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• If h is locally constant,

© Chris Mack 2

where Kamp =  Go k4 =  normalized rate constant
αf =  KamptPEB =  amplification factor

Simple CAR Model
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Chemically Amplified 
Resists

• There is a trade-off between exposure dose 
(which generates more acid) and thermal dose 
(which causes more amplification for a given 
amount of acid)

• The optimum trade-off is determined by acid 
diffusion and acid loss mechanisms
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• Diffusion of the acid complicates the solution to 
the kinetic equations.
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where DH =  diffusivity of acid in the polymer

Acid Diffusion

(3D diffusion equation)
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(1D diffusion equation)

• Diffusion is a convolution of the latent image with 
the DPSF [h*(x) = after-bake latent image]:
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PEB Diffusion
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Gaussian 
function

Reaction-Diffusion

• Because of diffusion, h is not locally constant
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Deblocking responds to the time-average of the acid 
concentration, heff
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Reaction-Diffusion Point 
Spread Function
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In 1D:
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Acid Loss

• Acid is lost due to a variety of possible 
mechanisms:

– evaporation from top of resist
– base contamination from the substrate
– bulk acid loss (trapping site in the resist)
– diffusion of airborne base contaminants

• Sometimes, we purposely induce acid loss by 
adding a base quencher
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Atmospheric 
Contamination

APEX-E Resist

PAB:  100°C/60s,  PEB:  90°C/60s 

Development:  84s,  MF702

Exposure:  4.28 mJ/cm2

0.275 µµµµm features, no delay 0.325 µµµµm features, 10 minute delay

Courtesy of SEMATECH
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T-Top Reduction

• Reduce post-exposure delay
– Link track and stepper

• Reduce airborne base
– Eliminate sources of contamination
– Filter air in track and stepper

• Reduce diffusion of base into resist
– Anneal resist during PAB
– Use top coat (not preferred)
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Base Quencher and 
Base Diffusion

• Base quencher is used to neutralize the acid generated by exposure

Initial Acid

Initial Base Quencher

• Base quencher diffusion (relative to acid or aerial image diffusion) can 
move the “neutral” point

“Neutral” Points

Acid
Base

Impact of Quencher
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ChemAmp Resist 
Review

• Chemical amplification is a catalysis reaction in 
which an acid, generated by exposure, catalyzes 
a reaction with the polymer resin that changes its 
solubility in developer

• Acid loss mechanisms can reduce CD control 
(e.g., atmospheric base contamination) or 
improve CD control (e.g., base quenchers)  

• Acid diffusion, and its control, is a critical part of 
the performance of chemically amplified resists

Lecture 52:
What have we Learned?

• Explain the concept of reaction-diffusion

• What is the diffusion point spread function 
(DPSF)?

• What is the reaction-diffusion point spread 
function (RDPSF)?

• What causes T-topping in chemically amplified 
resists?

• Why are base quenchers used in chemically 
amplified resists?
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