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Randomness in 
Lithography

• Photon count
• PAG positions
• Absorption/acid 

generation
• Polymer chain length
• Blocking position
• Reaction-diffusion
• Dissolution
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Impact of Gradient on LER
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Technology and Processing XXII, SPIE Vol. 
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Line-Edge Roughness
(Simple Model)

• Consider a small deviation in resist development 
rate.  The resulting change in resist edge position 
will be approximately

• For some variation in development rate σR,
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Line-Edge Roughness
(A Simple Model)

• Add the finite size of a resist molecule, σ0

• What affects the three terms of this model?
– Molecular size
– Acid diffusion length
– Dose
– Image NILS
– Others…
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Stochastic View of Exposure + 
Reaction-Diffusion

• Uncertainty in deblocked polymer concentration:
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Effect of Polymer Size

• As polymer size increases ( ):

0/
σσσ +=

dxdm
m

LER

• Solubility of the polymer is a function of the total number of 
deprotection events associated with that polymer

• These events are averaged over the volume of one polymer
• There is an optimum polymer size
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Effect of Diffusion

• As diffusion length increases ( ):

0/
σσσ +=

dxdm
m

LER

• Smoothing is caused by the diffusion of a catalyst
• This catalyst diffusion also leads to correlation
• Diffusion also smears away the image 
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Line-Edge Roughness and 
Acid Diffusion
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Line-Edge Roughness and 
Acid Diffusion
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Effect of Dose

• As dose increases ( ):

0/
σσσ +=

dxdm
m

LER

• Increasing dose improves the chemical gradient (to a point)
• Increasing dose reduces uncertainty (to a point)
• Diminishing returns for higher dose (in fact, there is an optimum), 

but we are a long ways away from that for EUV



Optimizing LER

• There is an optimum polymer size
– Current materials are probably close to optimum

• There is an optimum diffusion length
– Current materials probably diffuse too much
– Optimum diffusion length scales with feature size
– There is a dose penalty for lower diffusivity

• There is an optimum dose
– The best dose is probably higher than what we now use 

(definitely true for EUV)

• Looking only at σLER is not enough
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Which PSD is Better?
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What Affects the PSD

• Roughness Standard Deviation
– Dose, concentrations, acid diffusion length, polymer 

volume

• Correlation Length
– 1-2 times the acid diffusion length

• Roughness Exponent
– Probably equal to 0.5
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How can I lower the low frequency LER?



What Gives the PSD its 
Shape?
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Magic Rinse

• Can we smooth away the LER post-processing?
• Low frequency LER is like a CD error
• Any smoothing technique that can reduce the low 

frequency LER must do so by changing the CD
• How does the magic rinse know which CD is the 

correct one?
• The only thing that LER post-processing can help 

with is high-frequency LER
– Is this more than just cosmetic?
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What Can Be Done?

• Low frequency LER comes from all the sources of 
shot noise:
– Photon counts, PAG counts, acid counts, protecting 

group counts, deprotection event counts, dissolution 
events

• This low frequency uncertainty cannot be smoothed 
away
– The only approach is to reduce the source of uncertainty
– We need a new paradigm
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What Can Be Done?

• Reducing photon uncertainty
– Use of fundamentally different photon statistics

(I don’t know what this might look like)
– Use more photons

• Reducing chemical uncertainty
– Random molecular positioning can be improved by 

higher densities, but we can only go so far
– We must break out of the random position paradigm
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KOH Etching of Silicon 
Crystal Planes
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Proposal for the Low-LER 
Resist

• Block Copolymer (or Crystal) Photoresist
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Conclusions

• LER is the ultimate limiter to resolution in optical 
lithography 

• We still need to learn more about how LER works, 
but we know enough (I think) to draw conclusions
– We can’t optimize out way out of the current LER 

performance gap
– LER post-processing (aka magic rinse) can never fix low-

frequency LER
– We must break the randomness paradigm if we want to 

push down to the 1x-nm level
– We need more photons and a non-random resist
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