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Abstract. Measurement of line-edge or linewidth rough-
ness involves uncertainty, like all measurements, and
an estimate of that uncertainty should be reported when-
ever a roughness measurement is reported. However,
roughness measurement uncertainty estimates are com-
plicated by the correlations along the length of the
rough feature. As a result, roughness measurements are
often not accompanied by uncertainty estimates or error
bars on graphs. Here, both theoretical considerations and
simulations of random rough features will be used to derive
a simple formula to estimate the uncertainty of a roughness
measurement using the standard parameters describing
that roughness: standard deviation, correlation length, and
roughness exponent. Additionally, a more accurate formula
to estimate the systematic bias in roughness standard

deviation is provided. © 2017 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JMM.16.1.010501]
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1 Introduction

As everyone learns early in their education in science and
engineering, all measurements should be accompanied by
an estimate of the uncertainty of that measurement. Unfor-
tunately, measurements of the standard deviation of a rough
surface or edge are often not accompanied by an estimate of
the uncertainty of those measurements. This is especially
true in the measurement of line-edge roughness (LER) or
linewidth roughness (LWR) of lithographically patterned
features, where presentation of error estimates (or the use of
error bars on graphs) by metrology users is almost univer-
sally absent. One reason for this lack of scientific rigor is
the complicated nature of the statistics involved: we are cal-
culating the standard deviation of a set of correlated meas-
urement values.'™ Understanding the uncertainty of such a
measurement is complicated by the correlations, and stan-
dard textbook treatments are generally not useful.

In this letter, both the uncertainty and the bias of LER/
LWR measurements will be derived for the case of an expo-
nential autocovariance function (equivalent to a roughness
exponent of 0.5). Using simulations, those results will be
extended to other roughness exponents, so a general expression
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will be obtained. Given estimates of the correlation length
and the roughness exponent, these expressions will allow
uncertainty estimates to be made for any measurement of
LER/LWR. While important in its own right, these error esti-
mates will also allow better prediction of the impact of LER
on other lithography metrics such as local critical dimension
uniformity.”

2 Derivation of the Uncertainty of LER
Measurement

The typical estimate of standard deviation of a rough feature
is given by the well-known equation

N-1 ’ )
where s is the sample estimate of the true value o, w; is the
linewidth (for the case of LWR) measured at a position iAy
up from the Oth measurement position, and w is the mean of
the N measurements made over a line of length L = NAy.
The sample estimate of the variance is, of course, the square
of s. Assuming a stationary stochastic process, the expected
value of the sample variance can be found as

E[s’] =6 —
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where R, is the discrete autocovariance function (ACF),
describing the correlation between points a distance mAy
apart along the feature. Note that for finite N, the sample
estimate of the variance is biased lower by the correlation
behavior of the roughness. The expected value of the stan-
dard deviation is given by
E[s] = \/E[s?] — var(s). 3)
Thus, to find the bias in our measured LER (i.e., in s5), we
need an expression for the variance of the standard deviation
estimate, which is needed in any case to provide an estimate
of the uncertainty in our measurement.

We will begin by finding an expression for var(s?).
Recently, expressions were derived for the variance of the
discrete ACE.* Consider the case of an exponential ACF

ACF(t = mAy) = 6%e™ /< = 6%p" p=e¢, m>0,
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where ¢ is the correlation length. For this particular ACF

var(s?) = (%) 2var[Rd(m =0)].
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For typical parameters such that Ay < £ < L, the hyperbolic
functions of can be approximated by the first few terms of
their Taylor series, giving

s (-] o

Equation (5) was derived assuming the mean of the distribu-
tion was known a priori. In reality, the ACF is estimated
using the sample mean. Such mean detrending will cause
a reduction in the ACF and its variance.>* For Ay < ¢,

28 &\ 1?
var[Ry_mean (m = 0)] = var[R;(m = 0)]|1 — T 1 -7
@)

The var(s) can be approximated from the var(s?) by

var(s?) ~ 4c°var(s). ®)

The standard error (SE) of our roughness estimate s is simply
the square root of var(s)

SE(s) ~ 0'\/ Var[R"‘“ZZ‘fm =0 9)

Combining Egs. (6), (7), and (9),

Var[Rd—mean(m = 0)] ~ 25 95 1 Ay 2
A== () 0-2) [+ (3]
el 9 1A\ _ [é

Equation (10) is our first desired result: an estimate of the
random uncertainty of our LWR measurement (i.e., the
uncertainty in the standard deviation of the linewidth of
the rough feature). As an example, consider the measurement
of a I-um-long line whose roughness has a correlation length
of 20 nm. The SE of the LER or LWR measurement will be
10%, so the 95% confidence interval will be ~ &+ 20%.

This estimate of the SE allows us to complete Eq. (3) and
determine the bias in our roughness estimate for the case of
an exponential ACF. For typical values of parameters,

E[s’] = o [1 _Nz_ 1 (1 fp) <1 _N(ll—p))}
za2{1—%<1—§>], (i

(-9
o= (-5 - () o

Since L > ¢, it is clear that the bias in s will be small com-
pared to the SE of s. For example, for the same case as
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before, with £ = 20 nm and L = 1000 nm, the bias is only
2.5% (as compared to the 20% confidence interval due to
the SE).

Our final estimate for the SE of the roughness s can now
be given by replacing the true standard deviation ¢ in
Eq. (10) with its estimate from Eq. (13).

O JE( B\, (AN €

This result is intuitive when compared to the case of uncor-
related measurements. For n independent and identically dis-
tributed measurements, the SE of the standard deviation is
generally estimated as s/v/2n. For a rough line of length
L and a correlation of length £, the number of statistically
“independent” pieces along the line is L /&, so the approxi-
mate form of Eq. (14) becomes the textbook result.

The results presented so far assume the measurement of a
single feature. Often, multiple features are measured and the
results averaged together. It seems reasonable to assume that
each feature is independent of the others, so if M features are
measured the SE of the resulting averaged LER standard
deviation will be reduced by +/M. From the perspective of
SE(s), this is equivalent to measuring one feature of length
ML. The bias, on the other hand, is not affected by the meas-
urement of multiple features since the bias is the same for
each one.

3 Comparison to Simulation

To validate the above expressions, simulated rough features
with a predetermined autocovariance behavior were gener-
ated and virtually measured to obtain the standard deviation
of the roughness.’” By repeating these simulations on the
order of 10° times, both the mean and standard deviation
of the measured roughness standard deviation were obtained.
The correlation length was varied over a range of 5 to 50 nm,
the measurement grid size was varied between 1 and 10 nm,
and the number of measurement points ranged from 128 to
1024. All simulations used a true 1-sigma LER of 2 nm (an
arbitrary choice since the results will scale linearly with this
value). The results are shown in Fig. 1.

The results from Fig. 1 show a very good match between
simulations and the analytically derived expressions from the
previous section. The largest deviation in Fig. 1(a) between
simulation and Eq. (13) comes when &/L is at its largest
(near 0.1). These results can now be extended by simulating
features with different correlation behavior. Most LER/LWR
data have been found to be well described by the Palasantzas
power spectral density (PSD) function®

PSD(0
PSD(f) = T (zﬂfg()z)]ﬁﬂﬁ’ (15)

where H is the Hurst roughness exponent and PSD(0) is
found (using the gamma function, I') by

VAT(H + %)} |

I'(H) (16)

PSD(0) = 2025[

The PSD and the ACF form a Fourier transform pair. When
H = 0.5, the Palasantzas PSD is the Fourier transform of the
exponential ACF of Eq. (4). Using this PSD function as an
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Fig. 1 Comparing simulations to analytical expressions: (a) the mean
of the standard deviation of many simulated rough features as com-
pared to Eq. (13) and (b) the standard deviation of the standard
deviation of many simulated rough features as compared to Eq. (14).
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Fig. 2 Varying the Hurst roughness exponent H, the variance of the
simulated LER is shown relative to that for H = 0.5 (symbols). The
line shows a plot of Eq. (17).

input, rough features were generated over a range of rough-
ness exponents. Figure 2 shows the var(s) relative to that
obtained for H = 0.5. The simulated results can be approxi-
mated by
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SE(s) ~ s (%) [2H — (H - 0.5)2]. (17)

The analytical and simulation results presented so far
assume ideal measurements. Real roughness measurements
include noise in the measurements (which add in quadrature
to the measured variance of the linewidth or line edge) and a
non-zero width metrology probe that averages the roughness
over the width of the probe.'* Using simulations to investi-
gate these effects, it was found that metrology noise and met-
rology probe averaging both have only a very small impact
on SE(s) (changing the value by only a few percent for typ-
ical parameter values) and so can be neglected.

4 Conclusions

The derivations and simulations presented above have
accomplished two goals. First, a general expression that
allows error estimates to be made for a measurement of LER
or LWR has been developed. By estimating the three param-
eters of the PSD (o, &, and H), a measurement of o for
a rough feature can be accompanied by its SE using
Eq. (17). Typical SEs are likely to be in the 5% to 15% range,
so 95% confidence intervals on the measurements will be in
the 10% to +30% range. Such error estimates are critical,
for example, when comparing resists or processes to decide
which provides better LER performance. Small differences
in measured LER are unlikely to be statistically significant.
It should be noted that each of our estimates of o, £, and H
for use in Eq. (17) has uncertainties that will propagate into
uncertainty in our SE estimate.

The second goal was to develop a better estimate of the
bias in the measured LER. Most prior results described the
bias in the variance,”® thus leaving out an important term due
to var(s) when determining the bias in the standard
deviation. Including this term increases the estimated bias by
about 25%. It is hoped that the simple results presented
here will change the current practice of reporting roughness
measurements, so estimates of their uncertainty become
commonplace. Further, the approach taken here has a wider
application to two-dimensional surface roughness measure-
ments, although a full treatment is outside of the scope of
this paper.
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