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ABSTRACT   

In this publication the authors have investigated both theoretically and experimentally the link 
between line edge roughness, target noise and overlay mark fidelity.   Based on previous worki, a 
model is presented to explain how any given edge of a printed feature could have a mean position 
that varies stochastically (i.e., randomly, following a normal distribution) due to lithography 
stochastic variation.  The amount of variation is a function of the magnitude of the LER (more 
accurately, all the statistical properties of the LER) and the length of the feature edge.  These 
quantities have been analytically linked to provide an estimate for the minimum line length for both 
optical and e-beam based overlay metrology.  The model results have been compared with 
experimental results from wafers manufactured at IMEC on both EUV and ArF lithographic 
processes developed for the 10 nm node, with extrapolation to the 5 nm node. 
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1. INTRODUCTION 

Accurate and precise edge placement in advanced semiconductor manufacturing relies on overlay 
metrology from proxies or targets in order to disposition and control the lithographic process.  The 
impact of manufacturing processes on target noise and overlay mark fidelity has been characterized 
in the pastii,iii but such experimental characterization has not provided a quantitative link to basic 
lithographic quantities such as line edge roughness (LER).  Two pending technology transitions 
currently underway will likely elevate the relative importance of overlay mark fidelity.  Firstly, the 
transition from high order (HO) wafer level models to CPE (correction per exposure) models 
drastically reduces the ratio of correctables to number of sites from which the model terms are 
determined. This necessarily means that the impact of any stochastic variations at each individual 
measurement site will have significantly higher impact on the model correctables.  Secondly, the 
insertion of EUV on a small but critical number of layers is predicted to increase lithographic line 
edge roughness.  The combination of these two effects will potentially conspire to inject significant 
random noise into the lithographic overlay control loop which, for the 5 nm node, has exceedingly 
tight requirements.  In this investigation we have assessed the impact of LER on optical and SEM 
overlay mark fidelity and preliminary results indicate that the impact of LER on overlay mark 
fidelity as characterized by a new metric, normalized kernel 3 sigma, cannot be ruled out.    
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layer X-direction shown in red. the K3S.

 The K3S measure is introduced in order to characterize the non-uniformity of the overlay mark. The 
nominal ROI (Figure 4) is subdivided into ܰ (~5 − 10) sub-ROI’s as shown in Figure 5, which are paired 
symmetrically (i.e., according to the color in Figure 5). Each sub-region is used to find its own center of the 
symmetry, which yields ܰ values ൛ܺ௖௜ൟ௜ୀଵே

, whose variance defines the K3S: 

3ܵܭ  = 3 ×  ൫ܺ௖௜൯ (3)ܦܶܵ

With respect to the relationship between K3S and LER, it is anticipated that conditional to meeting the 
precision lower bound condition and that other contributions are small, then the variance of K3S will be 
proportional to the LER variance divided by (optical contrast)2, 

3ܵଶܭ  = ܰ × ଶᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ௅௢௪௘௥ ஻௢௨௡ௗ݊݋݅ݏ݅ܿ݁ݎܲ + ଵܣ ௅ாோమை஼మ +  (4) .ݏ݊݋݅ݐݑܾ݅ݎݐ݊݋ܿ ݎℎ݁ݐ݋

 

We therefore introduce the normalized K3S metric,  

NK3S = K3S*OC. 
 

5. RESULTS 

LER results  

LER in the AIM marks upon ArF immersion and EUV lithography were compared from rectangular CD-SEM 
images. Inspections were done in resist and are summarized in Figure 6. Consistently, it is found that the 
roughness in the EUV printed marks is lower compared to that of the ArF printed marks. This may be 
counterintuitive, given the roughness challenges for EUV lithography, but should actually not be surprising. 
First of all, the roughness is proportional to the noise divided by the image gradient. Because of the superior 
resolution of EUV lithography, compared to ArF immersion, the image log slope is much higher for EUV 
than for ArF. This has a positive impact on the roughness. Moreover, the segmentation pitches of the AIM 
marks that are used in this study are quite far from the resolution limit of EUV. Therefore, a relatively high 
number of photons are available to define each line edge. This also results in lower noise compared to 
printing near the EUV resolution limit. 
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Table 1: ArF (left) and EUV (right) Kernel 3sigma and LER wafer maps, side by side.  No significant correlation is 
observed.  

 

Below we give the experimental results for K3S normalized by the contrast versus the LER 
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Table 2:  ArF (left) and EUV (right) normalized Kernel 3sigma and LER wafer maps, side by side.  For 96 nm 
segmentation pitch some correlation is observed. 

 

 

 Unsegmented Fine Pitch 200 nm Fine Pitch 96 nm 

A
rF

 

 
  

EU
V

 

   
Table 3: Correlation scatter plots of LER vs NK3S for ArF and EUV lithography and different target segmentations. 

 

 

 

6. DISCUSSION 

Minimum edge length requirements 

What line length is required so that the stochastic contribution to pattern placement error for that line is less 
than a specified amount?  This question is similar to the question of how linewidth roughness contributes to 
critical dimension uniformity of a line of length L (that is, the local CDU), a problem that has been previous 
addressed.vi  Consider a typical pattern placement roughness (PPR) power spectral density (PSD) with zero-
frequency value PSD(0) and correlation length ξ.  The uncertainty in the mean center position of a line of 
length L will be 
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Let PPEspec be the 3σ specification for the maximum allowable stochastic contribution to pattern placement 
error per layer.   A typical value for PPEspec might be 0.2 nm for state of the art overlay metrology.  Then, we 
look for the line length L that produces a 3σ pattern placement uncertainty of this amount.  Since that line 
length will be much greater than the correlation length, equation (5) simplifies and the needed line length 
becomes  
 

( )2
)0(9

specPPE
PSDL =  (6) 

 
As an example, consider the case where the PSD of the PPR has PSD(0) = 10 nm3.  For a PPE spec of 0.2 nm, 
the needed line length is 2.25 μm.  Note that since typical correlation lengths are on the order of 10 – 20 nm, 
the approximation the L >> ξ is a good one for this application. 
 
Turning now to the specific examples from the data sets in the current work, the PSD(0) was calculated with 
no image filtering and edge detection was performed by the Analytical Linescan Model.  Note that these 
PSD(0) values are generally lower than those shown in section 5 as these are the PPR PSDs.   
 
Table 4:  Analysis of the pattern placement roughness leads to predictions of the minimum line length 
required to meet a given pattern placement error specification. 

Pattern Placement Roughness 
previous 

(ArF, post-etch) Current (EUV, ADI) Current (ArF, ADI) 
Biased 3-sigma (nm) 2.0 2.3 2.3 

Unbiased 3-sigma (nm) 1.6 1.8 1.9 

PSD(0) (nm
3
) 13.0 10.9 16.0 

Correlation Length (nm) 22.5 15.4 19.8 
SIOE (nm) 0.12 0.12 0.12 
L

min
 (μm) 8.1 6.8 10.0 
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Figure 9 Minimum edge length requirements as a function of PSD(0) for different technology nodes.  The shaded region indicates 
levels of PSD(0) for metrology target structures evaluated in this publication.  

 
 For SEM overlay metrology, edge length requirements of 1 – 3 μm are typical of the 10 – 14 nm 
nodes in use today.  However, as we approach the 7 and  5 nm nodes, these length requirements will increase 
significantly to 6 – 12 μm per layer.  Furthermore this assumes that the PSD(0) numbers will be maintained 
for EUV lithography.  However, as we approach the minimum design rule pitches of ~ 24 nm it is anticipated 
that these numbers will degrade as the normalized image log slope is reduced as discussed in section 4.   
 

Optical overlay implications 

Turning now to the LER vs K3S correlation analysis we first note that the observed K3S is well above the 
precision lower bound.  Secondly, we observe no significant correlation between the two measured quantities 
for any of the target or lithography permutations.   However, for segmented targets some correlation between 
LER and NK3S is observed as defined in section 4 above. Additionally, since the FEM matrix was not 
randomized, it cannot be ruled out that this correlation is spatial in nature and results from a shared 
correlation to a third focus/dose dependent quantity.   
 
 

7. CONCLUSIONS 

As overlay control loops transition from W3F3 to CPE overlay models, the model term sensitivity to 
stochastic variations frozen into the overlay metrology target becomes more significant.  LER and PSD of 
unsegmented and DR segmented overlay metrology targets have been characterized from SEM images.  It is 
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observed that compared with ArF, EUV lithography shows a reduction in LER and PSD for the segmentation 
sizes measured.  This conclusion is by no means universal and is probably the result of the excellent 
normalized image log slope obtained with EUV lithography at this feature size.  Upon review of the PSD 
data, it is observed that the spectral content of the LER at optically resolvable spatial frequencies is non-
negligible.  Kernel 3 sigma is introduced as a metric of stochastic noise contributors to optical imaging 
overlay mark fidelity.  For segmented targets, some correlation is observable between LER & NK3S, 
however, a randomized FEM should be used to decouple other systematic location dependent effects which 
maybe responsible for this correlation.  
 
 Finally, it is asserted that LER contributes directly to overlay metrology and a minimum target size 
criterion is proposed in units of line-length L per layer, as given above in equation (6).  This criterion is easily 
met by optical metrology but should be carefully considered for SEM overlay metrology.   
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