near
the frequency of 1/(2πξ) where ξ is the correlation length. In the fractal
region we have “1/f” noise and the PSD has a slope (on the log-log plot)
corresponding to a power of 1/f. The slope is defined as 2H+1whereH
is called the roughness exponent (or Hurst exponent). The variance of
the roughness is the area under the PSD curve and is derived from the
other three PSD parameters. The exact relationship between variance
and the other three PSD parameters depends on the exact shape of
the PSD curve in the mid-frequency region (defined by the correlation
length), but an approximate relationship can be used to show the gen-
eral trend: [9]

σ2 ≈
PSD 0ð Þ
2H þ 1ð Þξ ð1Þ

The most common way to measure feature roughness is the top-
down CD-SEM. There are, however, some errors in the SEM images
that have large impact on themeasured PSDwhile having almost no im-
pact on themeasurement of mean CD. The biggest impediment to accu-
rate roughnessmeasurement is noise in the CD-SEM image. SEM images
Fig. 4. Biased and unbiasedmeasurements of 3σ linewidth roughness (LWR) as a function
of the number of frames of integration. All conditionswere the same as described in Fig. 3.
Error bars represent 95% confidence interval estimates.



Fig. 5. Power spectral densities as a function of pixel size andmagnification showing (a) the biased LWR PSD, and (b) the unbiased LWRPSD after noise has beenmeasured and subtracted
off. SEM conditions: 500 eV, 3 images per condition, 16 nm resist lines and spaces.
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suffer from shot noise, where the number of electrons detected for a
given pixel varies randomly, followed by detector and detector amplifi-
cation noise. For the expected Poisson distribution, the variance in the
number of electrons detected for a given pixel of the image is equal to
the mean number of electrons detected. Since the number of detected
electrons is proportional to the number of electrons that impinge on
that pixel, relative noise can be reduced by increasing the electron
dose that the sample is subjected to. For photoresist, however, high
electron dose leads to sample damage (resist line slimming).

SEM edge detection noise adds to the actual roughness of the pat-
terns on the wafer to produce a measured roughness that is biased
higher [10].

σ2
biased ¼ σ2

unbiased þ σ2
noise ð2Þ

where σbiased is the roughness measured directly from the SEM image,
σunbiased is the unbiased roughness (that is, the true roughness of the
wafer features), and σnoise is the random error in detected edge position
(or linewidth) due to noise in the SEM imaging. Since an unbiased esti-
mate of the feature roughness is obviously what is desired, the mea-
sured roughness must be corrected by subtracting an estimate of the
noise term.

While several approaches for estimating the SEM noise and
subtracting it out have been proposed [1–6], these approaches have
not proven successful for today's small feature sizes. The problem is
the lack of edge detection robustness in the presence of high image
noise: when noise levels are high, edge detection algorithms often fail
to find the edge. Image filtering can improve edge detection robustness,
but at the expense of irreversibly altering the noise behavior of the
image. If edge detection without image filtering can be accomplished,
noise measurement and subtraction can be achieved by comparing the
PSD behavior of the noisewith the PSD behavior of the actualwafer fea-
tures.We expect resist features (as well as after-etch features) to have a
PSD behavior as shown in Fig. 1. Correlations continuously reduce high-
frequency roughness so that the roughness becomes very small over
Table 1
Measured PSD parameters for the PSDs shown in Fig. 5.

Pixel 0.8 nm 82kX Pixel 0.8 nm 164kX

Biased LWR (3-sigma, nm) 5.10 4.99
Unbiased LWR (3-sigma, nm) 3.66 3.65
Unbiased LWR PSD(0) (nm3) 15.95 16.18
LWR correlation length (nm) 5.08 5.05
very small length scales. SEM image noise, on the other hand, can be
reasonably assumed to be white noise, so that its PSD is flat. Thus, at a
high enough frequency, the measured PSD will be dominated by
image noise and not actual feature roughness (the so-called “noise
floor”). Given the grid size along the length of the line (Δy), SEM noise
affects the PSD according to [11]

PSDw=noise fð Þ ¼ PSDw=o noise fð Þ þ σ2
noiseΔy ð3Þ

Thus, measurement of the high-frequency PSD (in the absence of
any image filtering) provides a measurement of the SEM image noise.
Fig. 2 illustrates this approach.

The key to using the above approach of noise subtraction for
obtaining an unbiased PSD (and thus unbiased estimates of the param-
etersσLWR(∞), PSD(0), and ξ) is to robustly detect edgeswithout the use
of image filtering. This can be accomplished using an inverse linescan
model [12]. A linescan model predicts the SEM image linescan given a
set of beam conditions and the feature geometry on the wafer. Ideally,
such amodel would be physically based, easily calibrated, and not com-
putationally intensive. An inverse linescan model runs this linescan
model in reverse: given a measured linescan, what wafer feature sizes
produce a linescan that best fits the data? Such an inverse linescan
model can use the physics of SEM image formation to constrain the pos-
sible mean linescan shapes and reject the noise in the measured
linescan to extract its signal.

Other SEM errors can influence the measurement of roughness PSD
as well. For example, SEM field distortion can artificially increase the
low-frequency PSD for LER and PPR, though it has little impact on
LWR [13]. Background intensity variation in the SEM can also cause an
increase in the measured low-frequency PSD, including LWR as well
as LER and PPR. If these variations can bemeasured, they can potentially
be subtracted out, producing the best possible unbiased estimate of the
PSD and its parameters.
Pixel 0.5 nm 130kX Pixel 0.5 nm 264kX Pixel 0.37 nm 180kX

4.67 4.61 4.47
3.70 3.67 3.63
17.2 16.25 16.35
5.31 5.11 5.38



Table 2
Relationship between biased and unbiased LWR for a variety of processes. Each of the
post-lithography measurements used 16 frames of integration and each of the post-etch
measurements used 32 frames.

Process 3σ LWR:
biased/unbiased

3σ LWR (nm): biased
- unbiased

193i litho, 84 nm pitch, 500 V, 512
rect pixels

1.20 0.76

193i etch, 84 nm pitch, 800 V, 512
rect pixels

1.14 0.43

EUV litho, 32 nm pitch, 500 V, 2048
0.8 nm pixels

1.39 1.44

EUV litho, 32 nm pitch, 500 V, 1024
0.8 nm pixels

1.37 1.34

EUV litho, 32 nm pitch, 500 V, 2048
0.5 nm pixels

1.26 0.97

EUV litho, 32 nm pitch, 500 V, 1024
0.5 nm pixels

1.26 0.94

EUV litho, 32 nm pitch, 500 V, 1024
0.37 nm pixels

1.23 0.84

EUV litho, 36 nm pitch, 500 V, 1024
0.8 nm pixels

1.52 1.86

EUV litho, 32 nm pitch, 500 V, 1024
rect pixels

1.66 2.19

EUV etch, 32 nm pitch, 800 V, 1024
rect pixels

1.09 0.32
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3. Experimental procedure

SEM image acquisition was performed on Hitachi CG-5000 CD-SEM
tools. Both extreme ultraviolet (EUV) with a wavelength of 13.5 nm (at
32 nm and 36 nm pitch) and 193 nm immersion (84 nm pitch) lithogra-
phy processes were investigated. Both after development inspection
(ADI) as well as after etch inspection (AEI) images were taken on the
CD-SEM.

All analysis of the SEM images was performed with MetroLER
(Fractilia, LLC) v1.1 using default settings: the Fractilia Inverse Linescan
Model for edge detection, no image filtering, and a threshold setting of
0.5. Power spectral densities used a Welch taper window.

4. Results and discussion

To investigate the influence of SEM imaging parameters, both the
magnification and the pixel size were varied. These two parameters
can be changed independently by changing the number of pixels in
the image (from 512 × 512 to 2048 × 2048). Additionally, rectangular
shaped pixels were used by setting the magnification to be different in
the X and Y directions. Finally, the number of frames of integration
was varied from 2 to 32, representing a 16× variation in electron dose.

a. Frames of integration

Total electron dose is directly proportional to the number of frames
of integration. Thus, shot noise and its impact on edge detection noise is
expected to be proportional to the square root of the number of frames
of integration. Fig. 3 shows PSDs of a given resist feature type on a given
wafer, measured with different frames of integration. The cases of 6 or
more frames of integration exhibit a fairly flat high-frequency noise re-
gion. For 2 and 4 frames of integration the noise region is noticeably
sloped. Thus, the assumption of white SEM noise is only approximately
true, and becomes amore accurate assumption as the number of frames
of integration increases.

Fig. 4 shows the biased and unbiased values of the 3σ linewidth
roughness measured as a function of the number of frames of integra-
tion. The biased roughness varies from 8.83 nm at two frames of inte-
gration to 5.68 nm at 8 frames and 3.98 nm at 32 frames. The
unbiased roughness, on the other hand, is fairly stable after 6 frames
of integration, varying from 5.25 nm at two frames of integration to
3.25 nm at 8 frames and 3.11 nm at 32 frames. While the biased rough-
ness is 43% higher at 8 frames compared to 32, the unbiased roughness
is only 4% higher at 8 frames compared to 32. Since the assumption of
white SEM noise is not very accurate at 2 and 4 frames of integration,
the noise subtraction of the unbiased measurement is not completely
successful at these very low frames of integration. Similar results are
Fig. 6. Comparison of three different SEMmeasurement recipes on three different wafers.
SEM conditions: 500 eV, about 100 images per condition per wafer, 16 nm resist lines and
spaces. Results from conditions A, B and C are labeled with those letters.
obtained for the measurement of LER and PPR. Error bars in the unbi-
ased LWR values in Fig. 4 and subsequentfigures are the 95% confidence
intervals obtained after adding the variance in biased LWR measure-
ment to the variance in thenoisemeasurement. Biased LWRuncertainty
is based on the standard error of themean of the LWR values for each of
the features averaged together. Uncertainty in the noise measurement
is based on the standard deviation of the high frequency PSD values
about their mean.

b. Pixel size and magnification

Fig. 5 shows the biased and unbiased PSDs for a pattern of 16 nm
lines and spaces for different magnifications and pixel sizes. The dose
per pixel was kept constant so that the electron shot noise is expected
to be independent of pixel size. By Eq. (3), the high frequency values
of the PSD will then be smaller for the smaller pixel size (Δy). Table 1
shows the measured 3σ LWR, as well as the other PSD parameters, for
these different pixel size and magnification conditions. Under this
range of conditions, the biased LWR varied by 0.63 nm (14%), while
the unbiased LWR varied by only 0.07 nm (2%). The unbiased LWR is es-
sentially unaffected by these metrology tool settings. Similar results are
obtained for the measurement of LER and PPR.

c. Measurement settings with rectangular pixels

In the following, three different measurement processes are com-
pared. Condition A is a 1024 × 1024 image with a rectangular pixel
(0.88 nm in x by 2.5 nm in y) and 8 frames of integration. Condition B
is the same as Condition A but with 16 frames of integration. Condition
C is a 512 × 512 imagewith a rectangular pixel (0.88 nm in x by 5 nm in
y) and 16 frames of integration. Three wafers were run through each of
these conditions with about 100 images taken per wafer per measure-
ment condition. Fig. 6 plots the resulting unbiased LWR as a function
of the biased LWR. As the slope through the data indicates, the unbiased
LWR is 5× less sensitive to these measurement conditions compared to
the biased LWR. The biggest factor affecting the measured LWR is the
number of frames of integration.

d. Biased versus unbiased roughness for a range of processes

The difference between biased and unbiased LWR is not constant,
but varies with metrology tool settings, feature size, and process.
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Likewise the ratio between biased and unbiased LWR varies with me-
trology tool settings, feature size, and process. Table 2 shows the differ-
ence and ratio of biased to unbiased LWR for a variety of conditions. For
these conditions, the ratio of biased to unbiased LWR varies from1.09 to
1.66. The difference between biased and unbiased LWR varies from
0.32 nm to 2.19 nm.

5. Conclusions

A vexing problem with standard roughness measurement today is
that the values of the (biased) roughness depend strongly (and in a
complicated way) on measurement conditions. It is an important goal
of unbiased roughness measurement to reduce as much as possible
this sensitivity of measurement results to measurement parameters.
In particular, magnification, pixel size, and the number of frames of in-
tegration should have only minor effect on the measurement of LWR,
LER, and PPR over a usefully wide range of settings.

We have tested a new approach to the unbiased measurement of
roughness: the use of an inverse linescan model (as implemented in
the MetroLER software). The results show that this unbiased roughness
measurement attains the goal of being sufficiently insensitive to mea-
surement settings, providing values that represent the true roughness
of the features on the wafers. Varying pixel size and magnification
over more than a factor of 2 has essentially no impact on the unbiased
LWR, LER, and PPR. The impact of frames of integration on LWRwas re-
duced by more than a factor of 10 as the frames of integration changed
by a factor of 4.While other metrology settings and cases should still be
tested, this study has proven the usefulness of accurate unbiased rough-
ness measurement.
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