The future of lithography and its impact on design

Chris Mack

www.lithoguru.com

Outline

- History Lessons
 - Moore's Law
 - Dennard Scaling
 - Cost Trends
- Is Moore's Law Over?
 - Litho scaling?
- The Design Gap
- The Future is Here

G. E. Moore, "Cramming More Components onto Integrated Circuits," *Electronics* Vol. 38, No. 8 (Apr. 19, 1965) pp. 114-117.

Dennard's MOSFET Scaling Rules

Robert Dennard

Device/Circuit Parameter	Scaling Factor
Device dimension/thickness	1/λ
Doping Concentration	λ
Voltage	1/λ
Current	1/λ
Capacitance	1/λ
Delay time	1/λ
Transistor power	$1/\lambda^2$
Power density	1

There are no trade-offs. Everything gets better when you shrink a transistor!

IEEE Journal of Solid-State Circuits, Vol. SC-9, October 1974, pp. 256-268.

The Golden Age 1975 - 2000

• Dennard Scaling - as transistor shrinks it gets:

- Faster
- Lower power (constant power density)
- Smaller/lighter

Moore's Law

- More transistors/chip & cost of transistor = -15%/year
 - More powerful chip for same price
 - Same chip for lower price
- Many new applications large increase in volume

Problems with Dennard Scaling

- Voltage stopped shrinking 10 years ago
 - Thermal noise (kT/q = 25 mV at room temperature)
 - Subthreshhold leakage current
- Gate oxide can only get so thin
- Interconnect dominates delay
- Power is at a wall
- Transistor variability grows with smaller size
 - Small number of dopants per transistor, LER
- Today, shrinking a transistor makes it worse

Dennard + Moore Today

- The only benefits of shrinking a transistor today are lower cost/function and more functions/chip
- Moore's Law cost: despite rising fab, equipment and material costs, and increasing process complexity, the cost/cm² of finished silicon has remained about constant over the years. How?
 - increasing yields
 - increasing equipment productivity
 - increasing wafer sizes

Chip Yield Trend

- 1970s
 - High volume yields of 20 40%
- 1980s
 - High volume yields of 40 60%
- 1990s
 - High volume yields of 70 90%
- 2000s
 - Yields must stay high, even as the technology gets more difficult (very hard to do!!)

Lithography Costs (single patterning)

	1979 g-line stepper	2004 ArF scanner	2012 ArF scanner
Wafer diameter (mm)	100	300	300
Tool throughput (wph)	18	100	240
Area throughput (cm^2/sec)	0.39	20	47
Tool cost (M\$)	0.45	20	50
Tool cost (¢/cm^2)	0.65	0.65	0.67

(Note: this scaling requires that demand for chips increase by 100X) (Assumes 5-year straight line depreciation, maintenance not included) © Chris Mack

Wafer Size Trend

• Time between wafer size increases is growing:

Year*	ar* Wafer Diamet	
1969	3 inch	
1976	4 inch	
1984	5,6 inch	
1989	200mm	
2000	300mm	

*first year of major production

Wafer Size and Litho Costs

- Litho costs scale with area, not wafers
- Increasing wafer size means litho costs increase as a fraction of total costs

150 mm wafer25% Litho Cost

200 mm wafer 33% Litho Cost

300 mm wafer 50% Litho Cost

© Chris Mack

Litho Costs are Rising

- Wafer costs are very sensitive to litho costs
- Today, resolution improvements come ONLY from multiple patterning
 - Litho costs must rise with multiple patterning
- Moore's Law costs scaling is no longer -15%/yr
 - What is the smallest cost/transistor improvement that makes the next node worth while?

	NXE:3100	NXE:3300B
NA	0.25	0.32
Illumination	Conventional, 0.8o	Conventional, 0.2-0.9o
Off-axis as an option		
Resolution	≤ 27 nm	≤ 22 nm
Field size	26 x 33 mm	26 x 33 mm
Single-machine overlay (SMO)	4.5 nm	3.5 nm
Matched machine overlay (MMO)	7.0 nm	5.0 nm
Throughput	60 wph	125 wph
Resist dose	10 mJ/cm ²	15 mJ/cm ²

EUV Lithography: the Future is Not Bright

Three major roadblocks to EUVL production

- Defect free masks (yield)
- High brightness source (throughput)
- Low line-edge roughness (LER)
- Current schedule calls for NXE:3300 shipping this year, going into production next year at 70 wph
 This will not happen
- In the end, it is the economics of production with EUVL that will determine its fate

The End of Litho Scaling?

- The reason to scale feature size is to lower the cost per transistor
- But if litho costs continue to rise, this benefit will likely disappear
 - If higher litho costs mean higher cost per transistor, why reduce feature size?

But wait! What about Moore's Law?

Intel's Itanium 2

- Introduced Feb. 2010
- First Intel chip with 2 billion transistors
- 30MB Cache (1.4 billion transistors)

The Design Gap

- Today, we can make more transistors than we can use in logic circuits
 - The trend in microprocessors is multiple processors per chip with lots of cache and SOC
 - Typical chip die size is far smaller than maximum
- For logic, the only reason to shrink today is cost
 We are simply not using more transistors
- Flash memory has no problem using as many transistors as we can make
 - so long as the cost per transistor keeps dropping

Device Cleverness

How to reduce the area per transistor

- Isolation: LOCOS \rightarrow STI (shallow trench isolation)
- Interconnect: Single metal (all tracks between transistors) → Multilevel metal (most tracks above transistors). Has this shrunk area/transistor?
- Transistor: Planar \rightarrow FinFET (gate width into the third dimension)
- DRAM: Folded bit line (8F²) → Diagonal bit line (6F²)
- Flash: Single level cell → Multilevel cell

The Future: "Standard" Scenario

- Begin using EUV lithography in 2014
 - Many technical hurdles
 - May never be cost-effective: the SST of lithography?
- Wafer size increases to 450 mm in 2017 2018
 - Lowers the cost per chip, but only for high-volume manufacturers
 - No one knows how to pay for the equipment development costs
 - Litho cost becomes 70 80% of chip cost
- Chip production is dominated by three or four super-fabs
 - One fab costs > US\$10B
- Moore's Law goes on as before
 - We all have a super computer in our pocket

The Future: "Possible" Scenario

- 193i + DSA
 - Very tight (single) pitch unidirectional lines cover the chip
 - Cuts made with 193i + DSA with simple design rules
- Strict layout paradigm
 - All devices are on a grid
 - Layout choice: where to remove a line
- There will be no shrink of standard cell IP
 - Every IP block must be redesigned
- Materials challenges
 - High resistance lines and high resistance contacts

The Future: "Likely" Scenario

- Moore's Law continues only by redefining it
 True Moore's Law ends on Wednesday, Feb. 26, 2014
- Litho is good at printing small lines/spaces, but not irregular patterns
 - The end of shrinks
- Lithography still a key technology, but value moves to materials, devices, and designs
- The design gap is now about 20 30 for logic

Conclusions – There is Hope!

- The Golden Days of Moore + Dennard are over
- The beginning of the end of litho scaling is here
 - Chip cost is extremely sensitive to lithography costs, and lithography costs are rising
- Physical limits are stochastic (line-edge roughness), but economic limits will get us first
- But there is hope!
 - There is lots of room for device cleverness
 - Fill in the design gap!