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Abstract. For a feature of finite length, linewidth rough-
ness leads to variations in the mean feature width.
Typically, numerical simulations are used to explore this
relationship. An analytical approach is used. Starting with
a common expression for the power spectral density, an
analytical expression relating critical dimension uniformity
to linewidth roughness is derived. The derived expression
matches simulation results extremely well and can be
used to understand more fully the detrimental impact of
feature roughness on lithographic results. Finally, based
on this expression, a new metric of linewidth roughness is
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1 Introduction

Line-edge roughness (LER) and linewidth roughness (LWR) in
lithography can impact device performance in a number of
ways. One of the most important impacts is also one of the
easiest to understand: for a feature of finite length, the LWR
results in variation in the mean linewidth [usually referred to
as critical dimension uniformity (CDU)] and is thus a contribu-
tor to the sources of linewidth variation. Ma et al.' have shown
that such linewidth variation can be significant, and today LWR
is specified in the International Technology Roadmap for
Semiconductors for this reason.” Kruit and Steenbrink® derived
a simple model for LWR-caused CDU for electron-beam expo-
sure, showing that CD variance was approximately inversely
proportional to the length of the measured line. Lorusso et al.*
presented a more general model for the CDU based on an expo-
nential autocorrelation function (corresponding to a roughness
exponent of 0.5).

In this paper, an analytical expression will be derived
relating CDU to LWR, correlation length, roughness expo-
nent, and the length of the feature. The expression will obvi-
ously be easier to use for this purpose than numerical
simulations but will also provide insight into the scaling
of feature size and roughness and the impact of roughness
parameters such as correlation length on linewidth variation.
Based on the insights gained from this result, a new single-
valued metric of LWR or LER is proposed.
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2 Calculating Critical Dimension Uniformity from
the Autocovariance

Given a randomly rough lithographic feature such as a line of
length L, the CD of the feature is generally defined to be
the width of the feature averaged over its length

CD(L) =w = l/L w(s)ds, (1)
0

where w is the measured linewidth at length position s and w
is the mean linewidth for this feature of length L. The
dependence of CD on L is made explicit by writing CD(L).
The variance of the CD can be expressed as

= | [F ot =masy [t -wpass|. @

where E[x] is the expectation value of x, that is, the average
over many instances (many features). The standard deviation
(the square root of the variance) of the CD for a specific fea-
ture (in this case, a line of length L) is generally called the
CDU. Adopting this terminology, we will from here on write
var[CD(L)] as 62py-

Changing the order of integration versus expectation
value in Eq. (2),

Ctpy = é/(f AL E[(w(s]) - W) (w(sz) - W)]dsldsz.
3)

The argument of this double integral is simply the autoco-
variance function (R) of the feature width.

R(sy,s) = E[(w(sy) =) (w(s2) —W)]. 4)

Assuming the process is stationary, the autocovariance will
be a function of only the distance s;—s,. Thus,

) 1 L (L _
Ocpy = ﬁ A A R(S] - Sz)dsld82. (5)

Consider now, a typical form for the autocovariance: a
stretched exponential:

R(Sl - SZ) = giWRe_(‘Sl_Sz‘/f)za7 (6)

where £ is the correlation length, « is the roughness expo-
nent, and oy wg is the standard deviation of the linewidth
for an infinitely long line (that is, the true LWR). For
a = 0.5, this autocovariance is simply an exponential func-
tion and for this case the integrals of Eq. (5) can be evaluated
analytically.
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For a = 0.5,

2 2
Cepy = éali“WR [1 —%(l - e‘L/g)}

)

Lorusso et al.* presented this same result.

The nature of Eq. (7) is worth exploring. First, CDU
(ocpy) is directly proportional to the LWR (opwr). The
CDU is worse for small L, and goes to zero as L approaches
infinity. As is well known, the impact of line length scales
with the correlation coefficient & so that the CDU will be
poor when L approaches £. The ratio L/& can be thought
of as the number of statistically independent segments mak-
ing up the line length, and the variance of the linewidth is
expected to be inversely proportional to this number. For
example, for L =2¢£, we find that ocpy = 0.75 opwr-
Certainly, one important goal of LWR reduction is to reduce
ocpu- As Eq. (7) shows, looking only at o7 wgr does not give
a complete picture.

For the special case of L > &, Eq. (7) can be simplified to

2
Ocou , 26 (1 —é). ®)

oiwr L L

Note that this simplified expression gives a value for
ocpy that is only off by 6% for the case of L = 2&, and
has about a 1% error when L = 3¢£. Thus, the use of the
simplified version will be adequate under most real-world
circumstances.

3 Simulating Critical Dimension Uniformity

An LER metrology simulator (called MetroSim) has recently
been described in Ref. 5. The simulation begins by generat-
ing a random rough feature that follows a predefined power
spectral density (PSD),® then extracting w(s) for a given
length and sampling scheme. This allows the calculation
of CD(L). Repeating such simulations using different
random instances of the rough feature allows calculation
of the CDU. For the input PSD, the Palasantzas PSD as
a function of spatial frequency f is used:’

PSD(0
FSDU) = [ P ®

where H plays the role of the roughness (Hurst) exponent
and PSD(0) is given by

VAT (H + %)} |

T(H) (10)

PSD(0) = 2o%WR§[

For the case of H = 0.5, this PSD function matches the
autocovariance of Eq. (6) when a = 0.5. For other values of
the roughness exponent the stretched exponential autocovar-
iance does not produce the Palasantzas PSD, though the
differences are small for a < 0.9.

As a first test, simulations using H = 0.5 were performed
at various values of L. For each simulation, CD(L) is calcu-
lated. Repeating the simulations 1,000,000 times for each L
allows calculation of ocpy. To test the accuracy obtained
by using 1,000,000 simulations, the case of L = 128 was
repeated many times. The resulting CDU was found to
vary by only +0.1% (95% confidence interval). Figure 1
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Fig. 1 Comparison of Eq. (7) (line) to simulations of critical dimension
uniformity (symbols) for a = H =0.5, £ =10 nm, and 1,000,000
iterations for each data point.

compares the results of the simulations to Eq. (7) for the
case of £ = 10 nm. For all simulations, the sampling dis-
tance Ay = 1 nm. The simulations match the predictions
of Eq. (7) very well. Varying the correlation length, Fig. 2
shows the expected scaling with L/&. Interestingly, simula-
tions match the analytical result when L > 3£. For smaller
values of L, the discrete simulations diverge from the
result derived from a continuous line, probably due to the
biases inherent in generating a short random rough line.®
Additionally, these results are also consistent with the
simulations previously performed by Ma et al.' (shown in
their Fig. 8).

Although the analytical expression is valid only for
H = 0.5, simulations can be run for any value of the rough-
ness exponent of the Palasantzas PSD. Figure 3 shows results
of simulations for H varying from 0.5 to 0.9, the lithographi-
cally useful range. Empirically, Eq. (7) can be modified to
account for the effect of the roughness exponent as
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Fig. 2 Comparison of Eq. (7) (line) to simulations of critical dimension

uniformity (symbols) for « = H = 0.5, various correlation lengths, and
1,000,000 iterations for each data point.
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Fig. 3 Simulations of critical dimension uniformity (CDU) as a function
of line length (L) and roughness exponent (H) using 1,000,000
iterations for each data point (¢ = 10 nm).

2
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Equation (11) matches simulations results to within 2.5% for
L > 3¢ (the worst case is when H = 0.9). For the case of
L > ¢, this expression simplifies as before to

2
62CDU o (2H + 1)¢ (1 _.§>' (12)
OTWR L L

For all other parameters held constant, higher roughness
exponent H leads to worse CDU. However, CDU is not very
sensitive to uncertainty in roughness exponent. For example,
if one assumes a roughness exponent of 0.5 but in fact the
roughness exponent is 0.8, the error in the predicted ocpy
will only be about 14%. Still, more accurate knowledge
of H leads to more accurate predictions of CDU.

4 Conclusions

In this paper, an analytical expression relating CDU to LWR
has been derived for the case of a roughness exponent of 0.5.
For arbitrary roughness exponent H, simulations have led to
an empirical modification of this analytical expression that
gives sufficiently accurate results. The final expressions of
Egs. (11) or (12) can be used to predict the impact of
LWR on CDU for various features (various line lengths).
These expressions provide several important lessons. From
a scaling perspective, node-to-node feature shrinks generally
result in a constant shrink of both L and the required ocpy.
In order to achieve a constant impact of LWR on CDU,
both o7 wr and & must therefore shrink in the same propor-
tion. This has proven very hard to do. A second lesson is that
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the impact of LWR on CDU involves three parameters: the
roughness oy wr, the correlation length &, and the roughness
exponent H. Although the impact of H is less significant,
it is clear that knowledge of opwr Wwithout knowing ¢ is
insufficient to predict the impact of LWR on CDU.

Additionally, the nature of the analysis presented here
suggests the possibility of a single metric for LER or LWR
that reflects the impact of roughness on CDU. Consider
Eq. (12), where the line length of interest is expressed as a
multiple of the CD of the line being measured: L = aCD.
Keeping only the highest order term, Eq. (12) can be
rearranged to become

ocpu 1 owr [(2H +1)¢

~ 13
e “Jacp Vb (13

Let us define a dimensionless metric for LWR as follows:

- 2H + 1)¢&
Miwr = (L:‘]’SR ( b ) . (14)

For L > ¢, this metric is directly proportional to the rel-
ative CDU (ocpy/CD) for any given value of a. Thus, the
new metric represents a single number distilled from the PSD
that captures everything about the PSD that contributes to
linewidth variation. (An equivalent metric for LER can be
obtained by using oy gr). Currently, o wr is used effectively
as a single metric for roughness since it is often the only
parameter reported from a measurement of roughness. The
new metric defined by Eq. (14) is far superior to reporting
just opwr since it correctly accounts for the influence of H
and & as well. It thus allows more accurate comparisons of
different resists, different processes, different lithography
tools, and different feature sizes in terms of LER or LWR
performance. Further, practical goals can be set for My wr
that reflect the need for good CDU (for example, we
might require that My wr <0.1).

References

1. Y. Ma, H. J. Levenson, and T. Wallow, “Line edge roughness impact on
critical dimension variation,” Proc. SPIE 6518, 651824 (2007).

2. The International Technology Roadmap for Semiconductors, San Jose:
Semiconductor Industry Association, http://www.itrs.net (14 February
2014).

3. P. Kruit and S. Steenbrink, “Local critical dimension variation from
shot-noise related line edge roughness,” J. Vac. Sci. Technol. B 23(6),
3033 (2005).

4. G. F. Lorusso et al., “Spectral analysis of line width roughness and its
application to immersion lithography,” J. Micro/Nanolith. MEMS
MOEMS 5(3), 033003 (2006).

5. C. A. Mack, “Systematic errors in the measurement of power spectral
density,” J. Micro/Nanolith. MEMS MOEMS 12(3), 033016 (2013).

6. C. A. Mack, “Generating random rough edges, surfaces, and volumes,”
Appl. Opt. 52(7), 1472-1480 (2013).

7. G. Palasantzas, “Roughness spectrum and surface width of self-affine
fractal surfaces via the K-correlation model,” Phys. Rev. B 48(19),
14472-14478 (1993).

Apr—Jun 2014 « Vol. 13(2)


http://dx.doi.org/10.1117/12.712388
http://www.itrs.net
http://www.itrs.net
http://www.itrs.net
http://dx.doi.org/10.1116/1.2127941
http://dx.doi.org/10.1117/1.2242982
http://dx.doi.org/10.1117/1.2242982
http://dx.doi.org/10.1117/1.JMM.12.3.033016
http://dx.doi.org/10.1364/AO.52.001472
http://dx.doi.org/10.1103/PhysRevB.48.14472

