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Abstract

Development rate can be defined microscopicallye (thevelopment rate at a point) or

macroscopically (the propagation rate of an averagest height). In the presence of stochastic
noise, these two rates will be different. Usingt@hastic resist simulator, the propagation rate o
a resist surface is calculated in the presencetashastic variation in the resist deprotection

concentration using a nonlinear development ratdaihno For both 2D and 3D simulations, the

development front propagation rate was fit to sempirical expressions. The resulting

propagation rate can be more than an order of mamhigher than for the case of no stochastic
noise. The differences between microscopic andresaopic dissolution rate can have an
important effect on how development rate modelsighbe calibrated, depending on their use in
continuum or stochastic lithography simulators.
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1. Introduction

Photoresist development rates are commonly medstrecharacterize photoresist dissolution
behavior. Such data are frequently used to casibdevelopment models for simulators. An important
though frequently unstated assumption of this $s¢hé equivalence of microscopic and macroscopic
development rates. Microscopic development rathésdevelopment rate at a point in the resistiartde
rate used by simulators (Fig. 1a). Macroscopictigment rate is the mean rate at which a large apea
of resist develops down and is the quantity measuteen development rates are measured (Fig. 1b), fo
example, when using a dissolution rate monitor.thim absence of stochastic effects that resultiifase
roughness, these two rates are identical.

In the real, stochastic case, the mean propagedierof a large open area is a strong functioimef
stochastic uncertainty of the development ratee@safly in regions of moderately low dissolutiortesm
This paper will explore the impact of stochasticcenmainty in microscopic development rate on the
macroscopic development rate through the use &f drwdlytical derivations and Monte Carlo simulagion

2. Theory

Dissolution rate uncertainty will inevitably resudtom uncertainty in the underlying inhibitor
concentration (for example, the concentration oftguting groups in a chemically amplified resist).
Consider a simple development rate function

(a+da-m" (D
e 2™

(1)

wherer is the development rate is the relative protecting group (inhibitor) cont@tion, and pux, Imin, N,
andmy, are model parameters. Here, we will neglggtas small compared to the development rate in the
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region of interest. The edge of a photoresistufeatvill necessarily have a protection level ttisahéar the
knee of the development rate curve, so thatmy, Thus, ifn >> 1, the development rate in this region will
be well approximated by

R @)

This development rate expression will be used tijinput this paper. While simple, it accuratelyeefs the
non-linear development rate response for the expoand deprotection levels expected near a phdgbres

feature edge.

(b)

Figure 1. Photoresist development rate is defimetivo ways: a) microscopic development — the edtevhich a
point on the resist surface moves perpendiculéihabsurface; and b) macroscopic development Fatee
at which the mean surface position (the mean devedmt front) propagates.

Suppose tham is a random variable with a normal distribution, thatm ~ N(u, o). If the
randomness ahis the only source of uncertainty in the resultileyelopment rate, a probability distribution
function (pdf) forr can be calculated.

1
pdfrzd_mpdfm, dm_ 1 r | (3)
dr dr| nrir.
1
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df = i e H max m (4)
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Unfortunately, the moments of this distribution (frarticular, the mean and the variance) cannot be
analytically calculated, making the utility of thilf expression questionable. The mode, howewass d
have an analytical form:

, n 1- / An-Yo?
rrnode :rmax(l_ ITlr‘node) ’ 1- rnrmde :T’u{l-l- 1_ﬁJ (5)

1-yu
2Jn-1"

approximation that will be made often in this waqrk)

1—mmde=(1—u){1—(n—1)( I J J 6)

1-u

This expression gives real roots so long @s<

For smallg, (that is, forg,, << 1 — 4, an

so that

On 2)’
HJ ] W)

Again for the case of smatk,, the actual pdf of equation (4) is well approxiethby a Generalized
Gamma Distribution (GGD):

Fioce = r(u)[l— (n —1)(

_ B r K —(r12)?
df = |- 8
Peco Ar(a)(/l} © ®)

which has the following properties:

1 1 2
15 r a+z MNa +E ©)
mode:/l[a——) , (r) =A———4, <r2> e
B r(a) r(a)
Matching the mode of the GGD to the mode,are find that

1
1)5

A= m,e(a—ﬁj (10)

The GGD can then be conveniently calculated byndeji

B
r 1
(:J (“@J -

4

so that
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pdf oo (1) = (g]( % Jea(l—yﬂn ¥) (12)

As we shall see, the assumption of sn@llis equivalent to sayingr >> 1, so that Sterling’s
approximation to the Gamma function can be used:

. a-a |2 1 1
MNa)=ae ‘,_a (1+_12a +—288a2 +) (13)
giving
~ 1 ﬁ\'a a(1-y+iny)
pdfeep (F) ( rj[—@ Je e (14)

The values ofr and 8 can now be determined by empirically fitting th&B to numerical evaluations of
equation (4). Excellent fits are obtained when

2
_(1-p _3
"‘[30 j p== (15)

m

This leads to an approximate pdf foof

pdf (r) = % (%)[%Jea(l—yﬂn ¥) (16)

el

Using the smally, approximation fory [the right-hand side of equation (17)] requiresnaall adjustment to
the scaling for the pdf, giving

_ 1 (1)1-u a(1-y+iny)
df (ry=—| = | ==#
paf (r) 254( r J( no,, je (18)

where

Note that ), and the exponential term in the pdf, is not deleah on the development rate function
parameters. A plot of equation (18) compared tma#qgn (4) is shown in Fig. 2 for the casencaf 10.
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Figure 2. Comparison of the numerical calculation the pdf, (labeled as “actual”’) compared to the approximate
GGD form from equation (18). The two graphs difb@ty in the use of linear and log scales forxfaxis.

The advantage of using the Generalized GammailRistin is the ability to calculate the mean and
variance of the development rate analytically. Koy Sterling’s approximation to equations (9),

NP

oY r(ﬂ)r(sz ) [1+ ;Jm;_
1+(WJ ) H‘” ;ﬁz ) [haljfmzl (19)

Foraf>>1,

2 2 4
G| <N | | o N (20)
(r) 1-u 1-u
The accuracy of this approximation will now be ¢éestwith simulations, along with simulations of the
development front propagation rate (i.e., the mswwpic development rate).

3. Monte Carlo Simulations

Simulation was used to predict the resist heigha &unction of development time for an open-frame
exposure/development in the presence of stochassiolution-rate nois€® The development model
discussed above in equation (2) was used, mithN(y, o) selected from a random number generator for
each grid point (all grid points remaining uncoated). The grid size was set to 1 nm. For 2D Y1+1
simulations, the simulation width was 2048 gridnadats and the resist thickness was 4096. For 3D
simulations (2+1), the widths mandy were 512 grids and the resist thickness was 102#% parameters
werermx = 200 nm/smy, = 0.5, anch was varied between 5 and 15. The developmentwageadjusted in
each case so that approximately 1000 time step&ivedlow the front to reach the bottom of the resis
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For each combination gf and g, evaluated, the mean and standard deviation ofilseoscopic
development rate were calculated, and the developfrant propagation rate was determined by fittihg
average resist surface height versus time withaggstt line. An example of the 2D simulation résuforn
=10, is shown in Fig. 3. An example of 3D simigdatresults is shown in Fig. 4.
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Figure 3. 2D simulation results for= 10. Each data point is the average of 500striglwas varied between 0.72
and 0.76 andy, was varied between 0.005 and 0.055.

The simulation results were fit to semi-empiriexbpressions (guided by the results of the theory
section above). Equation (20) predicts a lineaiatian of the relative development rate uncertainith
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relative deprotection uncertainty, but for highemcaints of uncertainty a higher-order term was neqlli
For 2D and 3D simulations and for all valuespf

(i]z = ( o, Jz +(003n - 021)[ N T (21)

(r) 1-u 1-u

The front propagation rate,.p, was also fit to empirical equations.

2D: rprop:r(p)[l{”_”;j +0016n({‘_02j] (22)

, N no,, 2 no,, ! no,, °
3D: rpmp~r(,u){1+ 2.2(1_NJ + (0.04n—018&(1_’uj +(o.001a1—0008)(1_#j (23)
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Figure 4. 3D simulation results for= 10. Each data point is the average of betwean450 trials. i was varied
between 0.72 and 0.77 awg} was varied between 0.001 and 0.055. The resul{igwent from 0.08 to
1.92 nm/s, and the propagation rate varied from®@.7 nm/s.

4. Discussion and Conclusions

Lithography simulators, whether making the contimuapproximation or performing stochastically,
require a model relating the dissolution rate pbent in the resist to the level of deprotectiorntett point.
The data to calibrate such a model universally corfrem measurements of film thickness versus
development time for large open-frame exposures. the simulations performed in this work show, the
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average development front propagation rate, as tnighmeasured by a dissolution rate monitor, can be
many times larger than the development rate atntiean deprotection concentration when stochastic
variations in deprotection rate are present. [igrfor example, shows propagation rates more #tan
times higher than the expected rate. A summatkisfeffect is shown in Figure 5.

The reason for this unexpected behavior is thendtigally skewed probability distribution for

development rate that arises from a normally diatédd deprotection level when the dissolution rate
dependence is highly nonlinear (that is, for a higlue ofn). This observation gives rise to two concerns.
When using dissolution rate data to calibrate aticoom model, differences in the variance of the
deprotection level will affect the data and thue thodel fit. If the continuum simulator is to bged for
cases where the variance in deprotection levelmeatthat of the dissolution rate measurementss alell.
But if not, there will be some concern as to ththfalness of the simulation results. When usingsdlution
rate data to calibrate a stochastic model, thdredion process should include stochastic effestsvall.
Otherwise, a continuum model calibration procesdctgreatly overestimate the dissolution rate vahaebe
used in a stochastic simulator near the knee ofi¢lvelopment curve.
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Figure 5. Comparison of 3D simulation results & ttevelopment front propagation rate (for 10) for different
O The “model” curve corresponds &g = 0.
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