
Metrology, Inspection, and Process Control for Microlithography XXXI (2017) 1 
 

Level crossing methodology applied to 
line-edge roughness characterization 

 
Chris A. Macka, Timothy A. Brunnerb, Xuemei Chenc, Lei Sund,  

aFractilia, 1605 Watchhill Rd, Austin, TX 78703 
bGLOBALFOUNDRIES, Hopewell Junction, NY 12533,  cGLOBALFOUNDRIES, Malta, NY  

dGLOBALFOUNDRIES, Albany, NY 
 

Abstract 
 

Stochastic-induced roughness of lithographic features continues to be of great concern due to its 
impact on semiconductor devices.  In particular, rare events (large deviations in edge positions 
due to roughness) can cause catastrophic failure of a chip, but are hard to predict.  Here, a new 
methodology, the level crossing method, is used to characterize the statistical behavior of edge 
roughness with the goal of predicting extreme events.  Using experimental results from EUV 
lithography, the distribution of edge deviations was found to have tails significantly heavier than 
a normal distribution.  While further work is required, these heavy tails could prove problematic 
when EUV is used in high volume manufacturing. 

 
Subject Terms:  line-edge roughness, linewidth roughness, stochastic-induced roughness, LER, LWR, level 
crossing 

1. Introduction 
 
 The impact of stochastic-induced roughness on lithographic features continues to be of great 
concern, especially in the realm of EUV lithography.  Shrinking feature sizes driven by Moore’s Law would 
ideally be accompanied by proportionally shrinking roughness as well.  However, over the last 15 years, as 
stochastic-induced roughness has gained the attention of the industry, roughness has shrunk at a much slower 
pace that the mean feature sizes being patterned.  As a result, 3 linewidth roughness now regularly exceeds 
10% of the feature size, and is often as high as 25% of the feature size. 
 
 There are at least four ways in which stochastic-induced roughness can impact devices made from 
lithographically defined features: 
 

 Within-feature roughness, affecting the electric or physical performance of the feature 
 Feature-to-feature mean critical dimension (CD) variation (also called local CD uniformity, LCDU) 
 Feature-to-feature mean pattern placement error 
 Rare events that lead to catastrophic failure (such as bridges or breaks) 

 
Ideally, an understanding of the stochastic-induced roughness behavior of a lithographic process would lead 
to the ability to predict all four of these consequences.  Progress has been made in understanding the impact 
of roughness on the first three items from this list,1,2 and more attention is now being paid to the last item:  
catastrophic failures.3 
 
 In this paper, we introduce a new methodology for characterizing the statistical behavior of 
stochastic-induced roughness called the level crossing method.  It is hoped that this method will contribute to 
the characterization and understanding of stochastic-induced roughness in general, and the prediction of rare 
events (catastrophic failures) in particular. 
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2. Level Crossing for a Stochastic Process 
 
The level crossing problem is a standard one in stochastic time series analysis.  First developed by Rice,4 this 
problem begins by defining as a random variable the number of times a series crosses the level a over a 
series length L (Figure 1).  We shall ask, what is the expected number of level crossings given a knowledge 
of the statistical behavior of the rough feature?  Note that for large L the number of excursions will be half of 
the number of level crossings. 
 
 

 
Figure 1. Example of a random stochastic series (such as a rough edge position or linewidth) showing four crossings 

(two excursions) of the level a within a series of length L. 
 
 
 We define the statistical behavior of the rough feature using a model of the power spectral density 
(PSD).  For example, most LER/LWR data have been found to be well described by the Palasantzas power 
spectral density function:5 
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where 2 is the true variance of the line edge/linewidth,  is the correlation length, H is the Hurst roughness 
exponent, and PSD(0) is calculated (using the gamma function, ) by 
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The PSD is the Fourier transform of the autocovariance function (ACF) of the rough feature.  When H = 0.5, 
the Palasantzas PSD is the Fourier transform of the exponential ACF.   
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For the discrete case, where the stochastic series only exists at discrete intervals spaced y apart, this 
exponential autocovariance model is known as the autoregressive model of order 1, AR(1):   
 

nynACF  2)(  ,     /ye  ,    n ≥ 0 (4) 
 
 One more statistical behavior must be defined to fully characterize a rough feature:  the probability 
distribution of edge positions/linewidths.  Here, we will assume a Gaussian distribution with zero mean and 
standard deviation  (the same parameter used in the PSD and ACF models above).  The validity of this 
assumption will prove to have important consequences to our final predictions of rare events, and will be 
discussed at some length below. 
 
 For the case of the discrete AR(1) model and a Gaussian probability distribution, the expected 
number of zero crossings (a = 0) has been previously derived.6,7  If 0 is the expectation value of the number 
of zero crossings, then 
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where N is the number of points in the series (so that the feature length L = Ny).  For the case of y << , so 
that  is near 1, the inverse cosine can be approximated to give 
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Assuming N is sufficiently large, an equivalent approximate expression is 
 




y

L




2
0    or   

20




yL 
  (7) 

 
The number of zero crossings per unit length is inversely proportional to the square root of the correlation 
length, and inversely proportional to the square root of the discrete sampling distance, y.  In other words, 

the scale parameter for this statistic is y .  The variance of this expected number of zero crossings is N/4.   

 
 It is common to derive a continuous model from a discrete model by letting y → 0.  For a discrete-
time AR(1) process, the continuous-time analog is the Ornstein–Uhlenbeck process.  Unfortunately, this 
results in an infinite number of zero crossings per unit length.  While a continuous model is often a useful 
approximation to reality, in the case of zero crossings for a rough feature it ignores an important physical 
reality:  the non-zero size of the molecules or atoms that make up the feature.  If we consider y to be the 
smallest unit of material that can be added or removed from an edge, then it makes no sense to consider 
multiple zero crossings within the length y.  Thus, the distance y will no longer be considered a sampling 
distance but instead will take on a physical meaning:  the size of the atoms or molecules making up the 
feature.  For the case of polymer-based photoresist, typical molecular size is on the order of 2 – 4 nm. 
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 From this zero-crossing result, we can derive an expression for a, the expected number of crossings 
of an arbitrary level a.  Letting f(x) be the probability of an edge or linewidth deviation of x,8  
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For a Gaussian probability distribution of roughness amplitudes, this gives for our AR(1) process 
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As an example, if a = 3, then there will be a factor of 90 fewer crossings at this level than zero crossings. 

3. Comparison to Simulation 
 
The number of zero crossings and certain non-zero level crossings, as predicted by equations (6) – (9), were 
checked against simulations using MetroLER v1.0 (Fractilia, LLC).  A method for generating randomly 
rough features with a given power spectral density behavior has been previously described.9  This method 
was used to simulate rough features, creating instantiations of a zero-mean random variable that could be 
interpreted as a rough feature edge.  Then the zero crossings were counted for lines of varying length, 
sampling distance, and correlation length (keeping the roughness exponent fixed at 0.5).  Typically 106 
simulations were run and the results averaged to obtain the expected number of zero and level crossings. 
 
 The match between the exact equation (5) and the simulations were within simulation noise over a 
wide range of parameters.  For example, a simulated line with 512 points has a standard deviation of zero 

crossings of 2/N  = 11.3.  Running 106 simulations reduces this uncertainty by a factor of 1000, to 0.01 
zero crossings for the feature.  With y = 1 nm and  = 10 nm, the expected number of zero crossings for this 
line, according to equation (5), is 71.54.  The average of 106 simulations produced 71.50 zero crossings 
(using a sub-sampling rate of 256 to approximate a continuous feature, i.e., 256 points along the rough line 
were generated per y interval).  As the sub-sampling rate was varied from 1 to 256, the results clearly 
converged toward the 71.54 theoretical value (Figure 2), with the error inversely proportional to the number 
of subsamples.  
 
 Equation (8) or (9) can also be compared to simulation.  For a = 3, a Gaussian distribution would 
result in a factor of 90.02 fewer level-a crossings than zero crossings.  Figure 3 shows how the simulated 
ratio 0/a approaches the ideal value when  >> y. 
 
 For most purposes, the approximate expressions (7) and (9) can be used, which have errors of 1–3% 
for typical parameter settings.  Thus, 104 simulations with N = 512 and using a sub-sampling rate of 32 will 
prove adequate for estimating the expected level-crossing rate, since this results in simulation errors typically 
less than 0.5%. 
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Figure 2. Impact of sub-sampling rate (the number of points generated for the rough feature within one interval y) 

on the simulated number of zero crossings (N = 512, y = 1 nm,  = 10 nm, H = 0.5).  The simulation 
values converge to the theoretical value of 71.54 as the sub-sampling rate increases. 

 
 

 
Figure 3. Impact of correlation length on the ratio of the expected number of zero crossings to the expected number 

of 3 level crossings (N = 2048, y = 1 or 2nm,  varied, subsampling rate of 32, 106 simulations per data 
point, H = 0.5).   
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 Simulation can now be used to explore the impact of the roughness exponent H on the expected 
number of zero crossings.  The frequency distribution of the roughness will have a strong impact on the 
number of zero crossings.  A sine wave will produce two crossings per cycle, so that the high frequency 
components of roughness will produce more zero crossings than the low frequency components.  The impact 
of higher H is to increase the downward slope of the PSD in the high-frequency region (see equation (1)), 
thus suppressing high-frequency roughness.  One would expect, then, that increasing the roughness exponent 
will decrease the expected number of zero crossings, all other things kept equal.  Figure 4 shows that this 
indeed is the case.  Further, the ratio 0/a does not change more than a few percent over this range of 
parameters. 
 
 

 
Figure 4. Impact of roughness exponent on the expected number of zero crossings (N = 512, subsampling rate of 32, 

106 simulations per data point).   
 
 
 An approximate expression that matches these simulation results is  
 

)5.0ln(

00 )5.0()(









 


H
y

HH


  (10) 

 
To see how well this model equation works, the same simulated data from Figure 4 is plotted against the 
predictions of equation (10) in Figure 5.  The relative error between equation and simulation is less than 5% 
over this range of conditions. 
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Figure 5. Comparison of the simulated number of zero crossings to predictions made by equation (10) (N = 512, 

subsampling rate of 32, 106 simulations per data point, with other parameters as shown in Figure 4).   
 
 
 An interesting and important property of the zero-crossing rate (the number of zero crossings per unit 
length) is that it is independent of the amount of roughness ().  Thus, it provides a method of separately 
measuring correlation length and roughness exponent independent of .  With that idea in mind, we will now 
look at how to measure the number of zero crossings of a rough feature, and how measurement biases and 
errors will impact it. 

4. Impact of Metrology on the Measured Level Crossings 
 
The simulations described above were ideal in the sense that they describe the actual behavior of a simulated 
rough line.  In that application, y represents the molecular size of the feature material.  Simulations can also 
be used to understand the real-world effects of measurement.  When measuring the number of level 
crossings, one must use a metrology tool that does not describe the exact edge position or linewidth, but 
rather has a number of non-ideal aspects.  For example, all measurements include metrology noise, 
essentially white noise spread evenly across all frequencies.  Further, all measurement tools have a nonzero 
measurement probe width that averages the edge position over that probe width, smoothing out the very high 
frequency roughness.  Additionally, while the simulations above created zero-mean random variables, 
experimental measurement involves detrending:  subtracting off the sample mean for LWR measurement and 
a best-fit line for LER measurement.  Simulation can be used to understand the impact of each of these 
metrology effects. 
 
 When simulating the measurement of the number of level crossings, y takes on the common 
metrology meaning:  the spacing between measurement points along the feature.  First, consider the impact 
of metrology averaging due to a nonzero metrology probe width.  If the metrology probe has a Gaussian 
shape (due to a nonzero beam spot size plus electron scattering within the sample, for example), then the full-
width half-maximum (FWHM) size of the probe will determine the amount of averaging.  Figure 6 depicts 
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the number of zero crossings relative to an ideal zero-width measurement probe.  The correlation length has 
no impact on the metrology probe averaging effect, but the roughness exponent does.  For probe widths near 
or less than the measurement grid spacing y, the decrease in the measured number of zero crossings is 
approximately given by 
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where pw = the FHWM Gaussian probe width. 
 
 
 Metrology probe averaging reduces the observed number of 3 level crossings to an even greater 
extent.  As a result, the observed ratio of zero to 3 level crossings increases with more metrology probe 
averaging, as described by this empirical expression: 
 




















 pw

Ha
2

0 5.0
190  (12) 

 
 While the metrology probe width averages high-frequency roughness and reduces the number of 
observed zero crossings, metrology noise has the effect of adding back high frequency roughness and 
increasing the number of observed zero crossings (Figure 7).  Letting MN be the metrology noise, the 
number of zero crossings will increase approximately as 
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The number of 3 level crossings grows even faster with added metrology noise.  As a result, the observed 
ratio of zero to 3 level crossings decreases with more metrology noise.  This ratio is approximately 
independent of y, , and H. 
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(a) 

 
 

 
(b) 

Figure 6. Impact of metrology probe width on the measured number of zero crossings (N = 512, subsampling rate of 
32, 106 simulations per point):  (a) H = 0.5 and varying correlation lengths and measurement 
increments; (b) /y = 10 and varying H.   
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Figure 7. Impact of metrology noise on the measured number of zero crossings (N = 512, H = 0.5, subsampling rate 

of 32, 106 simulations).   
 
 
 As is also true of PSD measurement10,11 and height-height correlation measurement,12 it is possible 
for metrology averaging and metrology noise to cancel out, depending on the parameters of the process and 
the metrology.  For H = 0.5, this occurs approximately when 
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For example, if the metrology noise is 25% of the LER, then noise and probe averaging cancel when the 
probe width is 20% of the sampling distance.  If MN = 0.75 (a high but not uncommon level of noise), then 
the two effects cancel with pw equal to the sampling distance. 
 
 Detrending is also a reality of measuring roughness.  To calculate the LWR, we substrate off the 
sample mean (the average linewidth).  To calculate the LER, we find the deviation of the feature edge to its 
best-fit straight line.  But detrending also removes low-frequency roughness from the data.  By simulating 
rough features and counting the zero and level crossings with and without the detrending of a single feature 
or edge, the following empirical expressions match the observations: 
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Thus, the impact of detrending becomes small when L >> . 
 
 Based on these simulations, we propose the measurement of the number of zero crossings and the 
number of 3 level crossings as a useful tool for characterizing LER and LWR.  Such measurements can 
supplement the more common PSD or HHCF analysis. 

5. Comparison to Experimental Data 
 
Experimental level-crossing results were obtained from SEM images of EUV lithography samples exposed 
using an IBM process.13  Using the ASML NXE:3300 scanner, 18-nm half-pitch patterns were printed in a 
polymer-based chemically amplified resist and then imaged on a Hitachi CG-5000 CD-SEM (512x512 pixels 
per image, x-pixel size = 0.88 nm, y-pixel size = 5.00 nm).  Edge detection was performed using the 
Analytical Linescan Model (ALM) algorithm of MetroLER with no image filtering and a threshold of 0.5.14  
Figure 8 illustrates one result.  Even with an extremely noisy SEM image, accurate edge detection is possible 
with the ALM without the modifying effects of image filtering.  Thirty images were collected and the 
analysis results from each of the measured features were combined. 
 
 Analysis of the power spectral density and height-height covariance functions produced a (biased) 
LER 1-sigma value of 1.22 nm (standard error = 0.002 nm based on the 720 edges measured) and an 
estimated correlation length of 7.2 nm (standard error = 0.12 nm).  Level crossings were measured in both 
the positive direction (edge deviations in a direction that make the resist line wider) and the negative 
direction (edge deviations in a direction that make the resist line narrower).  Results are shown in Tables I 
and II. 
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 (a) (b) 
Figure 8. An example SEM image of an EUV exposure of 18 nm lines and spaces: (a) original image, and (b) after 

edge detection using the ALM (analytical linescan model) with a threshold of 0.5.   
 
 
Table I.  Measured level crossings for both left and right edges of 30 images (12 lines per image) with L = 2400 nm and 
y = 5 nm.   Left LER 1-sigma = 1.10 nm and right LER 1-sigma = 1.28 nm. 

Level Crossings per Edge Positive Negative 
zero crossings 189.2 189.2 

1-sigma crossings 102.8 105.4 
2-sigma crossings 20.1 22.4 
3-sigma crossings 2.10 3.03 
4-sigma crossings 0.19 0.43 

 
 
Table II.  Mean distance between crossings measured for 30 images (12 lines per image) with L = 2400 nm and y = 5 
nm.  Expected values assume Gaussian statistics, LER 1-sigma = 1.19 nm, and correlation length = 7.2 nm. 

Mean Distance Between (nm) Positive Negative Expected 

zero crossings 12.7 12.7 15.0 

1-sigma crossings 23.4 22.8 24.7 

2-sigma crossings 120 108 111 

3-sigma crossings 1140 794 1350 

4-sigma crossings 12,400 5,600 44,700 
 
 
 As seen in Table II, expected results follow closely the measured mean distance between crossings 
for the cases of zero crossings, 1-sigma crossings, and 2-sigma crossings.  For the 3-sigma crossings, the 
distance between crossings is about 15% less than expected assuming constant Gaussian statistics for the 
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case of positive crossings, and about 40% lower for negative crossings (nearly twice as many negative level 
crossings as expected).  At the 4-sigma level, there were about 4 times more crossings detected than expected 
for positive crossings, and 8 times more crossings for negative crossings (about 140 positive crossings and 
310 negative crossings in total).  This far higher than expected number of 4-sigma crossings does not bode 
well for the possibility of catastrophic line failure and begs for an explanation. 
 
 The metrology simulations discussed above may offer some insight.  Metrology noise increases the 
number of zero crossings, while metrology averaging decreases it.  Since the measured number of zero 
crossings closely matches the expected number, it seems that these two metrology biases are approximately 
canceling out.  For this data, the metrology noise MN was estimated to be 0.8 nm for the left edge and 1.0 nm 
for the right edge.  Also, a typical value for the metrology averaging is on the order of pw = 5 – 8 nm.  Using 
equations (11) and (13) we estimate that metrology noise should increase the expect number of zero 
crossings by about 40%, while metrology averaging would decrease them by about 30%.  For the case of 4-
sigma crossings, simulations showed about 1.6X more level crossings than expected under these noise and 
averaging conditions for the left edge, and 1.8X more level crossings for the right.  Thus, some of the 
observed increase measured level crossings compared to expectations can be attributed to metrology noise.  
But there remains an unexplained higher than expected number of 4-sigma crossings which indicates that the 
assumption of a purely Gaussian distribution of edge errors is likely to be at fault. 
 
 Normal probability plots (or, in general, Q-Q plots) are commonly used to check an assumption of 
normality.  Figure 9 shows examples of normal probability plots for one measured SEM image.  Left and 
right edges produce somewhat different results due to the asymmetry of the linescan in the scan direction.15  
The results indicate normal (Gaussian) behavior out to about ±2.5 nm of edge deviation (corresponding to 
about 2-sigma LER).  Beyond, this, the tails of the distribution are heavier than Gaussian. 
 
 

      
Figure 9. Normal probability plots showing the edge deviations of the left and right edges for all the features in one 

SEM image (the image shown in Figure 8).  The straight line indicates perfectly Gaussian behavior. 
 
 
 In hindsight, such heavy tails are to be expected.  A simple model of edge roughness predicts that 
noise in the final edge position is the ratio of noise in the energy deposited in the resist at the line edge 
divided by the energy gradient at the line edge.  For a sinusoidal exposure dose profile (appropriate for dense 
lines and spaces assuming two-beam imaging), the energy gradient (image slope) is maximal at the half-pitch 
edge position, then falls off approximately quadratically as the line edge deviates from this position.  This 
decrease in energy gradient should cause an increase in edge position variation for the same level of energy 
noise.  Further, the relative noise in the image is proportional to one over the square root of the image 
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intensity, which means there will be less image noise in the space due to the higher intensity there.  Thus, if 
the edge deviations are Gaussian distributed near the nominal half-pitch line position, edge deviations farther 
away will occur more frequently (i.e., have heavier tails) due to the lower energy gradient, and negative edge 
deviations will occur more frequently than positive deviations do to the lower number of photons in the 
negative edge direction. 
 
 The data in Figure 9 can be fit to a heavy-tailed distribution rather than a Gaussian distribution.  
While the experimental distribution is not symmetrical, the Student’s t-distribution will be used here as a 
simple example of a heavy-tailed distribution.  The data from Figure 9 is well fit to a Student’s t-distribution 
when the degrees of freedom (DF) is about 13 for the right edge and about 20 for the left edge when moving 
in the worst direction.  The significance of the heavy tails is clear when extrapolations are required (that is, to 
predict when a bridge or break in a line might occur).  For a Student’s t-distribution, the equivalent of 
equation (9) is obtained from  
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 Using the data from Tables I and II as an example, a level of a = 9 corresponds to an edge error of 
about 11 nm (probably catastrophic for these 18 nm features).  For a molecular size of 2 nm, we can predict 
the zero-crossing rate to be 0/L ≈ 0.11 nm-1.  If the edge deviation distribution were Gaussian, we would 
expect a = 1 (one catastrophic failure on average) when the line length is 3 X 109 m, so that a catastrophic 
failure would be highly unlikely in any given chip.  However, if the Student’s t-distribution with DF = 15 
applied, the mean line length between failures would be 0.02 m, almost guaranteeing that every chip would 
fail.  Obviously our ability to extrapolate out to a = 9 depends greatly on the assumed distribution of edge 
errors. 
 
 One important caveat is in order.  The experimental evidence presented in Tables I and II depends on 
the accuracy of the edge detection used on the SEM images.  These SEM images proved exceedingly noisy, 
so that reliable edge detection was difficult.  Techniques that filter the SEM image in order to reliably detect 
edges will necessarily smooth away some roughness, changing the zero and level crossing results, and 
making extrapolation impossible.  But failed edge detection will result in extreme edge values, thus inflating 
the counts of 4-sigma and 5-sigma level crossings.  Here, the Analytical Linescan Model was used to provide 
robust and accurate edge detection.  However, any sufficiently noisy linescan will cause even that edge 
detection algorithm to fail as well.  Thus, careful attention should be paid to the noise level in the SEM 
images and the robustness of the edge detection algorithm when making level crossing measurements. 

6. Conclusions 
 
 Here, a new methodology for characterizing stochastic-induced roughness in lithography has been 
introduced:  the level crossing method.  This method uses edges detected from a standard SEM image to 
count the number of times each edge crosses a certain level (distance away from its mean position).  Among 
other uses, this technique allows an independent approach to extracting correlation length by measuring the 
number of zero crossings, especially if the sampling distance y can be varied.  Further, counting the level 
crossings for different levels (for example, 1, 2, 3, etc.) allows an assessment of the probability 
distribution of edge deviations.  
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 While further effort is required, the preliminary results presented here indicate that edge deviations 
have much heavier tails than a Gaussian distribution.  For example, the number of 4-sigma crossings was 
found to be 6.6 times higher than expected under the assumption of a Gaussian distribution.  Since 
extrapolation of any measured probability distribution into unmeasured regions of extreme values must 
necessarily be risky, further efforts at modeling roughness variation using the positional dependence of the 
image slope might prove fruitful.  If the image log-slope as a function of position is known, and the standard 
deviation of roughness is inversely proportional to the image log-slope, it may be possible to predict the non-
Gaussian tails of the observed distribution and more accurately extrapolate to rare events.3  Additionally, the 
measurement of level crossings necessarily employs “biased” edges, that is, edges that include metrology 
noise such as SEM image noise.  How this noise might be corrected for is still an open research question. 
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