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Numerical methods of generating rough edges, surfaces, and volumes for subsequent simulations are
commonly employed, but result in data with a variance that is downward biased from the desired value.
Thus, it is highly desirable to quantify and to minimize this bias. Here, the degree of bias is determined
through analytical derivations and numerical simulations as a function of the correlation length and the
roughness exponent of several model power spectral density functions. The bias can be minimized by
proper choice of grid size for a fixed number of data points, and this optimum grid size scales as the
correlation length. The common approach of using a fixed grid size for such simulations leads to varying
amounts of bias, which can easily be confounded with the physical effects being investigated. © 2013
Optical Society of America
OCIS codes: 290.5880, 120.6660, 000.4430, 000.5490.

1. Introduction

In many areas of modeling, there is often a need to
numerically generate edges, surfaces, or volumes
that are randomly rough with set statistical proper-
ties. In particular, one often desires a data set to
represent a random edge, surface, or volume with
a particular probability distribution (for example,
Gaussian with a given mean and variance) and
with a particular autocorrelation behavior. Rough
edges are used for modeling the metrology of
photoresist line-edge roughness [1,2] or as one-
dimensional (1D) cuts of a rough surface [3,4].
Two-dimensional (2D) rough surfaces are often
generated for use in optical and acoustical scat-
tering simulations [5–7]. Three-dimensional (3D)
rough volumes can be used for stochastic chemical
reaction modeling and etching, including photoresist
development [8,9].

While methods for generating random, correlated
data sets (as described in the next section) are com-
monly used, these methods are statistically biased.
They produce data with the desired variance

(or standard deviation) only in the limit of very large
data sets and small grid sizes. This statistical bias is
a straightforward consequence of describing an infi-
nite, continuous function by a discrete data set over a
finite range. Further, the convergence of these meth-
ods to the desired power spectral density (PSD) is
also a function of the number of points in the data
set. This paper will determine the statistical biases
present in one common method for generating ran-
dom, correlated data sets. The resulting bias is a
strong function of the parameters of the problem,
such as the roughness exponent and correlation
length, and can be minimized by proper choice of grid
sizes. Further, the convergence properties of these
numerical methods will also be investigated: when
generating random, correlated data sets for use in
simulation, howmany iterations of such a simulation
might be required? Without considering these
statistical biases, it can be easy to confound the
variation in data set bias (an artifact of the simula-
tion) with the true physical phenomenon being
investigated.

2. Generating a Random, Correlated Data Set

There are two main approaches for generating a ran-
dom data set with a given probability distribution
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and autocorrelation behavior. The moving average
method was first described Naylor et al. in 1966
for the limited case of an exponential autocorrelation
function, though they did not recognize how to
generalize this approach to an arbitrary autocorrela-
tion function [10]. The general moving average
technique was first developed by Novarini and
Caruthers, [5] though it has been reinvented
several times since [6,11]. In this technique, the
random, correlated data (zi) are generated as a
weighted sum of uncorrelated random numbers
(ηij) that have the desired probability distribution
function:

zi �
XM
j�−M

wjηij: (1)

The weights (wj) are determined by the Fourier
transform of the square root of the desired PSD:

wj � FTf
�����������������
PSD�k�

p
g: (2)

This moving average method is often thought of
as a process of spectral filtering or smoothing [11].

A second approach was developed by Thorsos [7],
where the randomness is introduced into the PSD
itself. This method has also been reinvented several
times [12] and is sometimes referred to as the
Monte Carlo spectral method. Since the Thorsos
method will be the subject of this investigation, a
more complete description of the method will be
outlined here. Consider first the 1D case. Given N
grid points with spacing Δx covering a distance
L � NΔx, the data value at the point xn � nΔx is
given by

z�xn� � μz �
1
L

XN∕2−1

j�−N∕2
F�f j�ei2πf jxn ; (3)

where this calculation is performed as the fast
Fourier transform (FFT) of F on a grid of frequencies
f j � j∕L. The target mean value of the random data
is set to μz. The function F, in turn, is calculated
from the amplitude of the PSD:

F�f j� �
����������������������
LPSD�f j�

q �
�η1 � iη2�∕

���
2

p
; j ≠ 0;�N∕2

η1; j � 0;�N∕2
;

(4)

where η1 and η2 are two independent random num-
bers with mean of 0 and variance of 1 and with
the desired probability distribution function.
Since z�xn� must be real, Eq. (4) is used for j ≥ 0
and the negative frequencies of F are obtained
from a symmetry relationship: F� f −j� � F�� f j�.
Note also that the value of F at j � −N∕2 is set to
be real since the summation in Eq. (3) only goes
to N∕2 − 1 (corresponding to the N values needed
for the FFT).

The Thorsos algorithm can easily be extended
to two and three dimensions, so long as care is
taken to properly produce the boundary conditions
(a purely real random number is used at the origin
and at the outer edges of the volume) and the sym-
metry to result in a purely real z. In two dimensions,

the frequency used in the PSD is f �
����������������
f 2x � f 2y

q
, and a

real z is guaranteed when

RefF�f x; f y�g � RefF�−f x;−f y�g;
RefF�−f x; f y�g � RefF�f x;−f y�g;
ImfF�f x; f y�g � −ImfF�−f x;−f y�g;
ImfF�−f x; f y�g � −ImfF�f x;−f y�g: (5)

In three dimensions, f �
���������������������������
f 2x � f 2y � f 2z

q
and

RefF�f x; f y; f z�g � RefF�−f x;−f y;−f z�g;
RefF�−f x; f y; f z�g � RefF�f x;−f y;−f z�g;
RefF�f x;−f y; f z�g � RefF�−f x; f y;−f z�g;
RefF�f x; f y;−f z�g � RefF�−f x;−f y; f z�g;
ImfF�f x; f y; f z�g � −ImfF�−f x;−f y;−f z�g;
ImfF�−f x; f y; f z�g � −ImfF�f x;−f y;−f z�g;
ImfF�f x;−f y; f z�g � −ImfF�−f x; f y;−f z�g;
ImfF�f x; f y;−f z�g � −ImfF�−f x;−f y; f z�g: (6)

3. Bias in the Thorsos Method

To determine if the Thorsos method produces
a data set that, on average, has the desired proper-
ties, let us first rearrange Eqs. (3) and (4) to
give

z�xn� � μz �
1����
L

p
XN∕2−1

j�−N∕2
γj

������������������
PSD�f j�

q
ei2πj�n∕N�; (7)

where

γj �
�
�η1 � iη2�∕

���
2

p
; j ≠ 0;−N∕2

η1; j � 0;−N∕2
: (8)

Since each of the random numbers is independent
with zero mean, it is easy to show that

hzi � μz; (9)

where h…i means an average over many trials.
Thus, the mean is unbiased (and independent of
the physical parameters of the PSD, such as
the correlation length, as well as the numerical
parameter Δx).
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The data set variance can be obtained by
considering

h�z�xn� − μz�2i �
1
L

XN∕2−1

j�−N∕2

XN∕2−1

k�−N∕2
hγjγki

×
�������������������������������������
PSD�f k�PSD�f j�

q
ei2π�j�k��n∕N�: (10)

Since each of the random numbers is independent
(with the exception of the symmetry requirements),
hγjγki � 0 when j ≠ �k. Taking the symmetry condi-
tions carefully into account, the case of j � �k can be
evaluated, giving

h�z − μz�2i �
1
L

XN∕2−1

j�−N∕2
PSD�f j�: (11)

Likewise, for the 2D case, assuming an N ×N array
with Δx � Δy,

h�z − μz�2i �
1

L2

XN∕2−1

j�−N∕2

XN∕2−1

k�−N∕2
PSD�f j; f k�: (12)

The 3D case is obtained in the same way.
The average variance of a data set is not given by

Eq. (11) or Eq. (12), however, since the μz will be re-
placed by z̄, the data set mean. This is equivalent to
losing information about the zero frequency of the
PSD, since a numerical calculation of the PSD from
a data set will give PSD�0� � 0 unless the population
mean is known a priori. Thus, the average of the data
variance over many trials will be (for the 1D case)

h�z − z̄�2i � 1
L

XN∕2−1

j�−N∕2
PSD�f j� −

PSD�0�
L

: (13)

Also, the standard formula for calculating the
standard deviation from a sample will divide by
N − 1 rather than N. Thus, the average variance
for a sample will be

hσ2samplei � h�z − z̄�2i
�

N
N − 1

�

≈

 
1
L

XN∕2−1

j�−N∕2
PSD�f j� −

PSD�0�
L

!�
1� 1

N

�
:

(14)

The true (or target) variance is the area under the
PSD curve, by Parseval’s theorem:

σ2 �
Z

∞

−∞
PSD�f �df : (15)

Comparing Eqs. (14) and (15), there are four differ-
ences that will systematically bias the variance of
the data set compared to the desired input variance:

the approximation of the continuous integral with a
discrete sum, the loss of high-frequency information
(above the Nyquist sampling frequency), the loss of
the zero frequency information, and the 1∕N
term. Each of these factors will now be explored
in turn.

In order to quantify the bias in the data set
variance, a specific form of the PSD will be used.
A very common autocorrelation function ( ~R) used
in many simulation studies is the stretched/
compressed exponential:

~R�x� � e−�x∕ξ�
2α
; (16)

where α is called the roughness (or Hurst) exponent
and the correlation length is ξ. One common value for
the roughness exponent is α � 0.5, corresponding to
an exponential autocorrelation function. Another
common autocorrelation function is the Gaussian,
with a roughness exponent of α � 1.0. For an autoco-
variance R these two functions are, along with their
1D PSDs [13],

α�0.5:R�x��σ2e−jxj∕ξ; PSD�f �� 2σ2ξ

1��2πf ξ�2 ;

α�1.0:R�x��σ2e−�x∕ξ�
2
; PSD�f �� ���

π
p

σ2ξe−�πf ξ�
2
; (17)

where the PSD is calculated as the Fourier transform
of the autocovariance (and the autocorrelation is
simply the autocovariance normalized by dividing
by the variance).

Consider first the 1D case with α � 0.5. The error
due to the discrete approximation to the integral (εd)
will be

εd �
Z

∞

−∞
PSD�f �df − 1

L

X∞
j�−∞

PSD�f j�: (18)

The infinite sum of this PSD has an analytical solu-
tion, giving a hyperbolic cotangent, so that

εd � σ2
�
1 − coth

�
L
2ξ

��
: (19)

When L ≫ ξ, the hyperbolic cotangent can be ap-
proximated with an asymptotic series about infinity
to give

εd ≈ −2σ2e−L∕ξ: (20)

As we shall see below, this error component is small
compared to the others.

The impact of the loss of the high-frequency terms
from the summation can be estimated by defining the
error term εhi:
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εhi �
Z

∞

−∞
PSD�f �df −

Z
f N

−f N

PSD�f �df

� 2
Z

∞

f N

PSD�f �df ; (21)

where the Nyquist frequency is f N � 1∕�2Δx�. For
the 1D α � 0.5 PSD being used here, this gives

εhi � σ2
�
1 −

2
π
tan−1

�
πξ

Δx

��
: (22)

When ξ ≫ Δx, a Taylor-series expansion of the in-
verse tangent gives

εhi ≈ σ2
�
2

π2

��
Δx
ξ

�
: (23)

Finally, the error term caused by the loss of zero
frequency information, εlo, will be

εlo �
PSD�0�

L
� σ2

�
2ξ
L

�
: (24)

Combining these three error terms together, and in-
cluding the (1� 1∕N) multiplicative factor,

hσ2samplei ≈ σ2
�
1� 2e−L∕ξ −

�
2

π2

��
Δx
ξ

�
− 2
�
ξ

L

�
� 1

N

�
:

(25)

In general, −εd will be much smaller than εlo and can
be ignored. Also, when Δx < ξ, the 1∕N term will
be small compared to ξ∕L. Thus, the data set will
have a variance that is biased lower than the desired
value used in the Thorsos method to generate that
data set. It is worth noting that the bias arises not
from some deficiency in the Thorsos method per se,
but from the act of representing a continuous func-
tion of infinite domain by a discrete function of finite
domain.

The above derivation considered only the 1D case
with α � 0.5. Similar derivations can be made for the
2D and 3D cases, as well as for α � 1.0. Defining the
relative bias as

εrel �
σ2 − hσ2samplei

σ2
; (26)

the results of these derivations (ignoring the very
small εd terms) are shown in Table 1, where

approximations were made assuming Δx < ξ < L.
Looking at all these expressions, it is clear that
the bias can be minimized by choosing a grid size
much smaller than the correlation length, and a do-
main size much larger than the correlation length.
Thus, as one might expect, the correlation length
provides the length scale with which the numerical
impact of the artificial grid and domain sizes is
compared.

For the α � 1.0 case (the Gaussian autocorrelation
function), the error due to the discrete nature of the
sum is even smaller than for α � 0.5:

εd ≈ −2σ2e−�L∕ξ�
2
: (27)

Also, the very fast falloff of this PSD with frequency
means that the high-frequency error term is very
small. For the 1D case,

εhi � σ2erfc
�

πξ

2Δx

�
≈

�
2

π3∕2

��
Δx
ξ

�
e−
�

πξ
2Δx

�
2

: (28)

For Δx � ξ∕2, we find that εhi∕σ2 is less than 10−5.
Thus, it is the low-frequency term that dominates
the bias for the Gaussian autocorrelation function
case (α � 1.0).

To test the validity of these expressions, random
correlated rough edges, surfaces, and volumes were
generated with the α � 0.5 PSD using the Thorsos
method, and their variances were calculated directly
from the data sets. For all the simulations used here,
the sizes of the data sets were N, N ×N, or
N ×N ×N. For a fixed grid size of 1 nm, the number
of grids N and the correlation length ξ were varied
and a data set variance was calculated for each trial.
Variances for many trials were then averaged. The
results are shown in Figs. 1–3, including compari-
sons with the derived expressions in Table 1.

As can be seen from the figures, the approximate
expressions for the data set variance from Table 1
match very well to the numerical output of the

Table 1. Relative Bias in the Variance (εrel) Produced by the Thorsos
Method

α � 0.5 α � 1.0

1D � 2
π2
��Δxξ � � 2 �ξL� − 1

N � 2
π3∕2

��Δxξ �e−�
πξ
2Δx�2 � ���

π
p �ξL� − 1

N

2D �2
��
2

p
π2

��Δxξ � � 2π�ξL�2 − 1
N2 � 4

π3∕2
��Δxξ �e−�

πξ
2Δx�2 � π �ξL�2 − 1

N2

3D �2�
��
2

p
π2

��Δxξ � � 8π�ξL�3 − 1
N3 � 6

π3∕2
��Δxξ �e−�

πξ
2Δx�2 � π3∕2 �ξL�3 − 1

N3

Fig. 1. (Color online) For the 1D case, α � 0.5, comparison of
numerical simulations using the Thorsos method (symbols) to the
predictions of the relevant equation from Table 1 (solid curves).
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Thorsos method. Similar results were also obtained
for the α � 1.0 case (as shown in Fig. 4 for the 1D
case). Next, these expressions will be used to find
parameter settings that minimize the bias inherent
in this method.

4. Optimizing Simulation Parameters for Minimum
Bias

Bias in the data set variance occurs when the corre-
lation length is too close to the grid size (Δx) or too
close to the simulation domain size (L). Thus, there
will be an optimum setting, corresponding to the
peak of the curves in Figs. 1–4, where bias is mini-
mized. Clearly,N should be made as large as possible
to minimize bias. But N is generally limited by com-
putational constraints: available computer memory,
or the time one is willing to wait to complete the si-
mulations. Thus, I will assume that N is fixed at its
maximum practical value. (I will also assume that N
is a power of two, due to the ubiquitous use of the
FFT in such calculations.) Further, the correlation
length ξ will be set by the problem need. Thus, the

question will be, what grid size should be used? Note
that the choice of grid size also determines the simu-
lation domain size since L � NΔx.

The error terms in Table 1 are minimized when the
grid size is chosen according to the values specified in
Table 2. Thus, given values for ξ and N, picking a
simulation grid size for each problem equal to the
values calculated from Table 2 will result in a mini-
mum bias in the resulting variance of the rough edge,
surface, or volume. The resulting minimum biases
are shown in Table 3 (ignoring the 1∕N terms). Some
example calculations are presented in Table 4.

The results from Tables 2–4 show the important
role of the roughness exponent α on bias in the
Thorsos method. For α � 0.5, the high-frequency
error component is significant, requiring a grid size
much smaller than the correlation length. For
example, for a 1D simulation with N � 1024, the
optimum grid size is about ξ∕10. But for the equiva-
lent α � 1.0 case, the optimum grid size is closer to

Fig. 2. (Color online) For the 2D case, α � 0.5, comparison of nu-
merical simulations using the Thorsos method (symbols) to the
predictions of the relevant equation from Table 1 (solid curves).

Fig. 3. (Color online) For the 3D case, α � 0.5, comparison of
numerical simulations using the Thorsos method (symbols) to
the predictions of the relevant equation from Table 1 (solid curves).

Fig. 4. (Color online) For the 1D case, α � 1.0, comparison of nu-
merical simulations using the Thorsos method (symbols) to the
predictions of the relevant equation from Table 1 (solid curves).

Table 2. Simulation Grid Size that Minimizes the Relative Bias in
the Variance Produced by the Thorsos Method, for a

Given ξ and N

α � 0.5 α � 1.0

1D Δx � πξ����
N

p Δx ≈
πξ

2
���������
ln�N�

p
2D Δx � 21∕6 πξ

N2∕3 ≈ 1.1 πξ
N2∕3 Δx ≈

πξ

2
�������������
2 ln�N�

p
3D Δx �

���������������
24

π�2�
��
2

p
�

4
q

πξ
N3∕4 ≈ 1.2 πξ

N3∕4 Δx ≈
πξ

2
�������������
3 ln�N�

p

Table 3. (Approximate) Minimum Possible Relative Bias
in the Variance Produced by the Thorsos Method, for a

Given N , When the Grid size is Set as in Table 2

α � 0.5 α � 1.0

1D �4π� 1����
N

p ≈
1.27����
N

p 1.2
���������
ln�N�

p
−1

N

2D �4
��
23

p
π � 1

N2∕3 ≈
1.60
N2∕3

2.5 ln�N�−1
N2

3D 1.77
N3∕4

6�ln�N��3∕2−1
N3
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ξ∕2. This larger grid size results in a larger simula-
tion domain size (L), and thus smaller low-frequency
error. The overall bias is thus much lower. Overall,
when α � 1.0, setting Δx � ξ∕2 results is very low
bias in the resulting data set variance under most
conditions. When α � 0.5, much more careful atten-
tion to grid size is required. Interestingly, the lessons
learned here apply to evaluation of experimental
roughness data as well [14].

5. Alternate PSD Formulation

The results above show the importance of the rough-
ness exponent α on the biases inherent in the Thorsos
method of generating rough edges, surfaces, and
volumes. The definition of the roughness exponent
used in Eq. (16), however, is not the only one.
Palasantzas [15] suggested a PSD that has been
widely used (shown here in the slightly modified
form that has become more common):

PSD�f � � PSD�0�
�1� �2πf ξ�2�H�d∕2 ; (29)

where H plays the role of the Hurst (roughness) ex-
ponent, d is the dimensionality of the problem, and
PSD(0) is adjusted to give the desired variance [for
example, via Eq. (15) for d � 1]:

1D: PSD�0� � 2σ2ξ

0
B@

���
π

p
Γ
	
H � 1

2



Γ�H�

1
CA;

2D: PSD�0� � 2πσ2ξ2�2H�;

3D: PSD�0� � 8πσ2ξ3

0
B@

���
π

p
Γ
	
H � 3

2



Γ�H�

1
CA: (30)

It is important to note that whenH � 0.5, the result-
ing PSDs are identical to the α � 0.5 PSDs [for exam-
ple, shown in Eq. (17) for the 1D case]. However, the
H � 1.0 case does not correspond to the α � 1.0 case.

Using this PSD, the bias in variance for the
Thorsos method can be determined, just as in the
previous sections:

1D: εrel ≈
�

Γ�H � 1
2����

π
p

Γ�H � 1�

��
Δx
πξ

�
2H

� 2

0
@

���
π

p
Γ
	
H � 1

2



Γ�H�

1
A

×
�
ξ

L

�
−
1
N

2D: εrel ≈
�
2

���
2

p

π

��
Δx
πξ

�
2H

� 2π�2H�
�
ξ

L

�
2
−

1

N2

3D: εrel ≈
�
2�

���
2

p

π

��
Δx
πξ

�
2H

� 8π

0
@

���
π

p
Γ
	
H � 3

2



Γ�H�

1
A

×
�
ξ

L

�
3
−

1

N3:

�31�

For the 1D case, the minimum bias occurs when

Δx ≈
πξ

N1∕�1�2H� : (32)

At this optimum grid size, the minimum bias in the
variance in 1D is

εrel;min ≈ 2

0
@ Γ

	
H � 3

2



���
π

p
Γ�H � 1�

1
A� 1

N2H∕�1�2H�

�
: (33)

Similar results can be derived for the 2D and 3D
cases as well. Figure 5 compares the predictions of
Eq. (31) to 1D simulations for various values of the
roughness exponent H.

6. Convergence of the Data Set PSD

While the discussion above shows that the Thorsos
method produces a data set with a variance that is
downward biased, the PSD of the data set is un-
biased. Using the standard FFT approach to comput-
ing the PSD of a data set, Fig. 6(a) shows a typical

Table 4. Examples of the Minimimum Possible Relative Bias in the
Variance Produced by the Thorsos Method (from Table 3), for

Different Values of N

α � 0.5 α � 1.0

1D N � 16;384 → 1%bias N � 1;024 → 0.2%bias
N � 4;096 → 2%bias N � 256 → 0.7%bias

2D N � 2;048 → 1%bias N � 128 → 0.07%bias
N � 512 → 2.5%bias N � 32 → 0.8%bias

3D N � 1;024 → 1%bias N � 64 → 0.02%bias
N � 512 → 1.6%bias N � 32 → 0.1%bias

Fig. 5. (Color online) For the 1D case,N � 256, comparison of nu-
merical simulations using the Thorsos method (symbols) to the
predictions of Eq. (31) (solid curves) for various values of the
roughness exponent H.
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result (for the 1D case). As is well known, this period-
ogram estimate of the power spectrum produces a
PSD with a relative standard deviation of 1 at each
frequency (that is, the standard deviation of the PSD
is equal to the expectation value of the PSD), inde-
pendent of N [16]. To verify that this numerical
PSD converges to the input PSD, numerous trials
of the PSD should be averaged together [Fig. 6(b)].

By comparing the PSD of the generated data to the
input PSD, the RMS relative difference can be calcu-
lated. Figure 7 shows the convergence of the gener-
ated PSD as a function of the number of trials being
averaged (M), showing that it follows the expected
1∕

�����
M

p
trend. Various values ofN and ξ do not change

this result. Further, the uncertainty in each RMS cal-
culation is equal to 1∕

����������
NM

p
. Thus, the data points in

Fig. 7 are the average of numerous RMS calculations.
For 2D and 3D data, extracting a radially sym-

metric PSD from the 2D or 3D FFT requires interpo-
lating the rectangular data onto a radial grid.
Further, the radial symmetry means that many dif-
ferent PSD points can be averaged together for each
radial frequency. Consider the symmetric 2D case of

an N ×N data set with Δx � Δy. If the radial grid is
set to Δr � Δx, then at a radial position of nΔr there
will be about �n� 1�π∕2 different x-y PSD values

Fig. 6. (Color online) Typical PSD taken from a generated rough
edge (σ � 5 nm, ξ � 10 nm, Δx � 1 nm, and N � 1024): (a) one
trial and (b) average of 100 trials. The input PSD is shown as
the smooth red curve.

Fig. 7. (Color online) Convergence of the numerically generated
1D PSD to the input PSD function as a function of the number of
trials being averaged together (σ � 5 nm, ξ � 10 nm, Δx � 1 nm,
and N � 1;024). The standard 1∕

�����
M

p
convergence trend is shown

as the solid line, with simulations shown as the symbols.

Fig. 8. (Color online) Convergence of the numerically generated
PSD to the input PSD function as a function of the number of trials
being averaged together (M) and the number of points per side (N)
for ξ � 10 nm and Δx � 1 nm: (a) 2D case and (b) 3D case.
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averaged together to produce one radial PSD value
(up to n � N). For the 3D case, the nth radial PSD
value will average together about �n� 1�2π∕2
rectangular PSD values. The result of this internal
averaging will be a radial PSD with lower RMS
difference.

The use of an interpolation algorithm, however,
adds interpolation error. Here, a linear interpolation
in two or three dimensions was used [taking care not
to interpolate using the invalid PSD(0) data point].
Since the PSD shape is decidedly not linear, the
use of a linear interpolation adds a systematic error
that will decrease with increasing N. Figure 8 shows
the results. As can be seen, increasing N results in
significant internal averaging when computing the
radial PSD and a much lower RMS difference even
when the number of trials being averaged together
(M) is one. As M increases, however, the RMS differ-
ence quickly saturates at a value determined by the
interpolation error. Unless N is sufficiently large,
errors in the PSD can be dominated by this linear
interpolation error (Fig. 9). In such cases, quadratic
or other more sophisticated interpolation schemes
could be used to reduce this error.

A short discussion of random numbers is now in
order. Pseudo-random number generators (PRNGs)
are used to generate the “random numbers” used
in the Thorsos method. An important but often
underappreciated aspect of such PRNGs is their
period—how many random numbers can be gener-
ated before the sequence repeats. Consider one of the
data points in Fig. 7: N � 16;384, M � 1;000;000.
Two random numbers are needed per data set point,
and 10 separate runs were used to estimate the un-
certainty in the RMS value plotted in the figure.
Thus, a string of 3.3 × 1011 independent random
numbers was required. A typical 24 bit random
number generator, the default in many computer
language compilers, can only generate 224 − 1 (16
million) independent random numbers—obviously
inadequate here. A 32 bit PRNG is also insufficient
(period of 4 billion). In this work, a Mersenne Twister

PRNG was used, with a period of 219937 − 1 [17]. The
Box–Muller algorithm was used to convert the
uniform distribution of the PRNG into a Gaussian
distribution.

7. Conclusions

The Thorsos method for generating random rough
edges, surfaces, and volumes is both simple and
powerful. It produces data sets whose means are
without bias, and has the desired spectral character-
istics PSD without bias. The process of modeling a
continuous function of infinite extent using a discrete
set of data of finite extent, however, inevitably
results in data with a variance (and standard devia-
tion) that is downward biased. Further, the amount
of bias is a strong function of not only the number of
data points but also the parameters of the model: the
data parameters of grid size and data length, and the
PSD parameters of correlation length and roughness
exponent. Under common modeling conditions, the
bias in the standard deviation can be small (less than
1%) or large (greater than 10%), depending on the
parameter settings.

A commonmodeling approach is to fix the data size
(N) and the grid size (Δx), and then generate random
data sets with varying standard deviation (σ), corre-
lation length (ξ), and roughness exponent (α orH). As
the above analysis shows, however, the resulting
data sets will have varying degrees of bias. Thus,
it may be difficult to distinguish a true effect of vary-
ing roughness versus an apparent effect of varying
data bias. A better approach might be to select the
grid size that always minimizes the bias. Then, at
least for a fixed roughness exponent, the relative bias
will remain constant. For a varying roughness expo-
nent, this optimum grid size will at least minimize
the bias, though it will not keep it constant. The sig-
nificance of these effects is a strong function of the
roughness exponent, with α � H � 0.5 providing
the worst case.
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