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Abstract  
Critical dimension scanning electron microscope (CD-SEM) metrology has long used empirical 
approaches to determine edge locations.  While such solutions are very flexible, physics-based 
models offer the potential for improved accuracy and precision for specific applications.  Here, 
Monte Carlo simulation is used to generate theoretical linescans from single step and line/space 
targets in order to build a physics-based analytical model, including the presence of bottom 
footing and top corner rounding.  The resulting analytical linescan model fits the Monte Carlo 
simulation results for different feature heights, widths, pitches, sidewall angles, bottom footing, 
and top corner rounding.  This model has also been successfully applied to asymmetric features 
such as sidewall spacers encountered in self-aligned double patterning. 

 
Subject Terms: Scanning electron microscope, SEM, linescan model, critical dimension, JMONSEL, CD-SEM, 
edge detection 
 

1. Introduction 
 
 Scanning electron microscopes (SEMs) are frequently used to measure critical dimensions (CDs) during 
semiconductor integrated circuit and other nanomanufacturing.  As the name implies, a SEM scans a beam of electrons 
across a sample and creates an image by detecting secondary electrons (secondaries) released from the sample.  
Analysis of a one-dimensional cut through this 2D image (called a linescan) is used to measure the width of a feature 
(the CD), and possibly other shape properties of the feature as well.  This is a form of inverse problem, where the image 
of an object is given, and the desire is to “invert” the imaging process to more accurately describe the object of that 
image. 
 
 The inverse problem is based fundamentally on the forward problem, that is, predicting an image for a given 
object.  For SEM imaging, this generally involves the use of a Monte Carlo simulation of electron-material interactions.  
In this work, the JMONSEL Monte Carlo simulator for SEM image prediction was used.1-3  The nature of Monte Carlo 
calculations, with their random components, makes inverse calculations essentially impossible.  Thus, in practice the 
extraction of a CD or other information about the shape of the object from a SEM image (i.e., solutions to the inverse 
problem) generally involves simple approaches that take little or no account of the physics of SEM image formation.4  
Such techniques have proven mostly adequate in the past.  However, as feature sizes shrink and the demands for 
precision and accuracy scale with those sizes, current methods may no longer suffice.5,6 
 
 A different approach is model-based library matching.7-12  In this technique, a forward-calculated imaging 
model is used to generate a library of simulated images over a range of expected feature types and sizes using preset 
materials.  When an SEM image is taken from an experimental sample, it is matched and interpolated between the 
closest library images.  While this approach can be effective, the computational burden of generating a sufficiently 
robust library of images is severe and matching with confidence is a challenge. 
 
 In our prior work, we have taken a somewhat intermediate path between the previously described approaches 
by developing a physics-inspired empirical expression for the output of an SEM called the analytical linescan model 
(ALM).13,14  The ALM is similar to the model pioneered by Frase et al., who used the same basic approach adopted in 
this work.15  The ALM is calibrated by fitting to JMONSEL simulations of SEM images for a range of feature sizes and 
shapes.   
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 In this work, the ALM is extended over a wider range of feature thicknesses, sizes, and sidewall angles, 
focusing on trapezoidal silicon features on a flat silicon substrate.  Additionally, the impact of footing on the bottom of 
the trapezoid and corner rounding at the top of the trapezoid will be explored.  The ALM will then be extended to 
asymmetrically shaped features, using sidewall spacers encountered in self-aligned double patterning (SADP) as the 
example. 

2. Simulation of Scanning Electron Micrograph Linescans 
 
 The first step in developing a simplified analytical linescan model is to generate a series of calculated SEM 
images from known sample structures.  Simulations of SEM images were performed using JMONSEL (Java Monte 
Carlo Simulator of Secondary Electrons), a program developed at the National Institute of Standards and Technology 
(NIST).1-3  JMONSEL is used here as a “virtual SEM”, where the user can input idealized structures from a limited list 
of materials, with perfect user-defined geometries.  The user can also define SEM parameters such as the number of 
incident electrons per pixel, pixel size, spot size, and beam energy. While the program can also account for charging 
phenomena in and around the sample and fields created by the detector, these effects were neglected in the simulations 
performed for this study. 
 
 In our previous study,14 the virtual samples consisted of isolated edges (steps) and line/space patterns of 
various sizes and pitches on a uniform substrate.  Features were made of silicon on a planar silicon substrate.  The 
sidewall angle of the edge or feature was varied between 45° and 91°.  The height of the feature was varied from below 
10 nm to 100 nm, though was focused on the range from 20 – 50 nm.  The landing energy was set at 500 eV and a point 
beam of electrons was used at each pixel location (with the effect of a larger beam size to be included later).  Near the 
line edge, a pixel size of 0.1 nm was used.  The number of simulated incident electrons per pixel was between 10,000 
and 25,000.  An example linescan is shown in Figure 1. 
 
 

   

 
Figure 1. Example outputs from JMONSEL.  Top-left: Simulated trajectories in a 30 nm line/space Si-on-thin SiO2 structure at 
500 V and 0.5 nm incident spot (one standard deviation Gaussian profile), where the interaction volumes can be seen at feature tops 
and bottoms.  Top-right: Example linescan, including waveforms for secondary electron (SE) and backscatter electron (BSE) yields. 
SE electrons are defined as having energies ≤ 50 eV, with BSE electrons defined as having energies > 50 eV.  Bottom: Simulated 
image of same waveform for N=1000 (top) and N=100 (bottom).  Figure from Ref. 13.  
 
 In this work, we extend the trapezoidal feature shape by adding bottom footing and top corner rounding.  As 
seen in Figure 2, the foot was simulated as a 2-nm tall trapezoid whose base was extended to create a “foot” of various 
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widths.  Atop this short trapezoid was the feature trapezoid (of the same material) of height h – 2 nm, where h is the 
total feature height.  Corner rounding was simulated by removing material outside of a circle of a given radius that 
touches both the top and sidewall of the feature.  Both the bottom foot width and the top corner rounding radius were 
varied to see their impact on the simulated linescan and the ability of the ALM to fit those linescans. 
 
 

 Figure 2. Geometry used to define the foot width Wf and top corner rounding radius R.  
 

3. The Analytical Linescan Model 
 
 Our previous work derived a simple analytical linescan model.13,14  The linescan, corresponding to the detected 
secondary electrons, will be SE(x), with x = 0 at the edge position and the feature material found at x > 0.   For an 
isolated vertical edge (step), we have the following linescan expression for the case of a point incident beam: 
     )(1)()(1)()( //// xueeSExueeSExSE vebf xvxexb

x
f      (1) 

 
where u(x) is the unit step function.  For the substrate, f and b are the forward and backscatter ranges, respectively, 
within the substrate material, f is the fraction of substrate forward scatter-generated secondaries absorbed by the step, 
and b is the fraction of substrate backscatter-generated secondaries absorbed by the step.  When the electron beam is 
incident on the top of the step, e is the forward scatter range of the step material and e is the fraction of those forward-
scattered electrons that escape through the edge of the step.  When the incident beam is very close to the step, however, 
the interaction volume of the forward-scattered electrons with the material is reduced, causing the generation of less 
secondaries.  Thus, we subtract a term vxv e  /  to account for this volume loss where v < e.  SE(–∞) is the 
secondary electron signal for the substrate a long way from any feature, and SE(∞) is the secondary electron signal for 
the top of the step a long way from the step edge.  For the case of a silicon step on a silicon wafer, these two values will 
be the same. 
 
 For the case of a sloped step, a sloped region of width h/tan exists between the top and bottom of the step, 
where  is the sidewall angle.  If the width of the sloped region is sufficiently large, the middle of the sidewall region 
has a steady secondary electron signal, which we will call SEedge. This signal level then falls to the bottom level over a 
characteristic distance 1 at the bottom of the step, and rises to the top level over a characteristic distance 2 at the top of 
the step, forming an S-shaped waveform.  The model for the linescan in this sloped region is 
 
   edgebf SESEc  1)(1  
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   edgeve SESEc  1)(2      2112 /)tan/(/)tan/(12//)tan/(21)(  xhhxhedge eecceeccSExSE    (2) 
 
 Many of the model parameters used in the above two equations are a function of the sidewall angle, and a few 
are a function of step height.  Letting p~  represent the value of a parameter p for a 90º step, the variation of the linescan 
parameters with sidewall angle and feature height for the case of silicon features on a silicon wafer take the forms 
 

hsbb   
 2cos375.0cos218.0~  ff  

 2cos1~   bb    2cos1~   fefe    cos1~  ee     cos43.908.0~08.0  evv    32 cos75.2cos08.4cos11.11~  edgeedge ESSE    cos02.11 10.4  e  
 cos2.1135

2
2 


 H  

(3) 

 
where all dimensions are in nanometers.  Further, these equations only apply to the case where h ≥ 20 nm.  The values 
of the parameters for a 90º sidewall angle are given in Table I. 
 
 

Table I.  Best fit parameters to rigorous Monte Carlo simulations of an isolated silicon step on a 
silicon wafer at 500 V electron landing voltage. 

 Silicon 
Step 

Si wafer background signal, SE(-∞) 0.817 
Si wafer forward scatter range, f (nm) 1.95 

Si wafer backscatter range per step height, sb = b/h 0.82 
Si wafer forward scatter absorption, f~  0.245 

Si wafer backscatter absorption, b~  0.22 
Step sidewall signal, edgeES~  1.52 

Step forward scatter range, e~  (nm) 2.66 
Step volume loss range, v (nm) 0.26 

Step edge enhancement factor, e~  1.65 
Step volume loss factor, v~  0.64 

Step background signal, SE(∞) 0.817 
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 Real scanning electron microscopes do not have point beams of electrons impinging on the sample.  Instead, 
the beam is approximately a Gaussian owing to the finite resolution of the microscope and other beam non-idealities.  
Thus, the expected linescan will be the point linescan model (equations (1) and (2) combined) convolved with a 
Gaussian.14   
 
 A feature such as a line or a space can be constructed as the combination of two edges, using the ALM for an 
edge defined in the previous section.  However, small spaces act as traps for escaping secondary electrons, so that some 
of the model parameters must be modified as a function of the size of the space.  In the region of the space, the result is 
that smaller spaces have smaller forward scatter absorption and larger backscatter absorption. 
 

     3.1)65.0/(1~ hsff e ,      hsbb e /35.11~   (4) 
 
where s is the spacewidth.  Likewise, when the electron beam scan across the top of the feature, secondaries escaping 
out of the edge of the feature are more likely to be trapped in the space, causing a reduction in both the step edge 
enhancement factor and the step volume loss factor. 
 

     62.0)93.0/(1~ hsee e ,         5.0)5.0/(1~ hsvv e  (5) 
 
 Figure 3 shows an example where are of these factors are taken into account.  The ALM prediction matches the 
Monte Carlo simulations extremely well.  And while the example given is for a point beam of electrons, the use of a 
Gaussian beam incident on the sample does not pose any particular challenges and does not reduce the quality of the 
match to the Monte Carlo results. 
 
 

 Figure 3. The ALM (red smooth curve) compared to the Monte Carlo simulation results (blue jagged curve) for 30-nm tall silicon 
features on a silicon wafer, SWA = 90º, 10-nm lines and spaces (RMS error = 0.0075).  

4. Adding Footing and Top Corner Rounding to the ALM 
 
 So far, all features incorporated into the ALM have been trapezoids.  JMONSEL was also used to simulate the 
impact of bottom footing and top corner rounding on the linescans, varying both the width of the foot and top corner 
rounding radius up to 10 nm.  Figure 4 shows the impact of a small foot.  For the no-foot case, the sharp minimum of 
the linescan corresponds to the bottom corner of the trapezoid.  Adding a 1-nm wide foot moves this minimum by 1 nm, 
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but also increases the SE signal of that minimum (Fig. 4a).  As the length of the foot grows, the minimum corresponding 
to the outside edge of the foot becomes less distinct.  Just as the position of the bottom of the feature becomes indistinct 
in the presence of a foot, the position of the linescan minimum becomes correspondingly less distinct.  From the 
perspective of the ALM, the presence of a foot a few nanometers in length or longer is about equivalent to making f ≈ 
0.  If the goal of using the ALM is to shed light on the width of the feature (that is, ignoring the foot), then setting f ≈ 0 
is probably sufficiently accurate. 
 
 

      (a) (b) 
Figure 4. Monte Carlo simulation results showing the impact of a 2-nm tall trapezoidal foot of varying widths on the resulting 
linescan (20-nm tall, 90º silicon edge on a silicon wafer, 500 V, point beam of electrons).  The linescans with and without a foot are 
compared for (a) a 1-nm wide foot, and (b) a 2.5-nm and 5-nm foot. 
 
 
 Rounding the top corner of the trapezoidal feature impacts the linescan as shown in Figure 5.  There are three 
distinct impacts of top corner rounding.  First, the position of the peak, which corresponds to the sharp top corner of the 
trapezoid, moves to the left as that corner becomes rounded.  This is equivalent to an effective feature height that is 
reduced.  In fact, the ALM matches the moving position of the peak signal if an effective feature height is used given by 
 

7.1/Rhheff   (6) 
 
 The second effect of top corner rounding is the reduction of the peak linescan signal.  This reduction makes the 
position of the top CD less distinct, just as the top CD of the actual feature becomes less distinct in the presence of 
rounding.  The ALM can account for this as an increase in the volume loss factor, v.  The loss of the corner material 
provides less interaction volume to generate secondaries, making the peak signal lower.  By fitting the ALM to Monte 
Carlo simulated linescans for a variety of top corner rounding radii, the results shown in Figure 6 were obtained.  The 
impact of top corner rounding on v levels off as the radius increases.  Also, the largest effect is for a sidewall angle 
near 80º. 
 
 The final effect of top corner rounding that can be observed in Figure 5 is a reduction of the linescan slope 
corresponding to the inside of the edge bloom of the feature.  This has the effect of making an extrapolation to the top as 
a method of obtaining the top CD less precise.  From the perspective of the ALM, the reduction of the slope is 
equivalent to reductions of both the top forward scatter range and the top volume loss range.  Figure 7 shows the ALM 
parameters as fitted to Monte Carlo results as a function of top corner rounding radius.  The step feature volume loss 
range increases approximately linearly with the top corner rounding radius and is independent of sidewall angle.  The 
step feature’s forward scatter range is dependent upon sidewall angle, but that dependence disappears as the corner 
radius increases.  Essentially, as the top corner radius exceeds the forward scatter range, the scattered electrons stop 
communicating with the sidewall and only depend on the rounded corner shape. 
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    (a) (b) 
Figure 5. Monte Carlo simulation results showing the impact of top corner rounding of varying radii on the resulting linescan (50-
nm tall, 80º silicon edge on a silicon wafer, 500 V, point beam of electrons).  The linescans with and without corner are compared in 
(a) with the region around the peak magnified in (b). 
 

 Figure 6. Fitting the ALM to Monte Carlo simulation results allows the step volume loss factor v to be correlated with the top 
corner rounding radius.  Here, the change in v compared to no top corner rounding is shown. 
 

      (a) (b) 
Figure 7. Monte Carlo simulation results showing the impact of top corner rounding of varying radii on two ALM parameters (20-
nm tall silicon edge on a silicon wafer, 500 V, point beam of electrons): (a) the feature volume loss range v, and (b) the feature 
forward scatter range e. 
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 One purpose of adding top corner rounding to the ALM is to see if the ALM can match simulated linescans for 
sidewall spacer features frequently encountered during self-aligned double or multiple patterning.  These features are 
asymmetric, with one side essentially 90º with a sharp top corner, and the other side sloped (for example, at 80º) and 
with a rounded corner.  Figure 8a shows an example of the geometry used.  Figure 8b shows the result of one Monte 
Carlo simulation and the best fit ALM.  Obviously, the ALM is capable of adequately fitting this asymmetric linescan.  
Further work is required to calibrate the ALM parameters over a wide enough range of conditions to make it predictive 
for these features. 
 
 

      (a) (b) 
Figure 8. Applying the ALM to sidewall spacer features:  (a) an example of a set of asymmetric sidewall spacer features, and (b) 
Monte Carlo simulated linescans (blue jagged line) with a best-fit ALM (smooth red line).  The silicon feature lines and spaces were 
7 nm wide at the bottom.  
 

5. Conclusions and Future Work 
 
 The analytical linescan model (ALM) that has been developed in this and previous work offers several 
important advantages.  After calibration against a rigorous Monte Carlo simulator for the various materials involved in 
the sample, the ALM can, with quite reasonable accuracy, predict the linescans of those materials for a wide variety of 
geometric shapes.  In particular, for the case of a 500 eV landing energy, feature thicknesses between 20 and 100 nm, 
and sidewall angles greater than 45º, the calibrated ALM matches the Monte Carlo simulated secondary electron 
waveforms over a wide range of feature sizes, pitches, thickness, and sidewall angles.  While only silicon features on 
silicon wafers were tested here, it is expected that similar calibration procedures would yield similar results for a wide 
variety of materials.  Since the model is based on reasonable physical assumptions and uses physically-based 
parameters, both interpolations and extrapolations to a wide range of geometries should prove possible. 
 
 In addition, top corner rounding up to about 10 nm in radius does not require a modification of the form of the 
ALM, only a change in its parameter values.  Footing can also be accommodated, if modeling the fine detail of the foot 
is not needed.  The ALM is applicable not only to symmetrically shaped lines and spaces, but to asymmetric features as 
well.  Still, more work is required to complete the calibration of the ALM over a full range of small features with 
varying sidewall angles and top corner rounding.  Future work will carry out these calibrations with the hope of making 
the ALM predictive of features such as sidewall spacers used in self-aligned double patterning.  Extension to other 
material sets is also important, as well as exploration of how charging influences the results. 
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