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Measuring the frequency response of roughness is necessary in many applications, leading to the

common use of the power spectral density (PSD) of the roughness. But biases and random

uncertainties in the PSD have led some to explore the use of the autocovariance function (ACF)

and the height–height covariance function (HHCF) instead. These functions also entail

systematic biases and random uncertainties when applied to measured roughness, requiring

detailed characterization. A combination of analytical derivations and simulations of rough edges

have led to a thorough characterization of these biases and uncertainties for the measurement of

line-edge and linewidth roughness of lithographically produced features. The results show that

ACF estimation is problematic, but that HHCF estimation is a reasonable alternative to PSD anal-

ysis under conditions typical of linewidth roughness measurement in the semiconductor industry.
VC 2016 American Vacuum Society. [http://dx.doi.org/10.1116/1.4961445]

I. INTRODUCTION

Line-edge roughness (LER) and linewidth roughness

(LWR) in lithography are increasingly important to semicon-

ductor manufacturing. As feature sizes shrink, the impact of

feature roughness on device performance grows. The nature

of these device impacts is a function of the nature of the

roughness, which includes both the magnitude of roughness

and its frequency content. Low frequency roughness, occur-

ring over relatively long length scales, behaves like an error

in the mean critical dimension (CD) or edge position, result-

ing in feature-to-feature variation often called local CD uni-

formity or local edge placement error.1 High frequency

roughness gives within-feature variation that impacts the

electrical behavior of a feature in a very different way.

The frequency behavior of roughness can be characterized

in several ways: by its power spectral density (PSD), by its

autocovariance function (ACF), and by its height–height

covariance function (HHCF). All of these functions are

directly related to each other, so that knowledge of one

allows determination of the other two. But perfect knowledge

of any of these functions is impossible, and the practitioner

must estimate these functions from available measured data.

Estimation of a roughness function (PSD, ACF, or HHCF)

from a finite-length feature sampled with a finite number of

measurements produces both random and systematic errors in

the estimated function. The magnitude of these errors and

their impact on the interpretation of the function depends on

which function is being estimated. Thus, an obvious question

arises: when characterizing roughness using measurements,

is one function preferred over the other two?

Estimating the PSD directly from roughness data (called

nonparametric estimation) produces systematic errors caused

by leakage and aliasing, and random errors with the PSD’s

standard deviation equal to its mean value.2–7 While leakage

can be sufficiently minimized through the use of data win-

dowing (also called data tapering), aliasing is only partially

mitigated through the high-frequency averaging inherent in

any measurement of roughness.2,3 Detrending (subtracting

off the sample mean for LWR and subtracting off a best-fit

line for LER) creates further systematic errors in the low-

frequency PSD.3

The power spectral density is the Fourier transform of the

autocovariance function. Thus, the ACF could be estimated

from the estimated PSD. However, the ACF can be better

estimated directly from the roughness data, producing an

estimate with different biases and uncertainties. As will be

described below, ACF estimation is even more problematic

than PSD estimation. The HHCF is another important

(though underutilized) tool for characterizing roughness and

a viable alternative to the use of the ACF or the PSD.8–11 In

this paper, both simulation and analytically derived expres-

sions will be used to characterize the systematic and random

errors found in the estimation of the ACF and HHCF for

LER and LWR. While the examples presented will be taken

from the field of semiconductor lithography, the results have

wide application to many autoregressive processes, includ-

ing time series analysis.

II. ACF UNCERTAINTY

Measuring roughness is noisy business. The power spec-

tral density of a single rough feature has a standard error at

each frequency equal to the PSD at that frequency (i.e., the

relative uncertainty is 100%). Many PSDs measured from

features generated by the same process are often averaged to

lower this uncertainty. Likewise, the autocovariance function

and the height–height covariance function can have large

variances for a single feature.

Consider first the ACF of the feature edge position (or

feature width), defined as

ACFðs; sÞ ¼ hðwðsÞ � hwiÞðwðsþ sÞ � hwiÞi; (1)

where w is the measured linewidth/edge position, s and sþ s
are the positions where measurements are made along thea)Electronic mail: chris@lithoguru.com
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length of the line, hwi is the true mean linewidth/edge posi-

tion of the feature, and h:::i means an average over many

instances of rough features. Throughout this paper, all fea-

tures will be assumed to have the properties of stationarity

(that is, the statistical properties of the feature, such as mean,

variance, covariance, etc., remain constant along the length

of the feature) and ergodicity (the statistical properties of a

feature, such as mean, variance, covariance, etc., remain

constant from feature to feature). Under these assumptions,

the ACF is only a function of s (not s), and averaging over

many features can be replaced by averaging over the length

of one feature. [Although terminology is not uniform, it is

common to call ACF(s)/ACF(0) the autocorrelation func-
tion. To avoid confusion, this paper will only refer to the

autocovariance function as defined by Eq. (1).]

To estimate the ACF directly from sampled (discrete)

data, with sampling distance Dy, lag s¼mDy, position

s¼ nDy, line length L¼NDy, and a total of N measurements

along the line, a common estimator is

Rd sð Þ ¼ 1

K

XN�1�m

n¼0

w sð Þ � hwi
� �

w sþ sð Þ � hwið Þ; (2)

where K¼N�m produces an unbiased estimator, and K¼N
produces the more commonly used biased estimator. The

reason why a biased estimator is more popular will be

explained below. For the case of continuous data, the ACF

estimator becomes

Rc sð Þ ¼ 1

T

ðL�s

0

w sð Þ � hwi
� �

w sþ sð Þ � hwið Þ ds; (3)

where the unbiased and biased estimators use T¼ L � s and

T¼ L, respectively.

A. Variance of ACF estimators

For the continuous data case, the variance of the ACF

estimate can be calculated from12,13

var Rc sð Þð Þ ¼ 1

T2

ðL�s

� L�sð Þ
L� s� jrjð Þ

�
ACF2 rð Þ

þ ACF r þ sð ÞACF r � sð Þ
�

dr; (4)

where the distribution of line edge positions or linewidths is

assumed to be Gaussian and the mean is assumed to be

known. Consider an extremely common model for the auto-

covariance function of roughness, an exponential

ACFðsÞ ¼ r2e�jsj=n; (5)

where r2 is the true variance of the line edge/linewidth and n
is the correlation length. For the discrete case, this model is

also known as the autoregressive model of order 1, AR(1).

Using this model in Eq. (4), the variance of the ACF estima-

tor is13,14

var Rc sð Þð Þ
r4

¼ n2

2T2
2e�a 1�yð Þ þ a 1� yð Þ � 1þ e�ay a 1� 2yð Þ � 1þ a2y 1� 3y=2ð Þ

� �n o
for 0 � y � 1=2

¼ n2

2T2
e�a 1�yð Þ þ a 1� yð Þ � 1þ e�ay a2 1� yð Þ2=2

h in o
for 1=2 � y � 1; (6)

where a¼ 2L/n and y¼ s/L. Note that in the classic text by Jenkins and Watts,13 their Eq. (5.3.23) is in error for s� L/2

(y� 1/2). The correct equation is shown here, and is correct in the original reference by Fuller.14 Note also that

hRc sð Þi2¼r4n2

2T2
e�ay a2 1�yð Þ2=2

h in o
¼ L�s

T
ACF sð Þ

� �2

: (7)

The discrete case can similarly be evaluated by changing Eq. (4) from an integral to a summation. Defining q ¼ e�Dy=n,

the autoregressive coefficient for lag 1, this results in summations of powers of q, which can be evaluated analytically. The

result is

var Rd mð Þð Þ
r4

¼ 1

K2

2q2

1� q2ð Þ2

 !
2q2 N�mð Þ þ N � mð Þ 1� q4

2q2

 !
� 1þ q2 m�1ð Þ 1� q2

� �
N � 2mþ 1ð Þ � 1

� �( )

þ 1

K2
q2m N � mð Þ 2m� 1ð Þ � m m� 1ð Þ
� �

for 0 � m � N=2

¼ 1

K2

2q2

1� q2ð Þ2

 !
q2 N�mð Þ þ N � mð Þ 1� q4

2q2

 !
� 1

( )
þ N � m

K
qm

� 	2

for N=2 � m � N: (8)

In the limit of small Dy, Eq. (8) converges to Eq. (6).
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These equations were also checked against simulations. A

method for generating randomly rough features with a given

autocorrelation behavior has been previously described.15

This method was used to simulate rough features, creating

an instantiation of a zero-mean random variable w(s). Using

Eq. (2), both biased and unbiased estimators for the discrete

ACF were calculated from a simulated rough feature.

Repeating this process on the order of 108 times, good

estimates of the variance of these ACFs were produced.

Figure 1 plots both Eqs. (6) and (8) along with the simulation

results. Since for this case the measurement grid size Dy is

small relative to the correlation length n, there is very little

difference between the discrete and continuous equations.

Further, the match to the simulations is sufficiently good that

the analytical and simulation curves overlap and are indistin-

guishable [Fig. 1(a)]. Plotting the difference in variance

between simulation and the analytical equations reveals the

small differences [Fig. 1(b)]. This difference was scaled to

make comparisons more useful, as follows:

Continuous: ec ¼
T2

r4L2
var Rcð Þequation � var Rsimulationð Þ
� �

;

Discrete: ed ¼
K2

r4N2
var Rdð Þequation � var Rsimulationð Þ
� �

:

(9)

As expected and as seen in Fig. 1(b), the discrete Eq. (8)

matches the simulation of a discrete ACF better than the

continuous Eq. (6).

The simulations suffer from the error of approximating a

continuous rough feature with a discretely generated rough

feature.15 The magnitude of the error is a function of the sub-

sampling ratio s, the ratio of the measurement grid size Dy to

the grid size used to generate the feature. The small values

of ed shown in Fig. 1(b) are a result of this bias in generating

the rough feature using s¼ 32 rather than s¼1.

In most of the work presented below, analysis of a contin-

uous random process will be used to approximate the dis-

crete measurement of random roughness. The difference

between Eqs. (6) and (8) quantifies the error in this approach.

The largest difference occurs at m¼ 0 (and thus s¼ 0).

Using a Taylor series expansion for the discrete case

var Rd m ¼ 0ð Þð Þ � var Rc s ¼ 0ð Þð Þ
var Rc s ¼ 0ð Þð Þ � Dy2

3n2

2Lþ n
2L� n

� 	
:

(10)

This relative difference is about constant for all s until s
approaches L for both biased and unbiased estimators. Since

in general it will be safe to assume that L � n, the continu-

ous version of the ACF accurately approximates the discrete

ACF whenever Dy is much smaller than n. For example,

there is less than 1% error in estimating the variance using

the continuous ACF estimator to approximate the discrete

ACF estimator if n> 6Dy and less than 4% error when

n> 3Dy.

It is common advice in both textbooks and research

papers that the biased estimator for the ACF is preferred

over the unbiased estimator. The reason is clear from Eqs.

(6) and (8) since the variance of the unbiased estimate grows

as s approaches L (that is, as T or K approach zero). Figure

2(a) shows that the variance of the biased estimator is always

lower than that of the unbiased estimator and goes to 0 as s
approaches L. The downside of using the biased estimator is

obviously the bias. The bias is easily determined from Eq.

(2) or (3).

bias ¼ hRbiased sð Þi � ACF sð Þ ¼ � jsj
L

ACF sð Þ: (11)

The relative bias grows linearly with s, but since the ACF

decreases exponentially with s, the absolute bias decreases

quickly as s grows. For the important and common case

where L � n, the bias remains very small in the region of s
where the ACF is noticeably above 0. As a result, the mean

square error (MSE, the sum of the variance of the estimator

and the square of its bias) remains lower for the biased esti-

mator than the unbiased estimator. For this reason, the biased

FIG. 1. (Color online) Comparison of the simulated variance (or its square

root, the standard deviation) of the estimated ACF to Eqs. (6) and (8) for

continuous and discrete cases (biased estimator, n¼ 10 nm, L¼ 256 nm,

Dy¼ 1 nm, and 109 simulations): (a) The standard deviation of the estimated

ACF showing all three curves on top of each other; (b) the difference in the

variance between simulation and equation scaled as in Eq. (9). For these

simulations, the generated rough features had s¼ 32 subsampling points for

each measurement point to approximate a continuous feature.
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estimator of the ACF is the common choice whenever the

ACF decays faster than linearly with s.

For lithography applications, it is common to measure

multiple instantiations of the roughness (that is, multiple fea-

tures that are nominally identical) and average the resulting

ACFs. If M features are measured, the average ACF will

have a variance reduced by a factor of M. The bias, however,

will remain constant. Figure 2(b) shows an example where

50 features have been measured. In this case, the unbiased

estimator has a lower MSE for small s, but higher MSE for

larger s. In general, M must be greater than 20 before the use

of an unbiased estimator would improve the low-s estimates

compared to the biased estimates. To improve the estimates

for s< n, one must use M> 20; to improve the estimates for

s< 2n, one must use M> 60; and to improve the estimates

for s< 3n, one must use M> 300. In any case, the use of an

unbiased estimator of the ACF is not recommended for

s> L/2.

For the biased ACF estimator, the worst-case variance

occurs when s¼ 0. For the unbiased ACF estimator, this is

also the worst-case variance for s�L/2. Thus, it is useful to

understand how this zero-lag variance scales with the ACF

parameters. For the very common case where L> 3n, Eqs.

(6) and (8) can be evaluated at s¼m¼ 0 to give

var Rc s ¼ 0ð Þð Þ
r4

¼ var Rc s ¼ 0ð Þð Þ
hRc s ¼ 0ð Þi2

� 2n
L

1� n
2L

� 	
;

var Rd m ¼ 0ð Þð Þ
r4

� 2

N

1þ q2

1� q2

 !
1� 2q2

N 1� q4ð Þ

( )

¼ 2

Ntanh Dy=nð Þ 1� 1

Nsinh 2Dy=nð Þ


 �
:

(12)

Thus, the variance of the ACF estimate is kept low when L
� n. Note also that Rcðs ¼ 0Þ and Rdðm ¼ 0Þ (and their var-

iances) are the same for the biased and the unbiased

estimators.

For the case when L� n and s� L/2, the variance of the

continuous estimator of the ACF can be approximated by

var Rc sð Þð Þ
r4

� n L� sð Þ
T2

1þ e�2s=n þ 2s
n

e�2s=n

� 	
; (13)

recalling that the unbiased estimator uses T¼ L � s and the

biased estimator uses T¼L. The relative standard deviation

of the estimator is the same for the biased and unbiased esti-

mators. For the same case as above, when L� n and s�L/2,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Rc sð Þð Þ

p
hRc sð Þi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

L� s
e2s=n þ 1þ 2s

n

� 	s
: (14)

The relative uncertainty of the ACF estimate grows rapidly

as the lag exceeds the correlation length, so that single ACF

estimates are not very useful for lags beyond about two cor-

relation lengths.

B. Impact of detrending on ACF estimators

The above analysis assumed a zero mean process (or

equivalently, a process where the mean is known exactly).

This is never the case for LER or LWR measurements. For

LWR, we use the sample mean as an estimate of the true

mean, and for LER, we subtract off the best-fit line through

the rough edge. The general term for subtracting a sample

estimate in place of the population estimate during rough-

ness analysis is detrending (also known as subtracting the

baseline). Detrending adds considerable systematic bias to

the measurement of the ACF.3,16,17 Figure 3 shows how the

measured ACF goes negative and appears to oscillate about

zero, even though the true ACF is exponential and always

positive.

Detrending also impacts the variance of the ACF esti-

mate. Figure 4 shows the standard deviation of the ACF esti-

mator as well as the square root of the mean square error

with and without detrending. While detrending reduces the

variance of the estimator [Fig. 4(a)], the bias caused by this

detrending adds to the MSE to produce an MSE that is some-

times higher and sometimes lower than the MSE for no

FIG. 2. (Color online) Comparison of biased and unbiased estimators of the

ACF (n¼ 10 nm, L¼ 256 nm, and Dy¼ 1 nm): (a) variance of the estimators

from Eq. (6) for M¼ 1; (b) plotting both the variance and the MSE of the

estimators for M¼ 50.
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detrending [Fig. 4(b)]. For the most important part of the

ACF (moderate to small lags), mean detrending (for LWR)

produces a smaller MSE than no detrending, and linear

detrending (for LER) produces about the same MSE as no

detrending (assuming M¼ 1, only a single feature is

measured).

C. Impact of measurement averaging on ACF
estimators

So far, our simulation of the measurement process

assumed a measurement probe that can precisely measure

the width/edge position of the rough feature at the exact y-

coordinate of the measurement. Practical measurement tools,

such as an atomic force microscope or a scanning electron

microscope (SEM), have a probe size greater than zero, so

that the measurement result is a convolution of the probe

response and the rough edge. For example, the width/edge

position as measured by an SEM can be approximated as the

weighted average of the rough edge multiplied by a

Gaussian electron beam shape centered at the measurement

position. This spatial averaging effect has been shown to

reduce the apparent high-frequency roughness when extract-

ing the power spectral density.2 Note also that SEM image

analysis can include the application of filters, such as a

Gaussian filter, before edge detection that can result in some

of the same effects as spatial measurement averaging. Those

effects have been considered elsewhere18,19 but will not be

considered here.

As the results below show, spatial measurement averag-

ing has a corresponding bias on the estimated ACF for small

lag s. Figure 5 shows that the bias caused by measurement

averaging reduces the estimated ACF for lag distances on

the order of the Gaussian FWHM probe size or less. Further,

simulations show that the variance of the estimated ACF is

mostly independent of the measurement probe size. The

magnitude of the zero lag bias is found empirically to be

about

ACFd s ¼ 0; probe width ¼ 0ð Þ � ACFd s ¼ 0; probe width ¼ pwð Þ
r2

� pw

2n
; (15)

where pw is the Gaussian probe FWHM. This bias due to

measurement averaging is a strong function of the shape

distribution used for the averaging. If instead of a Gaussian

probe shape a Lorentzian shape is assumed (to account for

FIG. 3. (Color online) Impact of detrending on the resulting ACF estimate.

ACFs were generated using simulation with N¼ 512 points, Dy¼ 1 nm,

n¼ 10 nm, r¼ 5 nm, and 108 ACFs used to generate these curves. A loga-

rithmic scale for the lag distance was chosen to make the differences in

ACF more noticeable. From Ref. 3.

FIG. 4. (Color online) Impact of detrending on the variance of the biased

ACF estimator: (a) square root of the variance of the ACF estimator, and (b)

square root of the MSE of the ACF estimator. ACFs were generated using

simulation with M¼ 1, N¼ 256 points, Dy¼ 1 nm, n¼ 10 nm, and 108

ACFs used to generate these curves.
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long-range backscatter electrons), the impact of averaging is

about five times greater for the same FWHM owing to the

very heavy tails of the Lorentzian distribution.

D. Impact of measurement noise on ACF estimators

Another complication in LER/LWR measurement is noise

in the measurement itself. For example, SEM images are

made of pixels with grayscale values determined by the

counts of secondary electrons detected when the electron

beam impinges on that point in the sample. In many cases,

the electron dose must be kept low to prevent modification

of the sample, so that a relatively small number of secondary

electrons are counted per pixel. This gives rise to shot noise

following a Poisson distribution so that the variance in the

electron count of a pixel equals the mean of the electron

count. This shot noise creates the “snowy” appearance so

common in SEM images and contributes to random errors in

the detected edge position. These errors are nearly uncorre-

lated, and the effect can be approximated as a white-noise

error (ignoring the resolution limit of the SEM imaging

optics) added to the actual feature roughness.20

From the perspective of the ACF, adding uncorrelated

(white) noise to the measured data will cause only an

increase in the zero-lag ACF (all other lag values being

unaffected)

ACFðs ¼ 0Þ ¼ r2
apparent ¼ r2

LWR þ r2
MN; (16)

where r2
LWR is the true LWR variance and r2

MN is the vari-

ance of the measured linewidth due to metrology noise.

Interestingly, metrology noise is of similar magnitude but

works in the opposite direction as measurement averaging

due to nonzero measurement probe width. While metrology

probe averaging lowers r2
apparent (see Fig. 5), metrology noise

increases it. This will be discussed further in the context of

the height–height covariance function in Sec. III.

III. HHCF UNCERTAINTY

The height–height covariance function is less commonly

used than the autocovariance function for describing corre-

lated roughness behavior, but it has some distinct advan-

tages. The HHCF is defined as

HHCFðsÞ ¼
D
ðwðsÞ � wðsþ sÞÞ2

E
: (17)

[Note that Constantoudis et al.8–10 have used a somewhat

less common definition of the HHCF, equal to the square

root of Eq. (17).] By carrying out the square in this defini-

tion, it is easy to relate the HHCF to the ACF:

HHCFðsÞ ¼ 2ðr2 � ACFðsÞÞ ¼ 2ðACFð0Þ � ACFðsÞÞ:
(18)

In other fields, the HHCF is referred to as the structure func-

tion or sometimes the variance function.21

The most important advantage of the HHCF is that

detrending by subtracting the mean has no impact on the

HHCF, since it is computed from the difference between

measurements. Thus, for LWR measurement, the HHCF is

unbiased. For a finite line length, the standard discrete and

continuous unbiased estimators for the HHCF are given by,

respectively,

HHCFd sð Þ ¼ 1

N � m

XN�1�m

n¼0

w sð Þ � w sþ sð Þ
� �2

;

HHCFc sð Þ ¼ 1

L� s

ðL�s

0

w sð Þ � w sþ sð Þ
� �2

ds:

(19)

A. Variance of HHCF estimators

The variance of each of these estimators can be worked

out by first carrying out the squares in Eq. (19). For the con-

tinuous estimator, this leads to

HHCFcðsÞ ¼ w2ðsÞavg þ w2ðsþ sÞavg � 2RcðsÞ; (20)

where w2ðsÞavg ¼ ð1=L� sÞ
Ð L�s

0
w2ðsÞds, w2ðsþ sÞavg

¼ ð1=L� sÞ
Ð L�s

0
w2ðsþ sÞds.

FIG. 5. (Color online) Impact of spatial averaging during measurement on

the ACF: (a) the simulated ACF as a function of probe width (FWHM), and

(b) the difference between the ACF with measurement averaging and the

ACF for a probe width of zero. ACFs were generated using simulation with

N¼ 256 points, Dy¼ 1 nm, n¼ 10 nm, s¼ 32, and 107 ACFs averaged to

generate these curves.
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Calculating the variance of Eq. (20) produces several covariance terms

varðHHCFcðsÞÞ ¼ varðw2ðsÞavgÞ þ varðw2ðsþ sÞavgÞ þ 4varðRcðsÞÞ
þ2covðw2ðsÞavg;w

2ðsþ sÞavgÞ � 4covðw2ðsÞavg;RcðsÞÞ � 4covðw2ðsþ sÞavg;RcðsÞÞ: (21)

The variance of the mean square value of the data is equal to the variance of Rc(0) for a line length of L � s. Consider now the

case of the exponential autocovariance function given by Eq. (5). Following the same basic procedure used by Fuller14

var w2 sð Þavg

 �
r4

¼
var w2 sþ sð Þavg

 �
r4

¼ n2

L� sð Þ2
e�2 L�sð Þ=n þ 2 L� sð Þ

n
� 1


 �
: (22)

The first covariance term in Eq. (21) becomes

cov w2 sð Þavg;w
2 sþ sð Þavg

 �
r4

¼ n2

L� sð Þ2
e�2 L�sð Þ=ncosh

2s
n

� 	
� e�2s=n þ 2 L� 2sð Þ

n

( )
for 0 � s � L=2

¼ n2

L� sð Þ2
e�2s=n cosh

2 L� sð Þ
n

� 	
� 1


 �
for L=2 � s � L: (23)

The final two covariance terms are equal to each other

cov w2 sð Þavg;Rc sð Þ
 �

r4
¼ n2

L� sð Þ2
e�2 L�sð Þ=ncosh

s
n

� 	
þ e�s=n 2 L� sð Þ

n
� s

n

� 	
1þ s

n

� 	
� 1

" #( )
for 0 � s � L=2

¼ n2

2 L� sð Þ2
e�s=n e�2 L�sð Þ=n þ 2 L� sð Þ

n
� 1þ 2 L� sð Þ2

n2

( )
for L=2 � s � L:

(24)

Combining all terms gives the final result, an example of which is shown in Fig. 6.

A useful approximation to the result for the case where n� L is

var HHCFc sð Þð Þ
r4

� 4n

L� sð Þ

(
3þ 1þ 2s

n

� 	
e�2s=n � 4 1þ s

n

� 	
e�s=n

þ s

L� sð Þ 1þ s
n

� 	
2e�s=n � e�2s=nð Þ � 1

� �)
for 0 � s � L=2

� 4n2

L� sð Þ2
e�2 L�sð Þ=n þ 2 L� sð Þ

n
� 1


 �
for L=2 � s � L: (25)

Another useful approximation, for the relative standard deviation of the HHCF, is valid for 3n< s� L/2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var HHCFc sð Þð Þ

p
HHCFc sð Þ �

ffiffiffiffiffi
3n
L

r
1þ s

3L

� 	
: (26)

For values of s< 3n, the relative standard deviation decreases to zero at s approaches 0. Thus, the highest accuracy estimates

for the HHCF occur for small values of the lag distance s. This makes the HHCF a useful tool for determining both the correla-

tion length and the roughness exponent. The uncertainty in the HHCF grows rapidly for s>L/2, so that the HHCF in this

region should probably be ignored.

It should be noted that a biased estimator similar to that used for the ACF is not appropriate for the HHCF. The use of a

biased estimator for the ACF works well when the ACF declines to zero faster than linearly with s. Since the HHCF does not

go to zero for large s (it approaches 2r2), a biased estimator like that used for the ACF would unacceptably distort the HHCF.

B. Impact of detrending on HHCF estimators

As already mentioned, one of the benefits of using the HHCF over the ACF is that the HHCF is not biased when detrending

the sample mean. It is, however, biased when subtracting the best-fit line, as is commonly done for LER measurement. Figure 7

shows that the HHCF is biased lower for large values of s due to linear detrending. In this case, a bias of about 10% occurs at
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s¼ L/2, and the fractional bias is about equal to 3n/L at this

lag. Fortunately, the worst bias occurs in a region of the lag

distance that would generally be avoided (that is, s> L/2).

The linear detrending also lowers the variance of the HHCF,

but the MSE remains about the same with or without linear

detrending for s<L/2.

C. Impact of measurement averaging on HHCF
estimators

As seen before, a nonzero measurement probe width

causes averaging that smoothens some of the high-frequency

roughness. For the ACF, that resulted in a drop in the ACF

for values of s near 0. For the HHCF, the impact of measure-

ment probe averaging is a near-constant drop in the HHCF

for all values of s. Figure 8 shows a typical example of the

impact of measurement averaging on the HHCF. Figure 8(a)

shows the HHCF, while Fig. 8(b) shows the difference

between the HCF with measurement averaging and the

HHCF for a probe width of zero (no averaging), normalized

by dividing by the true feature variance (r2).

For moderate probe widths, the impact of averaging is a

uniform decrease in the HHCF. The magnitude of the

decrease is given approximately by

HHCFd probe width ¼ 0ð Þ � HHCFd probe width ¼ pwð Þ
r2

� pw

n
; (27)

where pw is the FWHM of the Gaussian averaging function.

Thus, the impact of measurement averaging can be mini-

mized by keeping the probe width small compared to the

correlation length.

D. Impact of measurement noise on HHCF estimators

As mentioned above and shown in Eq. (16), the impact of

measurement noise is a simple increase in the measured

FIG. 8. (Color online) Impact of measurement probe averaging on the result-

ing HHCF: (a) the HHCF for different probe widths (FWHM), and (b) the

difference between the HHCF with measurement averaging and the HHCF

for a probe width of zero, normalized by dividing by the true feature vari-

ance. The probe FWHM (nm) is shown by the label next to each curve.

HHCFs were generated using simulation with N¼ 512 points, Dy¼ 1 nm,

n¼ 10 nm, r¼ 5 nm, subsampling s¼ 16, and M¼ 107 HHCFs averaged

together.

FIG. 6. (Color online) Square root of the variance of the continuous HHCF

using the derived equations and as generated by simulations (N¼ 512 points,

Dy¼ 1 nm, n¼ 10 nm, and 107 HHCFs used to generate the simulation

curve).

FIG. 7. (Color online) Impact of linear detrending on the resulting HHCF.

HHCFs were generated using simulation with N¼ 512 points, Dy¼ 1 nm,

n¼ 10 nm, r¼ 5 nm, and M¼ 107 HHCFs averaged together. A logarithmic

scale for the lag distance was chosen to make the differences in HHCF more

noticeable. From Ref. 3.

06K701-8 Chris A. Mack: Biases and uncertainties in the use of autocovariance 06K701-8

J. Vac. Sci. Technol. B, Vol. 34, No. 6, Nov/Dec 2016

 Redistribution subject to AVS license or copyright; see http://scitation.aip.org/termsconditions. IP:  208.191.157.134 On: Mon, 22 Aug 2016 21:14:29



(apparent) variance of the roughness. For the case of the

HHCF, this results in a uniform increase in the measured

HHCF by an amount 2r2
MN. Simulations bear out this

expected result. Note that, as was the case for the ACF,

measurement noise works oppositely to measurement probe

averaging. Small amounts of measurement probe averaging

could be compensated by a small amount of measurement

noise under the right circumstances. Comparing Eqs. (16)

FIG. 9. (Color online) Impact of the Hurst roughness exponent on the simu-

lated ACF: (a) the biased ACF, and (b) the standard deviation of the esti-

mated ACF. Simulations used N¼ 256 points, Dy¼ 1 nm, n¼ 10 nm,

r¼ 5 nm, subsampling s¼ 8, and 108 simulations.

FIG. 10. (Color online) Impact of the Hurst roughness exponent on the simu-

lated HHCF: (a) the estimated HHCF, and (b) the standard deviation of the

estimated HHCF. Simulations used N¼ 256 points, Dy¼ 1 nm, n¼ 10 nm,

r¼ 5 nm, subsampling s¼ 8, and 108 simulations.

TABLE I. Summary of issues affecting the estimation of the PSD, the ACF, and the HHCF for typical roughness data.

Measurement condition PSD ACF HHCF

Dy> 0 Aliasing, PSD is too high for high

frequencies

No impact on expected value;

discrete estimator variance grows as

Dy approaches n

No impact on expected value;

discrete estimator variance grows as

Dy approaches n
Finite L Leakage, PSD is too low for low

frequencies

No impact on expected value;

variance goes as n/L
No impact on expected value;

variance goes as n/L

Random variance Standard deviation of PSD¼mean

of PSD for each frequency

Greatest variance at s¼ 0; unbiased

estimator should not be used for

s>L/2

Grows very large for s>L/2; HHCF

should not be used for s>L/2

Mean detrending Impossible to determine PSD(0) Biases ACF for all s, makes ACF go

negative

No impact

Linear detrending Reduces very low-frequency PSD Biases ACF for all s, makes ACF go

negative

Biases HHCF for large s

Measurement probe averaging Reduces high-frequency PSD Reduces ACF for s near 0 Reduces HHCF for all s
Metrology noise Increases PSD for all frequencies Increases ACF for s¼ 0 Increases HHCF for all s
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and (27) for a Gaussian probe shape, such compensation

occurs when

rMN � rLWR

ffiffiffiffiffiffi
pw

2n

r
or pw � 2n

rMN

rLWR

� 	2

: (28)

IV. INFLUENCE OF THE HURST ROUGHNESS
EXPONENT

In the discussion so far, a specific form of the ACF was

chosen: the exponential of Eq. (5). While common, this is

not the only autocovariance function behavior found in

roughness data from lithographically printed resist or after-

etch features. For example, most LER/LWR data have been

found to be well described by the Palasantzas power spectral

density function22

PSD fð Þ ¼ PSD 0ð Þ

1þ 2pf nð Þ2
h iHþ1=2

; (29)

where H is the Hurst roughness exponent, and PSD(0) is

found (using the gamma function, C) by

PSD 0ð Þ ¼ 2r2n

ffiffiffi
p
p

C H þ 1

2

� 	
C Hð Þ

0
B@

1
CA
: (30)

The PSD and the ACF form a Fourier transform pair. When

H¼ 0.5, the Palasantzas PSD is the Fourier transform of the

exponential ACF of Eq. (5). For other values of H, the ana-

lytical derivations given in Secs. II and III of this paper do

not strictly apply. However, simulation can still be used to

investigate the variance of the ACF and HHCF estimates for

H> 0.5.

Figure 9 shows the simulated ACF (using the biased dis-

crete estimator) and the standard deviation of the ACF. The

general shape of the ACF standard deviation curve is the same

as a function of roughness exponent H. Roughly speaking, the

H¼ 0.7 case has 17% larger standard deviation than the

H¼ 0.5 case, and the H¼ 0.9 case has about 30% greater stan-

dard deviation than H¼ 0.5. Figure 10 shows the simulated

HHCF and its standard deviation for different values of rough-

ness exponent H. For lag distances of about twice the correla-

tion length or less, increasing H reduces the mean value of the

HHCF but has little impact on its uncertainty. For longer lag

distances, higher H does not impact the mean HHCF but

causes a greater standard deviation of the HHCF estimate.

V. CONCLUSIONS

The roughness of a feature edge or width is commonly

characterized by the amount of roughness, the standard devi-

ation of the difference between the actual edge or width and

its target. But the presence of correlations between different

points along the line edge requires a more thorough analysis.

The most common tools for characterizing roughness are the

PSD, the ACF, and the HHCF. These three functions are

related to each other, so that perfect knowledge of one deter-

mines the other two.

Since perfect knowledge of any of these functions is not

possible, they must be estimated from experimental data. In

previous studies, the uncertainties and biases associated with

nonparametric estimation of the PSD were described.2,3

FIG. 11. (Color online) Comparisons of roughness analysis approaches for

simulated rough features: (a) the estimated PSD compared to the simulation

input, (b) the estimated ACF compared to the simulation input, and (c) the

estimated HHCF compared to the simulation input. Simulations used N¼ 512

points, Dy¼ 2 nm, n¼ 20 nm, r¼ 2 nm, subsampling s¼ 32, H¼ 0.5,

Gaussian metrology probe FWHM¼ 2 nm, metrology noise¼ 0.5 nm, mean

detrending, Welch taper window for PSD calculation, and M¼ 50 simulated

rough lines used for averaging.
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In this work, the uncertainties and biases associated with

nonparametric estimation of the ACF and the HHCF are dis-

cussed for the case of the commonly encountered exponen-

tial autocorrelation function.

Table I summarizes what has been learned about non-

parametric estimation of roughness characterization func-

tions. Unfortunately, there is no one best function for

characterizing roughness from experimental data. The PSD

suffers from leakage and aliasing. One advantage of using

the ACF or HHCF over the PSD is that they do not. The

ACF and HHCF, however, suffer from other complications.

For the ACF, the biased estimator is almost always pre-

ferred due to its lower variance. Still, the variance is suffi-

ciently large that little or no information can be obtained for

lag distances beyond a few correlation lengths. Further, the

ACF is biased due to detrending, making the ACF a poor

replacement for the PSD. The HHCF has the advantage that

it is not biased due to mean detrending, as would be done

when measuring LWR. Unlike the ACF, it has a nearly con-

stant relative uncertainty out to lag distances of half the mea-

sured feature length, and an uncertainty that goes to zero as s
decreases below a few correlation lengths. Thus, the HHCF

is a viable alternative to the use of the PSD for characteriz-

ing the frequency (lag) behavior of a feature’s roughness.

As a final comparison, all of the effects described in this

paper have been combined in a simulation of a typical rough

linewidth measurement scenario. For 50 measurements aver-

aged together, the resulting PSD, ACF, and HHCF are

shown in Fig. 11. For the PSD, the root-mean-square-error is

about 15% at low frequencies, but grows to 75% at the high-

est frequencies due to aliasing and metrology noise. For the

ACF, the root-mean-square-error begins low at 4% for s¼ 0,

but reaches 10% by one correlation length, 27% by three

correlation lengths, and 100% by five correlation lengths.

For the HHCF, the largest relative root-mean-square-error is

at a lag of one grid point, 15%. By one correlation length the

root-mean-square-error has settled down to the 3%–4%

level, where it remains through s<L/2. Thus, under this sce-

nario, the HHCF is the lowest-error approach to roughness

characterization.

There are two fundamental kinds of length scales at work

here. The physical length scale is the correlation length, n,

so that all other physical lengths can be thought of as

multiples of the correlation length. But there are also

measurement length scales: the probe width and the sam-

pling distance. Measurements have lengths that can be

described as multiples of the sampling distance and/or probe

width. When measuring a physical process that follows the

statistics assumed to apply here, the outcomes contain a mix-

ture of these two sets of length scales. The mathematical

results derived in this paper help to understand the combined

role of these length scales in PSD, ACF, and HHCF

measurements.

All of the estimation approaches studied here fall under

the category of nonparametric estimation, meaning that the

estimators used do not require any a priori knowledge of the

expected shape of the function to be estimated. Future work

should explore the use of parametric estimators, where an

expected model form, such as the Palasantzas PSD, is used

to improve the estimate, lowering its uncertainty.
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