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form, open-frame exposure and development of photoresist corresponds
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media and is expected to fall in the Kadar-Parisi-Zhang �KPZ� universal-
ity class. To verify this expectation, simulations of photoresist develop-
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noise added to an otherwise uniform development rate. The resulting
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Introduction

ost theoretical descriptions of lithography make an ex-
remely fundamental and mostly unstated assumption about
he physical world being described: the so-called con-
inuum approximation. Even though light energy is quan-
ized into photons and chemical concentrations are quan-
ized into spatially distributed molecules, the descriptions
f aerial images and latent images ignore the discrete na-
ure of these fundamental units and use instead continuous

athematical functions. For example, the very idea of
hemical concentration assumes that the volume one is in-
erested in is large enough to contain many, many mol-
cules so that an average number of molecules per unit
olume can be used. While we can mathematically discuss
he idea of the concentration of some chemical species at a
oint in space, in reality this concentration must be an av-
rage extended over a large-enough region. While in most
ases the volumes of interest are large enough not to worry
bout this distinction, when trying to understand lithogra-
hy down to the nanometer level, the continuum approxi-
ation begins to break down.
When describing lithographic behavior at the nanometer

evel, an alternative approach, and in a very real sense a
ore fundamental approach, is to build the quantization of

ight as photons and matter as atoms and molecules directly
nto the models used. Such an approach is called stochastic
odeling and involves the use of random variables and
robability density functions to describe the statistical fluc-
uations that are expected. Of course, such a probabilistic
escription will not make deterministic predictions—
nstead, quantities of interest will be described by their
robability distributions, which in turn are characterized by

932-5150/2009/$25.00 © 2009 SPIE
. Micro/Nanolith. MEMS MOEMS 033001-
their moments, such as the mean and variance.
While stochastic modeling has been successfully applied

to photoresist exposure and postexposure bake processes in
recent years,1,2 the stochastic behavior of resist dissolution
is much less understood. Dissolution rate variance comes
from both the variance in the polymer solubility itself and
the resulting variation in the development path required to
bypass randomly insoluble polymer molecules. Ultimately,
the final result will be a roughness of the resist feature
sidewalls that leads to line-edge roughness �LER� and line-
width roughness �LWR� of the resist feature. One common
approach to studying LER formation is through the use of
Monte Carlo simulations.3,4 While Monte Carlo methods
are useful, there is also a need for the development of
simple, analytical expressions that capture the essence of
the LER formation mechanisms. One approach, which will
be employed here, involves the development of scaling re-
lationships as a means for elucidating fundamental
mechanisms.5

Since the final LER will include all resist and aerial
image contributions, studying LER to extract the contribu-
tion of resist development can be difficult. A simpler ap-
proach is to remove the aerial image from the experiment
and study the resist surface roughness after a uniform open-
frame exposure and development. Roberts, Fedynyshyn,
and coworkers6,7 used this technique to measure what they
called the “innate material roughness” of a photoresist, al-
though the description of the measurement as an “innate”
property of the resist is speculative. The use of surface
roughness after open-frame exposure and development as a
probe for understanding the stochastic nature of resist de-
velopment will be examined in detail in this paper. In par-
ticular, an analysis approach known as dynamical scaling
Jul–Sep 2009/Vol. 8�3�1
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ill be applied to photoresist development, and both ex-
erimental and simulated results will be analyzed in this
ay.

Background
ver the last 25 years, fractal concepts have been success-

ully applied to the appearance of roughness in surface
rowth phenomenon,8 with many applications, including
eposition and etching. Called disorderly surface growth or
inetic roughness, research has focused on determining
ow experimental roughness or the roughness predictions
f specific models scale with time and distance. While the
agnitude of the roughness is unique to the specific experi-
ent or model and its circumstances/parameters, the scal-

ng behavior of the roughness tends to be more universally
pplicable to a wide range of conditions so long as the
asic mechanism remains consistent. This section will re-
iew current understanding of kinetic roughness as applied
o a simple lithographic case: open-frame exposure and de-
elopment of photoresist.

.1 Self-Affine Surfaces
fractal surface is by definition self-similar �also called

cale invariant�, meaning that it looks the same �is invari-
nt� after a uniform �isotropic� scale transformation. For
xample, a single-valued function h�x ,y� is fractal if scal-
ng by a constant b leads to

�bx,by� � bh�x,y� . �1�

hus, uniform scaling of the object in all dimensions leads
o a self-similar object. For a deterministic fractal, Eq. �1�
ill be true exactly for certain values of b. For a random or

tatistical fractal, the scaling produces a function whose
tatistical properties �mean, standard deviation, etc.� scale
s dictated by Eq. �1�.

When a surface scales anisotropically, that surface is
alled self-affine. Such a surface may have, for example,
he following scaling relationship:

�bx,by� � b�h�x,y� , �2�

here � is called the self-affine exponent �although in our
ontext it will be called the roughness exponent, but is also
alled the Hurst exponent and sometimes denoted by H�. In
ther words, the h dimension scales separately from the x-y
imensions. Obviously, the special case of �=1 leads to a
elf-similar fractal. If �=0, the surface is completely
mooth. An important consequence of the self-affine scal-
ng relationship �2� is that the height-to-height difference
h= �h�x1�−h�x2�� for a given separation between points
x= �x1−x2� scales as

h � �x�. �3�

Note that Eq. �3� applies to a deterministic self-affine sur-
ace. Many surfaces are found to be self-affine in the sta-
istical sense, in which case the statistical equivalent of �h,
alled the height-to-height correlation, discussed in the fol-
owing, must be used.�

Consider the following example: open-frame exposure
f photoresist coated on a planar wafer leading to, after
evelopment, a certain resist height remaining h. Including
. Micro/Nanolith. MEMS MOEMS 033001-
the effects of roughness, this surface height will be a func-
tion of wafer position, h�x ,y�. If the possibility of over-
hangs is ignored �see Fig. 1�, this surface height will be a
single-valued function. Such surfaces are expected to be
self-affine, since the nominally vertical direction of the iso-
tropic development will cause the z dimension �the height
dimension� of the resist surface to scale differently from the
x-y dimensions. More will be said on the validity of this
expectation in the following.

For a statistical self-affine surface, the surface is charac-
terized by statistical properties. For example, the mean
height is

�h� =
1

M2�
i=1

M

�
j=1

M

h�xi,yj� , �4�

where discrete measurements of height over a square area
are assumed. If uniform spacing of �x=�y between mea-
surements is used, the height is averaged over an L�L
area, where L=M�x. The RMS surface height difference,
often called the interface width or the surface roughness, is
given by

�w = 	 1

M2�
i=1

M

�
j=1

M

�h�xi,yj� − �h��2
1/2

. �5�

Note that the scaling relationship of Eq. �3�, expressed in
statistical terms, means that for a self-affine surface,

�w � L�. �6�

As the size of the region being measured increases, the
measured surface roughness �interface width� scales up-
ward according to Eq. �6�. As you will see in the following,
however, resist surfaces are self-affine only over a region
on the order of or less than the correlation length of the
roughness. It is very important to note that when the statis-
tics of an interface are measured using a sampling approach
�as shown explicitly in Eqs. �5� and �6��, the accuracy of
the resulting measures depends on an appropriate choice for
�x.

The dimensionality of the problem can be described in
different ways. For the case of open-frame photoresist dis-
solution, the surface is two-dimensional �2-D�, embedded
in a three-dimensional �3-D� world. Since the resist height
acts as a separate dimension, this problem is often de-
scribed as a 2+1 dimensional case. In general, a d+1 di-
mensional problem is characterized by a d-dimensional in-
terface. Thus, d=2 for the case of open-frame exposure and
development of photoresist. �Note that some authors use d
to represent the dimensionality of the space, rather than that
of the interface surface.�

(a) (b)

Fig. 1 Two rough surfaces: �a� with overhangs, and �b� with no
overhangs so that the surface height h�x ,y� is single-valued.
Jul–Sep 2009/Vol. 8�3�2
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.2 Dynamical Scaling

onsider again the case mentioned earlier of the develop-
ent of a uniform, open-frame exposure of photoresist. Ini-

ially, the resist surface is perfectly smooth. But as devel-
pment proceeds, stochastic effects lead to an increased
oughening of the surface. Thus, the statistical properties of
he interface �the mean height �h� and the amount of rough-
ess �w � are a function of time. Ignoring absorption so that
he resist receives a uniform exposure through its depth
and assuming a perfect antireflection coating so that no
tanding waves are present�, the mean development rate
ill be constant. Thus, the mean surface height will scale

inearly with time:

h� � t . �7�

mpirically, many problems in etching and deposition
how a roughness that, for moderately small times, grows
s

w � t�, �8�

here � is sometimes called the growth exponent. For ex-
remely small times, as development is just getting started,
he growth of roughness may behave somewhat differently
and so very small times are usually excluded from the kind
f scaling analysis discussed here�.

The growth in roughness as development proceeds does
ot continue indefinitely. For a given measurement size L,
he interface roughness saturates after a long enough time.

typical example is shown in Fig. 2�a�. However, since the
oughness varies with L according to Eq. �6�, the point of
aturation with development time depends on the size of
he measurement region. The overall scaling can be sum-

arized as9

w � L�f� t

Lz� , �9�

here

0.3

1

1 10 100
Development Time (s)

R
M

S
S

ur
fa

ce
R

ou
gh

ne
ss

(n
m

)

3

L = 16nm

L = 1024nm

(a)

ig. 2 An example of simulated surface roughness data as a functi
�. �a� Raw data, and �b� the same data scaled according to Eq. �9
. Micro/Nanolith. MEMS MOEMS 033001-
f�u� = 	u� for small u

1 for large u

 ,

and z=� /� is called the dynamic exponent. Again, these
scaling relationships are expected to hold for self-affine in-
terfaces. As Fig. 2�b� shows, the proper choice of � and �
allows the dynamic roughness data to collapse to a single
universal curve for all L.

2.3 Correlations of the Interface
For our problem, the source of interface roughness will be
a statistical uncertainty in the resist development rate r as a
function of position. Thus, the development rate can be
separated into a mean dissolution rate plus a random vari-
able �:

r�x,y,h� = �r� + ��x,y,h� . �10�

Obviously, � has been formulated to have zero mean. As-
sume for the moment that the underlying noise in develop-
ment rate that gives rise to surface roughness is spatially
uncorrelated. In other words,

���x,y,h���x�,y�,h��� � �r
2��x − x����y − y����h − h�� ,

�11�

where the brackets represent averaging over different real-
izations of randomness, and �r

2 is the variance of the dis-
solution rate.

It is very important to note that even though the under-
lying noise is uncorrelated, the resulting rough resist sur-
face will exhibit height-to-height correlations. The cause of
these correlations is the isotropic nature of dissolution. If,
due to random fluctuations, one point in the resist interface
develops down more quickly than the rest, this dimple in
the resist surface will begin to spread laterally. Thus, the
neighboring points on the interface will have a resist height
that is correlated with the original fast-developing point.

For a strictly self-affine surface, the height-to-height
correlation function G for the interface will scale in the
same way as �

0.0

t/Lz

σ w
/L

0.1

0.2

0.0001 0.001 0.01 0.1 1 10

(b)

evelopment time and L �going from 16 nm to 1024 nm in powers of
=0.5 and �=0.333.
α

on of d
� with �
w:

Jul–Sep 2009/Vol. 8�3�3
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��x,�t� = 
��h�x,t� − h�x + �x,t + �t��2��1/2

� �x�f� �t

�xz� . �12�

he typical distance over which heights interact �that is,
ver which G is sufficiently greater than zero� is called the
arallel correlation length, 	��. �There is also a perpendicu-
ar correlation length, which will not be discussed here.�
nitially, this x-y plane correlation length is small, but it
rows with time as8

� � t1/z. �13�

he correlation length cannot grow to more than the mea-
urement domain, so eventually it saturates at L.

Suppose instead that the underlying development rate
oise is correlated. In fact, when the underlying noise is
tself the result of a stochastic process, that noise will be
orrelated. For example, one could assume that the autocor-
elation function for the noise exhibits a typical exponential
ecay with distance

��x,y,h���x�,y�,h��� = �r
2 exp�− �s/Lc�2�c� , �14�

here s= ��x−x��2+ �y−y��2+ �h−h��2�1/2, Lc is the correla-
ion length of the underlying development rate noise, and

c is a roughness exponent related to the previous stochas-
ic processes leading to the development rate noise. How
ill the resulting surface behave? There are two competing
echanisms correlating the final surface, and the final sur-

ace behavior will depend on which mechanism dominates.
f the correlations of the underlying development rate noise
re relatively weak, the correlations induced by the devel-
pment process itself, as described by Eq. �13� and eventu-
lly saturating at a correlation length of L, will dominate. If
he development rate noise correlations have a greater in-
uence, the surface will have a correlation length that ini-

ially grows like Eq. �13�, but eventually saturates at Lc
ather than L. Thus, by measuring the dynamical scaling
ehavior of the roughness during open-frame development,
he relative importance of development-induced roughness
ersus roughness induced by previous stochastic processes
exposure, reaction–diffusion, etc.� can be understood.

.4 Power Spectral Density
nother approach to characterizing the roughness of a sur-

ace is to determine its power spectral density �PSD�, the
agnitude squared of the Fourier transform of the relative

urface height:

PSD�f� = lim
L→


1

L2��
−L/2

L/2 �
−L/2

L/2

h̃�x,y�exp�− i2��fxx

+ fyy��dx dy�2

, �15�

here f = �fx
2+ fy

2�1/2 and h̃=h− �h�. The self-affine scaling
ypothesis of Eq. �9� can be translated into a scaling rela-
ionship for the surface roughness PSD. In the long-time
imit and the long-wavelength limit �that is, L→
�, for a
− dimensional interface, we expect that10,11
. Micro/Nanolith. MEMS MOEMS 033001-
PSD�f� �
1

fd+2� . �16�

2.5 Stochastic Differential Equations
The evolution of a resist surface during dissolution can be
described by a simple differential equation. Since r is the
development rate normal to the resist surface, the rate at
which the surface height at a specific �x ,y� point changes is
given by

−
�h

�t
= r�1 + ��h�2�1/2, �17�

where �h is the gradient along the resist surface and rep-
resents the maximum slope of the interface at a given �x ,y�
point. If the surface is essentially horizontal with a small
amount of roughness, ��h�2�1 and this equation can be
approximated as

−
�h

�t
� r +

r

2
��h�2. �18�

Combining with Eq. �10� and assuming that the noise level
is low ��r�r�,

−
�h

�t
� �r� +

�r�
2

��h�2 + � . �19�

This result is a simplification of a common stochastic
growth model called the Kadar-Parisi-Zhang �KPZ�
equation.12 In its full form, the KPZ equation is generally
written as

�h̃

�t
= 
�2h̃ +

�

2
��h̃�2 + � , �20�

where �= �r�, h̃= �r�t−h, and 
 is a surface tension or dif-
fusion term that relaxes the interface and contributes to
smoothing. Lithography simulators assume 
=0, but of
course there could be some relaxation mechanism at work
in actual development. Here, we will assume that the non-
linear terms dominate �both the ��h�2 and the � terms are
nonlinear� and that 
 is small.

For high-temperature deposition and etching processes,
� in the KPZ equation is dominated by thermal noise, that
is, it is a random variable in time. For the case of resist
development, however, the noise is a spatial variation in
development rate that, for a given resist instantiation, does
not vary with time. Kessler, Levine, and Tu described this
type of noise as quenched.13 Materials that exhibit
quenched noise are called disordered media or random dis-
ordered media. Studies of the KPZ equation with quenched
random noise have shown that processes that can be de-
scribed in this way all exhibit the same scaling exponents
and are said to belong to the same universality class. In the
d=1 case, the KPZ exponents can be determined exactly
using renormalization group techniques,8,14,15 to be �
=1 /2 and �=1 /3. For d=2, however, an exact determina-
tion of the exponents is not possible. For the case where 

is small, where L�� , and where the underlying quenched
w

Jul–Sep 2009/Vol. 8�3�4
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oise is uncorrelated, Hentschel and Family16 have shown
hat a d=2 interface should have �=0.4, and �=0.25, in
greement with simulation results by Kim and Kosterlitz.17

ther simulation results, however, produced somewhat dif-
erent exponents.18 In general, scaling arguments �rein-
orced by renormalization group methods� show that �+z
2 in all dimensions8 �sometimes referred to as Galilean

nvariance�. When this relationship holds,

=
2�

� + 1
and � =

�

2 − �
. �21�

The effects of correlated noise on the scaling exponents
s less well understood. The relationship �+z=2 is ex-
ected to continue to hold, but � is thought to increase as
he level of correlation increases.19,20

.6 Measuring � and �

easuring � is straightforward based on its definition but
equires the measurement of surface roughness as a func-
ion of development time. While straightforward for simu-
ations, it is time-consuming experimentally.

There are several methods for determining �, which ide-
lly should all return the same value8:

• Roughness versus L: After ensuring that the surface
has developed long enough to cross over into the long-
time regime, the surface roughness should scale with
the measurement domain size L as Eq. �6�. A single
sample can be used to provide the data, with different
measurements using different L �that is, different por-
tions of the developed sample�.

• Height-to-height correlation: As Eq. �12� shows, the
height-to-height correlation will scale with the dis-
tance between height measurements to the � power.
Thus, from a single sample, a plot of height-to-height
correlation versus correlation distance on a log-log
scale should produce a straight line of slope �.

• Full dynamical scaling: Measure both � and � simul-
taneously using the full dynamic scaling relationship
of Eq. �9�. A plot of �w /L� versus t /Lz for many dif-
ferent values of L �all other aspects of the experiment
the same� should collapse to a single curve for the
correct values of � and �.

• Power spectrum: Measure the power spectrum of the
interface roughness. The slope of the PSD versus fre-
quency on a log-log plot is 2+2�.

In all of the preceding methods, one single sample can
e used to extract the roughness exponent. However, aver-
ging over many different samples may be necessary to
educe the noise in the measurement. For large L, self-
veraging can make the resulting exponent quite precise.
s discussed earlier, the expected scaling relations for a

elf-affine surface apply only for domain sizes at or below
he correlation length. Thus, comparing where the rough-
ess saturates to the domain size L will show whether the
nal surface correlation is dominated by development ef-
ects or other correlations.
. Micro/Nanolith. MEMS MOEMS 033001-
2.7 Pinning, Depinning, and Directed Percolation
In some circumstances, quenched noise can make the sur-
face evolution of a deposition or etch process behave the
same as a specific type of percolation problem. Consider a
very high contrast resist such that a random distribution of
deprotection levels in the resist leads to a certain probabil-
ity that any given resist molecule will be essentially in-
soluble. As a simplified picture of the resist during devel-
opment, each resist molecule is either soluble or insoluble
with a certain probability. If the probability that a resist
molecule is insoluble is low, the development front will
move around any insoluble resist found in its path. As the
probability of finding an insoluble resist molecule grows,
these molecules will form clusters, the size of which in-
creases with increasing probability of insolubility.

Eventually, a critical probability is reached such that the
size of a typical insoluble cluster �the correlation length in
the horizontal direction� will span the size of experimental
domain �L�. When this happens, it becomes highly prob-
ably that the developing front will encounter one of these
large clusters and become pinned, or unable to continue
developing. Such critical phenomenon are common in per-
colation problems. Since the moving interface is directed,
meaning that it has a preferred direction of motion due to
the nature of the dissolution problem, this phenomenon is
called directed percolation.21,22

At the pinning �depinning� transition, the resulting
pinned interface will be self-affine with a certain roughness
exponent. While strictly speaking the rough surface is only
self-affine at the pinning transition, conditions near the
transition are often considered to be self-affine as well, so
that the common roughness and growth exponents can be
applied in this regime. It remains unclear whether resist
development, especially development near a resist line
edge, will have sufficiently large stochastic differences in
dissolution rate to be considered percolative.

2.8 Experimental Evidence
There has been very little published data on the dynamic
scaling of photoresist surface roughness. Reynolds and
Taylor23 measured the surface roughness of unexposed
APEX-E as a function of development time for three dif-
ferent concentration of developers. The surface roughness
was measured using an atomic force microscope �AFM�
with L=1.25 �m �300�300 measurement points� with an
uncertainty estimated at �8%. Reading off the data from
their published Fig. 3�a�, the data was replotted here in
log-log form in Fig. 3. The best-fit slopes for the 0.195N,
0.21N, and 0.302N developer concentrations are
0.093�0.008, 0.097�0.02, and 0.097�0.02, respectively.
�Standard errors based on the least-squares fits are used
here for the uncertainties in the slopes, without taking into
account the measurement uncertainty.� Thus, within experi-
mental error, � is the same for each developer concentra-
tion and equal to about 0.1�0.02.

It is clear from the data of Fig. 3 that the surface rough-
ness has not saturated after the maximum 700-s develop-
ment time. Thus, only � can be obtained from this data.
Since the data are for unexposed resist, one can assume that
the underlying development rate noise here was uncorre-
lated.
Jul–Sep 2009/Vol. 8�3�5
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Roberts et al.6 and Fedynyshyn et al.7 measured the sur-
ace roughness after open-frame exposure and development
s a function of development time in order to study what
hey have called “innate material roughness.” In their ap-
roach, the development time was varied from 5 to 120 s,
nd RMS surface roughness was measured with an AFM
ver a 5 �m�5 �m area, with a 19.5-nm distance be-
ween measurement points. While their plots of the data
howed only RMS surface roughness versus mean resist
hickness loss, some of their data from Ref. 6 have been
eplotted in Fig. 4 versus development time.

The authors of Ref. 6 provided the raw data used to
enerate their Fig. 3, which showed RMS roughness versus
hickness loss for several polymers containing no PAG �and
hus receiving no exposure or postexposure bake �PEB��.
everal of the polymers had very fast dissolution rates and

hus could not be analyzed accurately here. The remaining
hree polymers were labeled Poly-B, Poly-J, and Poly-T
with chemical structures described in Ref. 6�. In addition,
oly-J was measured twice, and both sets of data are shown
ere in Fig. 4. Fitting the log-log data to a straight line gave
he growth exponent � as the best-fit slope. Least-squares
t results are shown in Table 1, with standard error esti-
ates for the slope provided as well.
From the graphs of Fig. 4 and the data in Table 1, it is

lear the Poly-B seems to be behaving differently from the
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ig. 3 Surface roughness measured on unexposed APEX-E as a
unction of development time for three different developers �data
aken from Ref. 23�.
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ig. 4 Surface roughness measured on various polymers �formu-
ated without PAG and receiving no exposure or PEB� as a function
f development time �data taken from Ref. 6; Fig. 3�.
. Micro/Nanolith. MEMS MOEMS 033001-
other polymers. For Poly-J and Poly-T, the growth expo-
nents are on the order of 0.1, matching the results found for
unexposed APEX-E earlier. The second data set of Poly-J
�called Poly-J #2� could possibly be leveling out at a satu-
ration level of roughness, but the other data sets do not
exhibit a clear saturation. Since the value of L used in this
experiment �5 �m� is quite large, one might expect the
saturation roughness to occur at a fairly long development
time. It is unclear from this limited data whether the poly-
mer Poly-B is anomalous or whether just this data set for
Poly-B is anomalous. Since the data are for pure polymers,
one can assume that the underlying development rate noise
here was uncorrelated.

Unfortunately, the data found in Refs. 6 and 23 were not
analyzed to determine the roughness exponent, �. It seems
reasonable, however, to claim that none of the data here
have leveled off to a saturation level of roughness, so the
resulting RMS surface roughness seen at the longest devel-
opment time is not an innate property of the material.

2.9 Open Questions
There are several open questions concerning the application
of this scaling approach to resist development and LER
prediction. Some of these questions will be addressed in the
following simulation study; others will be left to future
work.

1. When applying the KPZ equation to open-frame ex-
posure and development of photoresist, how valid is
the assumption that �h�1? This is equivalent to ask-
ing whether overhangs on the resist surface are sig-
nificant. Some work in this area24,25 has shown that
both � and � decline as the number of overhangs
becomes significant.

2. Do the scaling exponents change with dose/average
development rate? Do they change with the magni-
tude of the noise term?

3. How do correlations in the development rate noise
affect the scaling exponents?

4. How does one apply the lessons learned from the
constant �r� case �open-frame exposure and develop-
ment� to the lithographically important case of sur-
face roughness in the presence of large development
rate gradients?

5. Does photoresist development in the low develop-
ment regime exhibit directed percolation behavior?

Table 1 Determination of the growth exponent � based on the dis-
solution of pure polymers, with data found in Ref. 3.

Polymer
Growth

exponent �
Error estimate

for �

Poly-B 0.031 0.025

Poly-J 0.097 0.014

Poly-J #2 0.117 0.014

Poly-T 0.114 0.016
Jul–Sep 2009/Vol. 8�3�6
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Simulations of Photoresist Development
imulation was used to predict the resist height as a func-

ion of development time for an open-frame exposure/
evelopment in the presence of stochastic dissolution rate
oise. The dissolution rate of the photoresist followed Eq.
10�, with a mean �r� and stochastic term �, set to be an
ncorrelated, uniformly distributed random variable of
tandard deviation �r. To simplify the work, only the d=1
ase was modeled, with a maximum L=1024 nm and a
esist thickness of 500 nm or 4000 nm for the two follow-
ng studies. The simulation grid was 1 nm in both x and z.
he PROLITH v12.0 development algorithm was used to

urn the r�x ,z� data into a resist surface as a function of
evelopment time. �PROLITH is a commercial lithography
imulator available from KLA-Tencor.�

Development time was varied from 1 s to the time
eeded to clear the resist in increments of 1 s. At each
evelopment time, the mean and standard deviation of the
esist height h�x� was determined. L was varied by taking
he 1024 nm width and breaking it up into two 512-nm
egions, four 256-nm regions, etc., down to 16-nm-size re-
ions. When multiple regions were cut from the one simu-
ation, the analysis results were averaged.

In the first study, a resist thickness of 4000 nm was used,
ith �r�=10 nm /s and �r=2 nm /s. Eight separate simula-

ion trials were run, and the results averaged. These aver-
ged results are shown in Fig. 2�a�. By setting the rough-
ess and growth exponents to their expected KPZ d=1
alues ��=1 /2, �=1 /3�, the data collapse into one univer-
al curve, as shown in Fig. 2�b�. This is compelling evi-
ence that the PROLITH model of the photoresist etching
echanism follows the KPZ universality class, as expected

or the case of uncorrelated noise. By fitting the L
1024-nm data to a straight line on a log-log scale, the
rowth exponent was found. For the time interval from
to 20 s, �=0.337�0.004, and from 21 to 100 s,
=0.336�0.004. From 101 to 380 s, �=0.266�0.004,

ndicating that the curve is beginning to level off slightly.
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ig. 5 Plots of the mean square gradient, ���h�2�, as a function of �a
f the simulations. Data points are simulation results, solid lines are
. Micro/Nanolith. MEMS MOEMS 033001-
By fitting the saturation regions of the L=16 through L
=128 nm cases to Eq. �6�, the roughness exponent was
found to be �=0.461�0.006.

In a second study, the impact of �r� and �r on the mean
resist height was examined. According to Eq. �19�, the rate
at which the mean resist height decreases with time is
slightly greater than the mean dissolution rate due to the
nonzero resist surface gradient:

−
��h�
�t

= �r� +
�r�
2

���h�2� so that
1

2
���h�2� = −

1

�r�
��h�
�t

− 1. �22�

By measuring the slope of the mean resist height versus the
development time curve from the simulations, the mean
square resist surface gradient can be determined.

To study this effect, the resist thickness of the simulation
was changed to 500 nm �to speed up the simulations�, and
the mean square gradient of the resist surface was calcu-
lated from the simulation results using Eq. �22�. For �r�
=10 nm /s, �r was varied from 0.25 nm /s to 2.5 nm /s.
Also, setting �r=1 nm /s, �r� was varied from
5 to 15 nm /s. The results are shown as the data points in
Figs. 5�a� and 5�b�. An interesting trend arises from this
data. When the relative development rate variation, �r / �r�,
is small �less than about 0.15�, the mean squared surface
gradient scales as

���h�2� � 3.2� �r

�r�
�2

. �23�

For larger �r / �r�, the mean surface gradient grows less
slowly than Eq. �23�. This empirical model is shown in Fig.
5 as the solid curve.

It is clear from these results that the assumption that
��h�2�1, used in deriving the KPZ equation, is reasonable
so long as the relative dissolution rate variation, �r / �r�,
remains small. In fact, the deviation of the simulation re-
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ults seen in Fig. 5 from the empirical expression �23�
oughly corresponds to the point where the simulated sur-
ace roughness begins to deviate from the assumptions of
he KPZ derivation, at ��h�2�0.1. It should be noted that
ver the range of conditions simulated here, no overhangs
n the resulting resist surface were observed.

Conclusions
rom the work shown here, it is clear that the concepts of
ynamical scaling can be �and should be� employed to
tudy the growth of surface roughness during photoresist
evelopment. All evidence suggests that resist surfaces are
elf-affine and are governed by the scaling laws commonly
sed in the study of kinetic roughness. This scaling is char-
cterized by two basic exponents, the roughness exponent

and the growth exponent �. The simple experiment of
pen-frame �uniform� exposure and development followed
y measurement of the mean thickness and RMS surface
oughness is a powerful tool for extracting these exponents
nd confirming the applicability of dynamical scaling.

What little experimental evidence has been published to
ate confirms the standard dynamical scaling, at least for
he case of uncorrelated development rate noise. Simulation
n 1+1 dimensions also shows very nicely that the expected
caling behavior is followed almost perfectly �Fig. 2�. Ad-
itionally, and not unexpectedly, these 1+1 simulations
atch the KPZ universality class almost perfectly, giving
=1 /2 and �=1 /3. Further, simulations have shown a lin-

ar dependence of the mean surface gradient on the relative
evelopment rate variation for small gradients and provided
numerical estimate of when the assumptions in the deri-

ation of the KPZ equation might break down.
Much future work is needed on this topic. Simulations

hould be extended to 2+1 dimensions, with the use of
aussian rather than uniformly distributed noise as well.
urther, the use of correlated development rate noise should
how whether kinetic roughness during development domi-
ates the final results or whether the underlying develop-
ent rate noise, coming from earlier stochastic processes

uch as exposure and reaction–diffusion, controls the final
urface characteristics. Last, a thorough understanding of
he uniform, open-frame development case will lead the
ay to the more difficult and interesting case of roughness

ormation during development in the presence of a steep
evelopment rate gradient, as is found at the edge of a
hotoresist line.
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