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Abstract 

 
Pattern roughness is a major problem in advanced lithography for semiconductor manufacturing, 
especially for the insertion of extreme ultraviolet (EUV) lithography as proposed in the coming 
years.  Current approaches to roughness reduction have not yielded the desired results.  Here, a 
new global optimization approach is proposed, taking advantage of the different strengths and 
weaknesses of lithography and etch.  Lithography should focus on low-frequency roughness by 
minimizing both the low-frequency power spectral density and the correlation length.  Etch 
should focus on high frequency roughness by growing the correlation length.  By making 
unbiased measurements of the roughness, including the power spectral density, the parameters 
needed to guide these optimization efforts become available.  The old approach, of individually 
seeking to reduce the 3σ roughness of pre- and post-etch features, is unlikely to lead to the 
required progress in overall roughness reduction for EUV. 

 
Subject Terms:  line-edge roughness, linewidth roughness, stochastic-induced roughness, LER, LWR, power 
spectral density, PSD 

1. Introduction 
 
Stochastic-induced roughness continues to be a major concern in the implementation of extreme ultraviolet 
(EUV) lithography for semiconductor high-volume manufacturing (HVM), potentially limiting product yield 
or lithography throughput or both.  For this reason considerable effort has been made in the last 10 years to 
characterize, understand, and reduce stochastic-induced roughness of post-lithography and post-etch features.  
Despite these efforts, far too little progress has been made in reducing the effects of stochastics, such as 
linewidth roughness (LWR), line-edge roughness (LER), and local critical dimension uniformity (LCDU).1  
 
 Reducing roughness requires a thorough understanding of roughness and its causes.  And 
understanding roughness requires, among other things, trustworthy measurements of roughness.  Further, 
roughness measurement must include frequency characterization in order to understand fully the nature of 
the roughness behavior at various length scales.  This paper will begin by reviewing the frequency 
characterization of roughness using the power spectral density (PSD), then describe how to make unbiased 
measurements of the PSD (where noise coming from the SEM imaging is subtracted out).  Finally, a simple 
model of roughness that makes use of the unbiased PSD will be presented.  This model will lead to important 
conclusions about resist and etch process design for reduced roughness of the after-etch features. 

2. The Frequency Dependence of Roughness 
 
Rough features are most commonly characterized by the standard deviation of the edge position (for LER), 
linewidth (for LWR), or feature centerline for pattern placement roughness (PPR).  But describing the 
standard deviation is not enough to fully describe the roughness.  Figure 1 shows four different rough edges, 
all with the same standard deviation.  The obvious differences visible in the edges make it clear that the 
standard deviation is not enough to fully characterize the roughness.  Instead, a frequency analysis of the 
roughness is required. 
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Figure 3. 

 
 

Figure 4. 
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3. The Device Impact of the Frequency Behavior of Roughness 
 
The roughness of lines and spaces is characterized by measuring very long lines and spaces, long enough so 
that the flat region of the PSD becomes apparent.  For a sufficiently long feature the measured LWR can be 
thought of as the LWR of an infinitely long feature, σLWR(∞).  But semiconductor devices are made from 
features that have a variety of lengths L.  For these shorter features, stochastics will cause within-feature 
roughness, σLWR(L), and feature-to-feature variation described by the standard deviation of the mean 
linewidths of the features, σCDU(L).  This feature-to-feature variation is called the local critical dimension 
uniformity, LCDU, since it represents CD variation that is not caused by the well-known “global” sources of 
error (scanner aberrations, mask illumination non-uniformity, hotplate temperature variation, etc.).3 
 
 For a line of length L, the within-feature variation and the feature-to-feature variation can be related 
to the LWR of an infinitely long line (of the same nominal CD and pitch) by the Conservation of Roughness 
principle.4 
 

( ) ( ) ( )∞=+ 222
LWRLWRCDU LL σσσ  (2)

 
The Conservation of Roughness principle says that the variance of a very long line is partitioned for a shorter 
line into within-feature variation and feature-to-feature variation.  How this partition occurs is determined by 
the correlation length, or more correctly by L/ξ.  Using a basic model for the shape of the PSD, we find that5 
 

( ) ( )⎥⎦
⎤

⎢⎣
⎡ −−= − ξξσ /2 11)0( L

CDU e
LL

PSDL  (3)

 
Thus, equations (1) – (3) show that a measurement of the PSD for a long line, and its description by the 
parameters PSD(0), ξ, and H, enables one to predict the stochastic influence on a line of any length L.  It is 
interesting to note that the LCDU does not depend on the roughness exponent, making H less important than 
PSD(0) and ξ.  For this reason, it useful to describe the frequency dependence of roughness using an 
alternate triplet of parameters:  σLWR(∞), PSD(0), and ξ.  Note that these same relationships apply to LER and 
PPR as well. 
 
 Examining equation (3), the correlation length is the length scale that determines whether a line of 
length L acts “long” or “short”.  For a long line, L >> ξ and the local CDU behaves as 
 

( )
L

PSDLCDU
)0(

≈σ    when L >> ξ (4)

 
This long-line result provides a useful interpretation for PSD(0):  It is the square of the LCDU times the 
length of the line.  Reducing PSD(0) by a factor of 4 reduces the LCDU by a factor of 2, and the other PSD 
parameters have no impact (so long as L >> ξ).  Typically, resists have yielded correlation lengths on the 
order of one third to one half of the minimum half-pitch of their lithographic generation.  Thus, when 
features are longer than about five times the minimum half-pitch of the technology node we are generally in 
this long line length regime.  For shorter line lengths, the correlation length begins to matter as well. 
 
 Equations (1) – (3) show a trade-off of within-feature variation and feature-to-feature variation as a 
function of line length.  Figure 5 shows an example.  For very long lines, LCDU is small and within-feature 
roughness approaches its maximum value.  For very short lines the LCDU dominates.  However, due to the 
quadratic nature of the Conservation of Roughness, σLWR(L) rises very quickly as L increases, but LCDU falls 
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Figure 6. 
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 The use of image filtering can have a large effect on the resulting PSD.  Figure 8 shows the impact of 
two different image filters on a collection of 30 images.11  All images were measured using an inverse 
linescan model for edge detection (as described later).  Obviously the high-frequency region is greatly 
affected by filtering.  But even the low frequency region of the PSD shows a noticeable change when using a 
smoothing filter.  As will be described next, the use of image filtering makes measurement and subtraction of 
image noise impossible. 
 
 

 
Figure 8. Power spectral densities from many rough features with images preprocessed using a 7x2 or 7x3 Gaussian 

filter, or not filtered at all.  From Ref. 11. 
 
 
 If edge detection without image filtering can be accomplished, noise measurement and subtraction 
can be achieved by contrasting the PSD behavior of the noise with the PSD behavior of the actual wafer 
features.  We expect resist features (as well as after-etch features) to have a PSD behavior as shown in Figure 
3.  Correlations reduce high-frequency roughness so that the roughness becomes very small over very small 
length scales.  SEM image noise, on the other hand, can be reasonably assumed to be white noise, so that the 
noise PSD is flat.  Thus, at a high enough frequency the measured PSD will be dominated by image noise 
and not actual feature roughness (the so-called “noise floor”).12  Given the grid size along the length of the 
line (Δy), SEM noise affects the PSD according to13  
 

yfPSDfPSD noiseunbiasedbiased Δ+= 2)()( σ  (6)
 
Thus, measurement of the high-frequency PSD (in the absence of any image filtering) provides a 
measurement of the SEM image noise.  Figure 9 illustrates this approach.  Clearly, this approach to noise 
subtraction cannot be used on PSDs coming from images that have been filtered since the filtering removes 
the high-frequency noise floor (see Figure 8). 
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Figure 9. 
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dxdR
Rx
/

Δ
=Δ  (7)

 
For a random variation in development rate characterized by a mean and standard deviation, the resulting 
edge position will have a variation described by the 1-sigma LER: 
 

dxdR
R

LER /
σσ =  (8)

 
In this simple model, variation in the development path is ignored, which might be reasonable for small 
variations in development rate.19-21   
 
 Development rate is determined by the level of remaining protecting groups (m) for a chemically 
amplified resist.  This, in turn, is determined by the acid concentration (h) during a process of reaction-
diffusion.  Acid concentration is determined by the intensity of absorbed light (Iabs).  In other words, an aerial 
image leads to an absorbed light image that leads to an acid latent image that leads to a protecting group 
latent image that leads to a development rate latent image.  In a standard chemically amplified resist process 
the only source of information about the correct position of the resist feature edge comes from the aerial 
image.  Thus, at each step in this sequence, errors can increase the uncertainty (noise) and decrease the 
gradient (signal), making their ratio higher.22,23  This can be expressed as a propagation of noise/signal ratios: 
 

dxdIdxdhdxdmdxdR abs

IhmR
LER

abs

////
σσσσσ ≥≥≥=  (9)

 
 The driver for LER is the last term in equation (9), which is also the minimum possible LER.  Since 
the intensity of absorbed photons is proportional to the number of absorbed photons (Nabs), the minimum 
LER can also be expressed in terms of the number of photons absorbed at the line edge.  Since the number of 
absorbed photons will follow a Poisson distribution, 
 

absN N
abs

=σ  (10)
 
The aerial image log-slope (ILS) will equal the absorbed image log-slope for a non-bleaching resist so that 
 

dx
Nd

Ndx
IdILS abs

abs

1ln
==  (11)

 
This then gives an alternate expression for the smallest possible LER. 
 

absabs

I
LER

NILSdxdI
abs 1
/

min ==
σ

σ  (12)

 
The mean number of photons absorbed in some small volume of resist V is determined by the mean incident 
dose E (#photons/nm2) and the absorption coefficient α. 
 

VENabs α=  (13)
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As a numerical example, consider a volume that is a cube 10nm on a side, a dose at the line edge of 6 
photons/nm (corresponding to 8.8 mJ/cm2), an absorption coefficient of 0.007 nm-1, and a NILS of 2 for a 
CD of 16 nm.  The minimum σLER will be 1.1 nm. 
 
 For the above expressions, everything is well known for a given lithographic case except the volume 
V.  What is the correct ambit volume to average over?  A smaller volume will produce a larger LER, so there 
must be some physical reason for the volume chosen.  The smallest volume that might make sense is the size 
of one resist polymer molecule.  After all, one molecule either dissolves or doesn’t, and it is the sum of all 
the events that lead to dissolution that influence that dissolution.  In general, however, the distance over 
which an absorbed photon might influence the dissolution of a resist molecule is larger than the size of the 
resist molecule.  For a chemically amplified resist, an absorbed photon can lead to a generated acid which 
then diffuses some distance before causing a deprotection reaction, thus changing the solubility of the resist.  
The acid diffusion length, generally larger than the size of a resist polymer molecule, thus determines the 
volume of influence of an absorbed photon.   
 
 Put another way, all mechanisms that spread the influence of an absorbed photon through the resist 
determine the influence range and the ambit volume needed in equation (13).  This spread is generally called 
the resist blur and includes not only acid diffusion but also secondary electron blur for an EUV resist.  The 
ambit volume will then be proportional to the cube of the total resist blur.24  Additionally, this influence 
range is also characterized by the resulting correlation length of the roughness, so that the correlation length 
is a measure of the total resist blur.  This means that 
 

3ξ∝V  (14)
 
Combining equations (12) – (14) gives essentially Gallatin’s classic LER model.12  The key insight here is 
the recognition that the correlation length of resist features is a measure of resist blur. 
 
 But blurring has another impact on lithography – it reduces the effective ILS and the gradient in the 
various latent images.  Consider both a simple diffusion process (probably appropriate for secondary electron 
blur) and a reaction-diffusion process (appropriate for acid diffusion during post-exposure bake).  The 
reduction in the effective ILS has been previously derived for both cases.18 
 

 Diffusion:  ⎟
⎠
⎞⎜

⎝
⎛

∂
∂

≈
∂

∂ − 2)/(2lnln CDeff e
x

I
x
I πξ  

Reaction-Diffusion:  ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
∂
∂

≈
∂

∂ −

2

)/(2

)/(2
1lnln 2

CDx
I

x
I CD

eff e
πξ

πξ
 (15)

 
where here the correlation length is assumed to be exactly equal to the diffusion length, though in fact there 
is likely some proportionality factor of order one, and CD is the half pitch for a pattern of small lines and 
spaces. 
 
 Replacing the ILS in equation (12) with the effective ILS, there will be an optimum correlation length 
balancing the competing factors of increasing the ambit volume and decreasing the effective ILS with larger 
ξ.25  Figure 10 shows that the optimum blur (correlation length) is about 20% of the half-pitch CD for the 
case of pure diffusion, and 35% of the half-pitch CD for the case of reaction-diffusion.  As mentioned above, 
however, there may be a proportionality factor involved in the relationship between correlation length and 
diffusion length different from the proportionality factor involved in its use in the ambit value, so that we can 
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6. The Importance of Etch 
 
The scaling result derived in the previous section only applies to the roughness of resist features.  What is 
most important is the roughness of the after-etch features.  It is well known that etch reduces roughness, 
mostly through an increase in correlation length.26  If this important feature of etch is combined with the 
scaling relationship for resist roughness above, an interesting opportunity arises.  To keep roughness low we 
must scale the post-lithography correlation length in proportion to the CD.  Further, current correlation 
lengths may in fact be larger than optimum so that even more reduction in correlation length could be 
helpful.  But as equation (1) shows, a smaller correlation length leads to higher roughness for a given 
PSD(0).  The difficulty comes from the coupling of correlation length and PSD(0) as described in the 
previous section.  Higher correlation lengths mean larger resist blur, with a negative impact on latent image 
gradient and a corresponding increase in sensitivity to stochastic noise. 
 
 Etch provides an important optimization opportunity since the growth in correlation length during 
etch comes with no equivalent trade-off in “blur”.  This leads to a new and important approach to minimizing 
the after-etch roughness.  In lithography, we should optimize the resist and its process for both minimum 
PSD(0) and minimum ξ.  This can be done without regard to minimizing the LER (σLER or σLWR) per se.  
Then we use the etch process to grow the correlation length, improving the high-frequency roughness that 
was ignored post-lithography (while being sure not to worsen PSD(0), or lowering it if possible).  The final 
after-etch features will have minimum PSD(0), maximum correlation length, and minimum σLER or σLWR.  In 
other words, the lithography process should be made responsible for low-frequency roughness while the etch 
process is responsible for high-frequency roughness.  This combination produces minimum roughness. 
 
 The proposed roughness optimization scheme involves a very different mindset than is often 
exhibited today.  It is common today to “blame” the resist for roughness that is too high, then give credit to 
the etch process for “fixing” the roughness.  It is also common today to attempt lithography optimization 
considering only the 3σ roughness as the metric to be reduced, ignoring the individual roles of PSD(0) and ξ.  
Further, lithography and etch processes are today optimized individually, without regard to how one 
influences the other.  All of these ideas are flawed.  Instead, lithography and etch should be optimized 
together, playing to the constraints and strengths of each process to individually optimize 3σ, PSD(0), and ξ. 

7. Conclusions 
 
Reducing roughness in EUV lithography is extremely important and also extremely difficult without fairly 
large increases in exposure dose.  In this paper I have outlined a new strategy for optimizing the after-etch 
roughness of features by employing a synergy between etch and lithography.  Lithography should focus on 
low-frequency LER by minimizing both PSD(0) and correlation length (a consequence of the coupled nature 
of these two parameters for lithographic features).  This optimization may not result in the lowest possible 3σ 
roughness for lithographic features.  The etch process is then employed to minimize PSD(0) and maximize 
correlation length (a consequence of the uncoupled nature of these two parameters for after-etch features).  
Thus etch is focused on improving the high-frequency roughness that lithography should ignore.  The result 
should be a global optimum not obtainable by separately optimizing lithographic and etched features for 3σ 
roughness.  This optimization scheme makes use of the insight that the correlation length of resist features is 
a measure of total resist blur. 
 
 The proposed roughness reduction approach requires accurate measurement of unbiased values of 
σLWR(∞), PSD(0), and ξ.  Relying solely on σLWR(∞), and especially its biased measurement, will be unlikely 
to produce the information needed to guide resist, resist process, etch tool, and etch process improvement. 
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