Line-Edge Roughness and the Ultimate Limits of Lithography

Chris A. Mack
www.lithoguru.com, Austin, Texas

Abstract

In this paper, a stochastic modeling approach &l ue predict the results of the exposure
and post-exposure bake of a chemically amplifiedtqiesist. The statistics of photon shot
noise, chemical concentration, exposure, reactiffasibn, and amplification are derived.

The result, though preliminary, is a prediction tbe standard deviation of the final

deprotection level of polymer molecules in the sesising simple, analytical expressions.
Combining this result with ongoing work to charaizte the stochastics of resist

development will eventually lead to a full model thie line-edge roughness of a resist
feature. The current model is used to elucidateittpact of acid diffusion on line-edge

roughness.

Keywords. Line-edge roughness, linewidth roughness, s&teghanodeling, correlation length, roughness
exponent, autocorrelation.

Most theoretical descriptions of lithography makeeatremely fundamental and mostly unstated assampt
about the physical world being described: thealtedcontinuum approximation. Even though light energy
is quantized into photons and chemical concentiatare quantized into spatially distributed molesuthe
descriptions of aerial images and latent imagesrigthe discrete nature of these fundamental anisuse
instead continuous mathematical functions. Whestriging lithographic behavior at the nanometeelev
an alternate approach, and in a very real sensera fundamental approach, is to build the quantinadf
light as photons and matter as atoms and moledirestly into the models used. Such an approachlied
stochastic modeling, and involves the use of random variables andahitity density functions to describe
the statistical fluctuations that are expected. cOfirse, such a probabilistic description will moake
deterministic predictions — instead, quantitiesntérest will be described by their probability tdisutions,
which in turn are characterized by their momenishsas the mean and variance.

One common approach to studying LER formatiomisugh the use of Monte Carlo simulatibh$
and mesoscale modeliigThese approaches can be extremely valuable giegecan be made rigorous at
the length scale of interest and can be used tahtesmpact of various fundamental stochastic raetdms
that may be at work. The drawback to Monte Cagpraaches, however, is their lengthy execution gime
resulting from the need to run each stochastic atégrge number of times to provide proper statisti
results. Often important physical insights canaemundiscovered beneath the mountains of statiddi@ta
that a Monte Carlo simulator can generate.

While Monte Carlo methods can be extremely usdhdre is also a need for the development of
simple, analytical expressions that capture theressof the LER formation mechanisms. By formuatati
the equations describing the fundamental procemsdskinetics of exposure, baking, and development a
stochastic equations, one might hope for a solutiotihese stochastic equations that mimic the nfieth-
solutions that are used in physical lithographyuators today. Alas, attempts at such a formutatice



certain to be disappointing as the fundamentalhsistic equations remain immensely complicate@ne

approach, then, is to look for solutions that pdeyirather than the full stochastic nature of eatdrmediate
variable, an approximation to the variance of éacm. Thus, while the mean-field theory of thetommum

models gives the mean of the distribution for egatiable in a tractable mathematical form, the duak is
to find similar tractable expressions for the vace of each term. The goal of this paper is pmad
progress report on this as-yet incomplete effort.

Much of the treatment given below follows that \pded in Ref. 6, with more recent advances
included. First, the statistics of photon shotseaare reviewed, providing the standard Poissdistita of
photon counting. Chemical concentrations also lresu counting statistics that are Poisson. The
probabilities of absorption and exposure are coatbinith photon and chemical concentration shotentms
give the variance of the acid concentration aftgrosure. During post-exposure bake, acid diffusiod
reaction is first formulated to give the effectiaeid concentration and its variance, followed by éwvel of
polymer deprotection and its variance. The staatsef photoresist development is touched upon, rex
the details are left to another publication. Hinapulling the final results together, a fist atfigt at a
comprehensive line-edge roughness model is attelnteugh many deficiencies remain.

1. Photon Shot Noise

Consider a light source that randomly emits photrsn average rate bfphotons per unit time into some
areaA. Assume further that each emission event is iaddent. Over some small time interdalsmaller
than 1L and small enough so that it is essentially imgassior two photons to be emitted during that
interval), either a photon is emitted or it is fatbinary proposition). The probability that a frowill be
emitted during this interval will bedt. Consider now some long tinfe(» dt). What can we expect for the
number of photons emitted during the perib?l This basic problem is called a Bernoulli trialdathe
resulting probability distribution is the well-knovbinomial distribution. If N = T/dt, the number of time
intervals in the total time, then the probabilihat exactlyn photons will be emitted in this time period is
given by a binomial distributioR(n). The binomial distribution is extremely cumbersoto work with aqN
gets large. If, howeveNLdt = TL remains finite adl goes to infinity, the binomial distribution conges to
another, more manageable equation called the Poiiswibution:

P(n) = (Tn#l)n et 1)

Since there is no limit to how small can be made, lettingf go to zero will by default makié go to infinity
for any nonzero time intervdl and nonzero photon emission rhte

The Poisson distribution can be used to derivesthéstical properties of photon emission. The
expectation value af [that is, the mean number of photons that wilebdtted in a time interval, denoted

by the notatioriE(n) or (n)] is TL (a very reasonable result siricevas defined as the average rate of photon

emission). The variance (the standard deviatiaraisygl) is alsdL. To use these statistical properties, we
must convert from number of photons to a more use&asure, intensity. Hyoons IS the number of photons
that cross an are®aover a time intervarl, the mean intensity of light will be
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whereh is Planck’s constant, is the vacuum speed of light, aAds the vacuum wavelength. The standard
deviation of the intensity can also be computechftbe properties of the Poisson distribution.
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As this equation shows, the uncertainty of gettihg mean or expected intensity grows as the
number of photons is reduced, a phenomenon knowshasoise. As an example, consider a 193-nm
exposure of a resist with a dose-to-clear of 10cmf)/ At the resist edge, the mean exposure energy

(=<I >T) will be on the order of the dose-to-clear. Aistlwavelength, the energy of one phothd/, is

about 1.03x 10" J. For an area of 1 n#1 nm, the mean number of photons during the expos$tom
equation (2), is about 97. The standard deviai@bout 10, or about 10% of the average. Forea af 10
nm X 10 nm, the number of photons increases by a fawftdt00, and the relative standard deviation
decreases by a factor of 10, to about 1%. Siresethre typical values for a 193-nm lithographyess, we
can see that shot noise contributes a noticeabtauginof uncertainty as to the actual dose seerhby t
photoresist when looking at length scales less #frmut 10 nm.

For Extreme Ultraviolet Lithography (EUVL), the situation will be considerably worseAt a
wavelength of 13.5 nm, the energy of one photoh bvél1.47X 10" J, about fifteen times greater than at
193 nm. Also, the goal for resist sensitivity Wik to have EUV resists that are 2—4 times morsitben
than 193-nm resists (though it is unclear whethir goal will be achieved). Thus, the number oftphs
will be 30—-60 times less for EUV than 193-nm lithaghy. A 1 nmX 1 nm area will see only two to three
photons, and a 100-rfrarea will see on the order of 200 photons, wisteadard deviation of 7%.

2. Chemical Concentration

Concentration, the average number of moleculesupérvolume, exhibits counting statistics identital
photon emission. LeT be the average number of molecules per unit volamedV a volume small enough
so that at most one molecule may be found in igttequiring that the concentration be fairly diluso that
the position of one molecule is independent ofgbsition of other molecules). The probability ofding a
molecule in that volume is jusEdV. For some larger volum¥, the probability of finding exactiy
molecules in that volume will be given by a binolmistribution exactly equivalent to that for photo
counting. And, as before, this binomial distrilbatiwill also become a Poisson distribution by tettiV go
to zero.

P(n) = —(C\n/' i e (4)

The average number of molecules in the volumelalCV, and the variance will also &/. The relative
uncertainty in the number of molecules in a cent@ilume will be

W Yo (5)



[The requirement that the concentration be ‘diluteh be expressed as an upper limit to the Poisson
distribution — for a given molecule size, satunatamcurs at some,,, molecules in the volum¥. So long
asP(Nmwy) is small, the mixture can be said to be dilijte

As an example, consider a 193-nm resist that hasitgal PAG concentration of 3% by weight, or a
concentration of about 0.07 mole/liter (correspagdio a density of 1.2 g/ml and a PAG molecularghti
of 500 g/mole). Converting from moles to molecwdgth Avogadro’s number, this corresponds to 0.042
molecules of PAG per cubic nanometer. In a volaigl0 nmy, the mean number of PAG molecules will
be 42. The standard deviation will be 6.5 molesube about 15%. For 248-nm resists, the PAG lapdi
typically 3 times higher or more, so that closefl5® PAG molecules might be found in a (10-huglume,
for a standard deviation of 8%. Note that whenrttemn number of molecules in a given volume exceeds
about 20, the Poisson distribution can be well axprated with a Gaussian distribution.

As mentioned briefly above, Poisson statisticshyapply for reasonably low concentrations. The
random distribution of molecules assumes that dsitipn of each molecule is independent of alldheers.
As concentrations get higher, the molecules bemicrowd’ each other, reducing their randomnessthe
extreme limit, molecules become densely packedthaduncertainty in concentration goes to zero. sThi
saturation condition is a function of not only tbencentration, but the size of the molecule as.w&lb
avoid saturation, the volume fraction occupiedhmsyinolecules under consideration must be small.

3. Photon Absorption and Exposure

What is the probability that a photon will be alisat by a molecule of light-sensitive material ie tlesist?
Further, what is the probability that a moleculesefsitizer will react to form an acid? As disadsabove,
there will be a statistical uncertainty in the namlof photons in a given region of resist, a diatié
uncertainty in the number of PAG molecules, andtexthlly a new statistical uncertainty in the atggan

and exposure event itself.

Consider a single molecule of PAG. First-orderekics of exposure can be used to derive equation
the concentration of PAG remaining after exposarel( as well, the concentration of acid generatethe
continuum approximation (this is also called thean-field solution to the kinetics of exposure). From a
stochastic modeling perspective, this kinetic resepresents a probability density function forctémn:
G/Gy is the fraction of PAG that is unreacted in soargé volume, and by the Law of Large Numbers this
must be the probability that any given PAG will @m unexposed. Ley be a random variable that
represents whether a given single PAG molecule irmmaexposed or was converted to acid by the énd o
the exposure process. Thus 0 means an acid has been generated (PAG hasdpandy = 1 means the
PAG has not been exposed (no acid generated).n&i&ianalysis of exposure gives us the probakiity
each of these states, given a certain intensitgsistl ;

P(y=0[)=1-e, P(y=1jI)=e" ()

The probability of exposingne acid molecule after exposure can now be transiateca mean and
uncertainty of the overall acid concentration aébgposure. Consider a volundghat initially contains some
numbemgpac PAG molecules. After exposure, the number of ieing (unexposed) PAG molecul¥swill
be

Y= Y



Assuming that each exposure event is independenimean o becomes
(Y) =(No-pac )(Y) (8)
The variance will b
o2 = (¥)+(Y)2lde ) ~1) ©)
Sinceg, as given by equation (3), will in general be dmal

L <00 .

The variance o¥ has two components. The Poisson chemical disimibgives the first term{Y). Photon
shot noise adds a second term, inversely propaitiorthe mean number of photons.

At this point it is useful to relate the numberrefmaining PAG molecules per unit volurvig¢o the
concentration of acitll, and the initial number of PAG®.pac to the initial PAG concentratioBp.

n
H - G _ , G — _0-PAG
NV NV (11)

whereN, is Avogadro’s number. We can also define a nedadicid concentrationto be

_H _G Y _ Mypes Y (12)
<Go> <Go> <nO—PAG> <nO—PAG> <nO—PAG>

The means of these quantities can be related by

ety )

(Go) (No-pac

) =1-(y) (13)

Using equation (12), the variance of the acid caotre¢ion can be calculated as

2o (), ov=(Y)

g (14)
" (No-pac) <n0—PAG>2
Finally, using equation (10), the variance in amdcentration will be
h 1—(h))In{1-(n))|?
oro (M [o-()inti-(n)] a5

< No-pac > < n photons>



This final result, which accounts for photon flumtions, uncertainty in the initial concentratidn o
photoacid generator, and the probabilistic vanetitn the exposure reaction itself, is reasonatuyitive.
The first term on the right-hand side of equati@d)(is the expected Poisson result based on ex@osur
kinetics — the relative uncertainty in the reswgtiacid concentration after exposure goes as onethee
square root of the mean number of acid moleculergéed within the volume of interest. For large
volumes and reasonably large exposure doses, tmberuof acid molecules generated is large and the
statistical uncertainty in the acid concentrati@tdimes small. For small volumes or low doses, allsm
number of photogenerated acid molecules resul liarge uncertainty in the actual number withint tha
volume. The second term accounts for photon shisten For the case of the (10 fimf 193-nm resist
given above, the standard deviation in initial aoichcentration near the resist edge (where the raeian
concentration will be about 0.4) will be > 20%. rF®3-nm resists, the impact of photon shot nagse i
minimal compared to variance in acid concentratiamsed by simple molecular position uncertainty.

For EUV resists, exposure entails an extra meshaniAbsorption of a photon leads to ionization
and the release of possibly several secondaryrefe;teach of which can potentially be capturedaby
photoacid generator to create and acid. This nmesmawill not be treated here but has been invatdid by
others®

4. Acid Catalyzed Reaction -Diffusion

In this section and the next, we’'ll consider théypwr deblocking reaction. In the continuum lintte
amount of blocked polymer left after the PEB isegiby

M = Moe_KamptPEB st
tpeg
(Y. = [(n(x,y, 2.t =0)0 DPSF)dt =h(x,y,z,t =0) ) ROPSF (16)

toes

As before, the latent image of acid after exposhfey,z, t = 0) used in the continuum approximation is
actually the mean acid concentratieéh), with a standard deviation given above. The éiffecacid

concentration, however, has a very specific intgggion: it is the time average of the acid cotredion at

a given point. The interesting question to be amed, then, is whether this time-averaging effdct o
diffusion coupled with the acid-catalyzed reactaifects the uncertainty in the effective acid conicaion
compared to the original acid concentration unaesta

To determine the statistical properties of the@iffe acid concentration, we’ll begin by looking a
the diffusion of a single molecule of acid. Letthinary random variablg(t) represent whether that
molecule is found in some small volund¥ located a distance from its original location, during the
interval of time betweenandt + dt. It will be given by the standard Gaussian diffuskernel:

P(y.(t) =1) = (277UD2)—3/2e—ri2/2cTDZdV , O'D2 — oDt (17)

whereD is the acid diffusivity andr, is the acid diffusion length. For acid molecules at this location that
then diffuse, the total number of acid moleculeshiat volumedV and over the same time interval will be
Yi(t):



YO= 2y, (0)=n)x0), ag =(% (1) (18)
j=1

Adding up the contributions from all of the locatsothat could possibly contribute acid moleculdas the
volumedV during the interval of time betweémndt + dt produces the standard convolution result:

Y(t)=2Yi ()
(Y@)= iz(ni )yi (t)) =(n) O DPSF (t) (19)

We now wish to integrate over time, from Qdg.

1 ‘tees
Y=—— [Y(t)dt
tPEB 0
(Y ) j <Y(t)>dt—— j( n) 0 DPSF (t)dt =(n) O RDPSF (20)
0 tpe

Thus, as expected, the effective acid concentrats&d in the continuum approximation is in fact niean
value of a stochastic random variable. The uniteytaf Y, however, involves some extra complications.
Leaving the details of the derivation to Ref. 6, atxain

¢ =(n) 0 CovPSF

1 tpep tpEB

[ TE(yy))dtdt (21)

dVtdes o o

CovPSF =

whereCovPSF is a new function that | call the ‘covariance ppread function’.

Carrying out the integration above numerically (aghin leaving the details of the derivation asidle¢
result (in 3D) becomes

2
CovPSF(r) =2(01J RDPSF(r) (22)
D

wherea is the capture radius of the deblocking reactaatiéd the von Smoluchowski trap radius).

The impact of th€ovPS can now be determined. The shape ofGbePS is very similar to that
of theRDPS-. Since the effective acid concentration neatitteeedge does not differ appreciably from the
acid concentration when convolved with tROPSF, the same will be true when convolved with the
CovPSF. Thus, the effective acid concentration can @pmated as

<herf > =(h) O RDPSF (23)



The standard deviation of the effective acid cotregion is approximated as
a
On .. =2 — |0 24
he ( UDJ h (24)

As equation (24) indicates, if the acid diffusedistance less than the reaction capture range;atadytic
nature of the amplification reaction actually irmses the stochastic variation in the effective acid
concentration compared to the original acid corregion. If, however, the diffusion length is grerathan
this capture range, the time-averaging effect efdatalytic reaction will smooth out stochasticgioness. It

is not diffusion,per se, that reduces stochastic uncertainty, but ratmediffusion of a reaction catalyst that
does so. Since in real resist systems the diffuldngth will invariably be greater than the reasttapture
distance, the net affect will always be a reductiotihe effective acid concentration standard deia

5. Reaction -Diffusion and Polymer Deblocking

The stochastics of the deblocking of a single béalckite will follow along the same lines as theggrPAG
exposure analysis of section 3. ldie a random variable that represents whetheremgingle blocked site
remains blocked by the end of the PEB. Thasl means the site remains blocked, grd0 means the site
has been deblocked. As before, the continuum ikiretalysis gives us the probability that a sirgte is
deblocked for a given effective acid concentration.

P(y=1hgr) =e @mPE  p(y=0fhy ) =1 CamiPesti (25)
The probability distribution ohg;, however, is not obvious. While the relative acmhcentration has a
Poisson distribution, the time-averaging effecttlom acid diffusion turns the discrete acid randa@riable

into a continuous effective acid random variable.

It will be reasonable to assume thatis normally distributed with mean and standardiateans as
given in the previous section. Thus, the meanevaflyy becomes

2
< >:\/2_# OJ? (e_KarT‘ptPEBheﬂ )e_(heﬂ _<heff >) /ZUEEﬂ g
het —oo
<y> = e_KamptPEB<heff >e%(KarthEBUrgf )2 (26)

The random variablg has a log-normal probability distribution and etipra (26) can be recognized as the
standard result for a log-normal distribution.

The total number of blocked groups remaining aedain small volume will be given by

Mo—plock
Y= Dy (27)
i=1



The mean o¥ can be easily computed, as before.

(Y)=(No-piock (¥ (28)

The variance oY can be found with a result similar to that for f@roshot noise during exposure:
2 2 (KarrptPEBUheﬁ )2
og =(Y)+(Y)"| e -1 (29)

From the definitions dfl andY,

<MO>:<nO—blocked>' <M>:<Y> m=_M

N, N EW (30)
Thus,
(m)=() (31)
" ot %
7 <M'(\)A>2 ) <n0—blocked>2 ¢
giving
o= [Kamtata ), (33)

For small levels of effective acid uncertainty,

om=——""—
<n0—bl ocked No—blocked

m) > N e— =%+(<m>ln<m>)2{%J (34)

As before, the first term captures the Poisson maicsy due to the initial distribution of blockgublymer.
The second term captures the influence of the tffe@cid concentration uncertainty. Combiningsthi
expression with the variance of the effective addcentration,

a%:%+(<m>m<m>)z[ﬂ]z[@]z @)

{No-blocked () op

Finally, using equation (15) for the variance af #tid concentration,



b2 (m >+[<m>|n<m>]2(\/§aﬁ< (h) +[(1—<h>)'n(1-<h>)]2} (36)

(No-blocked (h) op No-pAG) (n)

Or, in a slightly different form,

(@J2=<—1>+(Kamptpes)2(ﬁaﬂ< (h) +[(1-<h>)ln(1—<h>)]2j an

<m> No-blocked >< m Op No-pAG > (n)

While the above equations show how fundamentarpaters affect the resulting variance in the
final blocked polymer concentration, interpretaticén somewhat complicated by the fact that these
parameters are not always independent. In paaticthe ByersPetersen model shows a relationship
betweerK,mptres andopa.

Using the example of a typical 193-nm redi4gNa = 1.2 /nnd, GoNa = 0.042 /nm andKanptees = 2.

Consider the case o<fh> = <heﬁ> = 0.3, andop/a = 5. For a (10 nrﬁ)volume, Oh /(h)z 0.28 and
Ohg /<heff >z 0.025. The remaining blocked polymer will ha<\m> = 0.55 andg;, = 0.023, or about 4.3%.
For a (5 nmjvolume, gy, = 0.064, or about 11%.

6. Autocorrelation Behavior of Reaction-Diffusion

Because a single acid molecule diffuses and gatgntauses many reactions, these reactions will
be stochastically correlateéd If the diffusion of the acid catalyst is the pnhechanism by which the
concentrationM becomes spatially correlated, the autocorrelatbthe RDPSF will define this spatial
correlation. Consider first the (non-normalized)tagorrelation of the effective acid concentration.
Assuming that the initial distribution of the cafstlis stochastically uncorrelated,

R,, =07 (RDPSF 0 RDPSF) (38)

It will be useful to normalize the autocorrelatimmction to be one at the origin. For the 1D c¢ase

TRDPSF(X)RDPSF(X+ 7)dx
Ry, (1)==— (39)
[[RoPSF (X oix

For the 2D and 3D cases, integrations are best mopelar and spherical coordinates, respectiveliis
allows the double and triple integrals, respecyived become single integrals over distangef the form of

equation (39)] by multiplying the 2BDPS- by \/ﬂ and the 3DRDPSF by |r| Analytical evaluation of
equation (39) for the 1D, 2D, and 3D cases doesseem possible, so numerical integrations were



performed. Figure 1 shows the results. Each e$dlresults can be extremely well approximated by a
standard exponential correlation function:

R,, M =etM (40)

where is the correlation length andis the Hurst (roughness) exponent. Fitting theewical evaluation
of equation (39) to the empirical function (40) guces the results shown in Table I, where botmeali fit

to the autocorrelation function and to the logamitbf the autocorrelation function were performethe

resulting fits are extremely good — plotting theelr fits on Figure 1 would produce lines indistiistpable
from the calculated results from equation (39). viObsly, the linear fit does a better job of matghihe
small-r behavior while logarithmic fitting results in bettmatching to the largeregion.

Table I. Results of the best fit of equation (#®Yhe numerically evaluated equation (39),
using a least-squares fit ®,  (linear fit) or to its logarithm (logarithmic fit)

Linear Fi Logarithmic Fi

{ oo a o a
1D 1.26¢ 0.848 1.25% 0.817
2D 1.522 0.936 1.515 0.9(1
3D 1.528 0.90( 1.519 0.87¢

4.0

Figure 1. Numerical evaluation of the RDPSF autocorrelation for the 1D (thick solid black line), 2D (thin
solid blue line), and 3D (dashed line) cases.



These results show that diffusion of the catailysa first-order reaction-diffusion system produces
persistent correlationa( > 0.5), with a correlation length that is a mu#ipf the diffusion length (as
expected). For the important 3D cages 0.9 and the correlation length is just over 50%atgr than the
catalyst diffusion length.

7. Acid -Base Quenching

The acidbase neutralization reaction due to the presenapeficher may pose the greatest challenge to
stochastic modeling of the sort being derived hé&khile acid concentrations in chemically amplifiegists

are low, base quencher concentrations are evenr,lolwading to greater statistical uncertainty in
concentration for small volumes. Further, sinoe tbaction is one of annihilation, statistical addns in
acid and base concentrations can lead effectivelgctd-base segregation, with clumps of all acid or all
base!®! Such clumping is likely to lead to low-frequerlye-edge roughness. The presence of quencher,
however, also leads to dramatic improvements ingtfaelient of acid which, as will become clear below
leads to improvement in the final line-edge rougisne Much further work is needed to study and model
this phenomenon. Thus, while aeidhse quenching is extremely important in its immactER, it will not

be considered in the model being presented here.

8. Development

The surface-limited reaction of a partially depated polymer with developer can be treated in a
stochastic natur€* However, dissolution rate couples with the pathdissolution to produce the final
photoresist edge, so that the stochastic natutiei®oflissolution path must also be taken into asto®ne
approach to studying the stochastic nature of pheist dissolution involves the characterizatiorscdling
relationships as a means for elucidating fundaneméahanisms>'® An accompanying publication in this
volume'’ addresses recent work on this subject, but theegustate of that research does not yet allow its
integration with the model presented here.

9. Line-edge roughness — an Overall Model

In the sections above, a stochastic model for sumo and reactiemliffusion of chemically
amplified resists was developed. This stochastidehwill now prove useful for the prediction ofrtzn
line-edge roughness trends. While developmentldhadso be included, for the sake of simplicity wii
assume an infinite contrast development proceshatothe line edge will be determined by the blacke
polymer latent image. Thus, a simple threshold ehéak the latent image will determine the resistiaal
dimension. A Taylor series expansion of the bldckelymer concentration, cut off after the lineamt,
allows us to predict how a small change in blocgetymer concentratiomMn*) will result in a change in
edge position&x):

Am*

AX=——
dm* / dx

(41)

From this, we can devise a simple qualitative mdoleline-edge roughness. The standard measuieesf
edge roughness, from a top-down SEM, will be prtpoal to the standard deviation of blocked polymer
concentration divided by its gradient perpendictdahe line edge:



Um*
dm* / dx

LERJ (42)

Michaelsor plotted measured LER versus calculated valugsdfdx and found that many different resists
followed an almost universal curve. The curve, &esv, was slightly different than that given by atijon
(42). In fact, it is well fit by the following eniical expression:

33
dm* / dx

LER=

+5 (43)

where LER is the @ value, in nanometers, addh*/dx is in units of im. The constant term at the end has
been the subject of much speculation, and coulgliaged to the influence of development on LER.

To achieve a low LER it will be necessary to méke standard deviation of the deprotection small
and make the gradient of deprotection large. A nigiic of Chapter 9 of Ref. 6 is how process patarse
can be used to maximize the latent image gradigren by

g e o

wherea; = Kanptees, and where
_ rfoy® _ D
2K o tres LKamp

n

The terms represents the ratio of the rate of diffusion ddieature of sizé to the rate of reaction. From
equation (36) we can see how to minimize the sizdisuncertainty in deprotection. There is orteliesting
variable in common to both: acid diffusion. Inaseng acid diffusion will reducer,, but will reduce the

latent image gradient. One would expect, thergmimum level of diffusion to minimize the LER.

To investigate the impact of diffusion on LER, w&n combine equations (36) and (44) into (42).
Thus, for the no-quencher case, and ignoring phshoh noise,

Oy = Jﬁ + (<m*>|n<m*>)2[f}z[m_i@w

om* 1 _ 2,02
D_Zﬁ_e mop? 121 ) (45)
Op

1)

so that

LERDl_e_‘;{DZ/ZLZ\/< (m*) >+(<m*>|n<m*>)z(x/§aﬂ< 1 J (46)

Ny—blocked Op Ny—pac >< h>

and
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LERO ]._e_on;%\/l_ (KmptPEB)<m*>|n<m*>(

@JZ <n0—block> (47)

Op <nO—PAG >

Figure 2 shows the trend of LER versus acid diffugor a 45-nm feature for three different values
of the deprotection capture range0.5, 1.0, 2.0 and 3.0 nm. In each case, thegediffusion length that
minimizes the LER. Below the optimum diffusion dgh, LER is limited byag,: so that increasing the
diffusion will improve LER. Above the optimum diffion length the LER is gradient limited, so that
increases in diffusion further degrade the grad@émt worsen the LER. This optimum diffusion length
given approximately by

oA )_Ke
oy = ZK(”j 4 (48)
where K= 2(KthEB)(m*>In(m*>M
{No-pac)

The optimum diffusion length is constrained by feature size at one end and the deblocking reaction
capture range at the other:

a<<op<<L (49)
As L decreases, there becomes less room for the difflshgth to fit within these constraints.

Unless, of course is allowed to decrease as well. This captureedagthe deblocking reaction is
not an easy parameter for the resist chemist tdpukate, but it can be adjusted. There is a camsecg,
however. The rate of the deblocking reaction &rang function of this capture range. In facguasing
that the amplification reaction is in the diffusibmited regime, the amount of amplification willeb
controlled by the amplification facter:

at = Kanlees = 210,°aGyN, (50)

To keep line-edge roughness small for smaller featuboth the diffusion length and the reactiontwap
range should be lowered in proportionLto But this means that the amplification factorlwicrease as®.
Lower amplification factor will require increasegp®sure dose to cause the same amount of ampbficat
meaning that dose would have to rise dramaticalliketep LER low in the presence of shrinking feature
sizes. There is one other term, however, thatstam this unfortunate scaling relationship. Byrgssing
the PAG loadingG,, the amplification factor can be kept higher whiléfusion and capture range are
decreased. There are very real, practical linoitPAG loading, however, and it is doubtful thasstléver
will provide much long-term relief. It seems thhe fundamental stochastic nature of resist cheynist
creates a need for much higher exposure dose fogkeell features from being dominated by LER.
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Figure 2  Prediction of LER trends for a 45 nm feature for three values of the deblocking reaction capture
range a (0.5, 1, 2, and 3 nm).

10. Conclusions

In this paper, an attempt has been made to dewlopmprehensive stochastic model for LER based on
deriving approximate expressions for the varianwt @rrelations that occur at each step in theditaphy
process. While some progress has been made stiiénmg model is far from complete.

The work here begins with photon shot noise. Kpelcas not been discussed here, though recent

studies have made very good progress in undersigitigis phenomenon for 193-nm lithogragfty? Along

with chemical concentration shot noise, the reisult Poisson distribution. Combining these distiins

with the probability of absorption and exposureegiva nearly Poisson acid shot-noise distribution.
Reaction-diffusion provides an incredibly interegtiand important result: diffusion of the reactaatalyst
means that the uncertainty in the effective acitceatration is reduced whenever the acid diffutéoigth is
greater than the von Smoluchoski trap radius. Thoil diffusion reduces stochastic uncertaintythia
effective acid concentration. Since, however,a@ased acid diffusion also degrades the acid gradiere

is an optimum diffusion length for minimizing LER.

Development is likely to be a very significant geator of roughness. Unfortunately, our current
understanding of how development dynamically romghe surface is insufficient to include these efféc
the present model. It seems likely that the polymelecule size will bring with it the volume scabuired
to turn the variance expressions derived in thpepato quantitative predictors of LER.

Since the very early days of semiconductor manufang, researchers have attempted to predict the
limits of optical lithography. As barriers to inguements in resolution were discovered, novel medns
defying the limits were inevitably found. Stochadimits to resolution, in the form of line-edgeughness,
may be the most fundamental limit to lithographgsalution. It is unclear how low line-edge rougtsean
be pushed, but progress in reducing LER has beafufpga slow over the last decade. A comprehensind
physically accurate stochastic model of lithograjshyeeded before the ultimate limits of optictidigraphy
will be known, and eventually reached.
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