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Abstract. Characterization of a stochastic process in lithography, giving
rise to photoresist line-edge roughness (LER), requires elucidation of the
power spectral density (PSD) for that process. Thus, any analytical model
for LER requires an analytical model for the PSD. Using a previously
derived formulation for the reaction-diffusion autocorrelation function,
the PSD can be derived from its Fourier transform. The resulting analytical
expression for the reaction-diffusion PSD provides an interesting and use-
ful form that will aid modeling work in LER prediction. Numerically calcu-
lating the PSD for the stochastic development rate shows that this same
analytical expression approximately matches the simulation but with a cor-
relation length that decreases as the amount of development noise
increases. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10
.1117/1.JMM.11.4.043007]

Subject terms: stochastic resist; correlation length; power spectral density; reaction-
diffusion; lithography simulation; line-edge roughness; linewidth roughness.
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1 Introduction
Stochastic variations in photoresist exposure, reaction-diffu-
sion, and development ultimately lead to sidewall surface
roughness of the final photoresist features, described as
line-edge roughness (LER) or linewidth roughness (LWR).
Full characterization of the LER requires its description
over the spectrum of roughness frequency components,
most commonly using the power spectral density (PSD).
While a comprehensive model for LER formation in litho-
graphy does not yet exist, several pieces of the puzzle
have been explored. For example, models for the prediction
of the uncertainty in acid concentration after exposure of a
chemically amplified resist have been developed for 193-nm1

and extreme ultraviolet (EUV) resists.2

Reaction-diffusion results in a distribution of protected
and deprotected polymer groups at the end of the post-expo-
sure bake (PEB). This spatial distribution of the protecting
group (the latent image after PEB) then leads to a develop-
ment rate distribution that ultimately determines the final
resist profile shape. Understanding the PSD of the latent
image and the development rate distribution are important
steps in a full understanding of the PSD behavior of LER.
In Sec. 2, an analytical expression for the PSD of the effec-
tive acid concentration during PEB will be derived. That
same expression will be shown to be applicable to the PSD
of the protecting group concentration after PEB, under cer-
tain circumstances, in Sec. 3. Finally, in Sec. 4 the PSD of the
development rate will be numerically evaluated.

The PSD of the stochastic distribution of development
rates, while the final result of this paper, is only an intermedi-
ate result of the full development process. The surface-lim-
ited etching mechanism of resist dissolution will transform
the stochastic development rates of the resist into a final
rough surface on the sidewalls of the resist feature. The
results presented in this paper thus can serve as an input

to a dissolution/etching algorithm that in turn will predict
the final surface roughness (the subject of future work).

2 Reaction-Diffusion PSD—the Effective Acid
Concentration

The random distribution of acid after exposure of a chemi-
cally amplified resist is essentially uncorrelated (and thus its
PSD will be flat—white noise) when ignoring such a corre-
lating mechanism as speckle during 193-nm exposure,3,4 or
secondary electron generation for 13.5-nm exposure. Reac-
tion-diffusion, where the acid diffuses and acts as a catalyst
for a polymer deprotection reaction, adds correlation to the
resulting uncertainty. One acid can deprotect multiple poly-
mer sites; as a result, those deprotection reactions are not
independent. In a previous study,5,6 the autocorrelation func-
tion of the effective acid concentration during PEB for a che-
mically amplified resist ðR̃Heff

Þ was derived.

R̃Heff
ðτÞ ¼

R∞
−∞ RPSFðsÞRPSFðsþ τÞdsR∞

−∞ ½RPSFðsÞ�2ds
; (1)

where τ is the radial distance from the origin, and the reac-
tion-diffusion point spread function (RPSF) has analytical
forms in one, two, and three dimensions.
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The effective acid concentration (Heff ) is the time average
of the acid concentration during the bake and is the convolu-
tion of the initial acid concentration after exposure with the0091-3286/2012/$25.00 © 2012 SPIE
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reaction-diffusion point spread function.7 Note that the PSD
is simply the Fourier transform of the autocorrelation func-
tion, and in general, the resulting PSD will have different
forms in different dimensions.8

While the integrals in Eq. (1) cannot be carried out ana-
lytically in any dimension, the Fourier transform of Eq. (1)
can, yielding the PSD.

PSDðfÞ ¼ PSDð0Þ
�
1 − e−ðπξfÞ2

ðπξfÞ2
�2

; (3)

where the correlation length-like parameter ξ is related to the
acid diffusion length σD by ξ ¼ ffiffiffi

2
p

σD. The zero frequency
PSD is calculated from Parseval’s theorem.

1 −D∶ PSDð0Þ ¼ 3
ffiffiffi
π

p
ξσ2Heff

8

� ffiffiffi
2

p
− 1

� ≈ 1.60466ξσ2Heff
;

2 −D∶ PSDð0Þ ¼ πξ2σ2Heff

2 ln 2
≈ 2.26618ξ2σ2Heff

;

3 −D∶ PSDð0Þ ¼ π3∕2ξ3σ2Heff

4ð2 − ffiffiffi
2

p Þ ≈ 2.37643ξ3σ2Heff
: (4)

In the high frequency limit, where πξf ≫ 1, we see that
PSD ∼ 1∕f4, corresponding to a Hurst exponent of α ¼ 0.5
for the 3-D case.

Interestingly, the reaction-diffusion PSD is the same, to
within a scale factor, for one, two, and three dimensions.
This is not generally assumed to be the case. For example,
it has been common to assume that a stretched exponential
autocorrelation function can apply.9,10

R̃ðsÞ ¼ σ2e−ðs∕ξxÞ2α . (5)

For α ¼ 0.5, the resulting PSD can be analytically
derived.8 Letting d be the dimensionality of the problem,

PSDxðfÞ ¼
adσ2ξdx

½1þ ð2πfξxÞ2�dþ1
2

; (6)

where a1 ¼ 2, a2 ¼ 2π, and a3 ¼ 8π. For the 3-D case, this
expression produces the high frequency 1∕f4 behavior found
for the reaction-diffusion PSD. For 1-D and 2-D problems,
however, Eq. (6) predicts 1∕f2 and 1∕f3 behavior, respec-
tively, while the reaction-diffusion PSD of Eq. (3) predicts
a high frequency 1∕f4 behavior for all dimensions.

Comparing the reaction-diffusion PSD of Eq. (3) to the
3-D version of Eq. (6), the frequency behavior can be made
tomatch in the low-frequency regime, or in the high-frequency
regime, but not both. Matching at low frequencies gives

PSDxð0Þ ¼ 8πσ2ξ3x ¼ PSDRDð0Þ ¼
π3∕2ξ3σ2

4ð2 − ffiffiffi
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≈ 0.4556ξ: (7)

Matching at high frequencies gives

ξx ¼ ξ

�
2ð2 − ffiffiffi

2
p Þffiffiffi
π

p
�
≈ 0.6610ξ: (8)

In either case, the mid-frequency regime will not match, as
seen in Fig. 1. The differences, while not dramatic, are
noticeable.

3 Correlation Length
There is no universally accepted definition of correlation
length (Lcorr) that can pin down its value except to within
a multiplicative factor. One definition, for example, is based
on the frequency that reduces the PSD by a factor of 2

PSD

�
f ¼ 1

2πLcorr

�
¼ PSDð0Þ

2
: (9)

By this definition, the correlation length of the reaction-dif-
fusion system is related to ξ by Lcorr ¼ 0.5819ξ ¼ 0.8229σD
(for 1-D, 2-D, and 3-D). Another common definition, pro-
posed by Stratonovich,11 is the area under the autocorrelation
function curve:

Fig. 1 Comparing the reaction-diffusion PSD and Eq. (6) in three
dimensions for (a) matching low frequencies and (b) matching high
frequencies.

J. Micro/Nanolith. MEMS MOEMS 043007-2 Oct–Dec 2012/Vol. 11(4)

Mack: Reaction-diffusion power spectral density

Downloaded From: http://spiedigitallibrary.org/ on 10/25/2012 Terms of Use: http://spiedl.org/terms



Lcorr ¼
Z

∞

0

R̃ds ¼ 1

σ2

Z
∞

0

F−1fPSDgds; (10)

where the autocorrelation function is assumed to be an even
function of the distance s. The second integral can be sim-
plified by changing the order of integration, giving a result
that depends on the dimensionality of the problem

1 −D∶ Lcorr ¼
PSDð0Þ
2σ2

;

2 −D∶ Lcorr ¼
1

σ2

Z
∞

−∞
PSDdf;

3 −D∶ Lcorr ¼
1

σ2

Z
∞

−∞
fPSDdf: (11)

Carrying out these calculations for the reaction-diffusion
PSD,
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2

p Þ ξ ≈ 1.04865ξ:

(12)

Thus, depending on the definition used and the dimen-
sionality of the problem, the correlation length is between
0.58ξ and 1.41ξ. It seems reasonable, therefore, to define
the correlation length for the reaction-diffusion system as
being synonymous with the parameter ξ.

4 Reaction-diffusion PSD—the Protecting Group
Concentration

The relationship between the effective acid concentration
and the relative concentration of protecting groups in the
chemically amplified resist (m) is exponential, making cal-
culation of the PSD for m difficult.

m ¼ e−αfheff ; (13)

where αf is the amplification factor (with typical values
between 1 and 2), equal to the amplification rate constant
times the PEB time, and heff is the effective acid concentra-
tion relative to the initial photoacid generator concentration.7

When the effective relative acid concentration near the resist
line-edge is sufficiently small that a linear approximation to
this exponential relationship is reasonable, the relative pro-
tecting group concentration will have a PSD of the same
form as Eqs. (3) and (4), where the variance of the effective
acid concentration is replaced by the variance of the relative
protecting group concentration, σ2m.

For the more general case, numerical simulations can be
used to explore the shape of the PSD of the relative protect-
ing group concentration. Given a normally distributed ran-
dom variable heff ∼ Nðμh; σhÞ and a desired PSD, how
does one generate a random volume of heffðx; y; zÞ on a reg-
ular grid? While there are several methods available, I prefer
the approach proposed by Thorsos.12 The goal is to create a
grid of random numbers with a Gaussian distribution and

with spatial correlations that would produce, on average, a
given PSD. Thorsos described the algorithm in one dimen-
sion, which will be reproduced briefly here. Given Nx grid
points with spacing Δx covering a distance Lx ¼ NxΔx, the
relative effective acid concentration at the point xn ¼ nΔx is
given by

heffðxnÞ ¼ μh þ
1

Lx

XNx∕2−1

j¼−Nx∕2
FðfjÞei2πfjxn ; (14)

where this calculation is performed as the Fast Fourier Trans-
form (FFT) of F on a grid of frequencies fj ¼ j∕Lx. The
function F, in turn, is calculated from the amplitude of
the PSD (for j ≥ 0):

FðfjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LxPSDðfjÞ

q �
ðη1 þ iη2Þ∕

ffiffiffi
2

p
; j ≠ 0; Nx∕2

η1; j ¼ 0; Nx∕2
;

(15)

where η1 and η2 are two independent Nð0; 1Þ random
numbers. Since heffðxnÞ must be real, the negative frequen-
cies of F are obtained from a symmetry relationship:
Fðf−jÞ ¼ F � ðfjÞ.

The Thorsos algorithm can easily be extended to two and
three dimensions, so long as care is taken to properly pro-
duce the boundary conditions (a purely real random number
is used at the origin and at the outer edges of the volume) and
the symmetry to result in a purely real heff . In two dimen-
sions, this requires

RefFðfx; fyÞg ¼ RefFð−fx;−fyÞg;
RefFð−fx; fyÞg ¼ RefFðfx;−fyÞg;
ImfFðfx; fyÞg ¼ −ImfFð−fx;−fyÞg;

ImfFð−fx; fyÞg ¼ −ImfFðfx;−fyÞg: (16)

In three dimensions,

RefFðfx; fy; fzÞg ¼ RefFð−fx;−fy;−fzÞg;
RefFð−fx; fy; fzÞg ¼ RefFðfx;−fy;−fzÞg;
RefFðfx;−fy; fzÞg ¼ RefFð−fx; fy;−fzÞg;
RefFðfx; fy;−fzÞg ¼ RefFð−fx;−fy; fzÞg;
ImfFðfx; fy; fzÞg ¼ −ImfFð−fx;−fy;−fzÞg;

ImfFð−fx; fy; fzÞg ¼ −ImfFðfx;−fy;−fzÞg;
ImfFðfx;−fy; fzÞg ¼ −ImfFð−fx; fy;−fzÞg;
ImfFðfx; fy;−fzÞg ¼ −ImfFð−fx;−fy; fzÞg: (17)

The randomm is produced by putting the random value of
heff for each grid point into Eq. (13). Then, the resulting
volume of random m was analyzed by extracting its PSD.
Since the result is inherently spherically symmetric [dictated
by the symmetry of Eq. (3)], the PSD as a function of the
three spatial frequency dimensions was interpolated onto
one radial-direction grid. This provides an added benefit
of significant averaging for high spatial frequencies (though
none for the lowest frequency). Further averaging is obtained
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by repeating the numerical simulation numerous times and
averaging the resulting PSDs.

For a Gaussian distribution of heff , the distribution of
m will be log-normal, with mean and standard deviation
given by

hmi ¼ e−αfμheα
2
fσ

2
h∕2; σ2m ¼ hmi2ðeα2fσ2h − 1Þ: (18)

The shape of the PSD of m was explored in the 2-D case for
σm ¼ 0.05 and varying hmi, using αf ¼ 1.5. The resulting
numerical PSDs (the average of 2000 trials for each set of
parameters) matched Eqs. (3) and (4) extremely well so long
as μh was not too close to 0 or 1. In particular, a good match
to the PSD expression occurred when

μh − 3σh > 0 and μh þ 4σh < 1: (19)

Note that these are also the approximate constraints on
describing the distribution of heff as Gaussian. Also note
that under these conditions and for σm ¼ 0.05 or less, the
log-Normal distribution for m is approximately Normal
in shape.

5 Development Rate PSD
Dissolution rate uncertainty will inevitably result from
uncertainty in the underlying inhibitor concentration. Con-
sider a simple development rate function13

r ¼ rmax

ðaþ 1Þð1 −mÞn
aþ ð1 −mÞn þ rmin;

a ¼ ðnþ 1Þ
ðn − 1Þ ð1 −mthÞn; (20)

where r is the development rate, and rmax, rmin, n, andmth are
model parameters. Here, we will neglect rmin as small com-
pared to the development rate in the region of interest. The
edge of a photoresist feature will necessarily have a protec-
tion level that is near the knee of the development rate curve,
so that m > mth. Thus, if n ≫ 1, the development rate in this
region will be well approximated by

r ≈ r 0maxð1 −mÞn; r 0max ¼ rmax

aþ 1

a
: (21)

This development rate expression will be used below. While
simple, it accurately reflects the non-linear development rate
response for the exposure and deprotection levels expected
near a photoresist feature edge.

Using the Thorsos method described above, a Gaussian
distribution of m with a PSD given by Eqs. (3) and (4)
was used in the development rate Eq. (21) to create a random
volume of development rate. An example development rate
PSD is shown in Fig. 2 (rmax ¼ 200 nm∕s, mth ¼ 0.5,
and n ¼ 10).

The shapes of the resultant development rate PSDs are
similar to, but not exactly the same as, the PSD function
of Eq. (3). By fitting Eq. (3) to the numerical results, the
impact of the highly nonlinear development rate function
is seen to be a small decrease in the correlation length as
a function of the development nonlinearity, n, multiplied
by the relative noise in the protecting group concentration,
σm∕ð1 − hmiÞ. Figure 3 shows these results, along with a
quadratic fit to the data.

6 Conclusions
The result of the derivations presented in this paper is a sim-
ple, new expression for the PSD of the effective acid concen-
tration for a chemically amplified resist. Under conditions of
moderately small variations in the protecting group concen-
tration, the PSD of the protecting group concentration also
follows this same PSD expression. Finally, near the photo-
resist line-edge the resulting development rate will also
follow this PSD expression (approximately), though with
a slightly smaller correlation length. The decrease in the
development rate correlation length with increasing develop-
ment rate noise is a new and unexpected result.

These results can usefully be employed in a comprehen-
sive stochastic model of lithography to predict LER. Pre-
vious work to describe the time evolution of rough surfaces

Fig. 2 Example power spectral density (PSD) of development rates
generated by the procedure presented in this paper (hmi ¼ 0.73,
σm ¼ 0.03, 1000 trials averaged together), compared to the best fit
3D reaction-diffusion PSD.

Fig. 3 After calculating the development rate PSD in three dimen-
sions (using ξ ¼ 10 nm for the protecting group concentration), an
estimate of the resulting development rate correlation length was
made by fitting to Eq. (3), shown as the data points (with
hmi ¼ 0.73 and 0.77, σm between 0.01 and 0.05, and n ¼ 10). A
quadratic fit to the data is also shown as the solid line, using the equa-
tion ξrate ¼ ξm ½1 − 0.07ð nσm

1−hmiÞ2�.
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during development has assumed uncorrelated development
rate noise.14 By applying the analytical PSD expressions
derived in this paper, future work to simulate the time evolu-
tion of developed rough surfaces should show whether
kinetic surface roughness caused by dissolution itself
dominates the final lithographic roughness or whether the
underlying development rate noise, coming from the earlier
stochastic reaction-diffusion process, controls the final
surface characteristics.

References

1. C. A. Mack, Fundamental Principles of Optical lithography: The
Science of Microfabrication, pp. 237–252, John Wiley & Sons, London
(2007).

2. C. A. Mack et al., “Stochastic exposure kinetics of EUV photoresists:
a simulation study,” J. Microlith. Microfab. Microsyst. 10(3), 033019
(2011).

3. G. M. Gallatin et al., “Residual speckle in a lithographic illumination
system,” J. Microlith. Microfab. Microsyst. 8(4), 043003 (2009).

4. O. Noordman et al., “Speckle in optical lithography and its influence on
linewidth roughness,” J. Microlith. Microfab. Microsyst. 8(4), 043002
(2009).

5. C. A. Mack, “Stochastic modeling in lithography: autocorrelation beha-
vior of catalytic reaction-diffusion systems,” J. Microlith. Microfab.
Microsyst. 8(2), 029701 (2009).

6. C. A. Mack, “Errata: stochastic modeling in lithography: autocorrela-
tion behavior of catalytic reaction-diffusion systems,” J. Microlith.
Microfab. Microsyst. 11(2), 029801 (2012).

7. C. A. Mack, Fundamental Principles of Optical lithography: The
Science of Microfabrication, pp. 228–230, John Wiley & Sons, London
(2007).

8. C. A. Mack, “Analytic form for the power spectral density in one, two,
and three dimensions,” J. Microlith. Microfab. Microsyst. 10(4), 040501
(2011).

9. P. Naulleau and J. Cain, “Experimental and model-based study of the
robustness of line-edge roughness metric extraction in the presence of
noise,” J. Vac. Sci. Technol. B25(5), 1647–1657 (2007).

10. V. Constantoudis et al., “Line edge roughness and critical dimension
variation: fractal characterization and comparison using model func-
tions,” J. Vac. Sci. Technol. B22(4), 1974–1981 (2004).

11. R. L. Stratonovich, Topics in the Theory of Random Noise, Vol. I, p. 22,
Gordon & Breach, New York (1963).

12. E. I. Thorsos, “The validity of the Kirchhoff approximation for rough
surface scattering using a Gaussian roughness spectrum,” J. Accoust.
Soc. Am. 83(1), 78–92 (1988).

13. C. A. Mack, Fundamental Principles of Optical lithography: The
Science of Microfabrication, p. 260, John Wiley & Sons, London
(2007).

14. C. A. Mack, “Stochastic modeling of photoresist development in two
and three dimensions,” J. Microlith. Microfab. Microsyst. 9(4), 041202
(2010).

Chris A. Mack developed the lithography
simulation software PROLITH and founded
and ran the company FINLE Technologies
for 10 years. He then served as vice presi-
dent of lithography technology for KLA-Ten-
cor for five years, until 2005. In 2003, he
received the SEMI Award for North America
for his efforts in lithography simulation and
education, and in 2009 he received the
SPIE Frits Zernike Award for Microlithogra-
phy. He is a fellow of SPIE and IEEE and

is also an adjunct faculty member at the University of Texas at Austin.
In 2012, he became editor-in-chief of the Journal of Micro/Nanolitho-
graphy, MEMS, andMOEMS (JM3). Currently, he writes, teaches, and
consults on the field of semiconductor microlithography in Austin,
Texas.

J. Micro/Nanolith. MEMS MOEMS 043007-5 Oct–Dec 2012/Vol. 11(4)

Mack: Reaction-diffusion power spectral density

Downloaded From: http://spiedigitallibrary.org/ on 10/25/2012 Terms of Use: http://spiedl.org/terms

http://dx.doi.org/10.1117/1.3631753
http://dx.doi.org/10.1117/1.3256007
http://dx.doi.org/10.1117/1.3256131
http://dx.doi.org/10.1117/1.3155516
http://dx.doi.org/10.1117/1.3155516
http://dx.doi.org/10.1117/1.JMM.11.2.029801
http://dx.doi.org/10.1117/1.JMM.11.2.029801
http://dx.doi.org/10.1117/1.3663567
http://dx.doi.org/1116/1.2778697
http://dx.doi.org/1116/1.1776561
http://dx.doi.org/10.1121/1.396188
http://dx.doi.org/10.1121/1.396188
http://dx.doi.org/10.1117/1.3494607

